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Attractive colloidal dispersions, suspensions of fine particles which aggregate and
frequently form a space-spanning elastic gel are ubiquitous materials in society with
a wide range of applications. The colloidal networks in these materials can exist
in a mode of free settling when the network weight exceeds its compressive yield
stress. An equivalent state occurs when the network is held fixed in place and
used as a filter through which the suspending fluid is pumped. In either scenario,
hydrodynamic instabilities leading to loss of network integrity occur. Experimental
observations have shown that the loss of integrity is associated with the formation of
eroded channels, so-called streamers, through which the fluid flows rapidly. However,
the dynamics of growth and subsequent mechanism of collapse remain poorly
understood. Here, a phenomenological model is presented that describes dynamically
the radial growth of a streamer due to erosion of the network by rapid fluid back
flow. The model exhibits a finite-time blowup – the onset of catastrophic failure in
the gel – due to activated breaking of the inter-colloid bonds. Brownian dynamics
simulations of hydrodynamically interacting and settling colloids in dilute gels are
employed to examine the initiation and propagation of this instability, which are in
good agreement with the theory. The model dynamics is also shown to accurately
replicate measurements of streamer growth in two different experimental systems.
The predictive capabilities and future improvements of the model are discussed and
a stability-state diagram is presented providing insight into engineering strategies for
avoiding settling instabilities in networks meant to have long shelf lives.

Key words: colloids, low-Reynolds-number flows, nonlinear instability

1. Introduction
Colloidal gels are among the most abundant soft matter found in society. They

are the components of everyday products including foodstuffs (Mezzenga et al.
2005), consumer care products (Hu et al. 2012), cosmetics, paints (Russel, Saville
& Schowalter 1989), pesticides and proppants in oil and gas exploration (Bai et al.
2007). Additionally, careful control and intelligent design of particle gels is critical
for several emerging materials applications, found in three-dimensional printing inks,
micro-fuel cells (Gaponik, Herrmann & Eychmüller 2011) and membranes (Yang

† Email address for correspondence: jswan@mit.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

72
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0001-9273-6610
mailto:jswan@mit.edu
https://doi.org/10.1017/jfm.2018.725


Modelling a hydrodynamic instability 1015

et al. 2004). One of the most attractive engineering features of these space-spanning
networks of attractive particles is their yield stress. Typically this is high enough
to bear the material’s own weight, but low enough to give flowability during use
(Poon 2002; Zaccarelli 2007). One key design requirement is that the particles must
not sediment appreciably during the product’s ‘shelf life’, which might range from
weeks to years. Despite this restriction, a majority of colloidal gels, which contain
non-density matched particles, exhibit various, undesired settling behaviours such as
streamer formation and network collapse. In a range of other industrial scenarios, such
as in conformance control during hydrofracking or industrial filtration, an equivalent
state to mechanical compression occurs when the suspending fluid is pumped through
the colloidal gel fixed in place and network collapse leads to unrestricted fluid
flow (Northcott et al. 2005b; MacMinn, Dufresne & Wettlaufer 2016). In either
scenario, failure of the gel is equivalent to loss of utility of the product for these
applications. Consequently, the ability to engineer and increase the stability of these
elastic networks remains an important and prevalent issue for many industries.

The theory of sedimentation of attractive colloidal dispersions was developed by
Buscall & White (1987) describing the interplay of three forces that control the extent
of sedimentation: the gravitational driving force, the viscous drag force associated
with flow of liquid around and through the solid and the elastic stress developed in
the network of particles. Sedimentation occurs when the gravitational force exceeds
the local yields stress of the network resulting in three distinct zones of behaviour:
the supernatant, the falling zone and the consolidating zone. The supernatant is
the particle-free region above the network that is formed following the onset of
sedimentation, whereas the consolidating zone at the bottom is the region throughout
which the local yield stress exceeds the network pressure above it. In the falling
zone, the gravitational driving force is balanced only by the viscous drag due to
local fluid back flow and all particles settle freely at a rate that, in theory, can be
directly related to the dispersion’s height profile. For a ‘tall’ macroscopic sample, the
majority of the particle network constitutes the falling zone and particles settle freely
over experimentally relevant time scales.

Scientific studies of gravitational collapse of gels have in the last three decades
focused on examining the settling behaviour of model colloidal dispersions. New
insights into colloidal aggregation and rearrangements under the influence of gravity
could ultimately provide a thorough understanding of real aggregating systems
(Huh, Lynch & Furst 2007), improve pressure-filtration driven fine solids separation
processes (Buscall & White 1987) and elucidate the effects of gravity on the kinetics
of arrested phase separation (Bailey et al. 2007; Kim et al. 2013) and on diseases
related to protein aggregation: sickle cell anaemia, Alzheimer’s disease and amyloid
fibril growth (Clark & Carper 1987).

Just as seen in industrial applications, the long-time structural integrity of an
experimental gel, if not exactly density matched, is constrained by the gravitational
stress exerted by its own weight and the network may undergo gravitational collapse
(Starrs et al. 2002; Bailey et al. 2007; Kamp & Kilfoil 2009). The most common
and ultimate metric characterizing the macroscopic feature of the collapse process is
the time evolution of the height profile, h(t) of a gel. Measurements of h(t) are used
to determine the characteristic time scale of the process, td, and to quantify observed
power-law or exponential decay of height profiles (Weeks, van Duijneveldt & Vincent
2000; Teece et al. 2014; Harich et al. 2016). The collapse dynamics of colloidal
dispersions with long-ranged attractions, relative to the primary particle radius, is
relatively well understood. Here, the network is transient, continuously coarsens and
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sediments over time exhibiting dynamics of a phase separation process analogous to
spinodal decomposition (Teece, Faers & Bartlett 2011). In contrast, in the case of
gels with short-ranged interaction, extensive experimental investigations performed in
the past decades have shown that after a seemingly arbitrary quiescent period, the
dynamics of settling and compaction of the gel may proceed by widely different
means depending on the range and strength of the particle interactions, and on the
particle concentration within the gel (Secchi, Buzzaccaro & Piazza 2014).

‘Strong’ gels exhibit slow, uniform compression that halts once the yield stress
of the now more compact network exceeds its own weight (Manley et al. 2005;
Brambilla et al. 2011). In contrast, a ‘weak’ gel initially shows a similar slow,
uniform compression for a duration equal to the delay time td, before suddenly
undergoing a rapid and catastrophic collapse (Allain, Cloitre & Wafra 1995; Poon
et al. 1999; Starrs et al. 2002; Kilfoil et al. 2003; Blijdenstein et al. 2004; Huh et al.
2007; Kamp & Kilfoil 2009; Bartlett, Teece & Faers 2012; Harich et al. 2016). This
has been observed in a wide variety of systems with short-ranged attraction, and the
response appears to be a universal feature of ‘weakness’. The distinction between
strong and weak gels is purely based on the temporal dependence of the position
of the meniscus separating the freely settling gel from the supernatant phase – a
macroscopic observable, carrying very limited amount of information (Teece et al.
2014). Microscopic insights of how the network evolves in time, how it transmits
stress and what distinguishes strong from weak gels on the microstructural level are
still elusive. Understanding how settling gels can be turned from weak into strong
would facilitate the design of colloidal gel products with longer shelf lives and the
ability to prevent delayed collapse within the desired user time frame.

Experimental colloidal gels already contain of the order of 106 particles, and
materials in actual industrial applications can contain several orders of magnitude
more. Treating such large systems in a theoretical fashion therefore is, at present,
only possible with approximate approaches, which describe the height profile via
one dimensional transport equations (MacMinn et al. 2016). Nonetheless, in the case
of strong gels, a continuum model for the collapse rate has been developed based
on the theory of poro-elasticity. It takes into account the resistance to compression
arising from a combination of the fluid pressure and the elasticity of the network and
successfully captures the full collapse behaviour (Manley et al. 2005). In contrast,
for delayed collapse, to date no widely accepted theoretical framework has emerged
to account for the process (Kilfoil et al. 2003; Huh et al. 2007; Harich et al. 2016).
Among other complicating factors and shortcomings, the poro-elastic theory fails
due to the highly nonlinear nature of the rapid collapse (Manley et al. 2005). Alas,
without a firm understanding of the collapse dynamics, the actual stability of many
products remains unpredictable and uncertain.

While in general experiments cannot observe the microstructure of the catastrophic
collapse of these networks, a few careful studies have provided insight into the
relationship between changes in microstructure and macroscopic collapse that
can drive further theoretical development. Experiments conducted using dark-
field microscopy imaging have reported landmark observations of the dramatic
hydrodynamic instabilities that precede the sudden and rapid collapse (Poon et al.
1999; Starrs et al. 2002). The experiments observe the nucleation and growth of a
large channel that is absent of particles, which provides a path for significant fluid
back flow through it, a so-called ‘streamer’. It grows in radius, and eventually also
spans the height of the gel column, causing a small ‘eruption’ at the interface between
the supernatant and the settling gel (Senis, Talini & Allain 2001), when catastrophic
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loss of network integrity occurs. It has been hypothesized that compacting gel
fragments breaking off from the top interface fall through the dilute network, and
are responsible for the creation of the streamers that generate the hydrodynamic back
flow and subsequent instability (Harich et al. 2016). However, recent ghost particle
velocity studies of collapsing gels (Secchi et al. 2014) that were able to measure the
hydrodynamic velocity pattern before rapid collapse, have however reported the onset
of two vertical streamers originating in the bulk of the sample. They progressively
expand, providing a path for the back flow of the fluid. Soon after, the breakdown
of the gel becomes extremely fast, rapidly leading to the full disruption of the gel
structure. It is thus evident, that fluid flow, the drag and hydrodynamic interactions
exerted by the solvent on the particle network are crucial to understanding the
collapse of freely settling gels.

