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We investigate optimal perturbation in the flow past a finite aspect ratio (AR) wing.
The optimization is carried out in the regime where the fully developed flow is
steady. Parametric study over time horizon (T), Reynolds number (Re), AR, angle
of attack and geometry of the wing cross-section (flat plate and NACA0012 airfoil)
shows that the general shape of linear optimal perturbation remains the same over
the explored parameter space. Optimal perturbation is located near the surface of the
wing in the form of chord-wise periodic structures whose strength decreases from
the root towards the tip. Direct time integration of the disturbance equations, with
and without nonlinear terms, is carried out with linear optimal perturbation as initial
condition. In both cases, the optimal perturbation evolves as a downstream travelling
wavepacket whose speed is nearly the same as that of the free stream. The energy
of the wavepacket increases in the near wake region, and is found to remain nearly
constant beyond the vortex roll-up distance in nonlinear simulations. The nonlinear
wavepacket results in displacement of the tip vortex. In this situation, the motion of
the tip vortex resembles that observed during vortex meandering/wandering in wind
tunnel experiments. Results from computation carried out at higher Re suggest that,
even beyond the steady flow regime, a perturbation wavepacket originating near the
wing might cause meandering of tip vortices.

Key words: flow control, vortex flows, wakes/jets

1. Introduction

One of the salient features of the wake behind an aircraft is the trailing vortex
system that comprises of a pair of counter-rotating vortices. It is formed as a
by-product of lift generation by the wing. In some situations, additional vortices
generated by control surfaces (flaps, horizontal tail) might be present in the near wake.
However, at sufficiently large distance from the aircraft, the trailing vortex system is
primarily constituted of a counter-rotating vortex pair. The vortex pair is a quite robust
flow structure and can remain in the atmosphere for many rotational periods of the
vortex. For example, a typical life span of a trailing vortex of a commercial aircraft is
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between 1 and 3 min. Due to their resilient nature, trailing vortices pose risk of wake
vortex encounter for a following aircraft. The aircraft, during wake vortex encounter,
might experience sudden loss of lift and violent vibrations. Depending on its severity,
an encounter is categorized on a scale ranging from mild to major encounter. While
mild encounters might go unnoticed by on-board passengers, major encounters result
in serious discomfort, and in some cases injury, to passengers and crew members. The
chance of wake vortex encounter is usually high in the vicinity of the airports due
to large density of aircrafts around them. During take-off and landing wake vortex
encounter can be catastrophic as the aircraft might not have sufficient altitude to
recover. To minimize the risk of encounter, regulations have been imposed on aircraft
operation at airports that specify a minimum distance to be maintained between the
leader and follower aircraft. The minimum distance depends on the size of the two
aircraft. The separation allows the vortices to either decay via natural processes, or be
carried away by air currents. The regulations, however, limit the operational capacity
of an airport. With an increase in the demands of air traffic worldwide, there is a
pressing need to address the problem of airport saturation. Fuelled by such a need
and interests in fundamental understanding, there has been intense research on the
dynamics of vortex systems. The review articles by Spalart (1998) and Leweke, Le
Dizés & Williamson (2016) provides a comprehensive overview of the different works
that have been carried out for vortex systems.

Several schemes and methods have been proposed in the past with the objective
of hastening the decay of the trailing vortex system so as to reduce the chance of
wake vortex encounters. Most of these schemes/methods focus on exciting instabilities
associated with the vortex system. The seminal work by Crow (1970) showed that
a pair of counter-rotating vortices is linearly unstable. The most unstable mode has
a wavelength that is ∼8 times the separation distance between the two vortices of
the pair, and is symmetrically inclined about the mid-plane. As the instability grows,
it triggers various nonlinear processes (for example, formation of vortex rings) and
ultimately a benign turbulent state is achieved. Crow & Bate (1976) proposed a
scheme wherein, by giving a prescribed oscillation to the lift distribution on the
wing, the so-called Crow instability can be excited. The effectiveness of this scheme
was demonstrated by Bilanin & Widnall (1973) through towing tank experiments.
Crouch (1997), Rennich & Lele (1999), Fabre & Jacquin (2000), Crouch, Miller
& Spalart (2001), Jacquin et al. (2001), Ortega & Savaş (2001) and Fabre, Jacquin
& Loof (2002) explored various control strategies for a trailing vortex system that
involve modifying the instability characteristics of the tip vortices by introducing
additional vortices in the wake. The additional vortices are generated by prescribing
suitable deflection to control surfaces like flaps. It was found that, for certain
vortex configurations, the trailing vortex system can experience very large growth
of instability. The aforementioned schemes, despite being shown to be effective in
certain situations, have been found to be difficult to implement in practical situations.

There has been a surge in the investigation of the stability of flow systems
over the last three decades with the realization that a flow system can support
the transient growth of a perturbation (Farrell 1988; Trefethen et al. 1993). The
linearized Navier–Stokes operator is non-normal, and therefore, normal mode analysis
gives an accurate description of the flow only at large times. Modal (asymptotic)
analysis, such as that carried out by Crow (1970), misses short time transient flow
processes. It has been shown that for several flow systems (for example, boundary
layer, plane Couette flow and plane Poiseuille flow) transient growth of a perturbation
can excite nonlinear processes that might result in earlier onset of turbulence (see
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review articles by Schmid (2007) and Kerswell (2018)). In transient growth analysis
(also referred to as non-modal analysis), the most common approach is to frame
an optimization problem, wherein a perturbation that maximizes/minimizes a given
objective functional is sought. The choice of the objective functional depends on the
objective of the optimization. Some popular examples of it are perturbation energy,
enstrophy, dissipation rate and mixing. In the study of flow transition, perturbation
energy has mostly been used as the objective functional.

Among vortex systems, the isolated vortex has been the most extensively studied
one for transient growth. Earlier works on the isolated vortex have shown that, in
general, the short time optimal perturbation has a spiral structure and is located in and
around the core of the vortex. The spiral structure unwinds during the flow evolution
resulting in growth of the perturbation energy via the Orr mechanism (Orr 1907) and
displacement of the vortex core by induction (Antkowiak & Brancher 2004, 2007;
Pradeep & Hussain 2006; Navrose et al. 2018). Non-modal analysis has been extended
to multi-vortex systems, most notably the counter-rotating vortex pair (Brion, Sipp &
Jacquin 2007; Donnadieu et al. 2009; Johnson, Brion & Jacquin 2016; Jugier 2016;
Navrose et al. 2018). The motivation for studying the counter-rotating vortex pair is
that, despite its simplicity, it serves as a reasonably good model for the trailing vortex
system far from the aircraft. Unlike an isolated vortex, a counter-rotating vortex pair is
linearly unstable. For the latter, optimal perturbation brings out mechanisms by which
higher energy gain can be achieved than the most unstable mode. Brion et al. (2007)
found that the long time optimal perturbation for a counter-rotating vortex pair is
located at the centre plane. For short times, the shape of the optimal perturbation and
the mechanism of its growth have been found to be similar to that of the isolated
vortex (Navrose et al. 2018).

Using the counter-rotating vortex pair as a model of a trailing vortex system has a
drawback. It does not take into account the roll-up process of vortex formation. In the
present work, we consider the full wake behind the wing for transient growth analysis.
The results show that the optimal perturbation is located in the region where the tip
vortex is not present. The optimal perturbation evolves as a downstream travelling
wavepacket that affects the dynamics of tip vortices. The full wake analysis, therefore,
brings focus to the relevance of the near wake in the transient growth of a perturbation
in a trailing vortex system.

