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The effect of a counter-current gas flow on the linear stability of an inclined falling liquid
film switches from destabilizing to stabilizing, as the flow confinement is increased. We
confront this linear effect with the response of nonlinear surface waves resulting from
long-wave interfacial instability. For the strongest confinement studied, the gas flow damps
both the linear growth rate and the amplitude of nonlinear travelling waves, and this holds
for waves of the most-amplified frequency and for low-frequency solitary waves. In the
latter case, waves are shaped into elongated humps with a flat top that resist secondary
instabilities. For intermediate confinement, the linear and nonlinear responses are opposed
and can be non-monotonic. The linear growth rate of the most-amplified waves first
decreases and then increases as the gas velocity is increased, whereas their nonlinear
amplitude is first amplified and then damped. Conversely, solitary waves are amplified
linearly but damped nonlinearly. For the weakest confinement, solitary waves are prone
to two secondary instability modes that are not observed in unconfined falling films. The
first involves waves of diminishing amplitude slipstreaming towards their growing leading
neighbours. The second causes wave splitting events that lead to a train of smaller, shorter
waves.

Key words: thin films, gas/liquid flow

1. Introduction

We consider a gravity-driven two-dimensional liquid film falling down a plane tilted at an
angle φ with respect to the horizontal, in contact with a counter-current gas flow that is
strongly confined by an upper wall placed at y = H (figure 1). Both fluids are Newtonian,
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Figure 1. Problem sketch: gravity-driven falling liquid film (lower blue streamlines) in contact with a
counter-current gas flow (upper red streamlines) flowing through a channel of dimensional gap height H�

inclined at an angle φ with respect to the horizontal. Streamlines (separated by constant streamfunction
increments) are shown in the wall-fixed reference frame, and Λ is the wavelength.

with constant fluid properties, and the flow is laminar. Confined falling liquid films occur
in rectification columns for cryogenic air separation, which contain structured packings
that subdivide the column cross-section into millimetric channels (Valluri et al. 2005).
Even stronger confinement is realized in compact reflux condensers (Vlachos et al. 2001),
falling-film microreactors (Zhang et al. 2009) and micro-gap coolers (Kabov et al. 2011).
We are interested in nonlinear waves that form on the surface of the falling liquid film
due to the long-wave Kapitza instability (Kapitza 1948), and, in particular, how these are
affected by the gas velocity in a strongly confined setting. Such waves are known to trigger
flooding events, by local obstruction of the channel, by flow reversal or by wave reversal
(Vlachos et al. 2001; Trifonov 2010a; Tseluiko & Kalliadasis 2011).

For weak confinements, flooding seems to be favoured by decreasing the gap height
and/or increasing the gas flow rate. Experiments (Kofman, Mergui & Ruyer-Quil 2017) and
numerical simulations (Trifonov 2010a,b) alike have shown that the amplitude of nonlinear
waves increases with increasing counter-current gas flow, and that this growth diverges in
the vicinity of the flooding point (Drosos, Paras & Karabelas 2006). Moreover, actual
flooding experiments have shown that the critical gas flow rate decreases with diminishing
gap height (Sudo 1996). Linear stability investigations, which demonstrate an increase in
the maximal linear growth rate with increasing gas velocity, tend to confirm this nonlinear
picture (Alekseenko et al. 2009; Vellingiri, Tseluiko & Kalliadasis 2015; Schmidt et al.
2016; Trifonov 2017).

On the other hand, recent investigations suggest that strong confinements may, in fact,
lower the risk of flooding. Lavalle et al. (2019) have shown that the Kapitza instability
can be entirely suppressed by sufficiently confining the gas, as suggested by Tilley, Davis
& Bankoff (1994) and confirmed by Kushnir et al. (2021), and that this is facilitated
by low tilt angles. Further, the authors observed that the linear stabilization, which they
confirmed experimentally, is amplified by increasing the counter-current gas flow rate.
Recent nonlinear direct numerical simulations (DNS) of inclined falling liquid films
(Trifonov 2020) have identified a non-monotonic variation of the interfacial velocity,
mean film thickness and inter-phase friction coefficient with increasing counter-current
gas velocity, although the trend of the wave amplitude remained monotonic and increasing.