Careful confocal microscopy studies of the association and dissociation processes
of individual particles and gel strands in the network structure have also shown that
there is a direct link between the macroscopic mean delay time td and the lifetime
of an individual colloid–colloid bond (Gopalakrishnan, Schweizer & Zukoski 2006;
Teece et al. 2014). As a result simple phenomenological models have been developed
that describe the collapse process in terms of a number of sticky inter-particle bonds
undergoing sequential activated bond breaking and leading to a loss of network
integrity. These models can relate the microscopic dynamics to the macroscopic
settling with some success, albeit they have no ability to predict the onset of delayed
collapse (Kamp & Kilfoil 2009; Teece et al. 2014). Additionally, no consideration
has been given to the role of hydrodynamics in driving the collapse process so that a
theory explaining the observed dynamics in terms of controllable network parameters
remains to be developed.

Given the experimental limitations and lack of comprehensive theories, dynamic
computer simulations provide an invaluable tool to study the microscale dynamics
of the hydrodynamic instability preceding collapse. A computer model is able to
offer detailed particle level information of the entire gel network throughout the
settling process, provided the simulation is able to capture the correct physical
processes involved during collapse. Recently we have shown that the collective
dynamics, facilitated by the presence of long-ranged hydrodynamic interactions,
enables gelation and plays a critical role in setting the relaxation dynamics (Varga,
Wang & Swan 2015; Varga & Swan 2016, 2018b). Computer models that only
include solvent-mediated hydrodynamic effects at the one-body level, i.e. Stokes drag,
fail to reproduce the experimentally observed gel mechanics. This will especially
be the case for the collapse of freely settling gels, which appears to be tripped
by a hydrodynamic instability. For instance, in one example of the limited number
of computer studies on settling gels, experimentally observed dense clusters that
form during gel collapse have not been reproduced in simple Brownian dynamics
simulations lacking hydrodynamic interactions (Harich et al. 2016). In another case,
where gels were confined vertically in capillary tubes to within one gravitational
length in experiments, Brownian dynamics simulations neglecting hydrodynamic
interactions qualitatively reproduced the sedimentation profile. However, comparison
with observations of bulk systems and the process of delayed collapse suggests that
there is a fundamental difference in mechanism between these confined systems and
bulk measurements of industrial relevance, which exhibit settling rates several orders
of magnitude slower (Razali et al. 2017).

Here we present a comprehensive study of the hydrodynamic instability leading
to collapse of freely settling colloidal gels, combining a new theory with computer
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simulation studies and comparison to experiments. We propose a microstructural
model for the hydrodynamic instability comprised of nucleation and growth of
streamers driven by network erosion from fluid back flow that leads to rapid
gravitational collapse. The model relates the delay period prior to streamer blowup
and gel collapse to various properties of the gel network, including particle volume
fraction, the attraction range, interaction strength between particles relative to thermal
forces and gravitational strength. We study freely settling colloidal gels using
Brownian dynamics simulations of attractive, hydrodynamically interacting particles
in order to examine the formation and growth of these hydrodynamic instabilities.
The settling velocity and streamer volume are measured as they evolve over time,
and a critical point for the onset of rapid growth in both quantities is identified. The
settling process is well described by our theory. The model is also compared with
two different experimental systems and is found to accurately predict the collapse
dynamics.

This article is organized as follows. In § 2 we present the details of the microstructural
model for network erosion and streamer growth in a model colloidal gel and arrive
at a scaling law for the blowup time, i.e. the onset of catastrophic collapse as a
function of network parameters. Next, in § 3 we present extensive results to validate
our theory by comparing the model predictions to the collapse dynamics of freely
settling gels in simulations and published experiments. Section 4 discusses a new
conceptual framework for how to think about network stability and how the model can
aid the engineering of these materials. We highlight potential areas of improvement
and subsequently conclude our work in § 5.

2. A model for network erosion and streamer growth leading to gravitational
collapse
The model considers a system-spanning percolated elastic gel network of attractive,

spherical colloidal particles of radius a. The gel has a volume fraction φ and the
tortuousness and porosity of this kinetically arrested material are characterized by the
fractal dimension df . The short-ranged attractive well has depth U and width ∆. The
exact shape of the well is not critical, as suggested by the Noro–Frenkel extended law
of corresponding states (Noro & Frenkel 2000). The particles have a thermal energy
kT , density mismatch 1ρ with the suspending fluid of viscosity η and settle freely
under the effect of a uniform gravitational acceleration g. This physical scenario is
characterized concisely by only five dimensionless quantities, summarized in table 1.

In the free falling zone during sedimentation the network does not experience any
effects from interactions with the supernatant interface and is unaware of the build
up of the dense cake forming in the consolidating zone (Buscall & White 1987). As
the particles move downward, to conserve mass, fluid will flow upward through the
pores of the gel. Initially, under the imposed constant hydrostatic pressure gradient,
|g1ρ| = |∇p|, fluid flow will be uniform. Due to local density fluctuations and further
restructuring processes, local differences in the permeability of the network will be set-
up. This results in a burst in local fluid velocity relative to the mean and the fluid will
nucleate a path of least resistance. The increased volumetric flow rate of back flow
through this initial channel exerts hydrodynamic drag on the particles in the network
and leads to activated breaking of particle bonds, locally eroding the gel. This erosion
leads to the widening of a largely cylindrical streamer and greater fluid back flow
locally that further accelerates radial growth of the streamer. We describe the evolution
of this streamer in terms of a cylindrical channel with growing radius R over time, as
shown in figure 1. The growth rate will depend on the net flux of particles that are
eroded off the network into the channel and swept upwards with the back flow.
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(a) (b)

(c) (d )

FIGURE 1. (Colour online) The micromechanical model considers a particle gel network
freely settling in a gravitational field g. (a) As the particles move downward, to conserve
mass, fluid will flow upward through the pores (black arrows). (b) Due to local density
fluctuations the fluid will find a path of least resistance, where increased back flow will
nucleate a streamer that spans the network. (c) As the back flow increases, the fluid exerts
drag on the particles at the interface leading to an activated rate of erosion and growth of
the streamer. (d) The streamer is modelled as a cylindrical channel with evolving radius
R in a gel of size L. The growth rate will depend on the relative magnitude of particle
fluxes away from ( jin) and into the network ( jout).

Volume fraction φ

Fractal dimension df

Attraction range δ =
∆

a
=

Attractive well width
Particle radius

Network strength ε =
kT
U

=
Thermal energy

Inter-particle bond strength

Gravitational Mason number G =
4π1ρga4

3U
=

Particle gravitational energy
Inter-particle bond strength

TABLE 1. The five network parameters characterizing the scenario of a freely settling
colloidal gel considered in the model.

2.1. Growth of a critical streamer
To arrive at the radial growth rate of the streamer or channel, consider the transport
process that move particles into the channel and the reverse process of attachment into
the network. The evolution of the number of particles N in the cylindrical channel of
height L and radius R(t) is given by the net flux:

dN
dt
= Jin − Jout = 2πRL( jin − jout), (2.1)

where J and j are the rate and flux per unit area of particles into the growing channel
(in) and out into the network (out), respectively. To the best approximation, for tall
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enough channels (L is large compared to the mesh size of the gel network) the
density of particles in the interior of the channel will be equal to its bulk value φ,
so that the number of particles is related to the geometry of the channel through
N=3πR2Lφ/4πa3. When the channel spans the height of the network, L is unchanged
over time and the one-dimensional growth model of R(t) is:

dR
dt
=

4πa3

3φ
( jin − jout)=

1
n
( jin − jout), (2.2)

where n is the bulk number density of particles.
The flux of particles per unit area into the open channel is proportional the surface

number density of particles at the network–channel interface, ñ, and the rate of particle
bond breaking, kbreak:

jin = d1kbreakñ. (2.3)

Note that throughout this paper, di for i = {1, . . . , 6} are unknown O(1) non-
dimensional, scalar constants. The boundary between the interior of the channel at
bulk density φ and the percolated gel network of fractal dimension df constitutes the
‘wall’ of the streamer. For a fractal structure, the surface density of particles attached
to the network at this interface is ñ= φdf /3(d2/a2)(R/a)(df /3−1). As one would expect,
for a compact structure with df = 3, ñ is independent of the radius. In the absence of
an external force, we hypothesize that kbreak is set by the Kramers escape time of a
particle diffusing out of an attractive well of depth U and width ∆ (Kramers 1940):

kbreak = τ
−1
K =

D
a2

( a
∆

)2 U
kT

e−U/(d3kT)
=

D
a2
δ−2ε−1e−1/(d3ε), (2.4)

where D is the diffusivity of a particle of radius a. The coefficient d3 is included to
account for the fact that the particles sit in a complex energy landscape in the gel
network for which the barrier between bound and unbound states could be smaller
than U owing to elastic stresses stored intrinsically in the network during its formation,
or could be larger due to a high coordination number. Due to the back flow of fluid
through the channel, the particles at the interface will feel a hydrodynamic drag, due
to the shear stress, τ , at the channel wall. This results in a relative force d4τa2/kT that
stretches the inter-particle bonds and accelerates the breaking process. This activated
hopping leads to a higher rate of erosion. Assuming simple Poiseuille flow in the
cylindrical channel the shear stress at the wall is related to the channel radius through
τ = |∇p|R/2 and kbreak becomes:

kbreak =
D
a2
δ−2ε−1e−1/d3ε+d4|∇p|Ra2∆/(2kT)