An interesting phenomenon observed in wind tunnel experiments of the trailing
vortex is that of vortex meandering (or vortex wandering). It is characterized by
seemingly random motion of a wing-tip vortex. As such, it poses challenges during the
measurement of vortex characteristics. Despite vortex meandering being a recurring
phenomenon in wind tunnel experiments, the underlying mechanism behind it is not
well understood. Some studies have attributed vortex meandering to the response of
the vortex to the surrounding turbulence, while others have attempted to relate it to
the intrinsic dynamics of the vortex–wake system. More often than not, it is assumed
that the meandering motion is random, and hence, its effect is filtered out by suitable
averaging of vortex data acquired over long time. One shortcoming with the filtering
approach is that it does not take into account the contribution of coherent motion
to vortex meandering. Recently, Edstrand et al. (2016) used the triple decomposition
technique to extract the coherent motion of a wing-tip vortex from experimental data.
By carrying out proper orthogonal decomposition (POD) of the extracted data they
showed that the most energetic coherent motion corresponds to the displacement
of the vortex core. It was, therefore, surmised that vortex meandering arises from
coherent motion of the tip vortex. The coherent motion, in turn, was linked to
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linear instability of the wake behind the wing. Fontane, Fabre & Brancher (2008)
investigated the response of a vortex column to stochastic forcing. The motivation
for choosing stochastic forcing was to emulate disturbances that are uncorrelated in
space and time such as free-stream turbulence. They showed that the most energetic
response resembles the displacement mode. Further, the flow structure leading to the
most energetic response was found to be similar to the linear optimal perturbation for
an isolated vortex (Antkowiak & Brancher 2004; Pradeep & Hussain 2006; Navrose
et al. 2018). The present work shows that, in addition to spatial instability of the
wake and free-stream turbulence, the perturbation generated near the wing surface
(arising, for instance, from wing deformation/boundary layer turbulence) and nonlinear
effects might have important roles in the meandering motion of the tip vortices.

The paper is organized as follows. The equations governing the flow evolution
are presented in § 2. This is followed by a brief description on the method of
optimization that has been used in the present work. In § 4, we describe the problem
set-up, numerical method and boundary conditions for numerical simulation. Next, in
§ 5, the base flow about which optimization is carried out is discussed in detail. The
results on the optimal gain, the shape of the optimal perturbation and their parametric
dependences is discussed in § 6. In § 7, the nonlinear evolution of the linear optimal
perturbation is discussed. The role of nonlinear terms in the evolution of the optimal
perturbation is brought out by comparison of the results of linear and nonlinear
simulations in § 8. The observations made for the nonlinear evolution of optimal
perturbations allows us to propose a possible mechanism for vortex meandering in
§ 9. Finally, we present conclusions and directions for future work in § 10.

2. Governing equations
The flow (u, p) is governed by the incompressible Navier–Stokes equations

expressed in non-dimensional form as:

∇ · u= 0, (2.1)
∂u
∂t
+ (u · ∇)u=−∇p+

1
Re
∇

2u. (2.2)

Here, u, p and Re denote velocity, pressure and Reynolds number, respectively. The
physical length and velocity scales have been non-dimensionalized using the chord
length (c) and free-stream speed (U∞), respectively. The equation system (2.1)–(2.2)
is accompanied by initial and boundary conditions. We adopt a perturbative approach
wherein the flow is decomposed into base flow and disturbance quantities:

u=U+ u′, p= P+ p′. (2.3a,b)

The base flow (U, P) is the steady solution of equation system (2.1)–(2.2). On
substituting (2.3) in equation system (2.1)–(2.2) and subtracting from it the equation
for base flow, we get the following equation system that governs the evolution of the
perturbation

∇ · u′ = 0, (2.4)
∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U+ (u′ · ∇)u′ =−∇p′ +

1
Re
∇

2u′. (2.5)

Equation system (2.4)–(2.5) is accompanied by an initial condition for the perturbation
and homogeneous boundary conditions. For infinitesimal perturbation analysis,
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the nonlinear term in the equation system (2.4)–(2.5) is dropped. In this situation, the
perturbation evolution is governed by the linearized disturbance equations

∇ · u′ = 0, (2.6)
∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U=−∇p′ +

1
Re
∇

2u′. (2.7)

3. Optimization
We seek an initial disturbance to the base flow that would maximize the gain of

perturbation kinetic energy over a given time horizon T . The kinetic energy of the
perturbation at any time instant is defined as

E(t)=
∫
Ω

u′(t) · u′(t) dΩ, (3.1)

where the integration is carried out over the full computational domain (Ω). Owing
to the length and velocity scales used for non-dimensionalization, perturbation energy
scales as U2

∞
c3. The energy gain (G) associated with a given initial perturbation and

T is given by

G=
E(T)
E(0)

. (3.2)

Optimization is carried out in the linear framework where the perturbation evolution
is governed by the equation system (2.6)–(2.7). The method of Lagrange multipliers
is used for the computation of linear optimal perturbation/gain. This approach is
similar to that described/used in Farrell (1988), Corbett & Bottaro (2000), Zuccher
et al. (2006), Schmid (2007), Cherubini et al. (2011), Cherubini & De Palma (2013),
Schmid & Brandt (2014) and Kerswell (2018). Full details of the method were
presented in our earlier article (Navrose et al. 2018). We briefly describe it here. A
Lagrangian functional (L) is formed with G as the objective function and linearized
disturbance equation system (2.6)–(2.7) as the constraint. The latter introduces adjoint
variables in the Lagrangian formulation. For the optimal initial condition, the gradient
of L vanishes. Setting to zero the variation of L with respect to its arguments gives
the (i) direct equation (2.6)–(2.7), (ii) adjoint equation, (iii) compatibility condition
between direct and adjoint variables at t = T and (iv) optimality condition at t = 0.
An iterative procedure is employed to find the optimal initial perturbation starting
from a random perturbation field. In the first step of an iteration loop, the direct
equation is solved from t = 0 to T . The adjoint equation is initialized using the
compatibility condition and is then solved backwards in time from t= T to 0. Finally,
the optimality condition is used to update the initial condition for the direct equation.
The direct–adjoint iterative procedure is carried on until adequate convergence is
achieved.

4. Problem set-up, boundary conditions and spectral mesh
The set-up consists of a rectangular wing placed in a cuboidal domain with uniform

velocity at the inlet boundary. The origin of the Cartesian coordinate system lies on
the mid-plane of the wing and at the leading edge. The mid-plane coincides with
the plane y = 0. The x-axis of the coordinate system is along the direction of the
incoming flow (also referred to as the streamwise direction). The y- and z-axes are
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along the spanwise and vertical directions, respectively. The streamwise length of
the computational domain is 64c: 4c upstream and 60c downstream from the leading
edge. In the spanwise direction, the side boundaries have been placed at a distance
of 8c from the respective wing tips. The vertical position of the wing is such that its
leading edge is located at a distance of 10c from the top and bottom boundaries. Two
cross-sections of the wing have been considered: a flat plate with uniform thickness
of 0.02c and a NACA0012 airfoil. The angle of attack of the wing with respect to the
incoming flow is denoted by α. Aspect ratio (AR) of the rectangular wing is defined
as the ratio between the wing span and chord length. Owing to the symmetry of the
set-up about the mid-plane, computations have been carried out for a half-domain with
the symmetry condition imposed on the mid-plane. We would like to note that the
symmetry condition restricts optimization to perturbations that are symmetric about
the mid-plane of the wing. A general perturbation to the base flow can be written
as a linear combination of symmetric and anti-symmetric perturbations. It can be
shown that within the linear framework, symmetric and anti-symmetric perturbations
evolve independently of each other. In his seminal work, Crow (1970) found that
the fastest growing instability in a counter-rotating vortex system is symmetric about
the mid-plane. Since the major motivation for the present work was to identify a
perturbation that can hasten the onset of the so-called Crow instability, which in turn,
is expected to expedite the decay of tip vortices, using a symmetry condition on
the mid-plane seemed a reasonable approach. An alternate approach to compute the
symmetric (anti-symmetric) optimal perturbation is to carry out a computation in the
full domain and use symmetric (anti-symmetric) perturbation as the initial guess for
optimization. This approach would require much larger computational resources than
a half-domain computation.

The rest of the boundary conditions are as follows. Free-stream values for the
velocity are assigned at the inflow boundary. At the top, bottom, outflow and
side boundaries (opposite to the symmetry plane) the stress vector is set to zero.
No-slip condition is specified on the surface of the wing. NEK5000 (Fischer,
Lottes & Kerkemeier 2008), an open source spectral element solver, is used for the
computations. The computational domain is divided into many spectral elements. Each
spectral element is further discretized using Gauss–Lobato–Legendre (GLL) points.
The spatial resolution of the domain is varied by changing the number of GLL points
within each element. The number of grid points (including GLL decomposition) for
the computation ranges from ∼10 to ∼130 million. Such spatial resolution is required
to capture the flow accurately near the wing as well as its wake. Figure 1(a) shows
the full sectional view of a spectral mesh in the x–z plane. Figures 1(b) and 1(c) show
a zoom-in view of the mesh near the flat plate and NACA0012 wing, respectively.
The computations have been carried out in parallel utilizing 948–4096 cores. In
general, for computing the flow up to 80 time units, around 40 000 CPU hours are
spent (per case). Due to the constraints of computational resources, we have limited
the time horizon for optimization study to T 6 15. It is shown later in the paper that
although the value of optimal gain increases with T , the general shape of the optimal
perturbation remains nearly the same for T > 5. Detailed mesh convergence tests have
been performed to establish the adequacy of the mesh employed for the computations.
The results for mesh convergence are presented later in the paper (§§ 6 and 8) along
with the main results.