These investigations have motivated us to take a closer look at strongly confined
inclined falling liquid films, in contrast to Dietze & Ruyer-Quil (2013) and Lavalle et al.
(2020), who studied the vertical configuration, where the gas-induced linear stabilization
is relatively weak. This is because the inertia-induced destabilizing mechanism of the
Kapitza instability is weakened less and less by the stabilizing effect of normal gravity as
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Superconfined falling liquid films

the tilt angle is increased, and thus the relative weight of the gas effect diminishes (Lavalle
et al. 2019). We aim to confront linear stability predictions with the response of nonlinear
surface waves to an increasingly strong counter-current gas flow. In particular, we wish to
know whether nonlinear travelling waves can be damped under the effect of the gas flow, in
line with the linear observations, and, if so, whether they may resist secondary instability.
Such a situation would amount to a reduced flooding risk. By secondary instability we
mean the loss of stability of travelling-wave solutions (TWS) produced by the primary
Kapitza instability (Liu & Gollub 1993; Lavalle et al. 2020), and our analysis is restricted
to two-dimensional such instability modes.

An enticing preliminary result was obtained by Samanta (2014), who showed that
applying a constant interfacial shear stress to an inclined wavy falling liquid film can
strongly reduce the amplitude of nonlinear surface waves. However, for the strong
confinement studied here, variations of the shear stress with wave height play an important
role (Lavalle et al. 2019), and the gas pressure gradient, which was also neglected in the
model of Samanta (2014), needs to be accounted for (Dietze & Ruyer-Quil 2013).

To tackle this problem, we use the two-phase weighted residual integral boundary layer
(WRIBL) model of Dietze & Ruyer-Quil (2013) to construct TWS, with the continuation
software ‘Auto07P’ (Doedel 2008), and to compute spatially evolving wavy falling
liquid films, with our own finite-difference code (Lavalle et al. 2020). These nonlinear
computations are confronted with linear stability calculations based on the WRIBL model,
and solutions of the full Orr–Sommerfeld (OS) eigenvalue problem (Tilley et al. 1994),
whereby we have employed a spatial stability formulation (Barmak et al. 2016). Also,
we check for periodic secondary instabilities via transient periodic computations started
from TWS (Lavalle et al. 2020), and confront our model with a DNS based on the full
Navier–Stokes equations, using the finite-volume solver ‘Basilisk’ (Popinet 2015).

Our paper is structured as follows. The mathematical description and numerical methods
are introduced in § 2, followed by § 3, which reports results of our linear and nonlinear
computations. Then, § 3.1 is dedicated to surface waves of the linearly most-amplified
frequency, whereas § 3.2 concerns low-frequency solitary waves (here, we will also
introduce our DNS data). Conclusions are drawn in § 4.

2. Mathematical description

The flow in figure 1 is governed by the Navier–Stokes and continuity equations,
written in Einstein notation using the directional indices i = 1, 2 and j = 1, 2
(x1 = x, u1 = u, x2 = y and u2 = v), and the phase indicator m, which identifies liquid
(m = l) and gas (m = g):

Xm∂tui + uj∂xjui = −∂xipm + Re−1
m ∂xjxjui + X2

mFr−2{δi1 sin(φ)− δi2 cos(φ)}, (2.1a)

∂xjuj = 0, (2.1b)

where lengths have been scaled with the channel height L = H� (stars denote dimensional
quantities throughout), velocities with the phase-specific signed superficial velocities
Um = q�m0/H�, time with T = L/Ul, and the phase-specific pressure pm with ρmU2

m.
Further, δij is the Kronecker symbol, Xl = 1 and Xg = Ul/Ug. The gravitational
acceleration g enters through the Froude number Fr = Ul/

√
gL, and the Reynolds numbers

Rem = UmL(ρm/μm) = q�m0(ρm/μm) are based on the phase-specific signed nominal flow
rates q�m0 of the flat-film primary flow, q�g0 and Reg being negative for a counter-current
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gas flow. The boundary conditions are

ul|y=0 = vl|y=0 = ug|y=1 = vg|y=1 = 0, (2.1c)

and the kinematic and dynamic coupling conditions at the film surface y = h(x, t),

ul = X−1
g ug, vl = X−1

g vg = ∂th + ul∂xh, (2.1d)

pl + [Sl
ijnj]ni = X−2

g Πρpg + X−1
g Πμ[Sg

ijnj]ni + We κ, (2.1e)

