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ABSTRACT

Solvency regulations require financial institutions to hold initial capital so that
ruin is a rare event. An important practical problem is to estimate the regulatory
capital so the ruin probability is at the regulatory level, typically with less than
0.1% over a finite-time horizon. Estimating probabilities of rare events is chal-
lenging, since naive estimations via direct simulations of the surplus process is
not feasible. In this paper, we present a stratified sampling algorithm for estimat-
ing finite-time ruin probabilities. We further introduce a sequence of measure
changes to remove the pathwise discontinuities of the estimator, and compute
unbiased first and second-order derivative estimates of the finite-time ruin prob-
abilities with respect to both distributional and structural parameters. We then
estimate the regulatory capital and its sensitivities. These estimates provide in-
formation to insurance companies for meeting prudential regulations as well as
designing riskmanagement strategies. Numerical examples are presented for the
classical model, the Sparre Andersen model with interest and the periodic risk
model with interest to demonstrate the speed and efficacy of our methodology.
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1. INTRODUCTION

The standard theoretical approach underlying insurance regulations originated
in risk theory. The aim of prudential regulations is to ensure that the probability
of ruin for certain insurance portfolios is below some given “acceptable” level.
To ensure this, regulators set a mandatory minimum amount of capital that may
be used by the insurance companies as a buffer. The risk theory community aims
to utilize sophisticated stochastic models to estimate
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• the probability of ruin within a finite-time horizon given the current level of
capital,

• the sensitivities of the current ruin probability with respect to the underlying
risk factors,

• the density of the time to ruin given the current portfolio condition,
• the minimum regulatory capital needed to obtain a survival probability of at

least 99.9% (for example) over a given possible long time horizon,
• the sensitivities of the regulatory capital with respect to the underlying risk

factors.

Traditionally, the risk theory community has been focusing on deriving ana-
lytical solutions of ruin probabilities with restrictions to some specific models.
These analytical solutions provide helpful insights for the nature of insurance
risks. However, due to the inherent complexity of insurance business, thesemod-
els are insufficient to explain the underlying dynamics.While the analytical solu-
tions of ruin probabilities under more realistic models are yet to be discovered,
we address the above problems by efficient simulation algorithms, that can be
used widely for practical purposes.

Monte Carlo simulation is the computational tool of this paper, which has
long been used for estimating expected values of a function, that is, it produces
an estimate of ϒ(φ, η) by computing the expectation of the pathwise estimator
g with respect to a certain probability distribution,

ϒ(φ, η) = Eη[g(X, φ)] =
∫
g(x, φ) f (x, η)dx, (1.1)

where f is the probability density function of the randomvariable X. Simulation
techniques have been studied in awide range of practical areas, including queues
(Ross, 2006), financial engineering (Glasserman, 2004), computer networks (Pe-
terson and Davie, 2007) and many more. Here, we apply some techniques of
rare event simulation and sensitivity analysis to solving classical problems in
risk theory. An extension of the work here is to consider other Monte Carlo
methods for studying these ruin-related problems. We leave these to the future.

In order to study ruin-related problems of insurance portfolios, the risk the-
ory community considers the excess of income over claims paid, i.e. the insurer’s
surplus process. In this paper, we use Monte Carlo simulation to generate re-
peated random samples of this process. The mathematical representation of the
surplus process is

Rt = u + c(t) −
Nt∑
i=1

Xi , (1.2)

where

• u is the initial surplus, or capital,
• Nt is the number of claims up to time t, i.e. a delayed renewal process gener-

ated by a sequence of inter-claim times Ti ,

Nt = inf{ j ≥ 0 : T0 + · · · Tj ≥ t},
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• Xi ’s are independent and identically distributed non-negative random vari-
ables,

• c(t) is the amount of premiums collected by the insurer up to time t.

The classical risk model was the first model introduced to study the be-
haviour of the above process. It models the inter-claim times, Ti , as independent
and identically distributed exponential random variables. Andersen (1957) ex-
tended the classical model by allowing the inter-claim times to have arbitrary
distributions, such as Erlang, gamma and mixed exponential distributions. For
both models, the premium collection is assumed to be

c(t) = (1 + θ)μλt,

where λ = 1/E[Ti ], μ = E[Xi ] and θ is the premium loading factor. Both the
classical model and the Sparre Andersen model assume independent and iden-
tically distributed inter-claim times. This choice implies that it does not describe
situations, such as motor insurances, where claim occurrence epochs depend on
the time of the year. The non-homogeneous Poisson process is an alternative for
this case, such that a typical periodic intensity function λ(t) = a + b cos(2πct)
can be used to describe the arrival rate of claims (Čı́žek et al., 2011). For this
model, the premium collection is assumed to be

c(t) = (1 + θ)μ

∫ t

0
λ(s)ds.

In addition to the claim arrival process, various distributions can be used
to describe the behaviour of Xi . While most of the literature has focused on
light-tailed distributions, the nature of most insurance businesses implies more
heavy-tailed claim size distributions. Since the aggregate claim of a portfolio is
the sum of a random number of claims, its tail distribution depends heavily on
the tail of the individual claim size distribution. It is then inadequate to model
using distributions such as the exponential.

After specifying the theoretical basis, the time to ruin,

τ(u) = inf{t > 0 : Rt < 0},
is studied. In particular, the ruin probabilities are defined in terms of τ(u),

ψ(u) = P(τ (u) < ∞), (1.3)

and
ψ(u, t) = P(τ (u) ≤ t). (1.4)

One can use the Pollaczek–Khinchin formula (Pollaczek, 1930) and (Khinchin
1967) for calculating the ultimate ruin probabilities. However, it is only tractable
when the Laplace transform of the ultimate-ruin probability is a rational func-
tion (Rolski et al., 1999). From a practical point of view, the finite-time ruin
probability, ψ(u, t), may perhaps be regarded as more interesting than the
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infinite-time one. The finite-time, t, is related to the planning horizon of the
company, and typically long term, for example 10 years. In recent years, there
has been a surge of research into methods for computing finite-time ruin prob-
abilities, especially for the classical model:

• Picard and Lefévre (1997) derived the finite-time ruin probabilities with dis-
crete claim size distributions.

• Vylder (1999) provided numerical approximations of finite-time ruin proba-
bilities for the continuous case by the Picard–Lefévre Formula.

• Dickson and Willmot (2005b) derived an expression for the density of the
time to ruin in the classical risk model by inverting its Laplace transform.
They have shown that finite-time ruin probabilities can be calculated when
the individual claim amount distribution is a mixed Erlang distribution.

• Dickson (2007) derived the density function of aggregate claims for joint den-
sity functions involving the time to ruin, the deficit at ruin and the surplus
prior to ruin.

In general, ruin probabilities can only be calculated analytically for some
special light-tailed claim size distributions under the classical risk model and
the Sparre Andersen model. These analytical formulae can, however, require
hours of computation. For more realistic models, there are no analytical results
found in the literature. Albeit, one can always use Monte Carlo simulations to
estimate these ruin probabilities, and results obtained can also be used in the
future as benchmarks for the purposing analytical solutions.

In the first part of our paper, we develop an efficient simulation algorithm
for estimating the finite-time ruin probabilities. For computing finite-time ruin
probabilities, the direct simulation algorithm provides an unbiased pathwise
estimator,

g = I{τ(u)≤t}, (1.5)

and the choice of probability density function depends on the random variable
of interest. This estimator, however, does not provide sensible answers in prac-
tical situations, because solvency regulations require insurance companies to
hold capital so that ruin in a finite-time horizon is a rare event, i.e. ψ(u, t) is a
very small number. For a 99.9% sufficiency level, one can only expect to observe
a non-zero pathwise estimator, i.e. g = 1, in just five paths of a 5,000 paths
simulation. To provide reliable estimates via direct simulation would be a time-
consuming exercise.

Rare event simulation has been studied extensively in the literature to address
problems like this, standard techniques includes importance sampling (Blanchet
and Lam, 2012), conditional Monte Carlo (Asmussen and Kroese, 2006), and
multi-level splitting (Dean and Dupuis, 2011). However, none of these standard
techniques have been applied to estimate finite-time ruin probabilities. Strati-
fied sampling is another method, widely used as a variance reduction technique
by the Monte Carlo community. As pointed out by Glasserman et al. (1999a),
stratified sampling can be viewed as a special case of importance sampling in
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that measure changes are performed on the standard uniforms for simulating
the random variables.

Here, we introduce stratified sampling to the field of ruin theory and pro-
vide better estimates for finite-time ruin probabilities when they are small. The
method is similar to the approach of Joshi andKainth (2003) for studying credit
derivative. In each claim time, we only require the program of simulating Xi to
bemonotonic in its first standard uniform. Then, given Nt = n, for n = 1, 2, . . . ,
we force the probability of ruin at the i th claim to be 1

n+1−i provided that ruin
has not occurred through the first i−1 claims, by performing a measure change
on the first standard uniform in the simulation algorithm for each Xi until ruin
occurs. For paths with one or more claims, the probability of ruin becomes cer-
tain. The new pathwise estimator is

g = INt>0

nr∏
i=1

Wi , (1.6)

where nr is the number of the claim at which the surplus level drops below zero
and Wi is the likelihood ratio weight resulting from the measure change at the
i th claim. The mild assumptions allow the algorithm to have wide applications,
which provide an easy and efficient way to computing finite-time ruin probabili-
ties. The numerical results show that, the stratified sampling algorithm produces
better estimates of finite-time ruin probabilities when they are small.

The second practical problem we address in this paper is to compute deriva-
tive estimates of the finite-time ruin probabilities with respect to both distri-
butional and structural parameters, i.e. the gradient and Hessian of ψ(u, t).
Sensitivity analysis is useful for discovering which risk factors are important
and which ones are not. Further, the derivative of ψ(u, t) with respect to t gives
the density of the time to ruin, which is one important research focus of the risk
theory community. Our techniques work under similar assumptions to those for
stratified sampling.