=
D
a2
δ−2ε−1e−1/(d3ε)+R/R∗, (2.5)

R∗ is an effective gravitational length, i.e. the characteristic length scale of the erosion
process:

R∗ =
2kT

d4a2∆|∇p|
=

8πa
3d4

εδ−1G−1. (2.6)

It sets the characteristic pore size, beyond which the activated hopping dominates the
bond breaking. The erosive flux of particles into the channel becomes:

jin =
4π

3
d1d2φ

df /3−1R
(

R
a

)(df /3−2) nD
a2
δ−2ε−1e−1/(d3ε)+R/R∗ . (2.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

72
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.725


Modelling a hydrodynamic instability 1021

The flux of individual particles currently in the bulk of the channel back onto the
network is driven by diffusion according to:

jout =
nD
x
=

nD
R

f (Pe), (2.8)

where Pe is the advective Péclet number near the wall Pe= τR2/ηD=3πR3a|∇p|/kT=
(9/4)εG(R/a)3. Here, x is the thickness of the diffusive boundary layer at the wall
of the channel: f (Pe) = 1 for Pe � 1 and f (Pe) ∼ Pe1/2 when Pe � 1 (Acrivos &
Goddard 1965; Goddard & Acrivos 1966). Except for very early times when the
channel initially forms, the radius of the channel exceeds the primary particle size,
R� a, and Pe� 1 so that to first order:

jout = d5R
nD
a2
ε1/2G1/2

(
R
a

)−1/2

. (2.9)

Note that jin� jout for R� a so that to first approximation the flux of particles from
the channel onto the network can be neglected, i.e. jout ≈ 0. Rescaling time t on the
pure diffusive Kramers escape time, t̂ = tD/(∆2ε)e−1/(d3ε) = t/τK , the model predicts
the following evolution equation for R(t):

dR
dt̂
=

4π

3
d1d2aφdf /3−1

(
R
a

)df /3−1

eR/R∗ . (2.10)

There are two competing effects that set the erosion of particles and the evolution
of the radius of the channel. For fractal structures with df < 3, the quantity (R/a)df /3−1

suggests that the growth rate of R is slowed as R becomes larger as the total number
of particles eroded by the back flow is decreasing relative to the number of particles
in the channel. In contrast, the term eR/R∗ , arises because the rate of bond breaking is
exponentially dependent on the shear stress exerted by back flow, which itself is linear
in R. Hence the activated rate of erosion grows exponentially with the channel radius.
The result is that for R > R∗, the erosion process accelerates exponentially. More
generally, such first-order ordinary differential equations, which have a super-linear
flux or grow rate, exhibit a finite-time blowup singularity (Ide & Sornette 2002).

In the case of this erosion model, we predict an exponentially dependent flux, an
ultrafast type of super-linear growth, so that the channel radius will grow infinitely
large at a critical point in time. This blowup time is defined such that: R→∞ as
t→ tblowup. This is the main result of our phenomenological model. At a certain critical
point in time in freely settling gels a hydrodynamic instability occurs. The channel
radius grows unstably to span the width of the gel. In practice, this corresponds to
the streamer being of comparable size to the width of the container, as seen by Starrs
et al. (2002), when large scale fluid back flow deconstructs the gel network. The
solid is ripped apart and the gel rapidly collapses. Note, that due to the exponential
growth profile, the fate of the network is determined long before R reaches the system
size. When R > R∗, the channel growth rate is exponential and catastrophic collapse
is unavoidable. However, macroscopically the radial growth of the channel may not
manifest itself in a dramatic increase in the settling velocity of the network’s top
interface until t is right near tblowup.

To explain this observation consider that for an incompressible Newtonian
suspending fluid the settling velocity of a gel and therefore the velocity of the
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interface will be proportional to the average fluid back flow velocity, 〈uf 〉, driven
by the constant pressure gradient |∇p| across the network. Here, 〈uf 〉 is the average
volumetric flow rate of fluid back flow through the intact gel and the streamer channel.
For simplicity, the intact gel network can be thought of as a porous Darcy medium
with permeability κ , whereas the streamer is a cylindrical channel with Poiseuille
flow, as before.

The fluid velocity through the gel network is given by:

uDarcy
f =−

κ

η
∇p. (2.11)

The total flow rate through the medium with cross-sectional dimension L and a
cylindrical pore of radius R within it is QDarcy

f = −(L2
− πR2)(κ/η)∇p. In the

cylindrical channel the velocity profile is: uchannel
f = −(1/4η)∇p(C − r2), where

r is the radial position and the constant C is set by the boundary condition at the
network–channel interface, r=R(t). This boundary condition will be highly dependent
on the exact fractal structure of the network. At lowest order this can be captured
by introducing an inverse Navier’s slip length λ so that at the boundary (Beavers &
Joseph 1967): uchannel

f (r=R(t))− uDarcy
f =−λ(duP

f /dr). Therefore the resulting parabolic
flow profile inside the channel is:

uchannel
f =−

1
4η

∇p(R2
− r2
+ 2λR+ 4κ), (2.12)

with a volumetric flow rate: Qchannel
f = (−πR2/8η)∇p(R2

+4λR+8κ). Thus the average
fluid back flow velocity over the pore and porous medium as the gel settles is given
by:

〈uf 〉 =
Qchannel

f +QDarcy
f

L2
=−

1
η
∇p

[
κ +

π

8

(
R
L

)2

(R2
+ 4λR)

]
. (2.13)

The channel size will be negligible compared to the overall size of the porous
medium for the majority of the growth process, i.e. R/L� 1. The rate of collapse
of the gel is therefore limited by the back flow of the fluid through the solid network.
It is controlled by κ , yielding a uniform settling profile of the top interface as if there
were no growing channel (Manley et al. 2005). However, as the settling proceeds and
t→ tblowup, R will grow rapidly and the channel cross-section will become significant,
R/L ∼ O(1). The second term in (2.13) will dominate the fluid back flow velocity.
Consequently, the interface velocity will appear to increase rapidly as the size of the
channel becomes comparable to the size of the gel network. Therefore tblowup sets the
time scale for the onset of macroscopic collapse.

2.2. Finite-time singularity in channel growth
A closed form expression for the finite-time singularity, or blowup time predicted by
the model can be found by specifying the initial value for the radius of the channel,
R(t̂= 0):

t̂blowup = d6R∗
2−df /3

Γ (2− df /3, R(0)/R∗)φ1−df /3, (2.14)
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where Γ (a, x) =
∫
∞

x sa−1e−s ds is the incomplete gamma function and d6 =

(4πd1d2/3)−1. Our model predicts that the finite-time singularity is intrinsic
to all freely settling colloidal gel networks. One interesting feature is that for
an initial channel radius of zero, R(0) = 0, the blowup time is non-zero. In
fact, all initial channel radii R(0) � R∗ have nearly the same blowup time:
t̂blowup = d6R∗

2−df /3
Γ (2− df /3, 0)φ1−df /3 ≈ 0.9d6R∗

2−df /3
φ1−df /3, when df = 2. In essence,

the gel is filled with pores having a heterogeneous size distribution. The fluid will
select the largest initial pore and erosion of that pore will be favoured over others.

As discussed in § 4.2 heterogeneities within the initial gel may form from other
processes beyond mere thermally driven restructuring (Lu et al. 2008). These can have
a number of origins, including falling debris that accumulates at an interface (Harich
et al. 2016), external forcing fields (Teece et al. 2014) or included bubbles. Once a
streamer is born with initial size R(0), the growth rate is universally described by
(2.10) and the final stages of breakup leading to collapse are identically captured by
the model with R∗ being the only controlling parameter.

Because the incomplete gamma function takes on values [0, 1], the behaviour of the
blowup time is dictated by the network parameters in the model. When R(0)= 0:

tblowup ∼ τDφ
1−df /3δdf /3ε3−df /3e1/d3εGdf /3−2, (2.15)

where the only unknowns are the scalar coefficient of proportionality and the
coefficient associated with Kramers hopping process, d3. This is a clear prediction of
how the point in time where the hydrodynamic instability and collapse occur relates
to properties of the gel network. These are the adjustable material parameters that
are available to engineer stability into the particulate network. Before we proceed to
discuss the utility of our model prediction in § 4, we test its validity using extensive
computer simulations and comparisons to published experimental data in the next
section.

3. Model validation with simulations and experiments

To assess how well the model captures the process of gravitational collapse we
first compare it to observations of simulations of settling gels. In § 3.1 and in § 3.2
we describe the simulation conditions in greater detail and present the results of
the parametric sweep in terms of the network parameters introduced in § 2. In § 3.3
we show the dynamics for a range of seeded channel sizes. While good agreement
between theory and simulations is necessary, to be certain about the model validity, it
has to reproduce the collapse dynamics observed in experiments. In § 3.4 we present
comparisons with two published experimental studies.