[Sl
ijnj]τi = X−1

g Πμ[Sg
ijnj]τi, (2.1f )

where Sm
ij = 1

2 (∂xjui + ∂xiuj) denotes the strain-rate tensor, Πμ = μg/μl and Πρ = ρg/ρl
are the dynamic viscosity and density ratios, and the surface tension σ enters through
the Weber number We = σρ−1

l U−2
l L−1. The orthonormal surface coordinate system is

constructed by n = [−∂xh, 1](1 + ∂2
x h)−1/2 and τ = [1, ∂xh](1 + ∂2

x h)−1/2, from which
we obtain the film surface curvature κ = −∇ · n.

We perform two types of calculations based on the first principles (2.1) to validate our
low-dimensional model. First, we solve the OS linear stability problem (Tilley et al. 1994),
assuming spatially growing normal modes (Barmak et al. 2016):

⎡
⎢⎣

h
Φ

Ψ

pm

⎤
⎥⎦ =

⎡
⎢⎣

h0
Φ0( y)
Ψ0( y)

pm0(x, y)

⎤
⎥⎦ +

⎡
⎢⎣

ĥ
φ( y)
ψ( y)
p̂m( y)

⎤
⎥⎦ exp{i(kx − ωt)}, (2.2)

where Φ and Ψ designate the streamfunctions in the liquid and gas, the subscript 0
denotes the flat-interface base flow, k ∈ C is the complex wavenumber of the perturbation
and ω ∈ R is its angular frequency. We focus on long-wave instability modes, which
we track through numerical continuation using Auto07P (Lavalle et al. 2019), having
checked with a Chebyshev collocation code (Barmak et al. 2016) that short wave modes
remain stable throughout the studied parameter range. Second, we perform a DNS with
the finite-volume solver Basilisk (Popinet 2015), based on the volume-of-fluid (VOF) and
the continuum surface force (CSF) methods, following (Dietze 2019). Here, we impose
periodic conditions on a domain spanning the wavelength Λ.

Our low-dimensional model is based on the WRIBL approach (Ruyer-Quil &
Manneville 1998; Kalliadasis et al. 2012), which describes the flow via evolution equations
for the flow rate q and film height h. We employ the two-phase formulation of Dietze &
Ruyer-Quil (2013) written in Einstein notation (m = l, g and n = l, g):

{Sm∂tqm + Fmnqm∂xqn + Gmnqjqm∂xh}
= −We ∂xxxh + Fr−2(1 −Πρ){sin(φ)− cos(φ)∂xh} + Re−1

m Cmqm

+Re−1
m {Jmqm(∂xh)2 + Km∂xqm∂xh + Lmqm∂xxh + Mm∂xxqm}, (2.3a)

∂xql + ∂th = 0, ∂xqg − Xg∂th = 0, (2.3b)

where ql and qg denote the liquid and gas flow rates (per unit width) and the coefficients
Sm, Fmn, Gmn, Cmn, Jn, Kn, Ln and Mn are known functions of the film height h (Dietze &
Ruyer-Quil 2013).
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Superconfined falling liquid films

We perform linear stability calculations by solving the dispersion equation DR(ω, k) =
0, obtained by linearizing (2.3) around [h0, ql0, qg0], for k = kr + iki at a given ω ∈ R:

[h, ql, qg]T = [h0, q0l, q0g]T + [ĥ, q̂l, q̂g]T exp{i(kx − ωt)}, (2.4a)

DR = iω2{Sg − Sl} + ikω{Fmlqm − Fmgqm} + ik2Gmnqmqn

+ik2Fr−2{cos(φ)−Πρ cos(φ)} − i3k4We + ω{Re−1
g Cg − Re−1

l Cl}
−kRe−1

m ∂hCmqm − i2k3Re−1
m Lmqm + i2k2ω{Re−1

g Mg − Re−1
l Ml}. (2.4b)

We also compute nonlinear TWS, which remain unaltered in a reference frame moving at
the wave speed c, through numerical continuation based on (2.3), using Auto07P (Doedel
2008). Our code allows us to track TWS at the linearly most-amplified angular frequency
ω = ωmax, via the following constraints (Dietze, Lavalle & Ruyer-Quil 2020):

DR(ωmax, k) = 0, ∂ωki|ω=ωmax = 0. (2.5a,b)

Finally, we check the stability of nonlinear TWS via transient computations based on (2.3),
using either periodic or inlet/outlet boundary conditions (Lavalle et al. 2020).