5. Base flow description
The base flow for carrying out optimization is the fully developed flow past the

finite wing. Figure 2 shows the isosurface of total vorticity for the Re = 1000 flow.
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FIGURE 1. Flow past a finite span wing: (a) sectional view (x–z plane) of a spectral
mesh used for computations, (b) and (c) zoom-in view of the mesh (x–z plane) near the
flat plate and NACA0012 wing, respectively.

For illustration, the isosurface has been reflected about the symmetry plane so that
the full wing span can be shown. The streamwise and spanwise components of
vorticity at different streamwise locations are shown as insets in figure 2. Unless
stated otherwise, results have been presented for a flat plate wing with AR = 6
and α = 5◦. For Re = 1000, the fully developed flow in the computational domain
is steady. Just downstream of the wing, the flow has a strong spanwise vorticity
resulting from the no-slip condition imposed on the wing surface. In addition, a
layer of streamwise vorticity exists in the near wake as well. The latter is attributed
to finiteness of the lifting surface that allows the flow to go around the tip. The
strength of the streamwise vorticity layer is largest near the tip of the wing and
decreases to zero at the symmetry plane. The streamwise vorticity layer rolls up in
the wake to form tip vortex. The roll-up occurs for a distance of approximately 15c
from the leading edge. Beyond the roll-up distance, the wake can be divided into
two parts based on the distribution of vorticity and streamwise velocity. The two
parts are indicated in figure 2. One part corresponds to the tip vortex. This part is
dominated by the streamwise component of vorticity and has a nearly axisymmetric
deficit of streamwise velocity. The other part of the wake contains primarily spanwise
vorticity. The streamwise velocity deficit in the second part of the wake is similar to
that for the two-dimensional flow past a flat plate. Following Edstrand et al. (2016,
2018), we refer to the second part of the wake as the trailing edge wake. The
downwash induced by the wing and tip vortex separates the two parts of the wake.
The separation increases with increase in downstream distance from the wing.

Next, we present the downstream evolution of tip-vortex characteristics. Figure 3
shows the vertical and spanwise positions of the vortex centre at different downstream
locations in the wake. The vortex centre, for a given streamwise location, is defined
as the position of maximum streamwise vorticity in the corresponding y–z plane. This
position nearly coincides with the location of minimum pressure and the barycentre
of the streamwise vorticity on the same plane. It is observed that, with respect to
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FIGURE 2. (Colour online) Re= 1000 flow past a flat plate wing with AR= 6 and α= 5◦:
isosurface of total vorticity (|ω| = 0.1). The direction of the incoming flow is along the
x-axis and is shown using a thick arrow. For the purpose of illustration, the isosurface has
been shown for the full wing by reflecting the flow about the mid-plane. In the insets,
spanwise (ωy=±0.1) and streamwise (ωx= 0.1) vorticity in the y–z plane at distances of
5c, 10c, 25c, 35c, 45c and 55c from the leading edge of the wing are shown. The left
part of each inset shows the spanwise vorticity, and the right part shows the streamwise
vorticity. The tail of each arrow (with broken line) marks the streamwise location of the
station and head points to the corresponding vorticity field.
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FIGURE 3. (Colour online) Flow past a flat plate wing with AR= 6 and α= 5◦: variation
of (a) vertical and, (b) spanwise position of the centre of the tip vortex with downstream
distance from the leading edge for various Re.
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FIGURE 4. (Colour online) Flow past a flat plate wing with AR= 6 and α= 5◦: variation
of (a) square of the tip-vortex radius and, (b) strength of the tip vortex with downstream
distance from the leading edge for various Re.

the streamwise direction, the tip vortex is inclined in the vertical direction. This is
attributed to the velocity imposed by the counter-rotating vortex present on the other
side of the symmetry plane. Beyond the vortex roll-up distance (x& 15c), the vertical
inclination of the tip vortex is nearly constant. Using a least squares linear fit of
the data points between x = 20c and 50c in figure 3(a) for Re= 1000, we calculate
the inclination angle in the x–z plane as ∼0.42◦. The tip vortex is also inclined in
the spanwise direction; the inclination is relatively large near the trailing edge of the
wing and decreases with downstream distance. The spanwise inclination of the tip
vortex occurs because the barycentre of the axial vorticity layer formed over the wing
surface is not at the wing tip but slightly in towards the wing root. The location of
the barycentre moves towards the wing root during the roll-up process (Krasny 1987).
Least squares linear fitting of data points between x= 30c and 50c for Re= 1000 in
figure 3(b) yields a spanwise inclination of the vortex axis of ∼0.17◦. The relatively
low value of the two inclination angles makes it reasonable to assume that the axis of
the tip vortex is along the streamwise direction. This assumption allows identification
of the tip vortex using the isosurface of streamwise vorticity.

A rough estimate of the vertical inclination of the tip vortex can also be made from
the value of circulation (Γ ) of the tip vortex and the spanwise separation between it
and its counter-rotating image. For a two-dimensional (2-D) counter-rotating vortex
pair with strength Γ and vortex separation distance b, the velocity of the vertical
descent of the vortex pair estimated using a point vortex model is vd = Γ /(2πb).
In free-stream conditions, the 2-D vortex pair will get convected in the streamwise
direction as it descends vertically. The angle of vertical inclination between the
original streamwise position of the vortex and that at a later time instant is
tan−1(vd/U∞). For the flow computed at Re= 1000 (figure 2), the vertical inclination
calculated using the value of circulation and vortex separation distance at x= 20c is
∼0.33◦. The angle so obtained is similar to that calculated earlier via linear fitting
of the data points of figure 3(a): 0.42◦.

Figure 4(a) shows the variation of the square of the vortex dispersion radius (a)
with streamwise distance from the leading edge. It is obtained using the relation

a2
=

∫
Ω

r2ω dΩ

Γ
, (5.1)
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where r is the distance measured from the vortex centre, ω is the axial vorticity and Γ
is the circulation associated with the vortex at the corresponding streamwise location.
The value of circulation is given by

Γ =

∫
Ω

ω dΩ. (5.2)

The domain of integration in (5.1)–(5.2) is taken to be the region in the y–z plane
where the value of ω is greater than 5 % of the maximum axial vorticity. It is observed
that for a given Re, a2 increases almost linearly with streamwise distance from the
wing. Earlier works have shown that the vortex dispersion radius of an isolated 2-D
Lamb–Oseen (aLO) increases with time due to viscous dissipation, and that 1a2

LO for
a given Reynolds number is directly proportional to the time interval (Saffman 1992).
Here, the ∆ symbol represents change in the corresponding quantity. Lamb–Oseen
vortex is a popular 2-D vortex model used in the study of the dynamics of vortex
systems. If the Lamb–Oseen vortex convects in the streamwise direction under free-
stream conditions, then a2

LO will increase in proportion to the streamwise distance, and
hence, its variation will be similar to that shown in figure 4(a). This suggests that the
downstream increase in the dispersion radius of the tip vortex obtained via the present
numerical simulation can be attributed to viscous dissipation. With an increase in Re,
the effect of viscosity decreases. Consequently, the slope of the a2 curve decreases
with Re. Figure 4(b) shows the variation of circulation with streamwise distance for
various Re. The circulation remains nearly constant with distance for a given Re. This
is in line with the prediction made from inviscid analysis of the flow past a finite
wing (Saffman 1992). With an increase in Re, the strength of the tip vortex (measured
by circulation) increases. For Re = 3000, the trailing edge wake becomes unsteady
with significant axial vorticity contained in it. Hence, while carrying out integration
of (5.2), some region of the trailing edge wake is also included in the domain of
integration. This results in an increase in the value of circulation for Re = 3000 as
shown in figure 4(b).