3.1. Simulation methodology
In order to study hydrodynamic instabilities during gel collapse and observe the
breakdown of the network, the effects of fluid flows and hydrodynamic forces have
to be modelled accurately in large scale simulations. We have recently developed
methods for rapid calculation of hydrodynamic interactions in suspensions of
mono-disperse spheres (Swan & Wang 2016; Fiore et al. 2017), where we use the
Rotneâ–Prager–â Yamakawa tensor (RPY) to account for long-ranged hydrodynamic
interactions with great fidelity (Rotne & Prager 1969). The positively split Ewald
(PSE) algorithm makes the cost of computing Brownian displacements in simulations
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of colloidal scale particles with hydrodynamic interactions comparable to the cost
of computing deterministic displacements in freely draining simulations. The method
relies on a new formulation for Ewald summation of the RPY tensor, which guarantees
that the real-space and wave-space contributions to the tensor are independently
symmetric and positive–definite for all possible particle configurations. Brownian
displacements are drawn from a superposition of two independent stochastic samples:
a wave-space (far-field) contribution, computed using techniques from fluctuating
hydrodynamics and non-uniform fast Fourier transforms; and a real-space contribution,
computed using a Krylov subspace method. The combined computational complexity
of drawing these two independent samples scales linearly with the number of particles
enabling hydrodynamic simulations with system sizes up to 106 particles (Fiore
et al. 2017). Higher-order hydrodynamic models are not yet feasible at the scale
simulated in this work. The far-field contribution captures much of the effect of
bulk flow of freely settling particles within the gel, and we do not expect that
the singular lubrication forces between nearly touching particles play a significant
role in the dynamics, which is dominated by collective rather than relative particle
motion. When superior methods for high-order simulations become available, these
assumptions should be checked more thoroughly.

Extensive simulations of freely settling, attractive, hydrodynamically interacting,
colloidal particles of size a in a solvent of viscosity η are performed. The simulations
contain Nsim= 216 000 particles having a volume fraction φ in a cubic simulation box
of length Lsim with periodic boundary conditions. Nsim has been selected to avoid any
system size effects (Varga et al. 2015) and to be able to resolve large scale structural
changes (Varga & Swan 2018a). Other choices of aspect ratio, including stretched and
flattened gel columns, have been investigated and do not affect the simulation results
that follow. Any interactions with the container, the meniscus or other potential wall
effects are neglected in the simulations. We seek to use the simulations to probe only
the freely settling region of the network. The interactions with walls can influence
the mode of collapse (Poon 2002) and this effect is discussed later. However, the
hydrodynamic instability we seek to model occurs far from the boundaries in the feely
settling region of the gel where the leading-order effects of the sample geometry are
thought to be insignificant (Secchi et al. 2014). Zero volume flux boundary conditions
on the simulation box ensure that sedimentation models the free falling zone (Buscall
& White 1987), where the gel network is freely settling. Note that as a consequence,
both the bottom of the container and the compacting cake region, shown previously
to play no role in collapse, are ignored. Furthermore the processes at the top surface
of the gel and the role of the meniscus in inducing collapse are not under study. The
simulation can be viewed as modelling micron sized colloids and a millimetre sized
gel cross-section deep inside a sedimenting network that is in a state of free fall.

We introduce a short-ranged attraction, mimicking the polymer induced depletion
attraction in experimental systems (Russel et al. 1989; Poon et al. 1997; Lu et al.
2006), and model it through an Asakura–Oosawa form (Asakura & Oosawa 1958):

UA(r)=−U
2(2a(1+ δ))3 − 3r(2a(1+ δ))2 + r3

2(2a(1+ δ))3 − 6a(2a(1+ δ))2 + (2a)3
, (3.1)

for particle separations r in the range of 2a < r < 2(a + Rg). The polymer radius
of gyration, Rg, relative to the colloid particle size is varied, δ = Rg/a, and the
pairwise depletion strength at contact sets the network strength, ε = kT/U, from
the athermal limit, ε = 0, to a hard-sphere dispersion, ε→∞. The Heyes–Melrose
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Modelling a hydrodynamic instability 1025

potential-free algorithm ensures hard-sphere repulsion at contact (Heyes & Melrose
1993). The uniform gravitational load on all particles is tuned through the gravitational
Mason number, G. We study the settling systems over a range of attraction
ranges: δ = 0.075–0.15, strengths: ε = 0.01–0.2, Mason numbers: G = 0.1–1.0
and volume fractions: φ = 5–50 % (see table 1 for definitions of all dimensionless
quantities). Initially, the dispersion is allowed to gel for 500 bare diffusion steps,
τD= 6πηa3/kT in the absence of gravity. Use of the box-counting method determines
the Minkowski–Bouligand dimension (Falconer 2004), df , for each gel, which
characterizes the meso-scale structure and tortuous nature of the random network.
Note that due to the finite system size and finite particle size the gels are not true
fractal objects over all length scales. At time t= 0 we introduce a finite gravitational
Mason number G and observe the process of free settling over a simulation time
of 2500G/ετD = 2500τG, where τG is the characteristic settling time, the time it
takes a single particle to settle its own radius in bulk fluid. As the network moves
downward, fluid back flow, particle erosion and the eventual failure of the network
are observed. All reported simulation results are averaged over three independently
generated samples for each combination of δ, ε, G and φ.

One assumption made in the simulations, which is not relevant for the theory
of streamer growth, is that the initial gelled state emerges from a diffusion limited
aggregation process in the absence of any gravitational load. In reality, experimental
gels form while settling and it is well known that with large gravitational loading,
G� 1, the structure of the gel or the gel point can be altered. However, the initial gel
structure only has an impact on the streamer erosion theory through the dimensionless
coefficients, di, and the experiments for which data are available reside in the G� 1
regime modelled well by the initial states chosen for these simulations.

3.2. Comparison with simulations of freely settling colloidal gels
The colloidal gel networks in the simulations all exhibit gravitational collapse during
free settling. While the exact time point at which this occurs strongly depends on
the network parameters δ, ε, G and φ, all gels eventually experience a hydrodynamic
instability and fail catastrophically as shown in figure 2 (see the supplementary
movies available at https://doi.org/10.1017/jfm.2018.725). Initially, the network settles
uniformly under its own weight and fluid flows upwards through the gel pores. After
an initiation period, a single streamer nucleates in the gel. This streamer grows
radially as individual particles and small clusters are eroded and swept upwards with
the back flow. The streamer then grows and spans the height of the settling gel.
There now exists a continuous channel for fluid back flow and the entire network
is destabilized as the streamer rapidly expands in the radial direction. Eventually,
portions of the gel compact, network integrity loss occurs and large domains of the
gel move independently both up and downwards. The gel is no more and the network
has undergone catastrophic collapse.

We quantify this process using two independent metrics, the evolution of the
network settling velocity and the growth of the streamer volume over time. The
average network settling velocity, U(t), is measured by computing the velocity of
the centre of mass of the gel in the frame of an external observer, the laboratory
frame as opposed to the frame of zero volume flux, the Lagrangian perspective,
for all gels under study (note that we exclude the velocity of particles that are not
attached to the percolated structure). Figure 3 shows this network settling velocity
normalized on its initial value, U(0), as a function of dimensionless simulation time
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 2. (Colour online) In simulations we observe freely sedimenting gels in a
gravitational field g and study the effects of fluid back flow over time (see § 3.1 for
simulation details). These are snapshots of a simulation with δ=0.1, ε=0.05, G=0.5 and
φ= 20 % (see also supplementary movies of the collapse). The differently coloured layers
are purely for illustrative purposes, indicate initial particle positions in the gel, and are
meant to guide the eye through the breakdown of the network during free settling shown
for a particle depth of 30a. The dispersion gelled over 500τD in the absence of gravity
and has a structure characterized by df = 2.05. (a) At t = 0τD gravity is turned on in
the simulation and the network begins to settle. (b) After initial uniform settling, a single
cylindrical streamer nucleates (bottom centre). (c) The streamer is both growing radially
and its height spans the bottom half of the network. (d) At the onset of settling rate
increase (t= tcrossover) the streamer spans the height of the gel. (e) The streamer continues
to grow radially, filling the entire sample, destabilizing and changing the uniform settling
of the network. ( f ) There is complete loss of network integrity as entire aggregates are
ripped off the gel.
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FIGURE 3. (Colour online) The average network settling rate U(t) normalized by
the initial rate U(0) as a function of simulation time in units of the characteristic
single-particle settling time τG for increasing G with δ= 0.1, ε= 0.05 and φ= 20 %. The
onset of rapid growth in settling rate, tcrossover, is the point in time where the power-law
growth at a given G intersects the plateau of uniform settling U(t)=U(0), marked by the
two dashed lines.

for increasing values of G and constant δ, ε and φ. The data exhibit three distinct
regimes of settling. As seen, the network begins to settle with a constant initial
uniform velocity. Then at a certain point, the velocity grows as a power law in time
until it enters the third regime, where it reaches a new plateau of the settling velocity
with Ufinal/U(0)∼O(10), consistent across all gels studied. Interestingly, Starrs et al.
(2002) also observed a tenfold increase in their velocities from initial settling to final
collapse.

In agreement with visual observations, a stronger gravitational force results in an
earlier onset of the power-law growth in the settling velocity. We term the transition
to power-law growth the crossover time, tcrossover, and identify it in each simulation
as the point where the best-fit power-law line intersects the initial settling velocity, as
illustrated in figure 3 by the dashed lines. tcrossover changes by orders of magnitude
depending on the values of the network parameters, but eventually a transition to an
increasing settling velocity and final plateau is observed for even the strongest gels
studied here.