3. Results

We set the tilt angle to φ = 10◦ and focus on a single fluid combination, a 83 %
by weight aqueous dimethylsulfoxide (DMSO) solution used in experiments (Dietze,
Al-Sibai & Kneer 2009), where ρl = 1098.3 kg m−3, μl = 3.13 mPa s and σ = 0.0484
N m−1, in contact with ambient air. The Kapitza number for this combination is Ka =
σρ

−1/3
l g−1/3μ

−4/3
l = 509.5. The channel height H� is varied as H� = 1.2, 1.7, 1.8, 1.9,

2.1 and 2.4 mm, which corresponds to values of η = 2, 2.8, 3, 3.1, 3.4 and 3.9 for the
relative confinement:

η = H�/h�0|M=1 = 1/h0|M=1, (3.1)

where h0|M=1 is the primary flow film thickness for an aerostatic gas pressure gradient,
i.e. M = ∂xpg/sin(φ) = 1. We wish to confront the linear and nonlinear implications of
increasing the counter-current gas flow rate at fixed Rel. In particular, we wish to know
whether nonlinear waves can be damped via increasing |Reg|.

3.1. Most-amplified waves
Figure 2 demonstrates the effect of increasing the counter-current gas flow rate on the
linearly most-amplified waves (ω = ωmax) at fixed Rel = 15 for different η values. Along
each curve in figures 2(a) and 2(c), the channel height H� remains fixed while h0 increases
(between 10 % for the strongest and 20 % for the weakest confinement), and so η (3.1)
specifies a representative confinement for each case, corresponding to the rightmost point
of each curve (where M = 1). Curves in figure 2(a) track the maximum linear spatial
growth rate −kmax

i in terms of Reg, dashed lines corresponding to OS and solid lines to
WRIBL calculations. At the largest η (filled squares, η = 3.9), the growth rate increases
monotonically with |Reg|, implying a gas-induced destabilization, up to the onset of
absolute instability (AI), where −kimax diverges (Vellingiri et al. 2015). Conversely, at
very small η values (open squares and pentagons, η = 2, 2.8), the effect of the gas is
monotonically stabilizing, up to the point of fully suppressing (S) the long-wave Kapitza
instability (Lavalle et al. 2019; Kushnir et al. 2021). In the intermediate range (crosses,
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Figure 2. Most-amplified waves: φ = 10◦, Rel = 15, Ka = 509.5. Linear (a,b,d) versus nonlinear (c)
predictions. Filled squares, η = 3.9; diamonds, η = 3.4; asterisks, η = 3.1; crosses, η = 3; pentagons, η =
2.8; open squares, η = 2. (a) Maximal linear growth rate −kmax

i versus Reg, related to the aerostatic limit
{−kmax

i }M=1, where M = ∂xpg/sin(φ). Solid, WRIBL; dashed, OS. (b,d) Dispersion curves −ki(ω) for two
cases from panel (a). Red curves trace −kmax

i (ωmax) up to absolute instability (AI) or full stabilization (S). (b)
For η = 3.1, from right to left: M = 1, Reg = −60, −100, −145, −170 and −184. (d) For η = 2, from right
to left: M = 1, Reg = −4, −7 and −10. (c) Amplitude of nonlinear TWS (WRIBL) at ω = ωmax. PH denotes
period-halving bifurcations and dot-dashed green lines identify periodically unstable TWS.

asterisks and diamonds, η = 3, 3.1 and 3.4), the behaviour is non-monotonic, stabilization
occurring at low and destabilization at large values of |Reg|. Figures 2(b) (η = 3.1) and
2(d) (η = 2) represent dispersion curves for the non-monotonic and fully stabilizing cases.
Overall, there is quantitative agreement for |Reg| < 150 between linear OS and WRIBL
predictions in figures 2(a), 2(b) and 2(d), whereas qualitative agreement is retained when
approaching the AI limits.