For further characterization of the tip vortex, we extract, at a given streamwise
location, the velocity along a line that is parallel to the z-axis and passes through
the respective vortex centre. We denote such a line by lvc (where the subscript
vc means vortex centre). The reference point for defining the position along lvc is
the vortex centre. Figure 5(a) shows the variation of the spanwise component of
velocity (vy) along lvc for Re = 1000 at different streamwise locations. Since the
vortex axis is nearly aligned in the streamwise direction, the distribution of spanwise
velocity along lvc gives an approximate distribution of the azimuthal velocity of the
tip vortex; vy is nearly zero at the vortex centre for all streamwise locations. For
positive z, the direction of spanwise velocity is towards the symmetry plane. For
negative z, spanwise velocity is directed towards the wing tip. In the vicinity of the
vortex centre, the variation of vy along lvc is linear. Beyond the linear regime, the
magnitude of vy (|vy|) reaches a peak value on either side of the vortex centre, and
then decreases with an increase in distance from the vortex centre. The distance
between the two peaks gives an estimate of the size of the vortex core. It is observed
that the diameter of the vortex core increases downstream. Concomitantly, the peak
value of streamwise vorticity within the vortex core decreases (in accordance with
Helmholtz’s first theorem: circulation of a vortex tube is constant along its length).
At relatively large distance from the vortex core, |vy| decreases almost inversely with
distance from the vortex centre (|vy| ∼ 1/z). In this flow region, the tip vortex can be
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FIGURE 5. (Colour online) Flow past a flat plate wing with AR= 6 and α= 5◦: variation
of (a,d) spanwise, (b,e) vertical and (c, f ) streamwise component of velocity at a given
streamwise location along a line parallel to the z-axis and passing through the vortex
centre. (a–c) Shows results for Re= 1000 and different streamwise locations. (d–f ) Shows
results for x= 40c and different Re.

assumed to be irrotational. Figure 5(b) shows the variation of the vertical component
of velocity (vz) along lvc. The prominent negative value of vz is in line with the
downward motion of the tip vortex under the effect of its counter-rotating pair. Since
vz varies within the vortex core, the tip vortex experiences stretching in the vertical
direction. As a result, the tip vortex takes a slightly elliptical shape. The streamwise
velocity (vx) variation along lvc (figure 5c) shows two peaks: one is associated with
the velocity deficit within the vortex, and the other corresponds to the deficit in the
trailing edge wake. The distance between the two peaks increases downstream. At
sufficiently large distance from the wing, the streamwise velocity deficit within the
vortex core becomes close to axisymmetric.

With an increase in Re, the flow remains steady up to Re= 2500 (figure 6a). The
evolution of the vortex centre with downstream distance (figure 3a,b), and velocity
distribution within the tip vortex (figure 5d–f ) is found to be similar for 10006Re6
2500. For Re = 3000, the flow becomes unsteady (figure 6b) and a Kármán vortex
street is observed in the trailing edge wake. For Re = 5000, the trailing edge wake
seems to transition to a turbulent state (figure 6c). The tip vortex, however, retains its
laminar behaviour at Re= 5000.
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FIGURE 6. (Colour online) Flow past a flat plate wing with AR= 6 and α= 5◦: isosurface
of total vorticity for (a) Re= 2500, (b) Re= 3000 and (c) Re= 5000. For illustration, the
isosurfaces are shown for the full wing by reflecting the flow about the mid-plane. The
location of the wing is shown in blue colour at the top left corner of each frame.

x

Root

Tip

y
z

3000

2400

1800

1200

600
4 8 12 16

T

G
 =

 E
(T

)/
E(

0)

(a) (b)

FIGURE 7. Re= 1000 flow past a flat plate wing with α = 5◦ and AR= 6: (a) variation
of linear optimal gain with time horizon and (b) isosurface of spanwise vorticity (±0.2)
for T = 10 linear optimal perturbation. The wing root lies on the plane of symmetry of
the geometrical set-up.

T p= 6 p= 10 p= 12 p= 14

5 746 747 747 —
8 1619 1690 1690 —
10 2009 2206 2206 —
15 907 2830 2834 2834

TABLE 1. Effect of polynomial order of spectral element on the value of linear optimal
gain for various time horizons.

6. Optimal gain and perturbation

Optimization has been carried out in the flow regime where the fully developed
flow is steady. Figure 7(a) shows the variation of linear optimal gain (G) with time
horizon for Re = 1000, AR = 6, α = 5◦ and a flat plate wing. The values of gain
for different T reported in figure 7(a) are obtained after rigorous mesh convergence
tests. The results of the mesh convergence study are summarized in table 1. The
order of the polynomial (related to the number of GLL points in a spectral element)
required to adequately capture the evolution of the perturbation depends on the time
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FIGURE 8. (Colour online) Re= 1000 flow past a flat plate wing with α= 5◦ and AR= 6:
sectional view of (a) spanwise vorticity (±0.2) and (b) streamwise vorticity (±0.01) for
T = 10 linear optimal perturbation in different spanwise planes (from root to the wing-tip).

horizon over which optimization has been carried out. For example, for T = 5, p= 6
is sufficient, while for T = 15, at least p= 12 is needed for adequate resolution. This
is because of the nature of the evolution of the optimal perturbation, and the use
of a non-uniform mesh in capturing it (discussed in detail in § 8). It is observed
that G increases monotonically with T up to the largest time horizon that has been
investigated. The shape of the linear optimal perturbation, on the other hand, does
not change significantly with T . Optimal perturbation is located near the wing surface
(figure 7b) and is dominated by the spanwise component of vorticity. All three
components of vorticity are arranged as spanwise parallel sheets of alternate sign
that are inclined to the surface of the wing. The strength of the spanwise vorticity
sheets is largest at the root of the wing and decreases along the wing span to become
negligible at the tip (figure 8a). The streamwise and vertical components of vorticity
are relatively weaker than the spanwise component. Both the components are absent
near the root and the tip of the wing (figure 8b).

The shape of the optimal perturbation shown in the x–z plane (figure 8b) resembles
that for the 2-D flow past a flat plate (Akervik et al. 2008). In the 2-D set-up, the
transient growth of energy occurs via two concurrent mechanisms: downstream motion
of the perturbation wavepacket, and increase in the energy of the wavepacket via the
Orr mechanism (Orr 1907). Since the optimal perturbation is located away from the
wing tip, the initial evolution of the optimal perturbation is not affected by the flow
modification arising because of the wing tip. The initial growth of energy, therefore,
occurs via the 2-D Orr mechanism (in the x–z plane). At later stages, due to the strong
three-dimensionality of the flow resulting from the roll-up of the axial vorticity layer,
the perturbation gets transferred to the tip-vortex region (discussed in detail in §§ 7
and 8), and the evolution deviates from the 2-D evolution via the Orr mechanism.

The location of the optimal perturbation is quite interesting as it brings focus to
the role of the near wake region in amplifying the disturbance in a trailing vortex
system. Within the streamwise distance where the optimal perturbation is located, the
tip vortex has either not formed, or is in a nascent stage of its formation. As shown
in the next section, the perturbation introduced near the wing surface gets transferred
in the tip-vortex region during its evolution, and results in vortex deformation several
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Re AR α (deg.) Airfoil geometry CL CD G

1000 6 5 Flat plate 0.96 0.36 2.1× 104

1500 6 5 Flat plate 1.00 0.30 4.6× 105

2000 6 5 Flat plate 1.03 0.26 1.1× 107

1000 8 5 Flat plate 1.38 0.47 3.1× 104

1000 2D 5 Flat plate — — 4.3× 104

1000 6 3 Flat plate 0.96 0.36 2.0× 104

1000 6 5 NACA0012 0.59 0.38 4.0× 105

TABLE 2. Effect of flow and geometry parameters on the value of linear optimal gain.
Aerodynamic coefficients are for the corresponding base flow that is used for optimization.

chord lengths downstream of the wing. Vortex deformation, in turn, may expedite the
decay of tip vortices via various mechanisms, for example, earlier onset of the Crow
instability (Crow 1970) in the far wake.