In parallel with the measurements of the network settling velocity, we track the
growth of the overall streamer volume for each gel, employing an approach similar
to the box-counting method. At each point in time in the simulation the simulation
box is divided into a three-dimensional grid of cubic boxes of size Lbox. The number
of particles in each box, Nbox is counted and the probability distribution, P(Nbox), is
computed. For a nascent randomly percolated gel structure of fractal dimension df ,
this distribution should resemble a Gaussian with a mean related to bulk volume
fraction φ. The width of the distribution will be a function of df . In contrast, when
a streamer forms this distribution is altered significantly. The streamer is largely
void of particles so that when a streamer forms, P(Nbox) will show an increase as
Nbox → 0. We expect that the observed distribution of Nbox will be a superposition
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FIGURE 4. (Colour online) There is a direct correlation between the increase in streamer
volume and the accelerating settling network, which supports the model’s premise that
streamer nucleation and growth are causes for loss of network integrity in settling gels.
(a) The growth of streamer volume normalized on the simulation box volume plotted as a
function of simulation time for increasing G with δ= 0.1, ε= 0.05 and φ= 20 %. (b) The
onset of rapid growth in streamer volume tvolume

crossover plotted versus the onset of power-law
growth in network settling velocity, tcrossover.

of a contribution from a streamer and due to the bulk of the gel. For the reported
results the box size was chosen as Lbox = 10a, however we found that the measured
distribution was not sensitive to the exact value of box size when Lbox was bigger
than the number density correlation length within the gel.

The computed distribution of box occupancy is fit to a Gaussian in the neighbourhood
of the bulk gel peak, then the occupancy distribution of the streamer is inferred from
the difference P(Nbox)− Pfit. The streamer volume is computed as the expected value
of the free volume (box volume minus particle volume) under the streamer occupancy
distribution. That is, the streamer volume is equated to the volume of the fraction of
boxes that do not belong to the intact network. As settling proceeds and the network
evolves, the occupancy distribution shifts as the contribution due to the streamer
overwhelms that due to the gel. Near tvolume

crossover, the fraction of boxes belonging to
the streamer region rapidly increases and the free volume of the streamer exhibits
power-law growth in time. While the peak value of the Gaussian fit to the bulk gel
decreases with time, its mean value and variance remain essentially the same over the
course of the simulation. The structure of the bulk of the gel is unaltered by erosion
of the streamer.

Figure 4(a) plots the evolution of the streamer volume V(t) normalized on the
simulation box volume for the same set of gels as in figure 3. Initially there is
no noticeable streamer present. At a certain point in time, which decreases with
increasing G, V(t) exhibits a power-law growth, very similar to the behaviour
exhibited by U(t). Again, it is possible to extract a crossover time, tvolume

crossover, using the
same method as with the settling rate. In figure 4(b) we plot tvolume

crossover versus tcrossover
and find that the two time scales are identical to within the measurement errors. The
acceleration of the settling network and its ultimate collapse is directly correlated
with the nucleation and subsequent growth of the streamer in the gel in accordance
with the mechanism described by the model.

The crossover time measured in simulations marks the beginning of the collapse
of the gel, after which the network rapidly loses its integrity. While the dynamic
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FIGURE 5. (Colour online) The onset of rapid network collapse, tcrossover as measured in
dynamic simulations is plotted individually as a function of the network parameters G, φ,
δ and ε respectively, while all others are held constant. The collapse dynamics exhibit the
power-law behaviour predicted by the micromechanical model for networks with df ≈ 2.
Each data point is the average of three independent simulations and error bars represent
95 % confidence intervals. The slope of the best-fit line in (d) yields the scaling coefficient
d3 that sets the relevant strength of attraction, d3 ≈ 5.6.

simulations exhibit the same qualitative behaviour as described by the model, it
remains a question whether (2.15) can predict how tcrossover depends on the network
parameters. Figure 5 examines the dependence of tcrossover on G, φ, δ and ε separately.

Figure 5(a) shows the effect of increasing gravitational Mason number for three
different network strengths and volume fractions. Also shown is the expected
scaling behaviour as given by (2.15) for a network with fractal dimension df = 2:
tblowup ∼ Gdf /3−2

= G−4/3. Indeed for a range of gravitational Mason numbers for all
three conditions the crossover time exhibits the scaling that the model would predict.
Small deviations from the −4/3 scaling are expected as the measured df for the gels
in these simulations range between 1.7–2.3. For large gravitational forces (G > 1)
a different mechanism controls the network collapse. The value of tcrossover appears
independent of the gravitational Mason number and the situation is one of weakly
aggregated clusters settling freely (Huh et al. 2007).

Next the dependence of tcrossover on the volume fraction is analysed for two different
combinations of δ, ε and G along with the expected scaling behaviour from the
model, assuming df = 2: tblowup ∼ φ

1/3. The crossover time exhibits roughly the model
behaviour for a large range of volume fractions, as shown in figure 5(b). As the
fractal dimension is especially sensitive to φ, it is no surprise that tcrossover deviates
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slightly from the φ1/3 scaling. The model prediction breaks down for φ > 30 %, at
which point the starting material cannot be considered a gel, but instead approaches
the properties of a colloidal glass. Clearly, other restructuring processes dominate
settling in these dense structures (Zaccarelli 2007).

Similarly, the critical time exhibits the model predicted dependence on the attraction
range, tcrossover ∼ δ

df /3 as shown in figure 5(c). For the values of δ investigated here,
the law of corresponding states suggests that the thermodynamic restoring forces for
these dispersions will all be very similar (Noro & Frenkel 2000). To maintain the
short-range nature of the colloidal bonds however, δ could not be increased above this
narrow range since it known that the evolution of the collapse dynamics is markedly
different for gels with long-range attractions (Teece et al. 2011). So, agreement with
the model should be considered tentative.

Finally, we consider the effect of the network strength ε on tcrossover. Since (2.15)
suggests both a power-law and exponential dependence on ε, figure 5(d) plots
log(εdf /3−3tcrossover/τD) versus ε−1. Note, in the model, the proportionality constant
modulating the strength of attraction, d3 is left undetermined. Indeed there appears to
be a linear relation between the time scale of collapse of the network and the Kramers
escape rate, as previously observed experimentally by Teece et al. (2014). The slope
of the best-fit line for all three combinations of δ, G and φ indicates that the best
choice for the constant is d3 = 5.6 and the crossover time exhibits the relationship
with ε that the model predicts. While we cannot provide a physical explanation
for this particular value, it is a result of the simplified approach to approximate the
network erosion in terms of the bond breaking rate or escape probability of individual
particles from the attractive well. For very large attractions, ε6 10−2 a small deviation
from the predicted scaling is observed. Section 4.2 discusses possible reasons for this
and ways to improve the model.

It appears that the phenomenological model adequately predicts the dependence
of the critical time scale in dynamic simulations on the dimensionless parameters
and captures the essential features of collapse. Equation (2.14) gives a quantitative
prediction for the critical blowup time to within a scalar constant, provided only the
values of the five dimensionless network parameters. In figure 6 we plot the measured
tcrossover versus tblowup and find a direct parity between the two quantities. Here, every
data point is an individual combination of δ, ε, G and φ and the calculated df ,
averaged over three independent simulation runs. Given this linear relationship, the
slope of the best-fit straight line through the data can be used to obtain the missing
scalar constant for the model, arriving at the final result:

tblowup = 540τDφ
1−df /3δdf /3ε3−df /3e1/(5.6ε)Gdf /3−2. (3.2)

For a colloidal gel (3.2) can be applied to calculate the point in time where the
hydrodynamic instability occurs, leading to rapid collapse.

3.3. The effect of finite initial channel radius
During the analysis of the computational model results presented so far, when
relating tcrossover to tblowup it was implicitly assumed that R(0)= 0 and that a streamer
is nucleated immediately after the start of the simulation. However, as will also be
discussed in § 4.2 an initial vertical channel might already be present in the gel
network at t= 0. Or, on observing a gel undergoing collapse, the initial starting point
itself may not be well defined in an actual system, especially since in experiments
colloidal dispersions do not gel independently from the influence of the gravitational
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10–110–2

102

101

FIGURE 6. The onset of rapid network collapse, tcrossover as measured in dynamic
simulations is plotted as a function of the model prediction tblowup, computed for the
combination of δ, ε, G, φ and df used in the respective simulation run. Each data point
is the average of three independent simulations with the same unique combination of
parameters in the parameter space and error bars represent 95 % confidence intervals.
The model predicts the collapse dynamics to within a scalar coefficient. A linear best fit
through the data (dashed line) is employed to identify the coefficient.

field they are in. Regardless, the model permits a solution for tblowup when assuming
an initial condition R0 6= 0 for (2.10). Intuitively, it is expected that catastrophic
collapse in a gel with a channel present will occur sooner than in an unperturbed gel.
Indeed, using the result in (2.14) the model prediction for the shortened finite-time
singularity relative to the unperturbed case is found to be:

tblowup|R0

tblowup|0
=
Γ (2− df /3, R0/R∗)
Γ (2− df /3, 0)

. (3.3)

The ratio of gamma functions is guaranteed to be less than unity, regardless of the
value of df , in agreement with the intuitive expectation. The only controlling parameter
is the value of the initial channel radius R0 relative to R∗ and this ratio is predicted
to be independent of φ.