Estimating the sensitivities of ruin probabilities is a difficult task. Due to
the complexity of the underlying systems, the three traditional Monte Carlo
methods of computing sensitivities, namely the finite-differencing method(FD),
the pathwise method and the likelihood ratio method (LR), are not applicable
for computing sensitivities of finite-time ruin probabilities:

• The FD method with a small bump size produces a biased estimator. Since
a small bump in the parameter of interest may alter the number of claims at
time t and Rt at each claim time, the resulting pathwise estimator of ruin from
the bumped path might be materially different from the unbumped path, i.e.
the pathwise estimators of ruin are discontinuous functions. Therefore, the
resulting FD estimators of derivatives have extremely large variances if the
bump size is small.

• The pathwisemethod can be viewed as the limit case of the FDmethod,which
produces unbiased estimates when applicable. The computation of first-order
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sensitivities under this approach requires the pathwise estimator, g(x(η), φ),
to be Lipschitz continuous everywhere and differentiable almost surely as a
function of η and φ. This is not the case for finite-time ruin pathwise estima-
tors, which involves a sequence of indicator functions.

• The LR method also produces unbiased estimates, but it is only applicable
for the distributional parameters η when the underlying distributions have
known and tractable probability density functions, f (x, η). For structural
parameters such as the initial surplus u, the premium loading θ and the finite-
time t, the LR method is not applicable. In addition, for cases where the LR
method is applicable, it has a tendency to produce derivative estimates with
high variances.

Among these traditional methods, the pathwise method when applicable pro-
duces estimators with the smallest variances (Glasserman, 2004), but apply-
ing the pathwise method to compute sensitivities often requires additional
endeavour. One approach is the Optimal Partial Proxy(OPP) algorithm by
Chan and Joshi (2015); a measure change is performed at each pathwise dis-
continuity defined by the payoff function g, so the simulated payoff func-
tion ĝOPP is Lipschitz continuous everywhere and differentiable almost surely,
the pathwise method is then applied to ĝOPP to compute the pathwise esti-
mators of first-order sensitivities. Joshi and Zhu (2014a) extended the OPP
method to computing Hessians of financial products with angular or discon-
tinuities payoffs(HOPP); their measure change removes the pathwise discon-
tinuities of both the payoff function g and its first order derivatives 
g. The
resulting simulated payoff function ĝHOPP has first order derivatives which are
Lipschitz continuous everywhere and differentiable almost surely (we shall say
a function with such properties is Ĉ2), the pathwise method is then applied
to ĝHOPP to compute the pathwise estimator of the Hessian. Joshi and Zhu
(2014b) further introduced the Optimal Sensitivities of Rejection Sampling
(OSRS) algorithm to compute first- and second-order sensitivities of systems
simulated by rejection techniques; they use a sequence of measure changes
to remove the pathwise discontinuities resulted from the acceptance–rejection
decisions.

While computing sensitivities of performance measures has been studied ex-
tensively in theMonte Carlo literature, there has been little progressmade for es-
timating derivatives of ruin probabilities due to practical difficulties of the prob-
lem. Asmussen and Rubinstein (1999) estimated the ultimate ruin probability
ψ(u) and its sensitivities, under various distributions of the arrival processes and
the claim sizes by simulation. For distributional parameters, they used the LR
method; for the structural parameters, they used the combination of the LR and
the push-out method. The idea of the push-out method is to rewrite the model
such that the parameter of interest appears in the usual way as the parameter of
the density, and the LRmethod is then applicable. Privault andWei (2004) intro-
duced the Malliavin calculus approach to compute sensitivities of the ultimate
ruin probability for a classical risk model with a constant interest rate and an
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arbitrary claim size distribution. Another approach by Vazquez-Abad (2000) is
rare perturbation analysis (RPA), which assumes that there exists a σ -field such
that the interchange of differentiation and integration is valid. However, for the
sensitivities of the finite-time ruin probabilities, only the Malliavin calculus ap-
proach was applied to compute ∂ψ(u,t)

∂u in the classical model, where the claim
sizes were stricted to fixed, exponential and Pareto random variables (Loisel and
Privault, 2009).

In this paper, we adapt HOPP to compute first and second-order sensitivities
of the finite-time ruin probabilities. The pathwise estimator of ruin by direct
simulation is shown in equation (1.5), it is clearly a discontinuous function of
both the distributional and the structural parameters. To remove the pathwise
discontinuities, we perform measure changes to ensure

• the bumped paths and the unbumped paths have the same number of claims,
i.e. Nt(η) = Nt(η0), where Nt(η) is the number of claims up to time t given
the distributional parameters η,

• the surplus level Rt(η, φ) < 0 if and only if Rt(η0, φ0) < 0, where Rt(η, φ) is
the surplus level at time t given the distributional and the structural param-
eters.

We shall call the resulting simulation algorithm, the sensitivity of finite-time
ruin by direct simulation (SFRDS). The pathwise estimator by the stratified
sampling algorithm as shown in equation (1.6) is Ĉ2 as a function of the struc-
tural parameters as well as the parameters of the claim size distribution. This
is because the LR weights, Wi , are continuously differentiable functions of the
structural parameters as well as the parameters of the claim size distribution.
The product of them is then also continuously differentiable. However, the func-
tion is still discontinuous with respect to the parameters of the inter-claim time
random variables. That is, a small bump in them may change the value of the
indicator function as well as the value of nr . We perform changes of measure
to ensure such pathwise discontinuities are removed. We shall call the resulting
simulation algorithm, the sensitivity of the finite-time ruin by stratified sampling
(SFRSS). Numerical experiments are performed for the three models discussed,
the results show that the sensitivities computed by the two method agree. How-
ever, when finite-time ruin is rare, the SFRSS method outperforms.

After obtaining efficient algorithms for computing the finite-time ruin prob-
abilities and their sensitivities, we can then address the problem of estimating
the regulatory capital. Since the stratified sampling algorithm and the SFRSS
method produce better estimates when finite-time ruin is rare, they are used to
approximate the critical initial surplus level, i.e. the regulatory capital u∗ such
that the finite-time ruin probabilities calculated is at the solvency level α,

ψ(u∗, t) = α. (1.7)

We use the Newton–Raphson method to provide an approximate, û, of the reg-
ulatory capital given α = 0.001 in our numerical examples. Since the value of

https://doi.org/10.1017/asb.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.5


438 MARK S. JOSHI AND DAN ZHU

∂ψ(u,t)
∂u is always negative, the initial surplus obtained by the process is guaran-

teed to approach the critical value.
In addition to regulatory capital, insurance companies are also interested in

its sensitivities to risk factors. For instance, if the claims arrival rate increases,
how much more capital hu , they should raise in order to maintain the solvency
level, i.e. ψ(u + hu, t) = α. Sensitivity analysis is required for insurance com-
panies in their financial condition reports in Australia, the UK and in Canada.
For meeting the prudential regulations, Cocozza and Lorenzo (2006) presented
various methodologies for solvency assessment of life insurance businesses, but
their results only focused on the investment risk; Hardy (1993) has shown that
a stochastic simulation method exceeds the traditional deterministic sensitivity
test approach in estimating the relative probabilities of insolvency of different in-
vestment strategies and the timing of potential solvency problems. We compute
sensitivities of the regulatory capital with respect to other parameters. These
sensitivities, ∂ û

∂η
, provide an approach to risk management for insurance compa-

nies in terms of meeting solvency requirements.
To demonstrate the validity and efficiency of our simulation algorithm, nu-

merical experiments are performed under the classical risk model, the Sparre
Andersen model with interest and the periodic risk model with interest. All nu-
merical examples are computed using single-threaded Monte Carlo C++ pro-
grams. The use of multi-core central processing unit (CPUs) and graphics cards
to speed up computer programs has received considerable attention. Aldrich et
al. (2011) demonstrated the effectiveness of Graphics Processing Unit (GPUs)
for solving dynamic equilibriumproblems in economics using iterativemethods;
Joshi (2014) demonstrated that over one hundred times speed up can be achieved
in a realistic case for the pricing of cancellable swaps using the displaced diffu-
sion LIBORmarket model using a multi-core graphics card. The algorithms we
develop in the paper are naturally parallel in nature and so multiple processing
cores could be similarly employed for massive speed ups.

The remaining sections of the report are organized as follows. The basic idea
of the stratified sampling algorithm is presented in Section 2. In Section 3, we
compute first- and second-order sensitivities of finite-time ruin probabilities by
both SFRSS and SFRDS. In Section 4, we apply the Newton–Raphson method
to approximate the regulatory capital and compute its sensitivities.

2. SIMULATING THE SURPLUS PROCESS

2.1. Overview on rare event simulation

Estimating ψ(u, t) via direct simulation of the surplus process Rt would require
estimating P(E), where

E = {τ(u) ≤ t}.
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When the initial surplus level u is large, α = P(E) is small. The direct Monte
Carlo estimator of α is

αn = 1
n

n∑
j=1

I
j
E,

where I
j
E’s are independent pathwise estimators. By the Central Limit Theorem,

the relative error in the estimator is described by the approximation,

αn

α
− 1 ≈

√
(1 − α)

nα
Z,

where Z is the standard normal random variable. When α is small, there are
only a few non-zero paths. It is unlikely to produce reliable estimation unless
the sample is large. Consequently, naı̈ve rare event simulations are prohibitively
expensive. Due to the stringent solvency requirements of prudential regulations,
estimating ψ(u,T) by direct simulation is clearly not sensible.