Another feature of the optimal perturbation brought out by figures 7(b) and 8
is that the optimal perturbation can introduce significant modification to the flow
around the wing. This is reflected in the difference in the values of the aerodynamic
coefficients without and with optimal perturbation. We take the example of T = 10
linear optimal perturbation with E(0) = 10−4. Since energy is non-dimensionalized
using U2

∞
c3, E(0)= 10−4 represents a relatively small fraction of the free-stream flow

energy. For unperturbed flow, the values of the lift (CL) and drag coefficients (CD)
are 0.96 and 0.36, respectively. If the optimal perturbation is added to the base flow,
the instantaneous values of CL and CD change to −0.005 and 0.22, respectively. As
the perturbation evolves with time, the values of the aerodynamic coefficients relax
toward those of the unperturbed flow. Thus, when employing the optimal perturbation
for control of an aircraft trailing vortex system, the instantaneous change in the value
of the aerodynamic coefficients due to the addition of the optimal perturbation can
be an important consideration. Strong initial perturbation (large E(0)) can introduce
large disturbance to the wake but might result in significant loss of instantaneous lift.
Weak perturbation (small E(0)) may not affect aerodynamic coefficients significantly,
but it might turn out to be ineffective for controlling the wake.

Parametric exploration is carried out over Re, aspect ratio (AR), angle of attack
(α) and shape of the airfoil, to study their effects on the linear optimal gain and
perturbation. The time horizon is fixed as T = 10. We select Re = 1000, AR = 6,
α = 5◦ and the flat plate wing as the base case about which the parameters are
varied one at a time. The parametric study brings out several important features of
the optimal perturbation and its results are summarized in table 2. First, optimal
gain increases exponentially with increase in Re. Using least-squares curve fitting,
this dependence is found as G ∼ e(0.0062Re). Second, with increase in AR, the value
of optimal gain increases. The fraction of the wing surface over which the flow
is noticeably affected by finiteness of the wing is expected to decrease with an
increase in AR. The parametric variation of G with AR suggests that the lower is
the fraction, the higher is the amplification of the initial perturbation energy. Optimal
gain, therefore, would be largest for infinite span (nominally two-dimensional) wing.
Our computations show that 2-D optimal gain is indeed higher than the gain obtained
for finite wing. Third, G increases with increase in α. Finally, modifying the wing
cross-section from a flat plate to the NACA0012 airfoil has a severe effect on optimal
gain: the value for NACA0012 is an order higher than the flat plate. The change in
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FIGURE 9. (Colour online) Re= 1000 flow past NACA0012 rectangular wing with α =
5◦ and AR = 6: spanwise vorticity associated with T = 10 linear optimal perturbation at
various spanwise locations (from the root to the wing tip). The wing root lies on the plane
of symmetry of the geometrical set-up.

G may be attributed to the difference in the base flow for the two wing geometries.
The difference is evident in the value of aerodynamic coefficients associated with
the two base flows (table 2). Since the perturbation derives energy from the base
flow, modification to the base flow will have an effect on the amplification of initial
energy.

Despite linear optimal gain being sensitive to the change in the parameters, the
general shape of the linear optimal perturbation is similar over the entire parameter
space that has been explored (for example, compare figures 9 and 8a). This result is
desirable from the perspective of flow control as the optimal perturbation computed
for one set of parameters can be utilized for controlling flow over a wide parameter
space.

7. Nonlinear evolution of linear optimal perturbation
Direct time integration of the equations governing the nonlinear evolution of

perturbation (2.4)–(2.5) is carried out using the T = 10 linear optimal perturbation
as the initial condition. Computations are carried out for Re= 1000, AR= 6, α = 5◦
and the flat plate wing. The initial energy of the perturbation is set to E(0) = 10−4.
Figure 10 shows the variation of energy gain with time obtained using spectral
elements of polynomial orders p = 6, 12 and 14. Energy gain is nearly insensitive
to the spatial resolution of the mesh beyond p = 12. In addition, the evolution
of of the shape of the perturbation is found to be nearly the same for p > 12.
We, therefore, present results obtained using p = 12. Figure 11(a,c,e,g,i) shows the
spanwise component of perturbation vorticity on the symmetry plane at various
time instants during the flow evolution. The perturbation vorticity at t = 0 is shown
earlier in the paper, in figure 8(a). It is observed that the perturbation evolves as a
downstream travelling wavepacket. The speed of the wavepacket is nearly constant and
is close to the free-stream speed. This is evident from the approximate matching of
the streamwise location of the perturbation wavepacket and corresponding normalized
time in figure 11(a,c,e,g,i). The energy of the wavepacket increases with time initially,
reaches a peak value at t ∼ 5 and then starts to decrease (figure 10). The value of
the energy gain at t= 10 is an order lower than linear energy gain corresponding to
T = 10 optimal perturbation (figure 7a). For 25< t< 60, the rate of energy decrement
is reduced significantly as compared to that at smaller time. In this time interval,
energy of the perturbation wavepacket appears to be nearly constant. We refer to
the time interval as a quasi-steady interval. For t ∼ 59, the wavepacket reaches the
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FIGURE 10. (Colour online) Re = 1000 flow past a flat plate wing with α = 5 and
AR= 6: variation of energy gain with time for nonlinear evolution of T= 10 linear optimal
perturbation. Initial energy of the perturbation is E(0) = 10−4. Energy curves obtained
using different polynomial orders (p) for the spectral element are shown in different
colours. The blue coloured filled circles correspond to the time instants at which the flow
is shown in figure 11. In the shaded time interval the perturbation is either leaving or has
moved out of the computational domain.

outflow boundary, and later gets convected out of the computational domain. The
energy gain, therefore, decreases rapidly beyond t∼ 59.

The existence of a quasi-steady interval in the evolution of the linear optimal
perturbation brings out two important features of the flow past a finite wing: a
perturbation generated near the wing surface can disturb the flow several chord
lengths downstream of the wing, and, the downstream wavepacket is stronger than
the initial perturbation near the wing surface. For example, for E(0) = 10−4, the
energy of the perturbation wavepacket in the quasi-steady interval is two orders
of magnitude higher than the initial perturbation energy. Beyond the vortex roll-up
distance (x & 15c), the wavepacket within the tip-vortex region is structured as
two elongated strands of streamwise vorticity, one positive and the other negative,
intertwined helically along the streamwise direction (figure 11b,d,f,h,j). The structure
is redolent of the m= 1 bending mode that is associated with the deformation of an
isolated vortex column (Fabre, Sipp & Jacquin 2006). The effect of the bending mode
is to displace the vortex column from its unperturbed location (Antkowiak & Brancher
2004; Pradeep & Hussain 2006). Therefore, the perturbation wavepacket causes a shift
in the position of the tip vortex beyond x∼ 15c. A schematic of the unperturbed and
perturbed tip vortices is shown in figure 12. To further analyse the deformation of the
tip vortex as the perturbation wavepacket travels through it, we record the velocity
along the centreline of the tip vortex at various time instants. The signal for the
spanwise (v) and vertical (w) components of the velocity is shown in figure 13. The
downstream movement of the perturbation wavepacket can be seen from the top to
the bottom frame of the figure. Within the wavepacket, the two velocity signals have
a phase difference of between 0◦ and 180◦. Accordingly, as the wavepacket passes a
given streamwise location, vortex centre traces elliptical trajectories in the y–z plane.
Figure 14(a) shows the vortex centre trajectory at three streamwise locations. The
rotation of the axes of the ellipse suggests that the perturbation wavepacket within
the tip vortex rotates about the axis of tip vortex.
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FIGURE 11. (Colour online) Re = 1000 flow past a flat plate wing with α = 5 and
AR = 6: perturbation vorticity at various time instants obtained using T = 10 linear
optimal perturbation as initial condition for direct time integration of nonlinear equations
(2.4)–(2.5). Each row corresponds to the flow at a time instant. (a,c,e,g,i) Shows spanwise
vorticity (±0.2) on the symmetry plane (y = 0) and (b,d,f,h,j) shows the corresponding
isosurface of streamwise vorticity (±0.1). The time instant is indicated on the top right
corner of the frame that shows the spanwise vorticity. The position of the base flow tip
vortex is indicated using a dotted outline in the last frame of right column.