Figure 2(c) plots the upper and lower relative film height deflections hmax/h̄ − 1 and
hmin/h̄ − 1 for nonlinear TWS at ω = ωmax, where h̄ = Λ−1 ∫ Λ

0 h dx is the film height
averaged over one wavelength, with h̄ /= h0 in the case of nonlinear waves. For η = 3, 3.1
and 3.4, TWS display a non-monotonic trend that is opposed to the linear one. That is,
hmax/h̄ − 1 in figure 2(c), which we will refer to as the wave amplitude, first increases
and then decreases with increasing |Reg|, whereas −kmax

i /{−kmax
i }M=1 in figure 2(a) first

decreases and then increases. Conversely, for η = 2 and 2.8, the nonlinear and linear trends
both imply stabilization, and, for η = 3.9, they both imply destabilization, at least up to
the amplitude maximum in figure 2(c). Except for the two weakest confinements (η = 2,
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Figure 3. Wave profiles of TWS from figure 2(c). (a) For η = 3 (cross in figure 2c). Approaching the PH
bifurcation: Reg = −37 (thick solid) to Reg = −88 (green). (b) For η = 3.9 (filled square in figure 2c).
Suppression of the capillary ripple while approaching the AI limit: Reg = −79 (thick solid) to Reg = −348
(green).

2.8, 3 and 3.1), TWS are bounded by a nonlinear wave suppression, where hmax = hmin,
resulting from period-halving (PH) bifurcations (marked by symbols), which sets in before
the linear AI and S thresholds in figure 2(a). Figure 3(a) shows wave profiles leading up
to such a PH bifurcation (η = 3). The sole precursory capillary ripple is seen to grow
until splitting the wave into two identical halves. Conversely, for η = 3.9 (figure 3b), the
capillary ripple disappears when increasing |Reg| towards the AI limit.

We conclude from figure 2 that linear stability predictions can be misleading. In
particular, the amplitude of nonlinear waves may grow with increasing counter-current
gas velocity, even though the linear growth rate decreases. Further, TWS become unstable
to periodic secondary instability modes (dot-dashed lines in figure 2c) beyond a threshold
Reg, which we have determined via transient periodic computations started from TWS.
These periodic modes do not lead to dangerous events, but TWS are also prone to a
subharmonic instability in the case of a spatially evolving film (see supplementary movie 1
available at https://doi.org/10.1017/jfm.2021.417). Originally identified in unconfined films
(Liu & Gollub 1993), this instability triggers wave coalescence events (Chang, Demekhin
& Kalaidin 1996a) that can lead to intermittent flooding in long channels (Dietze &
Ruyer-Quil 2013).

3.2. Solitary waves

We focus now on low-frequency solitary waves at a fixed wavelength Λ = 4.5Λ̃max,
where Λ̃max denotes the linearly most-amplified wavelength for a passive outer phase,
all other parameters remaining as in figure 2. These waves lie on the ascending branch
of the linear dispersion curves in figures 2(b) and 2(d), and thus the linear effect of
increasing the gas flow is monotonic, either destabilizing (η = 3, 3.1, 3.4 and 3.9) or
stabilizing (η = 2 and 2.8). Figure 4(a) represents the nonlinear response of solitary TWS,
evidencing a monotonic gas-induced attenuation of the wave amplitude for η = 2, 2.8, 3
and 3.1. For η = 3 and 3.1, this nonlinear effect is opposed to the linear amplification, and
both effects are inverted with respect to the initial response of the most-amplified waves
(figure 2a,c). Solution branches of solitary TWS in figure 4(a) are bounded either by the
linear thresholds of absolute instability (AI, η = 3, 3.1 and 3.4) and full stabilization (S,
η = 2 and 2.8) from figure 2(a), or by a nonlinear limit point (LP, η = 3.9) that occurs
slightly before (about 2 % in terms of Reg) the AI bound.
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Figure 4. Solitary waves: φ = 10◦, Rel = 15, Ka = 509.5, Λ = 4.5Λ̃max. (a) Amplitude of nonlinear TWS
(WRIBL). Right to left: η = 2, 2 (Πμ = 0), 2 (Πρ = 0), 2.8, 3, 3.1, 3.4 and 3.9. Dot-dashed green lines
highlight periodically unstable solutions. (b) Wave profiles corresponding to open circles (η = 3.9) in panel
(a). Bottom to top: Reg = −10, −100, −145 and −149. (c) Transient periodic computation started from
thick-solid TWS in panel (b). Black, local film height; green, wave height. (d) Flat-top wave corresponding
to black filled circle in figure 4(a): η = 2, Reg = −7. Streamlines in the wave-fixed reference frame. (e)
Different limits of the η = 2 solution in panel (d) (filled circles in panel a). Solid black, full inter-phase
coupling; dashed blue, Πμ = 0 in (2.1e) and (2.1 f ); dot-dot-dashed red, Πρ = 0 in (2.1e); open circles, DNS
at M = ∂xpg/sin(φ) = MTWS = 84.8, Rel = 15.7.