Due to its importance across different fields of endeavour, fast simulation
techniques have been introduced to study the occurrence and impact of rare
situations. These methods efficiently reduced relative errors of the estimates in
practical situations where crudeMonte Carlo is insufficient to provide a sensible
answer. Rubino and Tuffin (2009) presented a detailed account of the theoretical
basis for modern rare event simulation techniques. They also devoted a signifi-
cant part of the book to applications of these techniques, such as performance
measure simulation in queues, nuclear particle transport simulation, biological
system simulation, etc. While these advanced techniques have many interesting
applications, none of them have been applied to estimate finite-time ruin prob-
abilities. In this paper, we apply one of these methods, i.e. stratified sampling,
to estimate finite-time ruin probabilities. The idea of stratified sampling is very
similar to that of importance sampling. The sample space of the target distri-
bution is divided into K regions, called strata, and then one can compute the
sample estimate, gi , in each stratum. The resulting pathwise estimate is

g =
K∑
i=1

pi gi ,

where pi is the allocation of the i th stratum. The idea of our approach is origi-
nated from Joshi and Kainth (2003), and is explained in the next section. Here,
we briefly summarize other rare event simulation techniques and leave the ap-
plication of these methods to the future.

The most commonly used technique for rare event simulation is importance
sampling, especially when the underlying state variables are light-tailed. It mod-
ifies the direct Monte Carlo method, and generates random weighted samples
from an equivalent probability distribution rather than the distribution of inter-
est. The basic idea is to introduce a probability measureQ such that the Radon–
Nikodym derivative between the original probability measure, P, and Q is well
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defined on the event of interest. Then, the pathwise unbiased estimator becomes

Iω∈E
dP

dQ
(ω).

Here, ω is the underlying random outcome simulated according to the probabil-
ity measure Q. Asmussen and Glynn (2007) showed that the optimal choice of
measure change is P(·|E). Thus, we wish to use a sampling distribution Q that
resembles as closely as possible to the conditional distribution of P given E.
This approach is widely used for estimating performance measures in queuing
systems. A typical example is to consider a randomvariable Sn = ∑n

i=1 xi , where
xi is identically distributed independent random variables with E[xi ] < 0, and
estimate the rare event probability

P
(
sup
n∈N

Sn ≥ b
)
,

for a deterministic b that is large (Blanchet and Glynn, 2008). This is different
from our problem of estimating finite-time ruin probabilities, the value of b in
our context is stochastic and depends on the claim arrival process.

Importance sampling has limited applications, when the problemdimension-
ality is high or when the optimal importance sampling density is too complex
to obtain. For computing finite-time ruin probabilities, one can apply impor-
tance sampling, i.e. performmeasure changes on either the claim arrival process
and the individual claim size random variable. However, the surplus process Rt
depends critically on the timing of the claims as well as other factors such as
investment returns. Consequently, it is hard to determine the optimal measure
change. Thus, it is challenging to implement importance sampling efficiently,
especially in a general framework that will allow solutions for many classes of
problems.

Conditional Monte Carlo is another method for rare event simulation (As-
mussen and Glynn, 2007). The idea of the method is that given an auxiliary
vector of random variables, Z, we have

E[P(E|Z)] = P(E),

so P(E|Z) is an unbiased estimate of P(E). More importantly, it has a smaller
variance than the crude Monte Carlo estimator. Based on this idea, effi-
cient method was introduced in Asmussen and Binswanger (1997) to estimate
ultimate ruin probabilities with heavy-tailed random claim sizes. Using the
Pollaczeck–Khinchine formula, they transformed the problem of computing
equation (1.3) to computing

P
( K∑
i=1

Xi > u
)
,

https://doi.org/10.1017/asb.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.5


THE EFFICIENT COMPUTATION AND THE SENSITIVITY ANALYSIS 441

where K follows a geometric distribution. It was then estimated using an effi-
cient conditional Monte Carlo algorithm. This method was then improved in
the random K case by incorporating control variates and stratification tech-
niques (Asmussen and Kroese, 2006). Their estimators of ultimate ruin prob-
abilities have bounded relative errors. However, we do not have the luxury of
the Pollaczeck–Khinchine formula in the finite case. Thus, it is difficult to ap-
ply the existing conditional Monte Carlo method to computing finite-time ruin
probabilities.

Another method called “Splitting” was introduced to deal with the problem
of estimating rare event probabilities (Villen-Altamirano andVillen-Atamirano,
1991). Basically, it partitions the space-state of the system into a series of nested
subsets and considers the rare event as the intersection of a nested sequence of
events. That is, consider

E1 ⊂ E2 . . . Em = E,

the small probability of event E can be decomposed into

P(E) = P(E1)P(E2|E1) . . . P(Em|Em−1),

with each conditional event being “not rare”. When a given sub-set is entered
by a sample path, random sub-simulations are generated from the initial state
corresponding to the state of the system at the entry point. Thus, the system
has been split into a number of new sub-simulations. The final estimate is the
product of individual estimates. Splitting is typically used for estimating the
probability that a Markov process first enters an unlikely set B before another
likely set A, after starting in neither A nor B (Dean and Dupuis, 2009). This is
different from estimating finite-time ruin probabilities.

Glasserman et al. (1999b) analysed the splitting method, and showed that
choosing the degree of splitting correctly produces asymptotically optimal esti-
mates when the state space satisfies some dimensionality conditions. Practically,
it implies that too much splitting results in explosive computational require-
ments, and too little splitting eliminates any reduction in variance. To address
the issue, Dean and Dupuis (2011) formulated multi-level splitting algorithms
for simulate rare probabilities, where the underlying state variable is discrete. In
case of computing finite-time ruin probabilities, the distribution of the under-
lying surplus process is often continuous and typically difficult to work with.
A carefully designed sequence of splitting is required for applying the method,
moreover, an efficient algorithm of estimating these conditional probability is
crucially important.

2.2. The idea of the stratified sampling algorithm

While the rare event simulation techniques in the previous section are not yet
applied to computing finite-time ruin probabilities, we use a simple stratified
sampling to deal with the problem. Stratified sampling is widely used for vari-
ance reduction purposes by theMonte Carlo community. The idea in this paper
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is similar to the simulation algorithm in Joshi and Kainth (2003) for pricing
credit derivatives. As opposed to direct simulation, it produces non-zero path-
wise estimates for all paths with one or more claims.

The conditions for the stratified sampling to apply are

1. we can observe the number of claims Nt = n, for n = 0, 1, . . . , and the
exact values of Ti ’s before the observation of the individual claim sizes;

2. given R∗
i > 0, the surplus level just before the i th claim, there exists a twice

differentiable function AXi (R
∗
i (η, φ), η) such that

VXi < AXi ⇔ Ri < 0,

where VXi is one simulated random uniform for generating Xi .

This is the actual probability of ruin at the i th claim, Xi , given the surplus level
just before the claim. Here, we shall only present this case, a similar approach is
valid for the opposite situation, i.e. VXi > AXi ⇔ Ri < 0.

The first step of the algorithm is to simulate the number of claims, n, within
a finite-time horizon. If n = 0, the pathwise estimator is zero. For other paths,
the surplus level is forced to drop below zero at the i th claim with a probability,

ai = 1
n + 1 − i

,

provided that ruin has not occurred through the first i − 1 claims. This number
ai only depends on the total number of claims within the time horizon, not
the surplus level just before the claim. This ensures that ruin always occurs and
is equidistributed between the n claims. To achieve this, a change of measure
is performed on one simulated standard uniform random variable VXi of Xi
until ruin occurs. The standard uniform VXi is replaced by a change of variable
function Ui (VXi , AXi ) of it, i.e.

Ui (VXi , AXi ) =
{ AXi

ai
VXi , VXi < ai ,

1−AXi
1−ai (VXi − ai ) + AXi , VXi ≥ ai .

(2.1)

The resulting LR weight from the measure change is

Wi (VXi , AXi ) =
{ AXi

ai
, VXi < ai ,

1−AXi
1−ai , VXi ≥ ai .

(2.2)

The pathwise estimator of the finite-time ruin probability under the stratified
sampling algorithm is

ĝSS(η) = INt>0

nr∏
i=1

Wi , (2.3)

where nr = 1, 2, . . . is the number of the claim at which the surplus level drops
below zero.
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TABLE 1

THE CLASSICAL RISK MODEL: SIMULATED FINITE-TIME RUIN PROBABILITIES BY THE DIRECT METHOD AND
THE STRATIFIED SAMPLING ALGORITHM WITH 50,000 PATHS SAMPLE.

t Analytical DM mean(S.E.) SS mean (S.E.)

2 0.0013 0.0013(0.000158) 0.0012(0.00013)
4 0.0059 0.0056(0.00333) 0.0065(0.00046)
6 0.0131 0.0140(0.00052) 0.0138(0.00071)
8 0.0220 0.0216(0.00065) 0.0226(0.00099)
10 0.0319 0.0307(0.00077) 0.0322(0.00131)
20 0.0822 0.0801(0.00121) 0.0807(0.00256)
40 0.1573 0.1523(0.00161) 0.1506(0.00408)

2.3. Numerical examples

We consider three models in our numerical experiment for comparing the re-
sults from direct simulation and the stratified sampling algorithm in estimating
the finite-time ruin probabilities. The numerical experiments in this section are
conducted by 50,000 paths samples.

2.3.1. The classical risk model. We choose the exponential inter-claim time
random variable and the exponential claim size random variable for benchmark
purposes, see Dickson and Willmot (2005a) for the analytical results.

For the stratified sampling algorithm, we need to compute the critical value
functions Ai . Given VXi , the exponential claim size random variable Xi is com-
puted as

Xi = −μ log(VXi ),

where μ = E[Xi ]. The critical value function is

AXi (μ, R∗
i ) = exp

(
− R∗

i

μ

)
.

We first set the parameters μ = 1, λ = 1, θ = 0.1, u = 10, and vary the
finite-time t. The finite-time ruin probabilities computed by both methods are
consistent with the ones in Dickson and Willmot (2005a), the numerical results
are shown in Table 1.