8. Comparison of linear and nonlinear evolution of perturbation
It is observed that the value of energy gain obtained via nonlinear simulation

(figure 10) at t = 10 is an order of magnitude lower than the value of T = 10
linear optimal gain. Nonlinear terms, therefore, can have significant effect on the
evolution of the linear optimal perturbation even with relatively low E(0). To further
explore the effect of the nonlinear terms, direct time integration of the linearized
disturbance equations (2.6)–(2.7) is carried out and the results are compared with
those obtained via nonlinear simulation. Reynolds number, initial condition and
geometrical parameters for the linearized computation are the same as in § 7. Similar
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FIGURE 12. (Colour online) Flow past a finite AR flat plate wing: schematic of the
unperturbed (blue broken line) and perturbed tip vortex (red solid line) in the x–y plane.
The perturbation corresponds to the nonlinear wavepacket generated by T = 10 linear
optimal perturbation at t= 55 (shown in figure 11). The unperturbed vortex axis is shown
as the dashed-dotted line. Shown alongside on either side is the view of the unperturbed
and perturbed vortices in the x–z plane at different streamwise locations (shown via arrow)
along the vortex axis.

to the nonlinear simulation, the perturbation evolves like a downstream travelling
wavepacket in the linearized simulation. Figure 15 shows the variation of linear
energy gain with time computed using different values of p for the spectral element.
As noted before, the linear energy gain reaches a higher peak value than the nonlinear
energy gain. Two additional observations are made. First, the linear simulation requires
a higher spatial resolution of the spectral mesh than the nonlinear simulation. Close
to the wing, the density of spectral elements is relatively high. In this flow region,
p = 6 accurately captures the evolution of the linear optimal perturbation in both
linear and nonlinear simulations. This is evident from overlapping of the energy
gain curves for p > 6 at short times (figures 10 and 15). The density of spectral
elements decreases downstream, and therefore, higher-order polynomial is needed
for accurate resolution of the perturbation wavepacket as it travels downstream. For
nonlinear simulation, p = 12 maintains adequate spatial resolution up to the outflow
boundary. On the other hand, for the linear simulation, p= 12 is insufficient once the
perturbation wavepacket has travelled beyond x ∼ 30c. The difference in the linear
energy gain curve for p= 12 and 14 beyond t∼ 30 in figure 15 shows the inadequacy
of the p= 12 linearized simulation. We could not carry out a computation for p> 14
because of the constraint of computational resources and time. Hence, we cannot
ascertain if even p = 14 accurately captures the linearized evolution of perturbation
wavepacket up to the outflow boundary. Second, saturation of the perturbation energy
(quasi-steady interval) is not apparent in the linear energy gain curve. In the nonlinear
simulation, the quasi-steady interval starts at approximately t= 25. On the other hand,
for the linearized simulation, energy gain continues to decrease beyond t = 25. The
aforementioned observations bring out the importance of nonlinear effects in the near
wake dynamics of the wing and in maintaining the energy of perturbation within
the vortex core up to large streamwise distances from the wing rather than decay as
suggested by the linear simulation.

Figure 16 shows vorticity components for the linear and nonlinear perturbation
wavepackets at two similar time instants: one corresponds to the situation when the
wavepacket is relatively close to the wing, and the other when the wavepacket has
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FIGURE 13. (Colour online) Re= 1000 flow past a flat plate wing with α= 5 and AR= 6:
instantaneous signal of spanwise (v) and transverse (w) component of velocity along the
axis of the tip vortex as the perturbation wavepacket travels downstream. (a) t = 10, (b)
t= 20, (c) t= 30, (d) t= 40, (e) t= 50 and ( f ) t= 60.

travelled beyond the vortex roll-up distance. Close to the wing, the shape of the
perturbation wavepacket obtained via the linear and nonlinear simulations is largely
similar (figure 16a). The vorticity components are arranged as spanwise rows of
chevron-like pattern with alternate signs that extend from the trailing edge wake
to the tip-vortex region. The chevron-like pattern is similar to that observed during
the evolution of linear optimal perturbation in 2-D flow past a flat plate wherein
the energy growth occurs by the Orr mechanism (Akervik et al. 2008). Beyond the
vortex roll-up distance, the chevron-like pattern is maintained in the trailing edge
wake for the linearized simulation (figure 16b, left column). Within the tip-vortex
region, the linearly evolved perturbation wavepacket appears as if the chevron pattern
has been rolled-up. The sharp variation in vorticity isosurface might be attributed to
inadequacy of the p= 14 polynomial to capture the wavepacket at the corresponding
streamwise location. In the nonlinear simulation, the chevron-like arrangement is
not discernible in the trailing edge part of the wake (figure 16b, right column). In
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FIGURE 14. (Colour online) (a) Re = 1000 flow past a flat plate wing with α = 5 and
AR=6: trajectory traced by the vortex centre in the y–z plane at three streamwise locations
as the perturbation wavepacket passes through the three locations. The initial perturbation
is the T= 10 linear optimal perturbation with E(0)= 10−4. (b) Vortex position in the cross-
flow plane at various time instants obtained via experiment by Roy & Leweke (2008). The
thick red line in (b) corresponds to the average motion of the vortex centre.
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FIGURE 15. (Colour online) Re= 1000 flow past a flat plate wing with α= 5 and AR= 6:
variation of energy gain with time for linearized simulation carried out using different
polynomial orders of spectral elements. Initial condition for the simulation is T= 10 linear
optimal perturbation. In the shaded time interval the perturbation is either leaving or has
moved out of the computational domain. For comparison, the energy gain curve obtained
via the p= 12 nonlinear simulation is also shown.

the tip-vortex region, streamwise vorticity for the nonlinear perturbation wavepacket
appears as two streamwise elongated strands that are wound helically around each
other. The nonlinear wavepacket, as discussed earlier in § 7, results in displacement of
the tip vortex. The linear wavepacket, despite having higher energy than the nonlinear
wavepacket, causes no perceptible displacement of the tip vortex.

The results presented in the preceding paragraphs show that within the vortex
roll-up distance, the nonlinear term modifies the energy and shape of the perturbation
wavepacket. Beyond the vortex roll-up distance, the general shape of the linear
and nonlinear wavepackets does not change with time. To investigate the effect of
nonlinear terms on the energy of the perturbation wavepacket beyond the vortex
roll-up distance, we carry out direct time integration of the disturbance equations in
two stages. In the first stage, using T = 10 linear optimal perturbation (E(0)= 10−4)
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FIGURE 16. Re = 1000 flow past a flat plate wing with α = 5 and AR = 6: spanwise
vorticity in the x–z and x–y planes, and isosurface of streamwise vorticity for the
perturbation wavepacket obtained via linear and nonlinear simulations at two similar time
instants. The left column shows results from the linear simulation and the right column
shows results from the nonlinear simulation. In (a) perturbation wavepacket is located in
the near wake region (x∼ 5c), and in (b) it is located beyond the vortex roll-up distance
(x∼ 21c).

as the initial condition, the perturbation is allowed to evolve nonlinearly up to t= 20.
At t = 20, the nonlinear perturbation wavepacket has travelled beyond the vortex
roll-up distance and is located at x ∼ 20c. In the second stage of the simulation,
the nonlinear term is switched off, and the perturbation wavepacket evolves linearly
beyond t = 20. Figure 17 shows the variation of energy gain with time for the
two stages of the simulation: nonlinear stage (before switch-off) is shown using

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

11
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.110


420 Navrose, V. Brion and L. Jacquin

0 10

110

125

140

20 30

15 25 35

40 50 60

103

102

101

100

E(
t)/

E(
0)

t

Nonlinear
Linear

FIGURE 17. (Colour online) Re= 1000 flow past a flat plate wing with α= 5 and AR= 6:
variation of energy gain with time for the case where initially nonlinear terms are present
in the disturbance equations and then later they are switched off. The initial disturbance
corresponds to T= 10 linear optimal perturbation with E(0)= 10−4. The time instant when
the switch-off occurs (t = 20) is shown on the energy gain curve by the blue dot. The
part of the curve prior to the switch-off is shown by the solid line, and after switch-off
is shown by the broken line. For comparison, the energy gain curve for the simulation
where nonlinear terms are not switched off is shown using a solid line after t= 20.