For the strongest confinement, η = 2 (open squares in figure 4a), linear and nonlinear
effects are aligned and stabilizing. In that case, the gas shapes the wave hump into an
elongated flat-top form (figure 4d). In figure 4(e), we compare this solution (solid line)
with TWS in the limits Πρ = 0 (red dot-dot-dashed) and Πμ = 0 (blue dashed), which
respectively deactivate the gas pressure and the gas-side viscous stresses in (2.1e) and
(2.1 f ). From this comparison, we can conclude that the gas pressure gradient and not the
gaseous viscous stresses are the cause for wave flattening. The flat-top TWS (also shown
in figure 1), which we have reproduced with a DNS at slightly greater Rel = 15.7 (open
circles in figure 4e), is stable in periodic transient computations, and undergoes only weak
modulations in a spatially evolving film (see supplementary movie 2).

For the weakest confinement, η = 3.9, solitary TWS are more susceptible to secondary
instability modes. We discuss this based on the wave profiles in figure 4(b), which
correspond to the TWS marked by open circles in figure 4(a). The TWS at Reg =
−145 (thick solid profile in figure 4b, second from left open circle in figure 4a)
still lies on the periodically stable solution branch (solid curve in figure 4a). For
this case, secondary instability can only arise through wave interactions. Pradas et al.
(2013) showed, for the case of a passive atmosphere, that solitary waves can develop
such interactions via the precursory capillary ripples, leading to oscillations around
bound states, where neighbouring waves repeatedly approach and recoil from one
another. Thereby, the approaching wave always grows, whereas the slowing wave always
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Figure 5. Slipstreaming (a,b) and wave splitting (c,d) in solitary wave trains. Spatio-temporal computations
with our WRIBL model (2.3) on an open domain of length L = 31.4ΛTWS, applying coherent inlet forcing
at f = fTWS: φ = 10◦, η = 3.9, Rel = 15, Ka = 509.5. Space–time plots of the film height h (a,c), and wave
profile snapshots (b,d). Parallel green dashed lines indicate initial TWS celerity. (a,b) For Reg = −145, fTWS =
0.20. (c,d) For Reg = −149, fTWS = 0.19. Red symbols identify primary/secondary wave maxima.

diminishes, in amplitude. In the presence of a counter-current gas flow, we observe a
secondary instability mode that involves a different wave interaction. We demonstrate this
through an open-domain computation with coherent inlet forcing at the TWS frequency
f = 2π/ω = fTWS = 0.20. Figures 5(a) and 5(b) (see also supplementary movie 3) show
that the instability produces solitary waves of diminishing amplitude that accelerate in the
slipstream of their growing leading neighbours. This clearly differs from the behaviour
of unconfined falling films, such as the above-mentioned oscillations around bound states
(Pradas et al. 2013) or the well-known coarsening dynamics (Chang et al. 1996b), where
larger-amplitude waves catch up with and accumulate the smaller ones travelling in front.
The slipstreaming occurs in concert up- and downstream of a leading wave, and thus
the latter is increasingly exposed to the counter-current gas flow, leading eventually to
its destruction through a wave breaking event, before coalescence can occur.