• The stratified sampling algorithm underperforms the direct simulation when
ψ(u, t) is large, this is because the change of measure at each Xi introduces
excessive LR weights.

• The stratified sampling algorithm outperforms the direct simulation when
ruin is rare and the change of measure induces a faster convergence.

For the classical model, the numerical results suggest that the stratified sam-
pling algorithm is the preferred method when simulating rare finite-time ruin
probabilities.
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FIGURE 1: The classical model: the computation times of the direct method and the stratified sampling
method based on 50,000 samples.

We further consider the computational times of the two methods for esti-
mating the finite-time ruin probabilities. Let u = 20 and vary t = 1, 2, . . . 15, in
figure 1 we plot the time taken to estimate ψ(u, t) by the two method with the
same set of parameters as above. The plot indicates that the stratified sampling
algorithm reduces the computational effort when the probability of ruin is small,
because

• the algorithm stops on each path when ruin occurs,
• we have forced ruin to occur at a faster rate, i.e. ai > Ai .

2.3.2. The Sparre Andersen model with a deterministic investment return on sur-
plus. The traditional surplus process in risk theory assumes that the surplus
receives no interest over time, but a large portion of the surplus of insurance
companies comes from investment income. In recent years, we have seen an in-
creasing interest in risk models with interest incomes. Infinite time ruin proba-
bilities with a constant interest rate were estimated in Sundt and Teugels (1995)
for the classical risk model. In particular, they considered the case with zero
initial reserve, and the case with exponential claim sizes. Konstantinides et al.
(2002) extended the results to allow heavy-tail claim sizes. These results are re-
stricted to the infinite-time ruin probabilities under the classical model. Despite
the practical importance of with-interest models, there has been no progress
made in literature on solving the finite-time ruin probabilities with interest, nor
the Sparre Andersen model with interest.

Here, we consider the Sparre Andersen model with interest, that is,

dRt = r Rtdt + (1 + θ)μλdt − d
Nt∑
i=1

Xi ,
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TABLE 2

THE SPARRE ANDERSEN WITH INTEREST RISK MODEL: SIMULATED FINITE-TIME RUIN PROBABILITIES BY
THE DIRECT METHOD AND THE STRATIFIED SAMPLING ALGORITHM WITH 50,000 PATHS SAMPLE.

u DM mean DM S.E. SS mean SS S.E.

1 0.42712 0.00221 0.42236 0.00263
5 0.09768 0.001328 0.09822 0.000973
10 0.02076 0.000638 0.02150 0.000369
25 0.00174 0.000186 0.00135 2.2011E-05
30 0.00106 0.000146 0.00078 1.2905E-05

where μ = E[Xi ] and λ = 1
E[Ti ]

. While obtaining the analytical solution of the
ruin probabilities via Laplace transform is intractable, Monte Carlo simulation
provides an alternative solution to the problem. For the numerical experiments,

• the inter-claim times are distributed Erlang(m, β), we set m = 2 and β = 2,
so E[Ti ] = 1,

• the claim size random variables are distributed Pareto(a, b), we set a = 3 and
b = 2, so E[Xi ] = 1,

• the finite-time horizon is 10,
• the premium loading is 0.1 and the constant force of interest is 0.1.

We set the initial surplus u = 1, 5, 10, 25 and 30, and compare the results sim-
ulated by the direct method and the stratified sampling algorithm, see table 2.
The numerical results show that the stratified sampling algorithm outperforms
the direct method significantly for the Sparre Andersen model with interest for
most cases, except when the ruin probability is significantly large. The time taken
to compute the finite-time ruin probability with u = 30 under the direct method
is 0.5208 seconds and the stratified sampling is 0.168 seconds. This indicates a
reduction of computational effort due to a faster rate of ruin occurrence for the
stratified sampling method.

2.3.3. The periodic risk model with a deterministic investment return on surplus.
Another important property of insurer’s risk business is that, claims are some-
times caused by periodic phenomena. The previous two models have a constant
claim arrival intensity over time, which makes them crude models for insur-
ance portfolios under periodic environments. We allow a periodic intensity for
the compound Poisson process in the next experiment, that is the number of
claims up to time t, Nt follows a non-homogeneous Poisson process. The general
theory for the periodic case has been derived in Asmussen and Rolski (1994),
whose discussion relied on the properties of the martingale non-homogeneous
Poisson. A practical simulation algorithm for the surplus process was intro-
duced by Morales (2004). The ultimate ruin probabilities computed using their
method were compared with the classical model results, it demonstrated a sig-
nificant fluctuation depending on the current state of the cycle. However, their
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discussions of ruin probabilities were restricted to the ultimate cases and expo-
nential claim sizes.

For the numerical experiment, we compute the finite-time ruin probabil-
ities with lognormal claim size random variables. This example is of more
practical interest to the insurance industry. The following intensity function is
considered:

λ(t) = a + b cos (2πct), for t > 0, (2.4)

where a > 0, b > 0 and c > 0 are parameters of the model. This intensity
function has a maximum value of a + b and a minimum value of a − b. The
period of the seasonal behaviour can be modified through the value c in the
function. To simulate the time of the next arrival conditional on a claim just
arrived at time s, the thinning algorithm is used (Ross, 2006). In particular, the
process is simulated by a majoring Poisson process with an intensity function
λ∗(t) = a + b, as follows:

1. Let ts = s,
2. generate VTi = U(0, 1), set ts = ts − 1

a+b log(VTi );
3. generate VD,
4. if VD ≤ a+b cos (2πcts )

a+b , set Ts = ts and accept, else go back to step 2.

We also modify the model to incorporate a constant force of interest r , so
that

dRt = r Rtdt + (1 + θ)μλ(t)dt − d
Nt∑
i=1

Xi ,

where Nt is a non-homogeneous Poisson process with intensity λ(t).
For the numerical experiments, we choose

• the intensity parameters, a = 1, b = 1 and c = 0.1,
• the claim sizes lognormally distributed with ν = −0.5 and σ = 1, so that

E[Xi ] = 1,
• the force of interest r = 0.1 and the loading θ = 0.1,
• the finite-time horizon t = 10.

We set the initial surplus u = 1, 5, 10, 25 and 30 to show that the stratified
sampling algorithm results and the directmethod results agree, and the stratified
sampling algorithm outperforms the direct method when the probability of ruin
is small, see table 3. The time taken to compute the finite-time ruin probability
with u = 30 under the direct method is 0.643 seconds and the stratified sampling
method is 0.372 seconds.

The above numerical results suggest that, the stratified sampling algorithm
outperforms the direct method when the initial surplus is large, i.e. the prob-
ability of ruin is small. Our ultimate objective is to find the regulatory cap-
ital so the finite-time ruin probability over a 10-year period is very small,
typically less than 0.1%, thus it is preferable to use the stratified sampling
algorithm.
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TABLE 3

THE PERIODIC RISK WITH INTEREST RISK MODEL: SIMULATED FINITE-TIME RUIN PROBABILITIES BY THE
DIRECT METHOD AND THE STRATIFIED SAMPLING ALGORITHM WITH 50,000 PATHS SAMPLE.

u DM mean DM S.E. SS mean SS S.E.

1 0.50542 0.002236 0.50379 0.003752
5 0.12144 0.001461 0.12254 0.001715
10 0.02076 0.000638 0.02304 0.000750
25 0.00038 8.716E-05 0.000473 3.391E-05
30 0.00028 7.482E-05 0.000181 6.422E-06

3. SENSITIVITY ANALYSIS ON FINITE-TIME RUIN PROBABILITIES AND
DENSITY ESTIMATION

Sensitivity analysis in risk theory is concerned with estimating derivatives of the
ruin probabilities with respect to parameters of interest. Derivative estimates of
the finite-time ruin probabilities serves the following purposes:

• it unravels the underlying risk process, and identifies the most significant op-
erational parameters;

• one can make use of sensitivities to find the optimal solution with respect to
the parameters of interest;

• if the parameter is only partially known, they can be used to estimate the
parameter from data.

The pathwise method, or infinitesimal perturbation analysis (IPA), has been
introduced as an efficient way to compute parameter sensitivities of discrete-
event systems. Glasserman (1991) provided a general formulation of IPA for a
broad class of discrete-event systems, and stated sufficient conditions for these
estimates to be unbiased. Pathwise estimators of the finite-time ruin probabili-
ties often fail to fall into this restricted class.

3.1. Sensitivities with respect to the inter-claim time distribution: remove
pathwise discontinuities of Nt

For both the direct method and the stratified sampling algorithm, we need to
simulate the inter-claim time random variables. To compute the sensitivities of
the finite-time ruin probabilities with respect to the distributional parameters of
the inter-claim time random variable via IPA, we need to ensure that the path-
wise estimator of finite-time ruin is a Ĉ2 function of these parameters. Define

ti−1 =
i−1∑
j=0

Tj ,
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the arrival time of the i th claim. There is a pathwise discontinuity for each Ti
when

Ti = t − ti−1, provided that ti−1 < t, for i = 1, 2, . . . ,

and at the first claim arrival time when

T0 = t.

That is, a small bump in the distributional parameters of Ti will change of the
number of claims in the finite-time horizon, i.e. Nt(η) �= Nt(η0). We remove
such pathwise discontinuities by HOPP in Joshi and Zhu (2014a), to ensure the
unbumped path and the bumped path have the same number of claims.A change
of measure performed at each Ti to force the bumped path to finish on the same
side of discontinuities as the unbumped paths, that is,

Ti > t − ti−1 if and only if T0
i > t0 − t0i−1. (3.1)

We assume that, there exists a twice differentiable function ATi (η) such that

VTi < ATi ⇔ Ti > t − ti−1,

where VTi is one simulated standard uniform for generating Ti . This ATi is the
probability of having i claims conditional on i−1 claims already arrived, which
is different from AXi in the previous section. We replace VTi by a change of vari-
able function, UTi (VTi , η), of it, such that

UTi (VTi , η) =
⎧⎨
⎩

1−ATi (η)

1−ATi (η0)

(
VTi − ATi (η0)

) + ATi (η), VTi ≥ ATi (η0),

ATi (η)

ATi (η0)
VTi , VTi < ATi (η0).