the solid line and the linear stage (after switch-off) is shown using the broken line.
The time instant of switch-off is marked by the solid circle on the energy gain
curve. It is observed that in the linear stage the energy gain decreases initially
(inset of figure 17) and then increases monotonically with time until the perturbation
wavepacket has reached the outflow boundary. The monotonic increase in energy gain
is in agreement with recent results by Edstrand et al. (2018) on linear stability of the
wake behind a finite wing for Re= 1000. By carrying out a local analysis of the wake
at different streamwise locations, they showed that the wake is spatially unstable to
downstream travelling perturbation waves. Therefore, the linear asymptotic analysis
suggests that a general perturbation to the wake may grow downstream. We observe
that in the linear stage of the simulation, the energy of the perturbation wavepacket
indeed grows after an initial decrement. The initial dip in the energy gain (inset of
figure 17) may be attributed to transient effects that are not accounted for in the
asymptotic analysis. If nonlinear terms are kept switched on in the second stage of
the simulation, energy gain does not increase after t = 20 (solid line in figure 17).
Since the value of E(0) is set to 10−4 and the energy gain after transient effects is
∼10−2, we deduce that a perturbation wavepacket with energy ∼O(10−2) is strong
enough to deviate the flow evolution from that predicted by linear analysis. We would
like to note that since the typical peak azimuthal velocity inside the tip vortex is an
order lower than the free-stream speed, non-dimensional energy based on former will
be two orders higher than that based on latter. Hence, a perturbation wavepacket with
energy of the order of unity (based on peak azimuthal velocity of the tip vortex) will
result in significant flow modification via nonlinear effects.

9. Vortex meandering
9.1. Steady base flow regime (Re 6 2500)

Nonlinear simulation of linear optimal perturbation shows that the perturbation
wavepacket causes movement of the vortex core. The motion occurs in such a way
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that the vortex centre traces elliptical trajectories. Once the perturbation wavepacket
has passed a given streamwise location, the vortex centre at that location returns
to its unperturbed position. In a situation where the linear optimal perturbation is
injected periodically into the flow (as a method for flow control), it is expected
that the vortex centre at all streamwise location would trace elliptical trajectories
periodically. Furthermore, if the optimal perturbation is injected aperiodically, it will
result in seemingly random motion of the vortex. The motion of the tip vortex, in this
situation, will resemble the phenomenon of vortex meandering that has been observed
in wind tunnel experiments of tip vortices (Roy & Leweke 2008). Figure 14(b),
taken from Roy & Leweke (2008), shows the ensemble of the positions of the vortex
centre at different time instants for a fixed streamwise location. Atop the ensemble,
the region where the vortex centre is located with a given probability is shown by
the thick red line. The region is an ellipse that has similar orientation of its axes as
that of the vortex motion induced by the linear optimal perturbation (see figure 14a).
Based on this observation, we propose, in addition to spatial instability (Edstrand
et al. 2018) and response to stochastic forcing (Fontane et al. 2008), another possible
mechanism behind vortex meandering. That the perturbation generated near the wing
surface gets amplified in the near wake region owing to transient effects, and is
subsequently transferred to the tip-vortex region during the roll-up process. During
these stages, nonlinear terms play a crucial role in shaping up the perturbation
wavepacket. As the nonlinear wavepacket travels downstream, it causes a motion of
the tip vortex that resembles meandering.

In the absence of an externally forced perturbation, the optimal perturbation
can arise if the flow system is receptive to naturally occurring disturbances like
free-stream sound waves or vortical structures. We make this conjecture based on the
results of Fontane et al. (2008) and Schrader, Brandt & Henningson (2009). Fontane
et al. (2008) studied the response of a Lamb–Oseen vortex column to stochastic
forcing. The motivation behind using stochastic forcing was to mimic uncontrolled
(in space and time) ambient fluctuations like background turbulence. They found that
optimal perturbations can be naturally activated by the background noise present in
uncontrolled conditions. Schrader et al. (2009) investigated receptivity mechanisms in
the boundary layer and suggested that free-stream turbulence can interact with a steady
perturbation source like surface roughness and result in unsteady disturbances in the
boundary layer, thereby, triggering natural instability of the flow. The length scales of
the unsteady disturbance will be governed by the roughness elements. Since optimal
perturbation for the flow in our set-up is located near the wing surface, which is where
the boundary layer is present, it is reasonable to expect that free-stream turbulence
coupled with steady perturbation source (like surface roughness) might activate it.
Another possible source for exciting optimal perturbation can be deformation of the
wing under high aerodynamic loading. This suggestion is based on the fact that both
wing deformation and injection of optimal perturbation have a similar effect on flow
past the wing – they both modify lift and drag force experienced by the wing.

The shape and energy of the initial perturbation near the wing surface are important
factors in the evolution of the perturbation wavepacket and in the vortex meandering
phenomenon. Two initial perturbations with the same energy but different shapes
might have a different effect on the tip vortex. If computation is initiated with
an E(0) = 10−4 linear optimal perturbation (LOP), vortex meandering is observed
(figure 14a). If, on the other hand, the computation is initiated with a random
perturbation that is localized in a similar spatial region of the computational domain
as the LOP, and has initial energy E(0)= 10−4, a different flow evolution is obtained.
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FIGURE 18. (Colour online) Re= 1000 flow past a flat plate wing with α= 5 and AR= 6:
(a) variation of perturbation energy and (b) energy gain obtained via nonlinear evolution of
perturbation. Random perturbation with different values of E(0) is used as initial condition
for the computation.

Figure 18(a) shows the variation of perturbation energy with time for a simulation
initiated with an E(0) = 10−4 random perturbation. The energy initially decreases,
exhibits transient growth for some time and then decreases monotonically with time.
The level of perturbation energy is relatively low during the entire flow evolution. We
recall from § 8 that the appearance of a helical displacement mode in the tip-vortex
region is attributed to nonlinear effects. Because of low perturbation energy levels for
a computation initiated with E(0) = 10−4 random perturbation, nonlinear effects are
not significant. This is apparent in the absence of a helical perturbation inside the tip
vortex (compare 19a and bottom right panel of figure 16). Hence, for an E(0)= 10−4

random perturbation, no perceptible meandering of the vortex core occurs. With an
increase in the value of E(0), nonlinear terms play an increasing role in modifying the
shape of the perturbation (figure 19b–e). For E(0)> 0.01, the perturbation wavepacket
within the tip-vortex region takes a helical shape (figure 19c–e). In these situations,
vortex displacement occurs. For E(0)6 0.1, the energy of the perturbation wavepacket
decreases as it travels downstream; no quasi-steady interval is observed. For higher
E(0), the energy of the perturbation wavepacket appears to saturate in the wake
(see energy gain curve for E(0) = 1.0 in figure 18a for t & 30). The saturation is
more apparent if we compare the plots of energy gain for different E(0) random
perturbations (figure 18b).

To summarize, a random perturbation close to the wing leads to similar motion as
the linear optimal perturbation, albeit with much higher initial energy. The role of
the nonlinear process in shaping the perturbation wavepacket within the tip vortex
is central to the occurrence of vortex displacement (which may be linked to the
phenomenon of vortex meandering). Linear optimal perturbation extracts energy from
the base flow in the most optimal way, and therefore, a nonlinear process is triggered
with a relatively low value of initial energy as compared to a random perturbation.
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FIGURE 19. (Colour online) Re= 1000 flow past a flat plate wing with α= 5 and AR= 6:
isosurface of streamwise vorticity for the perturbation wavepacket obtained via nonlinear
simulation. Random perturbation is used as the initial condition for the computation. The
value of initial energy is (a) E(0)= 0.0001 (b) E(0)= 0.001, (c) E(0)= 0.01, (d) E(0)=
0.1 and (e) E(0)= 1.0. The position of the base flow tip vortex is indicated using dotted
outline in (e).