To test this prediction we conduct an additional set of simulations of freely settling
gels where a vertical cylindrical channel of height Lsim and radius R0 devoid of
particles is seeded at the centre of the gel at t = 0. The parameter R0/R∗ is varied
systematically. This is achieved both, by increasing R0 relative to the overall size
of the gel, and separately, by decreasing R∗. Remember, the gravitational length
depends on δ, ε and G so that the effect of varying network parameters is directly
incorporated. Because of the exponential growth, in order to resolve the decrease in
blowup time, we explore a parameter range of two orders of magnitude in R0/R∗. As
long as the initial pore is small relative to the system size, the assumptions of our
model should hold and the onset and dynamics of collapse should only be determined
by the radius of the streamer. In each simulation the crossover time with a seeded
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FIGURE 7. The measured values of tcrossover in the presence of a seeded hole at t = 0
relative to the time scale of an unperturbed sample are plotted as a function of the relative
seeded channel radius R0/R∗ for different φ. R∗ is set by a combination of δ, ε and G.
Each data point is the average of three independent simulations with the same unique
combination of parameters in the parameter space and error bars represent 95 % confidence
intervals. The measured values are in good agreement with the model prediction of (3.3)
using a value of df = 2 (dashed line).

pore is measured and compared to the corresponding crossover time in an unseeded
gel at the conditions. We plot their ratio in figure 7 along with the prediction of (3.3).

We find an excellent agreement between (3.3) and the simulation results. For small
seeded channel sizes, R(0)� R∗, the collapse times are nearly the same with only a
negligible decrease, as stated in § 2.2. In contrast, for R0/R∗ O(1), tcrossover|R0 falls off
due to the activated hopping of particles off the network, as expected from the theory.
Simulations show that the seeded channel provides a free path for fluid back flow
when the gel is settling. Particles on the network–streamer interface are immediately
ripped off the network and swept upwards. This provides further evidence that the
growth of a streamer in a settling gel is indeed the cause for the rapid instability
leading to collapse. As we have shown, the predictions of the simple model of
streamer growth agree well with the collapse dynamics observed in simulations for a
large range of parameter values and initial gel states.

3.4. Comparison with experimental observations
So far it was shown that the model correctly captures the mechanism of collapse seen
in dynamic simulations. Here we show that our theory also describes the gel collapse
behaviour in two vastly different experimental systems by fitting available data of the
evolution of the observed streamer radius as a function of time to our model.

Starrs et al. (2002) studied a system of polydispserse poly(methyl methacrylate)
(PMMA) particles that were induced to gel in the presence of polystyrene depletants
in a tetralin and cis-decalin solvent blend. In so-called ‘weak’ gels streamers formed,
and the gel exhibited catastrophic collapse following a hydrodynamic instability.
The weak gels were differentiated from ‘strong’ gels considered in the study by
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Parameter Starrs et al. (2002) Secchi et al. (2014)

Attraction width ∆ (nm) 17 4
Attraction strength U (kT) 6.5 12
Density mismatch 1ρ (g cm−3) 0.26 1.14
Particle radius a (nm) 196 90
Solvent viscosity η (mPa s) 2.5 1.0
Temperature T (◦C) 25 23
Volume fraction φ (–) 0.2 0.04
Final collapse time (min) 600 42

TABLE 2. Experimental parameters of collapsing gels as found in Starrs et al. (2002)
and Secchi et al. (2014).

the lack of hydrodynamic instability and the observation of steady, poro-elastic
compression rather than a dramatic collapse. Secchi et al. (2014) looked at an
aqueous dispersions of spherical particles of MFA, a copolymer of tetrafluoroethylene
and perfluoromethylvinylether. Depletion interactions were induced by the addition of
a surfactant that forms globular micelles leading to a short-ranged attraction. Here,
the onset and subsequent radial growth of streamers destabilizing the network were
also observed. In both cases, snapshots depicting the increasing size of the streamer
with time were included by the authors, providing two experimental data sets for the
evolution of the streamer radius, R(t). Table 2 provides the parameters for the two
experimental systems.

Assuming an initial pore size, R(0)= 0, equation (2.10) has the solution:

tblowup − t
tblowup

=
Γ (2− df /3, R(t)/R∗)
Γ (2− df /3, 0)

, (3.4)

which has three parameters: tblowup, R∗ and df . As seen earlier, the model predictions
are not sensitive to the value of df in the range of 1.7–2.3 and so in the absence of any
further information from the experiments, we assume that df = 2 for both networks, a
typical value for dilute colloidal gels (Zaccarelli 2007). Therefore, it remains to obtain
a best fit of (3.4) to the two experimental data sets to extract the parameters tblowup
and R∗. Figure 8 compares the experimentally observed streamer radius to the best-fit
model predictions. The measured dynamics for both experimental systems follows the
model quite well, and table 3 provides the best-fit values for tblowup and R∗. While
tblowup and R∗ are not reported directly in either paper, these best-fit values match well
the final collapse time for the gel in either experiment, as shown in table 2. Similarly,
the characteristic radius in either case is an order of magnitude smaller than the width
of the experimental gel columns, which supports the claim that rapid collapse begins
suddenly as the streamer rapidly expands beyond R∗. For reference, the supplementary
section contains images of the experimental gels with outlines demarcating the pore
at different points in time.

The quantities tblowup and R∗ can be estimated from experimental parameters
independent of the model fit. Using the values of the experimental quantities in
table 2, tblowup and R∗ are computed directly using (2.6) and (3.2) assuming again
df = 2 and taking the coefficient d4 = 1. These estimates are reported in table 3. In
the case of the work by Starrs et al. (2002) the best-fit values for both parameters are
in good agreement with what can be computed a priori. This would suggest that the
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FIGURE 8. (Colour online) Time evolution of streamer radius R as extracted from
experimental data published in the literature and the best-fit predictions of our model.
(a) Comparison of data published by Starrs et al. (2002) (open squares) and the best-fit
prediction of the model (dashed line). (b) Comparison of data published by Secchi et al.
(2014) (open circles) and the best-fit prediction of the model (dashed line).

Starrs et al. (2002) Secchi et al. (2014)
tblowup (min) R∗ (mm) tblowup (min) R∗ (mm)

Best fit 593± 11 4.85± 0.1 34± 2 2.02± 0.15
Estimate from parameters 605 4.94 986 22.5

37 2.51

TABLE 3. Values of tblowup and R∗ as found from the model best fit to the experimental
data and their estimates based on details of the experimental parameters in table 2. In the
case of Secchi et al. (2014) estimates are based on the primary particle radius and three
times the size for a.

proposed model subsumes all essential factors contributing to streamer growth and
can accurately describe the dynamics of network erosion and collapse. In contrast,
the estimates of R∗ and tblowup for the other example are an order of magnitude larger
than the corresponding best-fit values. The value of R∗ exceeds the dimensions of
the gel and tblowup exceeds the observation window reported (Secchi et al. 2014).
Since the dynamics is well captured by the best fit, this would indicate that there
is no seeded pore in the gel. Instead, we conclude that there is some uncertainty in
the experimental parameters. While we have assumed that the characteristic building
blocks of the gel in the experiments are individual MFA particles, Secchi et al. (2014)
note that there is strong evidence to suggest that the particles move in aggregated
clusters. As the model displays a high sensitivity to the size of particles within the gel
(see § 4.1) the value of the hydrodynamic radius a can significantly impact the quality
of the predicted blowup time. Indeed, using a= 3× 90 nm as the characteristics size,
we recover estimates of R∗ and tblowup, shown in the last row of table 3, that are both
physically reasonable and agree with the best-fit values.

As a result of the exponential growth rate of the streamer radius, the value of R(t)
and the dynamics in the vicinity of blowup are very sensitive to t and change rapidly,
as seen in figure 8. While tblowup and R∗ depend on the experimental parameters and
are unique to each study, (3.4) suggests that Γ (2 − df /3, R(t)/R∗) will exhibit a
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FIGURE 9. (Colour online) Parity plot of the predicted and the measured distance to
blowup (see text for details) for the two very different experimental systems. The theory
is able to capture the underlying collapse dynamics well, independent of the experimental
details.

universal linear dependence on the distance to blowup, (tblowup − t). Figure 9 plots
the experimentally measured streamer radii as a function of distance to blowup, and
we observe indeed a one-to-one parity as expected from theory. This indicates that
the model for streamer growth contains the necessary dynamics to understand and
track the hydrodynamic instability leading to the collapse of the network in both
colloidal gels. As a final note, the experimental values of G that we estimate from
the experimental parameters are two orders of magnitude smaller than what we have
studied via simulations O(10−3). Recalling that the blowup time scales approximately
as G−4/3, simulations in which pores emerge and grow at such small G would be
too time consuming to be performed at present. However, we believe that strong
connection between the simulations and the model support application of the model
to these experimental results.