(3.2)

The corresponding LR weight is

WTi (VTi , η) =
⎧⎨
⎩

1−ATi (η)

1−ATi (η0)
, VTi ≥ ATi (η0),

ATi (η)

ATi (η0)
, VTi < ATi (η0).

(3.3)

Example: Ti ∼ exp(λ)

Given a standard random uniform VTi ,

Ti = −1
λ
log(VTi ),

where λ = 1/E[Ti ]. The critical value function for Ti is

ATi (ti−1, t, λ) = exp−λ(t − ti−1), for ti−1 < t and i = 1, 2, . . . ,

the critical value function for T0 is

AT0(t, λ) = exp (−λt).
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3.2. Sensitivities with respect to claim size distribution and structural
parameters: remove the pathwise discontinuities when Rs D 0

For the stratified sampling, when the number of claims Nt > 0, simulated ruin
is certain. As shown in Section 2, the decision of ruin is determined by the
set of probabilities ai = 1

n+1−i . The changes of measure in Section 3.1 ensures
that the bumped path has the same number of claims as the unbumped path,
i.e. the value of n is the same. The decision of ruin is then determined by the
same value of ai for both the bumped and unbumped paths, thus the pathwise
estimator of the stratified sampling algorithm has no pathwise discontinuities
as Rs passing through zero.

However, we need to remove the pathwise discontinuities for the direct
method, as small bumps of parameters may cause the surplus level of the
bumped path to finish on different sides of zero from the unbumped path at each
claim. Adopting the same idea as Joshi and Zhu (2014a), given R∗

i (η, φ) > 0,
assume there exists a twice differentiable function AXi (R

∗
i (η, φ), η) for i =

1, 2, . . . , such that
VXi < AXi ⇔ Ri < 0,

where VXi is one simulated random uniform for generating Xi . Notice, this func-
tion is exactly the same as the critical value function in Section 2. We replace
VXi by a change of measure function of it, UXi (VXi , η, φ), such that

UXi (VXi , η, φ)=

⎧⎪⎪⎨
⎪⎪⎩

1−AXi (R
∗
i (η,φ),η)

1−AXi (R
∗
i (η0,φ0),η0)

(VXi −AXi (R
∗
i (η0, φ0), η0))+AXi (R

∗
i (η, φ), η),

VXi ≥ AXi (R
∗
i (η0, φ0), η0),

AXi (R
∗
i (η,φ),η)

AXi (R
∗
i (η0,φ0),η0)

VTi , VXi < AXi (R
∗
i (η0, φ0), η0).

(3.4)
The corresponding LR weight is

WXi (VXi , η, φ) =
⎧⎨
⎩

1−AXi (R
∗
i (η,φ),η)

1−AXi (R
∗
i (η0,φ0),η0)

, VXi ≥ AXi (R
∗
i (η0, φ0), η0),

AXi (R
∗
i (η,φ),η)

AXi (R
∗
i (η0,φ0),η0)

, VXi < AXi (R
∗
i (η0, φ0), η0).

(3.5)

3.3. The SFRSS method and the SFRDS method

After the sequence of measure changes, we obtain two new pathwise estimators
for finite-time ruin probabilities. For the direct simulation, changes of measure
are performed at each Ti and Xi , the pathwise estimator of the finite-time ruin
probabilities under SFRDS is

ĝSFRDS(η) =
( nr−1∏

i=1

Iti−1<tWTi−1IXi<R∗
i
WXi

)(
Itnr−1<tWTnr−1IXnr >R∗

nr
WXnr

)
, (3.6)

where nr = 1, 2, · · · is the number of the claim at which the surplus level drop
below zero. Similarly, we derive the pathwise estimator for the finite-time ruin
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probabilities under SFRSS,

ĝSFRSS(η) =
( Nt∏
i=1

Iti−1<tWTi−1

)
ItNt>tWTNt ×

( nr−1∏
i=1

IVXi <R∗
i
Wi

)
IVXnr >R∗

nr
Wnr . (3.7)

The SFRDS and SFRSS pathwise estimators for the finite-time ruin proba-
bilities have the following properties:

1. ĝSFRDS(η) and ĝSFRSS(η) are Ĉ2 since the composite of differentiable func-
tions are differentiable;

2. the FD estimator of first- and second-order derivatives Glasserman (2004)
under the new schemes are uniformly integrable.

Now, we can apply the pathwise method to ĝSFRDS(η) and ĝSFRSS(η) to con-
struct unbiased estimators of the gradient and Hessian of the finite-ruin proba-
bilities.

3.4. Automatic differentiation for multiple parameters of interest

Insurance companies and prudential regulators are interested in the sensitivities
of the finite-time ruin probabilities with respect to more than one parameter,
as well as the impact of their interactions on the probability of ruin. Calcu-
lating sensitivities in such multi-dimensional settings is often computationally
demanding.

For stochastic systems computed by Monte Carlo simulations, automatic
differentiation can be applied to compute sensitivities of functions (Griewank
and Walther, 2008). It differentiates computer program functions, rather than
the actual formulae of the expected performance measure. It is based on the
fact that all computer program functions can be decomposed into a string of
simple operations; the derivatives with respect to the input variables are then
computed by a chain-rule-based technique. The adjoint version of automatic
differentiation was introduced by Giles and Glasserman (2006) to derivative
pricing to speed up the computation of Greeks for cases where there are a small
number of outputs and a large number of inputs. Joshi and Pitt (2010) applied
the adjoint method to sensitivity analysis of the valuation results for pension
funds. They have shown that such simulation approach quickly produces a large
number of sensitivities which can be combined to assess the effect of a wide
range of possible scenarios.

The computation of Hessians has long been explored by the research com-
munity, especially by algorithmic means. One important method is the Back-
wards Algorithm Hessian introduced by Joshi and Yang (2010), their method
computes all first- and second-order derivatives simultaneously in adjoint fash-
ion. Their key result is that, given the Hessian HG of a function, G : RM → R,
if l is a elementary operation which is the identity mapping in all coordinate
except one and in that coordinate depends on only one or two coordinates then
the Hessian of G ◦ l, HG◦l can be computed by overwriting HG with AM+ B
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additional operations for some constants A and B depending only on the class
of elementary operations. However, their method is only applicable when the
integrand is Ĉ2.

For financial products with discontinuous or angular payoffs, they solved
the problem by smoothing the points of discontinuity or angularity, so the re-
sulting discounted payoff function are continuously twice-differentiable. How-
ever, the pathwise estimators of the finite-time ruin probability simulated by
the SFRSS method and the SFRDS method are Ĉ2 by construction, so we can
apply the Backwards Algorithmic Hessian approach to them directly without
smoothing to compute pathwise sensitivities of performance measure functions.
Essentially, we decompose the algorithm into L elementary operations and ap-
ply the method in a backward fashion to compute the Hessian estimator with
L(AM+ B) additional operations.

3.5. Numerical results for the gradient and Hessian of the finite-time ruin
probabilities

We use the same set of parameters as to the numerical experiments in Section 2,
and the sample size is 50,000 paths for each simulation.

3.5.1. The classical model. We consider t = 10 for u = 10 and u = 20, see
Tables A1–A4. The results show that the gradient and Hessian computed by
the two methods agree. When u = 10, ψ(10, 10) = 0.0319, for a sample of
50,000, the event ruin occurred in 1,533 paths by the direct method. The SFRDS
method is better algorithm for estimating the sensitivities with the sum of stan-
dard errors equals to 2.302782 as opposed to 64.0927 by SFRSS for all first- and
second-order sensitivities. When u = 20, the probability of ruin is 0.0002776 (by
the stratified sampling method), ruin occurred in 17 paths by the direct method.
The SFRSS method is better in this case since ruin is a rare event, the sum
of standard errors produced by the SFRDS method is 0.695968 as opposed to
0.092013 by SFRSS for all first- and second-order sensitivities.

We further consider the computational times of the two methods for esti-
mating first- and second-order sensitivities of the finite-time ruin probabilities.
We set t = 1, 2 . . . , 15 and u = 20 and plot the time taken by the two methods
with the same set of parameters as above. The plot in figure 2 suggests that

• the SFRSS method introduces more computational efforts when the time is
small and the probability of ruin is extremely small, since the number of non-
zero paths is significantly more than the direct method;

• the SFRSS method reduces the computational efforts when the time is big
and it forces ruin to occur at a faster rate.

3.5.2. The Sparre Andersen model with interest. We set u = 30 and t = 10,
the probability of ruin is small in this case (ruin occurred in 53 paths by direct
simulation), see Tables A5 and A6 for the results. The SFRSS method outper-
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FIGURE 2: The classical model: the computation times of the SFRDS method and the SFRSS based on
50,000 samples.

forms this case with the sum of standard errors equals to 0.017551 as opposed to
0.1505458 by the SFRDSmethod. The time taken in this case under the SFRDS
method is 0.473 seconds and the SFRSS method is 1.1415 seconds.

3.5.3. The Periodic risk model with interest. One important subtlety to point
out about the thinning algorithm in Section 2.3 for generating the non-
homogeneous Poisson process is its inherent discontinuities at each acceptance–
rejection point, i.e. if

VD ≤ a + b cos (2πcts)
a + b

,

set Ts = ts and accept, else reject. A small bump in the parameters of interest
may alter the acceptance–rejection decision, and consequently results in differ-
ent final accepted outcomes from the bumped path and the unbumped path. To
remove such pathwise discontinuities, we use the OSRS algorithm introduced
by Joshi and Zhu (2014b). A changed of measure is performed on each VD to
ensure the bumped path makes the same acceptance–rejection decision as the
unbumped path.