When increasing the counter-current gas velocity further, TWS become periodically
unstable (dot-dashed branches in figure 4a). For the TWS at η = 3.9 and Reg = −149
(thin solid profile in figure 4b, leftmost open circle in figure 4a), the instability
leads to a self-sustained repeated breaking and reconstructing of the wave crest, as
shown in figure 4(c) via a transient computation with periodicity conditions started
from the TWS. In a spatially evolving film, which we have mimicked through an
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open-domain computation with inlet forcing frequency f = fTWS = 0.19 (figure 5c,d, and
see supplementary movie 4), the instability leads to ubiquitous wave splitting events that
refine the solitary wave train into a train of shorter and smaller daughter waves. This
gas-induced refining dynamics can be viewed as the opposite of the coarsening dynamics
observed in unconfined films (Chang et al. 1996b). We point out that isolated wave splitting
events have been observed in noise-driven wave regimes, both experimentally (Kofman
et al. 2017) and numerically (Dietze & Ruyer-Quil 2013).

4. Conclusion

In this work, we have demonstrated that linear stability predictions of strongly confined
falling liquid films can mislead in estimating the effect of a counter-current gas flow on
the film’s waviness. Both for waves of the most amplified frequency and for low-frequency
solitary waves, we have identified situations where the linear and nonlinear responses
are opposed, i.e. linear waves are damped while nonlinear ones are amplified, or vice
versa. In some cases, linear waves are bounded by absolute instability, whereas nonlinear
waves are fully suppressed via a period-halving bifurcation. Nonetheless, at very strong
confinement, both the linear and nonlinear responses imply stabilization and TWS resist
secondary instability. This suggests that the risk of wave-induced flooding can be lowered
by strongly confining the flow. At weaker confinement, we have found two new secondary
instability modes not observed in unconfined films. The first tends to coarsen the wave
train, via smaller waves accelerating in the slipstream of their leading neighbours. The
second causes wave splitting events that refine the wave train into a sequence of less
dangerous shorter and smaller daughter waves.

Our two-dimensional analysis cannot account for the spanwise destabilization of TWS,
which entails the formation of three-dimensional waves in the downstream portion of a
spatially evolving falling liquid film (Chang 1994; Liu, Schneider & Gollub 1995; Scheid,
Ruyer-Quil & Manneville 2006; Dietze et al. 2014; Kofman, Mergui & Ruyer-Qui 2014;
Kharlamov et al. 2015). Nonetheless, we expect our conclusion on the stabilizing effect of
strong confinement to extend to that situation. Firstly, the inertia-driven three-dimensional
secondary instability mode (Kofman et al. 2014) is known to weaken at the small tilt angles
considered here. In experiments, this translates to quasi-two-dimensional wave fronts with
only weak spanwise modulations, which are maintained up to large gas velocities (Kofman
et al. 2017). Secondly, the spanwise instability mode is dictated by the wall-normal
acceleration of liquid within the initially two-dimensional wave hump. Thus, the gas effect
on the amplitude of two- and three-dimensional wave humps is expected to be concurrent.
This is supported by the weakly confined experiments of Kofman et al. (2017), where the
counter-current gas flow amplified both instability modes. In our strongly confined setting,
we expect the opposite, i.e. a damping of both modes.

The channel heights considered here (1.2 mm ≤ H� ≤ 2.4 mm) lie in between the
range of classical (Vlachos et al. 2001) falling-film experiments (H� ≥ 5 mm) and
microchannel (Zhang et al. 2009; Hu & Cubaud 2018) falling-film experiments (H� ≤ 1
mm). Also, strongly confined experiments have generally not considered small tilt angles.
Our numerical computations suggest that this uncharted part of the regime map deserves
experimental attention. Should experiments confirm our findings, it would mean that
surface waves can be maintained in very compact liquid/gas exchangers without the risk
of flooding. Current microreactor designs consist of arrays of narrow grooves, where the
film surface is pinned laterally (Al-Rawashdeh et al. 2008), and this effectively suppresses
surface waves (Pollak, Haas & Aksel 2011), solving the flooding problem, but at the cost
of waiving the substantial wave-induced intensification of heat/mass transfer (Yoshimura,
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Nosoko & Nagata 1996). Our results suggest relaxing the lateral confinement in such
devices to allow for the development of surface waves. Experiments in horizontal wavy
liquid-film/gas flows through mini-gaps (Kabov et al. 2007, 2011) have shown that it is
possible to produce the strong crosswise confinement levels studied here (H� = 2 mm) at
weak spanwise confinement (W� = 40 mm).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.417.
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