4. Discussion
Gravitational collapse is an intricate process during which the microstructure

of the gel undergoes numerous changes. These culminate in the breakdown of
the hierarchical network structure and macroscopic structural failure. A number of
experiments observe a ‘sudden’ collapse in which a slowly and steadily moving
interface suddenly accelerates and falls. The model we have presented describes in
detail a process through which erosion of the network and the growth of streamers
in a freely settling gel can lead to such a perceived sudden change in material
properties. We have shown that these significant rearrangements in the microstructure
do not manifest themselves on a macroscopic level until a time point very close to
a singularity in the streamer growth. From the point of view of applying this model
to real gels, a good theory of gravitational collapse has to be able to explain and
predict the ultimate parameter of interest, tblowup as presented here. The model we
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have proposed relates tblowup to the engineerable network and solvent properties. Both
dynamic simulations and comparisons with previously published experiments have
confirmed that the model reproduces quantitatively the collapse dynamics of these
gels.

4.1. Stability is dictated by a competition between two time scales
The time scale tblowup is an intrinsic property of each freely settling gel network and
characterizes how long the gel remains stable before hydrodynamic back flows erode
network integrity. The proposed model suggests that this hydrodynamic instability
will occur at a definite point in time, after the beginning of free settling. According
to the model, no gel is immune to this instability – yet stable gels can be engineered.
Certain strong gels remain stable against gravitational stresses for years, while only
compacting mildly (Poon 2002; Manley et al. 2005; Teece et al. 2014). As described
earlier, these strong gels exhibit a slow uniform compression under gravity. By
compacting steadily in time, the gel becomes denser and strong, allowing it to fulfil
its engineered purpose. The slow condensation process is well described by the
theory of poro-elasticity, in which forces responsible for mechanical compression
balance with the drag due to uniform fluid back flow and the elastic stresses within
the compacting network. Poro-elastic settling occurs over a characteristic time scale
(Manley et al. 2005):

tporo-elastic ∼
ηh2

0

κE
∼
ηh2

0φ
2/(3−df )

a2E
, (4.1)

which measures the time required for the compressing network to develop sufficient
strength to support its own weight. Here h0 is the initial height of the gel, E is its
elastic modulus and the permeability κ ∼ a2/φ2/(3−df ) with an O(1) prefactor, will
depend on the porosity of the network.

All networks in which a density mismatch between fluid solvent and solid particles
is present, will initially sediment in this manner. However, in weak gels the process
of poro-elastic compression is interrupted by the formation of streamers which leads
to subsequent rapid settling. In this framework then what distinguishes strong from
weak gels under gravity is the ratio of two time scales:

T =
tblowup

tporo-elastic
, (4.2)

which provides a criterion for deciding whether a network will exhibit poro-elastic
compression or streamer-mediated collapse. When T � 1 a colloidal network will
exhibit characteristics of poro-elastic compression. Initially, much of the network will
be in a mode of free settling which can produce streamers, but the time scale for
streamer formation, tblowup is too long for such pores to form. Instead, the settling will
come to an end when the compressed gel has developed enough strength to support
itself. In contrast, for T� 1 the gel will settle, but does not densify quickly enough.
Instead, streamers nucleate within the gel, eliminate any elastic resistance through
erosion of the network and result in rapid collapse.

This criterion is also supported by experimental observations. In addition to the set
of experiments on weak gels, Starrs et al. (2002) also studied the collapse of gels with
stronger inter-particle attractions. These gels did not collapse, but instead underwent
steady, poro-elastic compression, which arrested in a more compact, and stable state.
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The time scale for this consolidation process here was reported to be tporo-elastic= 40 h.
For the set of experimental parameters corresponding to this strong gel, our model
predicts tblowup ≈ 44 h so that T > 1. From this ratio of time scales, we would expect
that the gel should remain intact. In contrast, consider the value of T anticipated for
the weak, collapsing gels that were studied (Starrs et al. 2002). The completion of
poro-elastic compression was not be observed in the experiments, but we estimate
tporo-elastic ≈ 32 h using the assumption that the network elastic modulus decreases in
proportion with the strength of the inter-particle attraction. From fitting to the model
and independent calculation, we determined that tblowup ≈ 10 h. Consequently T < 1,
and the gel is expected to be unstable.

Equations (2.15) and (4.1) show that tblowup and tporo-elastic are only functions
of material properties. Therefore it should be possible to evaluate T in advance
and predict the stability of a proposed experimental system without any detailed
experimentation. Especially useful is understanding how specific parameters influence
this ratio. For instance, consider the dependence on particle size. We have shown
that tblowup ∼ adf−5. Because the elastic modulus of the network depends on its mesh
size, we conclude that E ∼ a−3U/kT , and the poro-elastic time scale is linearly
proportional to the particle radius: tporo-elastic ∼ a. Therefore the ratio of time scales
depends on a as: T ∼ adf−6, suggesting that the stability of colloidal gels is strongly
controlled by the primary particle size. In fact, decreasing the particle size will drive
the network toward pure poro-elastic compression. This ratio also helps to explain
why the stability of a gel is so sensitive to changes in U (Starrs et al. 2002). From
(3.2), the streamer formation time depends most dominantly exponentially on U, while
from (4.1), the poro-elastic time scale scales with the inverse of U. Consequently,
T ∼ eU/(5.6kT), and small changes to the strength of attraction in U will lead to large
changes in the ratio of time scales that significantly alter the stability of the gel.
Finally, the hydrodynamic instability is dominated by the activated erosion process
driving the streamer growth and is thus sensitive only to intrinsic properties of the
network. In contrast, the poro-elastic compression time scale depends on the initial
height of the gel. Thus, T ∼ h−2

0 , so that taller gels are more susceptible to the
hydrodynamic instability. In laboratory experiments, this is known and shorter gels,
which may appear stronger, are often avoided when studying the collapse phenomena
(Allain et al. 1995; Starrs et al. 2002; Kilfoil et al. 2003; Manley et al. 2005).

In many practical applications, whether to avoid the collapse of yoghurt in a cup
or the failure of a gel proppant in a fracking channel, the required shelf life of the
material, tshelf life, is a well-defined finite quantity. In terms of the model discussed
here, the requirement for stability necessitates that the blowup time exceeds the
application or user defined shelf life. Thus, even if it is not possible to choose
parameters such that T� 1 and achieve indefinite stability, at least material properties
can be tuned with the goal of an extended lifetime so that tshelf life 6 tblowup, which
defines the desired minimum value for the blowup time. This way it can be ensured
that the hydrodynamic instability will only set in once the gel network has fulfilled
its role past its required lifetime. In practice then, given a use case defined constant
min(tblowup)= tshelf life, (3.2) determines how the values of the network properties must
be chosen. In figure 10 we present a three-dimensional subset of the four-dimensional
parameter space of δ, ε, G and φ, which represents the trade-offs that have to be
considered in material engineering of stable gel networks. In the continuous stable
region characterized by high volume fractions, low gravitational Mason numbers and
high network strengths, the blowup time exceeds the desired shelf life of the specific
product under consideration. The boundaries between the stable and unstable region
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FIGURE 10. (Colour online) The stability-state diagram marks the continuous region of
stability (shaded) and distinguishes it from catastrophic instability beyond (here only a
three-dimensional cross-section of the entire parameter space is shown). In the stable
region tblowup is larger than the desired tshelf life of a given product.

will be highly nonlinear, but are defined by the respective parameter pairs and the
model predictions. Such a stability diagram enables rational selection of materials or
engineering of colloidal interactions, both of which involve trade-offs in the space of
network properties.

Consider yet another application, where colloidal gel networks are used in processes
of sludge reduction and dewatering. In such contaminated site remediation programs,
the material essentially acts as a filter used to halt the flow of the pollutants while the
whole network is under fluid driven compression (Northcott et al. 2005b). Here, the
effective gravitational Mason number, G, is controlled by the process operator through
the choice of |∇p|. This parameter choice ultimately determines the time point at
which the network becomes unstable. In this application, the other relevant time scale
is the duration of the dewatering process (Northcott et al. 2005a), tprocess, controlling
the total amount of sludge that is processed. The maximum rate at which the water
can be treated safely without any network failure will be set by the ratio of these two
time scales, tblowup/tprocess, and the same stability criteria apply. The proposed model
may aid in selecting the correct operating conditions for such remediation activities.

4.2. Model improvements and future work
As we have shown, the model adequately predicts the observed dynamics in
simulations and explains the onset of sudden collapse in experiments. However,
in developing the model a few simplifying assumptions had to be made: chiefly
about the number of particles within the streamers that form, the process of activated
bond breaking, the fractal nature of the gel and the boundary conditions imposed on
the network. Here we revisit some of these assumptions and discuss future work to
resolve remaining issues.

During the growth of the streamer, as particles are broken off the fractal network at
the channel interface and swept upwards due to back flow, local gradients in particle
concentration will be established and the distribution of particles within the streamer
should not be uniform as assumed when constructing (2.2). However, as discussed
during the model development, for a sufficiently large control volume around the
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streamer and the porous gel network, the number density of particles in the interior
of the streamer due to mass conservation will have to be equal to its bulk value.
In this context, a sufficiently large control volume means a streamer whose height
is very large compared to the typical mesh size of the gel network. On that length
scale, the expression used for the number of particles on the surface of the network
will be valid, and mass conservation will ensure that the model predicts a consistent
number of particles entering the streamer per unit time.