We set t = 10 and u = 25 , the probability of ruin is small in this case, see
Tables A7 and A8 for the results. There are only 24 paths of the direct simula-
tion with non-zero estimates. The SFRSS method outperforms in this case with
the sum of standard errors equals to 0.287805 as opposed to 1.192388 by the
SFRDS method. The time taken in this case under the SFRDS method is 0.707
seconds and the SFRSS method is 1.416 seconds.

The numerical results show that the SFRSS method is more appropriate for
cases where ruin is rare, because it produces unbiased non-zero pathwise es-
timators for all paths with at least one claim. Unlike the the SFRSS method,
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the SFRDS method only produces non-zero estimates when ruin occurs, thus it
suffers the following deficits when the event ruin is rare:

• it produces estimates with large sample standard errors;
• the estimates produced by a few significant paths are unlikely to be reliable.

3.6. The density of the time to ruin

In recent years, the Risk theory community has focussed on the actual distribu-
tion of the time to ruin. So far, its density only can be derived analytically for
a few special cases, and often requires an enormous amount of computational
effort to compute.

In this section, we estimate the density function of the time to ruin for the
three models we considered via Monte Carlo simulation. Since the finite-time
ruin probability,

ψ(u, t) = P(τ (u) ≤ t),

is the cumulative density function of the finite-time ruin probabilities, the prob-
ability density function of τ(u) is then

fτ(u)(t) = ∂ψ(u, t)
∂t

.

Both the SFRSS method and the SFRDS method provide unbiased estimates
of the above density.

3.6.1. The classical model. We first compare the density estimated by the
SFRSS method and the SFRDS method against the analytic results. The den-
sity of the time to ruin can be computed explicitly for the classical model with
exponential claim size by the following formula:

fτ(u)(t) = λ exp (−μu − (λ + μc)t)
(
I0

(
(4μλt(u + ct))0.5

)

− ct
ct + u

I2
(
(4μλt(u + ct))0.5

))
,

where Ii is the modified Bessel function of the i th kind (Dickson, 2007). The
numerical experiments in this section is performed by setting u = 5 and θ =
0.25, the other parameters are the same as Section 2. In order to create a smooth
graph, we use 500,000 paths for each simulation and 60 equally spaced-time
points over a period of 15 years.

The density estimated by the SFRDS method (the unsmooth dark line) is
plotted against the analytic formula (the smooth dotted line), we also included
the line representing the density estimated plus one standard error and the line
representing the density estimatedminus one standard error to show the conver-
gence of the estimated density function, see Figure 3. The maximum obtained is
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FIGURE 3: The classical risk model: the density of the time to ruin estimated by setting u = 5 and θ = 0.25
with 500,000 paths sample using SFRDS.

0.01869 with 2.087E-04 standard error when t = 2.5, and the corresponding an-
alytically result is 0.01873. The minimum obtained is 0.00613 when t = 15 with
1.110E-04 standard error and the corresponding analytical result is 0.00603. The
maximum absolute difference between the density estimated by SFRDS and the
analytical density is 6.452E-04 when t = 2.25, the corresponding Monte Carlo
standard error is 4.105E-04. The minimum absolute difference between the den-
sity estimated by SFRSS and the analytical density is 4.275E-06 when t = 13.25,
the corresponding Monte Carlo standard error is 1.119E-04.

In Figure 4, we plot the density estimated by SFRSS against the analytical
results. The maximum obtained is 0.01909 when t = 2.5 with 3.407E-04 stan-
dard error, and the corresponding analytically result is 0.01873. The minimum
obtained is 0.00618 when t = 15 with 7.480E-04 standard error and the corre-
sponding analytical result is 0.00603. Themaximumabsolute difference between
the density estimated by SFRSS and the analytical density is 9.116E-04 when
t = 14.25, the corresponding Monte Carlo standard error is 7.320E-04. The
minimum absolute difference between the density estimated by SFRSS and the
analytical density is 2.065E-05 when t = 1.25, the corresponding Monte Carlo
standard error is 3.008E-04. The numerical results demonstrates

• both the SFRSS and the SFRDSmethods produce unbiased estimates of the
density function,

• when t is small, it is preferable to use the SFRSS method since the corre-
sponding finite-time ruin probability is small,

• when t is big, it is preferable to use the SFRDSmethod since the correspond-
ing finite-time ruin probability is big.
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FIGURE 4: The classical risk model: the density of the time to ruin estimated by setting u = 5 and θ = 0.25
with 500,000 paths sample using SFRSS.

3.6.2. The Sparre Andersen risk model with interest. Insurance companies typ-
ically hold large initial capital formeeting the prudential requirements. The den-
sity of the time to ruin sheds important insights into the risk profile over a long
termhorizon. In figure 5 the density of the time to ruin over the period [0, 10] un-
der the Sparre Andersen model with interest is plotted. For the plot, we assume
u = 30, θ = 0.1, and the other parameters the same as Section 2. The finite-time
probability ψ(30, 10) is 0.00078 by the stratified sampling algorithm, therefore,
it is preferable to use the SFRSSmethod. The graph plotted demonstrates a low
probability of ruin at the beginning, follows by a period of higher ruin proba-
bilities. The ruin probability gradually decreases due to the premium collection
with a loading factor at 10% as well as the interest accumulation at 10%. Based
on the risk profile illustrated by the density function, insurance companies can
design their pricing as well as risk management strategies to reflect such pattern.
For instance, companies need to hold large capitals during the early years of the
risk business, and some portion of the capital may be released later if significant
surpluses have been accumulated.

In order to create a smooth graph, we use 5,000,000 paths for each simula-
tion and 40 equally spaced-time points over a period of 10 years. The maximum
obtained is 1.841E-04 when t = 1 with 2.7025E-06 standard error. The mini-
mum obtained is 2.609E-05 when t = 10 with 2.835E-06 standard error. The
time taken to produce the density estimated is 53 minutes and 6.75 seconds.

3.6.3. The periodic risk model with interest. Regulators are interested in the
density of the time to ruin after the surplus level reaches zero. It provides
information on the possibility of the surplus recovery. In particular, the sea-
sonal pattern of insurance claims plays an important role in the performance of
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FIGURE 5: The Sparre Andersen with interest risk model with Erlang(2,2) inter-claim times and
Pareto(3,2)claim sizes: the density of the time to ruin estimated by setting u = 30 and θ = 0.1 with 5,000,000

paths sample using SFRSS.

the insurance companies, it allows companies to recover after significant losses
over the periodwith low claim arrival intensity. The periodic riskmodel captures
such phenomena.

In figure 6 we plot the density of the time to ruin over the period [0, 10] under
the periodic risk model with interest by setting u = 0, b = 0.9 and c = 0.25,
the other parameters are in Section 2. The density is produced by the SFRDS
method, since the probability of ruin in this case is large, even for t = 0.25. The
graph plotted demonstrates that once the insurance portfolio survives through
the initial period of high claim arrival intensity, it will recover its surplus level
through the premium collection with a loading factor at 10% as well as the in-
terest accumulation at 10%. The density of the time to ruin has a cyclical pattern
due to the periodic risk structure, however the probability of ruin is generally
low after the initial couple of cycles (4 years in this case).

In order to create a smooth graph, we use 50,000 paths for each simulation
and 40 equally spaced-time points over a period of 10 years. The maximum
obtained is 0.72433 when t = 0.25 with 0.00629 standard error. The minimum
obtained is 5.660E-04 when t = 10 with 1.350E-04 standard error. The time
taken to produce the density estimated is 17.483 seconds.

4. REGULATORY CAPITAL AND ITS SENSITIVITIES

Regulatory capital requirements for insurers are the focus of the current de-
velopment of a global framework for insurer solvency assessment. Risk theory
is well known for its theoretic approach to the macro-analysis of underwriting
portfolio risk, that assists insurance companies to answer the question “how
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FIGURE 6: The periodic with interest risk model with LN(−0.5, 1) claim sizes: the density of the time to ruin
estimated by setting u = 0 and θ = 0.1 with 50,000 paths sample using SFRDS.

much capital to hold, so the finite-time probabilities is smaller than α%”. To
solve this question, we need to invert equation (1.7), i.e. solve

ψ−1(α, t) = u∗.

4.1. Numerically approximating u∗ by the Newton–Raphson method

TheNewton–Raphsonmethod gives a numerical solution to this question.With
an initial guess û0, the algorithm is performed iteratively as

ûi+1 = ûi + α − ψ(ûi , t)
∂ψ

∂u (ûi , t)
, (4.1)

until |ψ(û, t)−α| < ε. Since the finite-time ruin probability ψ and its derivative
with respect to u need to be computed repetitively, efficient algorithms for com-
puting them are critical for the iterative process to converge. Generally, we do
not have the luxury of analytical solutions for ψ and ∂ψ

∂u ; even for cases where
they do exist, using them for such iterative calculation is not practically due to
the computational cost. For the following numerical experiments, we use the
stratified sampling algorithm for ψ and the SFRSS method for ∂ψ

∂u , since the
value of α is typically small in practice.