The growth of the streamer is driven by the viscous drag exerted by the fluid back
flow resulting in activated bond breaking of individual inter-particle bonds, which
drives the growth in R. The bond breaking rate, which scales as: e−(1/d3ε) = e−(1/ε)1/d3 ,
reflects the particle escape probability from the potential well. We assumed that the
effective activation energy setting this rate will not be the strength U of a single
inter-particle bond, but an undefined scalar multiple. A value of d3 > 1, which was
obtained from the simulation results in figure 5(d), would suggest that the bonds are
weaker than in the case of an escape from a single pairwise bond. In fact, when a
bond in the gel is broken, a single particle or a cluster of particles may detach from
the network and enter the streamer. As a result, it is probably more useful to think
of the activated escape rate as being set by several independent bond breaking events,
any one of which might free some portion of a cluster to follow the back flow. Thus
the 1/d3 power in the proposed Kramers hopping expression allows for more attempts
at bond breakage per unit time. To more precisely account for this effect, we would
need to track the statistics of clusters entering the streamer in order to weight the
flux by the appropriate number of particles detaching from the gel. This is planned
for future work.

The five dimensionless parameters in table 1 fully characterize the model gel. Of
these, the fractal dimension df is the most difficult to control as it is a characteristic
of the kinetically arrested percolated network and how that network was formed. In
principle this could be predicted, but in practice it is more likely to be measured once
the gel has formed. In experiments, df is obtained from the power-law growth of the
structure factor at low wavelengths, whereas in simulations due to the finite system
size, as is the case here, the box-counting method is employed as a surrogate. Thus, df
is not known in advance and (3.2) cannot be predictive in the strictest sense. For the
model to be useful, a value of df has to be assumed, which can be justified by prior
experience with the specific gel under study and the fact that for random percolated
gels the fractal dimension is typically in the range df ≈ 1.7–2.3 (Zaccarelli 2007). In
fact, when fitting the model to the experimental streamer growth data, in the absence
of any measurements, the assumption of df = 2 resulted in good agreement. Clearly,
an accurate knowledge of df could improve this and result in a better match between
parameter estimates and the model predictions. We were able to validate the scaling
of the blowup time by studying tcrossover as a function of δ, ε, G and φ in figure 5.
However, (3.2) is not especially sensitive to the value of df due to the limited range
of variability, and we could not control df explicitly. Therefore, dependence of the
model on the value of df remains to be confirmed.

Since the model as presented here considers a freely settling gel, it neglects
the processes occurring at both the top and bottom interfaces in contact with
the supernatant and compacting region, respectively (Padmanabhan & Zia 2018).
As shown by Buscall & White (1987) and repeatedly observed in experiments,
the majority of the collapsing gel is in a mode of free fall and macroscopically
unchanging before collapse (Secchi et al. 2014). Since the particles at the bottom
of the gel are unable to support the weight of the network above it, a concentrated
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foot grows at the bottom of the container by continuous, slow compaction. However,
this process is part of the poro-elastic compression, and it is largely agreed that the
compaction occurs independent of the events leading to the hydrodynamic instability
in the freely settling region.

In contrast, it has been suggested that the origins of delayed collapse are related
to the free surface at the top of the gel. Interactions between the meniscus and the
container walls may delay the settling as the network is pinned to the top interface.
The surface tension holding the colloidal particles at the air–solvent interface can be
significant with energy per unit surface area of the order of 103–106kT/a2 (Binks &
Horozov 2006). In contrast, particles in the layers beneath the gel surface are held in
place solely by inter-particle bonds that cannot support the tension due to the weight
of the gel network hanging below. Thus, while the forces on the particle contact
line can suspend a layer of particles at the interface (Secchi et al. 2014), the entire
network is not pinned and can detach readily without producing a detectable delay
preceding collapse.

However, it may be the case that the interface with the supernatant has a role to
play in seeding an initial streamer through the network. Colloidal particles at the
air–solvent interface are in constant motion owing to thermal motion (Boniello et al.
2015). Recently it has been observed that particles coalesce and form concentrated
clusters at the top interface (Harich et al. 2016). These fragments compact, break off
and can fall through the network to create the channels whose growth our model
could describe. Indeed, the model presented here lacks an exact description of how
an initial channel is seeded. Gels are kinetically arrested materials with structural
heterogeneities. Therefore, it was assumed that streamers form from natural density
fluctuations. It is entirely plausible and fully compatible with the model that paths of
preferred fluid back flow are seeded by other restructuring and aggregation processes,
for example: bubbles which rise through the network, or foreign objects and debris
falling through the gel (Senis et al. 2001; Teece et al. 2014; Harich et al. 2016). As
shown in § 3.3 with controlled simulations, a seeded initial channel radius R0 produces
the same collapse dynamics, which is universally described by the phenomenological
model. Furthermore, consider the network stability in a range of industrial applications,
where very often, the choice of formulation or processing history of the gel will
result in a number of holes and channels that extend across the sample and may
be distributed randomly. In such a case the overall stability of the network will be
set by the growth rate of the streamer expanding the fastest. Thus the onset of the
hydrodynamic instability can only be determined with knowledge of the heterogeneous
state of the gel. However, as long as the distribution of initial channel sizes can be
estimated reasonably accurately, a distribution of blowup times can be inferred and a
survival probability used to characterize the sample lifetime.

Gravitational collapse of gels is a complex phenomenon with many dynamic
processes occurring throughout the network simultaneously. The micromechanical
model described here sheds light on one central aspect, the rapid growth of streamers
leading to the instability and collapse of freely settling gels. Nonetheless, new
approaches are required to be able to study the settling processes at the gel boundaries
and free interfaces. In the freely settling mode hydrostatic equilibrium cannot be
established, so the eventual arrest of the settling process will be intimately coupled to
the interactions with the container walls. While dynamic simulations provide a useful
tool to interrogate the microstructure, it is the interplay of inter-particle interactions
and hydrodynamics that leads to intricate settling scenarios. Therefore and importantly,
hydrodynamic interactions have to be accurately incorporated into computer models in
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order to describe the basic phenomenology. Modelling hydrodynamic interactions in
colloidal dispersions near interfaces and walls is a challenging task. The development
of computational tools for fast simulations at sufficient scale to tackle detailed
interactions among the particles and with container boundaries is an active area
of research (Fiore & Swan 2018a,b). Future investigations should seek to conduct
new experiments and computer modelling of the same colloidal gels in order to
enable more careful comparisons of the detailed dynamics between model predictions,
experiments and simulations.

5. Conclusions

The catastrophic collapse of colloidal gels settling under their own weight remains
a major engineering challenge in many areas of industry and science, from personal
care and foodstuffs through industrial proppants to biomedical applications. In this
work, we have used models and simulations to address one mode for the loss of
network integrity, a hydrodynamic instability that promotes the erosion of pores
within a colloidal gel. Over the last decades, careful experiments have advanced
an understanding of the restructuring preceding collapse: bond rearrangements
and breakage lead to the formation of open streamers through the network. Our
simulations have enabled the direct observation of fluid back flow through these
streamers and the effects of the viscous drag that the back flow exerts on the gel
network. We have modelled the way these stresses erode the network and lead to a
hydrodynamic instability that terminates in failure of the gel.

We developed a new phenomenological model for the evolution of streamers
embedded in a freely settling colloidal network. The model describes the process
of streamer growth due to fluid back flow, which strips particle from walls of the
streamer. The rate of erosion increases exponentially with the streamer radius so that
the model exhibits a finite-time blowup: at a finite point in time, the radius of the
streamer is infinite. We correlate this point in time with the onset of catastrophic
failure in the gel. This time scale is related directly to dimensionless groups describing
the network: the ratio of buoyant forces to network strength, the particle volume
fraction, the strength of inter-particle bonds relative to the thermal forces acting on
the particles and the relative range of the pairwise attraction.

Extensive Brownian dynamics simulations of hydrodynamically interacting, freely
settling, attractive colloidal gel networks show that the rapid increase of the streamer
volume in the gel coincides with increased settling velocities during collapse. The
time for onset of accelerated settling scales with network parameters as predicted by
the model, and we have demonstrated a direct parity between the model blowup time
and this critical time point in simulations. The extensive parameter sweep conducted
in simulations is used to determine the unknown constant of proportionality of the
phenomenological model, which is necessary to make quantitative predictions. The
predicted evolution of streamer radius with waiting time is also shown to successfully
capture the collapse dynamics for two different published experimental systems.

The model considers a gel in a mode of free settling and neglects the effects of
container walls and the processes occurring at both the top and bottom interfaces
in contact with the supernatant and compacting cake region, respectively. Likewise,
the simulations leave out many details that are likely important for specific industrial
formulations such as near-field hydrodynamics, contact mechanics between touching
particles and hydrodynamic interactions with the boundaries of the container or the
compacting and supernatant zones. These effects should be pursued in future work.
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Regardless, this model and these simulations seemingly describe the dynamics of
the hydrodynamic instability leading to collapse settling gels observed in the few
limited laboratory experiments available. These results allow us to demarcate two
types of compressing gels in experimental systems: strong gels and weak gels. We
find that the critical feature demarcating strong from weak gels as they settle is
the ratio of the poro-elastic compression time scale to the finite-time blowup. Since
both processes are intrinsic to any gel under gravitational load, strong gels are the
ones where poro-elastic compression proceeds to completion before the onset of the
hydrodynamic instability. Therefore, we propose that a key to achieving longer shelf
lives is to engineer and tune network properties until the blowup time exceeds the
poro-elastic time scale, the user defined shelf life of the product, or the relevant
process time of the application. With the concepts presented in this work and the
newly developed model, stability of colloidal networks can be rationally engineered.
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