We perform experiments to numerically search for the regulatory capital un-
der the three models we considered. The parameters are in Section 2, for a fi-
nite time horizon of t = 10 and α = 0.1%. The results are summarized in
Tables 4–6. The numerical experiments show that we can approximate the regu-
latory capital u∗ using less than five iterations to reduce |ψ(û, t)−0.001| < 10−5

for the three models considered.
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TABLE 4

THE CLASSICAL RISK MODEL: THE ESTIMATED REGULATORY CAPITAL FOR α = 0.1% AND ITS SENSITIVITIES
WITH 50,000 PATHS SAMPLE.

u∗ ∂u∗
∂θ

∂u∗
∂t

∂u∗
∂λ

∂u∗
∂μ

Mean 18.1647 −8.1679 0.7280 7.2805 18.1648
S.E. 0.1878 0.5962 0.1550 1.5499 1.3445

TABLE 5

THE SPARRE ANDERSEN RISK MODEL WITH INTEREST: THE ESTIMATED REGULATORY CAPITAL FOR
α = 0.1% AND ITS SENSITIVITIES WITH 50,000 PATHS SAMPLE.

u∗ ∂u∗
∂θ

∂u∗
∂t

∂u∗
∂β

∂u∗
∂r

∂u∗
∂a

∂u∗
∂b

Mean 27.5705 −3.7089 0.4329 6.8424 −93.5544 13.6638 −27.6281
S.E. 0.1179 0.2525 0.0787 0.5301 4.9944 0.6309 1.1929

TABLE 6

THE PERIOD RISK MODEL WITH INTEREST: THE ESTIMATED REGULATORY CAPITAL FOR α = 0.1% AND ITS
SENSITIVITIES WITH 50,000 PATHS SAMPLE.

u∗ ∂u∗
∂θ

∂u∗
∂t

∂u∗
∂a

∂u∗
∂b

∂u∗
∂c

∂u∗
∂r

∂u∗
∂ν

∂u∗
∂σ

Mean 21.3467 −3.5519 0.1087 6.9633 0.4363 −4.0693 −52.4456 21.3467 67.79286
S.E. 0.2548 0.21683 0.0539 2.1794 0.0355 0.7668 2.16133 0.8590 2.0081

4.2. Sensitivities of u∗

Our next objective is to perform sensitivity analysis of the regulatory capital.
Since the value u∗ is estimated based on the current assumptions made about
the underlying risk process, insurance companies are also interested in how they
should adjust the capital, u∗, in response to changes in the risk process. The
derivatives of the value u∗ with respect to the parameters of the underlying risk
model provide a solution to this question.

To compute ∂u∗
∂η

, we rely on the following relationship,

α = ψ(u∗, t, η),

where ψ(u∗, t, η) is the finite-time probability of ruin given the current distribu-
tional and structural parameters. Since u∗ = ψ−1(α, t, η), we have

α = ψ(ψ−1(α, t, η), t, η).

Differentiate the above expression with respect to η, and obtain

0 = ∂ψ

∂η
(u∗, t) + ∂ψ

∂u
(u∗, t)

∂u∗

∂η
,
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so that
∂u∗

∂η
= −∂ψ

∂η
(u∗, t)/

∂ψ

∂u
(u∗, t). (4.2)

Since we have already obtained the regulatory capital by the Newton–Raphson
method and its sensitivities by the SFRSS method, the sensitivities of u∗ is then
easily computable. It allows the practitioners to focus more on selecting an ap-
propriate valuation basis, than on computations of the sensitivities.

Numerical results are summarized in Tables 4–6 for the three models. Stan-
dard errors are for 50,000 paths and these could be reduced by sampling more
paths. Based on the numerical results, the most important factor influencing
the regulatory capital is the distributional parameters of the claim size. For the
Sparre Andersen with interest and the periodic riskmodel with interest, another
critical parameter is the deterministic interest rate. Insurance companies should
constantly monitor their underlying insurance portfolios to obtain accurate es-
timates of the claim size distribution, especially for businesses with heavy tail
nature. In addition, adequate estimations of the business cycle are crucial for
insurance companies which rely heavily on their investment portfolio returns.

5. CONCLUSION

We have introduced a stratified sampling method for computing finite-time ruin
probabilities, which outperforms the direct simulationmethodwhen ruin is rare.
We perform changes of measure to remove discontinuities of the pathwise esti-
mators of ruin, so the pathwise method is applicable to provide unbiased esti-
mates of first- and second-order sensitivities of the finite-time ruin probabilities.
The derivative with respect to the finite-time horizon, t, provides a way of den-
sity estimation for the time to ruin random variable, especially when analytical
approximations are not feasible. We further use the Newton–Raphson method
to estimate the regulatory capital, and as well as its sensitivities. Numerical ex-
periments on the classical, the Sparre Andersen with interest and the periodic
risk model with interest, are performed to demonstrate the validity and the ef-
ficiency of the methods suggested,

Whilst our methods are fast, we have not explored other methods of ac-
celeration such as the use of parallel processing and further methodologies for
variance reduction such as randomized quasi-Monte Carlo. We would like to
emphasis on the applicability of the methods introduced in this paper for cases
where analytical results do not exist, and its ability to often produce unbiased
results within seconds.
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APPENDIX A. TABLES OF NUMERICAL
RESULTS

TABLE A1

THE CLASSICAL MODEL: THE MEAN ×1000 OF FINITE-TIME RUIN PROBABILITIES DERIVATIVES BY THE
SFRSS METHOD AND THE SFRDS WITH 50,000 PATHS SAMPLE WHEN u = 10.

SFRSS vs
SFRDS u θ t λ μ

u 3.913 vs 4.114 26.319 vs 26.152 −1.99 vs –1.35 −19.898 vs –13.505 −26.304 vs –29.425
θ 26.319 vs 26.152 217.779 vs 209.952 −21.937 vs –17.709 −219.369 vs –177.095 −263.195 vs –261.516
t −1.99 vs –1.35 −21.937 vs –17.709 0.039 vs 0.063 4.686 vs 5.702 19.898 vs 13.505
λ −19.898 vs –13.505 −219.369 vs –177.095 4.686 vs 5.702 −138764.653 vs –9327.25 198.978 vs 135.05
μ −26.304 vs –29.425 −263.195 vs –261.516 19.898 vs 13.505 198.978 vs 135.05 134.79 vs 177.059

First Orders −12.825 vs –11.719 −90.858 vs –83.461 5.074 vs 5.074 50.741 vs 50.738 128.254 vs 117.187

TABLE A2

THE CLASSICAL MODEL: THE STANDARD ERRORS ×1000 OF FINITE-TIME RUIN PROBABILITIES DERIVATIVES
BY THE SFRSS METHOD AND THE SFRDS WITH 50,000 PATHS SAMPLE WHEN u = 10.

SFRSS vs
SFRDS u θ t λ μ

u 0.349 vs 0.357 2.206 vs 2.244 0.411 vs 0.148 4.111 vs 1.48 3.411 vs 3.256
θ 2.206 vs 2.244 17.235 vs 17.836 3.319 vs 1.535 33.19 vs 15.35 22.056 vs 22.44
t 0.411 vs 0.148 3.319 vs 1.535 1.533 vs 0.388 16.078 vs 4.077 4.111 vs 1.48
λ 4.111 vs 1.48 33.19 vs 15.35 16.078 vs 4.077 63757.311 vs 2120.802 41.113 vs 14.804
μ 3.411 vs 3.256 22.056 vs 22.44 4.111 vs 1.48 41.113 vs 14.804 33.989 vs 29.768

First Orders 0.491 vs 0.462 3.38 vs 3.099 1.196 vs 0.322 11.962 vs 3.217 4.915 vs 4.623

TABLE A3

THE CLASSICAL MODEL: THE MEAN ×1000 OF FINITE-TIME RUIN PROBABILITIES DERIVATIVES BY THE
SFRSS METHOD AND THE SFRDS WITH 50,000 PATHS SAMPLE WHEN u = 20.

SFRSS vs
SFRDS u θ t λ μ

u 0.13 vs 0.114 1.018 vs 0.892 −0.058 vs –0.065 −0.582 vs –0.648 −2.409 vs –2.072
θ 1.018 vs 0.892 8.299 vs 7.284 −0.527 vs –0.683 −5.271 vs –6.835 −20.358 vs –17.831
t −0.058 vs –0.065 −0.527 vs –0.683 −0.094 vs –0.068 0.872 vs 0.792 1.163 vs 1.296
λ −0.582 vs –0.648 −5.271 vs –6.835 0.872 vs 0.792 −62.847 vs –628.937 11.63 vs 12.959
μ −2.409 vs –2.072 −20.358 vs –17.831 1.163 vs 1.296 11.63 vs 12.959 44.365 vs 37.378

First Orders −0.191 vs –0.203 −1.46 vs –1.597 0.071 vs 0.116 0.706 vs 1.159 3.825 vs 4.064
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TABLE A4

THE CLASSICAL MODEL: THE STANDARD ERRORS ×1000 OF FINITE-TIME RUIN PROBABILITIES DERIVATIVES BY THE SFRSS METHOD AND THE SFRDS WITH 50,000
PATHS SAMPLE WHEN u = 20.

SFRSS vs
SFRDS u θ t λ μ

u 0.032 vs 0.047 0.254 vs 0.353 0.033 vs 0.041 0.328 vs 0.406 0.588 vs 0.885
θ 0.254 vs 0.353 2.236 vs 2.831 0.275 vs 0.416 2.75 vs 4.159 5.073 vs 7.065
t 0.033 vs 0.041 0.275 vs 0.416 0.035 vs 0.114 0.319 vs 1.188 0.656 vs 0.812
λ 0.328 vs 0.406 2.75 vs 4.159 0.319 vs 1.188 42.908 vs 629.389 6.564 vs 8.119
μ 0.588 vs 0.885 5.073 vs 7.065 0.656 vs 0.812 6.564 vs 8.119 10.92 vs 16.7

First Orders 0.06 vs 0.06 0.435 vs 0.467 0.046 vs 0.059 0.464 vs 0.589 1.196 vs 1.194
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TABLE A5

THE SPARRE ANDERSEN MODEL WITH INTEREST: THE MEAN ×10000 OF FINITE-TIME RUIN PROBABILITIES DERIVATIVES BY THE SFRSS METHOD AND THE SFRDS
WITH 50,000 PATHS SAMPLE WHEN u = 30.

SFRSS vs
SFRDS u θ t β r a b

u 0.111 vs 0.114 0.431 vs 0.379 −0.079 vs –0.065 −0.815 vs –0.699 8.442 vs 7.81 –1.234 vs –1.297 2.324 vs 2.386
θ 0.431 vs 0.379 3.228 vs 2.323 −0.469 vs –0.062 −5.042 vs –1.763 53.926 vs 41.43 −6.461 vs –5.691 10.667 vs 9.384
t −0.079 vs –0.065 −0.469 vs –0.062 1.312 vs 0.512 8.019 vs 2.44 −22.246 vs –12.239 1.18 vs 0.75 −2.67 vs –1.004
β −0.815 vs –0.699 −5.042 vs –1.763 8.019 vs 2.44 43.101 vs 12.762 −120.136 vs –127.828 12.23 vs 8.107 −25.79 vs –26.365
r 8.442 vs 7.81 53.926 vs 41.43 −22.246 vs –12.239 −120.136 vs –127.828 1365.632 vs 1093.043 −126.633 vs –117.15 248.791 vs 227.662
a −1.234 vs –1.297 −6.461 vs –5.691 1.18 vs 0.75 12.23 vs 8.107 −126.633 vs –117.15 12.009 vs 13.151 −34.866 vs –35.79
b 2.324 vs 2.386 10.667 vs 9.384 −2.67 vs –1.004 −25.79 vs –26.365 248.791 vs 227.662 −34.866 vs –35.79 82.175 vs 81.925

First Orders −0.867 vs –0.84 −2.897 vs –2.757 0.694 vs 0.411 7.705 vs 5.865 −84.746 vs –76.04 12.998 vs 12.595 −26.993 vs –25.942
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TABLE A6

THE SPARRE ANDERSEN MODEL WITH INTEREST: THE STANDARD ERRORS ×10, 000 OF FINITE-TIME RUIN PROBABILITIES DERIVATIVES BY THE SFRSS METHOD AND
THE SFRDS WITH 50,000 PATHS SAMPLE WHEN u = 30.

SFRSS vs
SFRDS u θ t β r a b

u 0.019 vs 0.005 0.142 vs 0.038 0.076 vs 0.039 0.425 vs 0.193 1.968 vs 0.291 0.223 vs 0.065 0.407 vs 0.101
θ 0.142 vs 0.038 1.743 vs 0.688 0.448 vs 0.254 2.616 vs 1.261 16.362 vs 3.329 2.125 vs 0.574 3.331 vs 0.842
t 0.076 vs 0.039 0.448 vs 0.254 1.392 vs 1.332 8.353 vs 6.717 21.263 vs 2.268 1.133 vs 0.585 2.552 vs 0.944
β 0.425 vs 0.193 2.616 vs 1.261 8.353 vs 6.717 45.608 vs 33.291 113.819 vs 11.85 6.382 vs 2.902 14.164 vs 4.692
r 1.968 vs 0.291 16.362 vs 3.329 21.263 vs 2.268 113.819 vs 11.85 382.783 vs 31.282 29.524 vs 4.37 57.501 vs 7.091
a 0.223 vs 0.065 2.125 vs 0.574 1.133 vs 0.585 6.382 vs 2.902 29.524 vs 4.37 2.412 vs 0.89 6.109 vs 1.518
b 0.407 vs 0.101 3.331 vs 0.842 2.552 vs 0.944 14.164 vs 4.692 57.501 vs 7.091 6.109 vs 1.518 13.778 vs 2.549

First Orders 0.138 vs 0.031 0.741 vs 0.384 0.664 vs 0.344 3.734 vs 1.69 17.435 vs 1.986 2.065 vs 0.459 4.221 vs 0.722
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TABLE A7

THE PERIODIC RISK MODEL WITH INTEREST: THE MEAN ×1, 000 OF FINITE-TIME RUIN PROBABILITIES DERIVATIVES BY THE SFRSS METHOD AND THE SFRDS WITH
50,000 PATHS SAMPLE WHEN u = 25.

SFRSS vs
SFRDS u θ t a b c r ν σ

u 0.016 vs 0.036 0.039 vs 0.045 −0.014 vs –0.001 −0.093 vs –0.706 0.123 vs 0.556 0.135 vs 0.547 0.818 vs 2.056 −0.34 vs –0.82 −1.083 vs –2.026
θ 0.039 vs 0.045 0.196 vs 0.65 −0.049 vs –0.007 −0.987 vs –0.839 −0.062 vs –0.464 1.148 vs 2.784 3.397 vs 5.344 −0.974 vs –1.617 −2.749 vs –3.587
t −0.014 vs –0.001 −0.049 vs –0.007 0.008 vs 0.003 0.022 vs 0.013 −0.002 vs –0.028 0.096 vs 0.115 −0.348 vs –0.874 0.13 vs 0.128 0.335 vs 0.415
a −0.093 vs –0.706 −0.987 vs –0.839 0.022 vs 0.013 −25.136 vs –25.223 −23.01 vs –21.567 26.237 vs 10.117 −6.097 vs –6.213 2.335 vs 1.661 7.069 vs 6.528
b 0.123 vs 0.556 −0.062 vs –0.464 −0.002 vs –0.028 −23.01 vs –21.567 −21.107 vs –21.391 22.213 vs 13.298 7.23 vs 6.081 −3.065 vs –3.906 −9.876 vs –7.021
c 0.135 vs 0.547 1.148 vs 2.784 0.096 vs 0.115 26.237 vs 10.117 22.213 vs 13.298 −46.792 vs –34.892 11.39 vs 14.173 −3.363 vs –3.667 −10.182 vs –6.42
r 0.818 vs 2.056 3.397 vs 5.344 −0.348 vs –0.874 −6.097 vs –6.213 7.23 vs 6.081 11.39 vs 14.173 84.873 vs 69.498 −20.45 vs –31.393 −69.441 vs –80.81
ν −0.34 vs –0.82 −0.974 vs –1.617 0.13 vs 0.128 2.335 vs 1.661 −3.065 vs –3.906 −3.363 vs –3.667 −20.45 vs –31.393 8.491 vs 20.506 27.077 vs 19.922
σ −1.083 vs –2.026 −2.749 vs –3.587 0.335 vs 0.415 7.069 vs 6.528 −9.876 vs –7.021 −10.182 vs –6.42 −69.441 vs –80.81 27.077 vs 19.922 88.752 vs 127.542

First Orders −0.065 vs –0.086 −0.197 vs –0.178 0.046 vs 0.042 0.587 vs 0.756 −0.099 vs –0.081 −0.633 vs –0.844 −4.038 vs –4.769 1.625 vs 2.159 5.831 vs 5.956
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TABLE A8

THE PERIODIC RISK MODEL WITH INTEREST: THE STANDARD ERRORS ×1, 000 OF FINITE-TIME RUIN PROBABILITIES DERIVATIVES BY THE SFRSS METHOD AND THE
SFRDS WITH 50,000 PATHS SAMPLE WHEN u = 25.

SFRSS vs
SFRDS u θ t a b c r ν σ

u 0.003 vs 0.015 0.014 vs 0.072 0.006 vs 0.001 0.063 vs 0.47 0.06 vs 0.61 0.095 vs 0.413 0.186 vs 1.133 0.067 vs 0.353 0.183 vs 0.869
θ 0.014 vs 0.072 0.067 vs 0.389 0.025 vs 0.006 0.401 vs 2.644 0.404 vs 3.427 0.597 vs 2.247 1.06 vs 6.813 0.34 vs 1.804 0.939 vs 4.352
t 0.006 vs 0.001 0.025 vs 0.006 0.173 vs 0.003 0.361 vs 0.012 0.398 vs 0.003 1.933 vs 0.054 0.695 vs 0.12 0.146 vs 0.022 0.521 vs 0.067
a 0.063 vs 0.47 0.401 vs 2.644 0.361 vs 0.012 10.135 vs 9.795 8.872 vs 9.499 11.813 vs 13.015 3.967 vs 48.91 1.573 vs 11.741 4.562 vs 31.791
b 0.06 vs 0.61 0.404 vs 3.427 0.398 vs 0.003 8.872 vs 9.499 8.173 vs 12.708 11.15 vs 11.429 4.234 vs 66.002 1.498 vs 15.251 4.57 vs 41.41
c 0.095 vs 0.413 0.597 vs 2.247 1.933 vs 0.054 11.813 vs 13.015 11.15 vs 11.429 26.246 vs 16.415 8.417 vs 44.125 2.373 vs 10.32 7.494 vs 28.225
r 0.186 vs 1.133 1.06 vs 6.813 0.695 vs 0.12 3.967 vs 48.91 4.234 vs 66.002 8.417 vs 44.125 20.676 vs 120.206 4.659 vs 28.33 14.533 vs 73.6
ν 0.067 vs 0.353 0.34 vs 1.804 0.146 vs 0.022 1.573 vs 11.741 1.498 vs 15.251 2.373 vs 10.32 4.659 vs 28.33 1.678 vs 8.83 4.584 vs 21.733
σ 0.183 vs 0.869 0.939 vs 4.352 0.521 vs 0.067 4.562 vs 31.791 4.57 vs 41.41 7.494 vs 28.225 14.533 vs 73.6 4.584 vs 21.733 12.982 vs 55.241

First Orders 0.007 vs 0.027 0.033 vs 0.109 0.019 vs 0.001 0.208 vs 0.775 0.225 vs 0.993 0.304 vs 0.683 0.59 vs 1.956 0.167 vs 0.681 0.525 vs 1.814
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