9.2. Unsteady base flow regime
The mechanism of vortex meandering proposed above is based on results in the
flow regime where the base flow is steady (Re 6 2500 for the flat plate wing). We
argue that the proposal holds even beyond the steady flow regime. In support of our
argument, we consider the Re= 3000 flow past a flat plate wing. For Re= 3000, the
steady wake behind the wing is unstable. A Kármán vortex street exists in the wake
up to a distance of ∼20c from the leading edge of the wing (figure 6b). Beyond
x ∼ 20c, vortex shedding is suppressed and the flow becomes steady. We place
a velocity probe inside the tip-vortex region at various streamwise locations. The
velocity signal is recorded for a sufficiently large time so that the mean value of the
signal becomes statistically invariant. The mean value is subtracted from the velocity
signal, to obtain the time history of velocity fluctuation. Figure 20(a) shows spanwise
velocity fluctuation at x= 15c. The frequency of fluctuation is found to be the same
as the frequency of vortex shedding in the trailing edge wake. This suggests that
velocity fluctuations within the tip vortex are linked to vortex shedding activity in
the trailing edge wake. The fluctuation level decreases with streamwise distance. For
x = 35c and 50c, fluctuations are negligible (figure 20b,c). A numerical experiment
is carried out where external perturbation is added periodically at an interval of 48
time units to Re= 3000 flow. The perturbation is random and localized in the vicinity
of the wing surface, and has relatively low initial energy (E(0) ∼ 10−8). As for the
unperturbed case, we record the velocity signal at various downstream locations and
calculate its fluctuation about the mean. Figures 20(d)–20( f ) show the spanwise
velocity fluctuations at x= 15c, 35c and 50c, respectively for the situation where the
perturbation is externally added. Periodic bursts are observed in the signal of velocity
fluctuations. They are shown with broken rectangles in the three figures. The time
period of the burst matches the period of addition of external perturbation to the flow.
Each burst originates near the wing and travels downstream with a speed nearly the
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FIGURE 20. (Colour online) Re= 3000 flow past a flat plate with α= 5 and AR= 6: time
signal of spanwise velocity fluctuation at (a,d) x=15c, (b,e) x=35c and (c, f ) x=50c. The
top row corresponds to the situation with no external perturbation, and the bottom row is
for the case when perturbation is injected periodically into the flow near the wing surface.
The bursts in the velocity signal arising from the addition of an external perturbation are
shown by broken rectangles in (d–f ).

same as the free-stream speed. The relatively large value of the velocity fluctuation
during the bursts suggests amplification of the initial perturbation which otherwise
has small energy. The phase difference between spanwise and transverse components
of the velocity fluctuation suggests that each burst is associated with elliptical motion
of the tip vortex. Hence, similar to the steady flow regime, for the unsteady flow
also, the perturbation near the wing surface amplifies in the near wake and travels
downstream like a wavepacket causing displacement of tip vortices.

We observe that the level of initial energy for a random perturbation to result in
vortex meandering at Re= 3000 is much lower than that at Re= 1000 (figure 19). The
reason may be attributed to an increase in the amplification of the initial perturbation
energy with Re. This has been shown to be the case in the steady flow regime
where energy gain for LOP increases exponentially with Re (table 2). We speculate
that unsteadiness (laminar) does not affect the mechanism of amplification of initial
perturbation energy. Consequently, the amplification of initial energy for Re = 3000
is expected to be significantly higher than Re = 1000. Another observation that
we make is that the presence of unsteadiness in the near wake (in the form of
Kármán vortex shedding) alone does not result in perceptible meandering of the tip
vortices. Therefore, the location of the perturbation is important for vortex motion
(that resembles the phenomenon of vortex meandering).

10. Conclusions and perspectives
Optimal perturbation analysis for a trailing vortex system has been carried out in

the linear framework using a direct–adjoint iterative procedure. While earlier studies
have mostly considered a pair of counter-rotating vortices, our analysis takes into
account, in addition to the tip vortex, the flow over the wing surface and the region
of roll-up of the axial vorticity layer. From the computational point of view, the latter
approach requires much larger resources owing to the requirement of adequate flow
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resolution in a large part of the wake that includes the vortex roll-up, unsteadiness
(Kármán vortex street) and fully developed tip vortex. It is observed that beyond the
vortex roll-up distance, the wake can be broadly divided into two parts: trailing edge
wake (dominated by the spanwise component of vorticity), and tip vortex (dominated
by the streamwise component of vorticity). The separation between the two parts of
the wake increases downstream. With increase in Re, the trailing edge wake becomes
unsteady and then undergoes transition to a turbulent state. For a rectangular flat plate
wing with AR = 6 and α = 5◦, the trailing edge wake becomes turbulent between
3000<Re< 5000. A more detailed analysis is required to determine the critical Re for
the onset of turbulence in this case. The tip vortex retains its laminar characteristics up
to a much higher Re than the trailing edge wake. For the aforementioned rectangular
flat plate wing, the tip vortex is found to remain laminar up to Re= 5000.

Optimization has been carried out in the regime where the fully developed flow
within the computational domain is steady. The study reveals that the steady base flow
can support significant transient growth of the perturbation. Parametric exploration
over T , Re, AR and α yields that the general shape of linear optimal perturbation
(LOP) remains the same. LOP is found to be located near the wing surface and its
shape suggests that the initial transient growth occurs via the Orr mechanism. The
strength of LOP is largest near the symmetry plane. It decreases in the spanwise
direction and is nearly zero at the wing-tip. For a given time horizon, linear optimal
gain is found to increase with Re, AR and α. A change in the sectional geometry from
flat plate to NACA0012 (keeping T , Re, AR and α fixed) increases the value of linear
optimal gain by an order of magnitude.

Long time evolution of a linear optimal perturbation is studied by direct time
integration of the disturbance equations. Both linear and nonlinear evolution is
simulated. In both situations, the perturbation evolves like a downstream travelling
wavepacket whose energy increases in the near wake region via the Orr mechanism.
It is found that nonlinear terms can have a significant effect on the evolution of the
perturbation even with a relatively small value of the initial perturbation energy. The
nonlinear wavepacket results in an elliptical motion of the tip vortex in the transverse
plane. The linear wavepacket, on the other hand, does not cause any perceptible
shift in the location of the vortex core. In the nonlinear simulation the energy of the
perturbation wavepacket saturates beyond a certain streamwise location.

Nonlinear evolution of a random perturbation that is localized in the same spatial
region as LOP is simulated and its results are compared with that obtained for
nonlinear evolution of LOP. It is observed that the perturbation wavepacket generated
via random initial perturbation requires a much higher value of initial energy than
LOP to cause perceptible motion of the vortex core. LOP, therefore, extracts energy
from the base flow in the most optimal way that can cause movement of the vortex
core with a relatively low value of the initial energy. When the flow becomes unsteady,
it is observed that a random perturbation near the wing surface with relatively low
initial energy can trigger vortex displacement. Our results highlight the high sensitivity
of the vortex motion to perturbations located at the wing surface. In particular, our
analysis suggests that near wake energy amplification and nonlinear effects might be
central to the phenomenon of vortex meandering.

The fact that LOP is localized near the wing is desirable from the point of view of
wake control as the wing provides a physical surface for placing the control actuators.
This, coupled with the observation that during its evolution LOP can displace the tip
vortex in the transverse plane, suggests that LOP may be useful in designing control
strategies for hastening the onset of the Crow instability in a trailing vortex system. A
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proposal in this direction is periodic injection of LOP with a frequency corresponding
to the wavelength of the Crow instability.

The significance of nonlinear effects on the evolution of perturbation provides
a motivation to carry out nonlinear optimization for the flow past a finite wing.
In a recent work (Navrose et al. 2018), we have shown that a nonlinear optimal
perturbation can result in significantly higher gain than the linear optimal gain
for a 2-D isolated vortex and counter-rotating vortex pair. The flow evolution
obtained using the nonlinear optimal perturbation as the initial condition, brings
out new and interesting dynamics of the flow system, for example the appearance
of a non-axisymmetric vortex state. Compared to linear optimization, nonlinear
optimization is more demanding on computational resources. This is because,
unlike linear optimization, nonlinear optimization using a direct–adjoint iterative
technique requires information of direct variables to be saved at each time step of
an iteration. This not only increases the requirement of disk space, but also increases
the computational time owing to reading and writing of data on the disks. Another
challenging aspect of nonlinear optimization is its slow convergence as compared
to linear simulation. Typically, the number of iterations required for nonlinear
optimization is an order of magnitude higher than that for linear optimization.
Kerswell (2018) has summarized some of the challenges involved in nonlinear
optimization of large problems. With ongoing development of computational tools
and resources, nonlinear optimization using the full flow field can be attempted in
the future. The nonlinear framework is also expected to reveal the significance of
interaction between symmetric and anti-symmetric perturbation.

The evolution of LOP as a nonlinear wavepacket that results in displacement of the
vortex core has been proposed as a possible mechanism behind vortex meandering.
The role of LOP is to cause optimal amplification of initial perturbation that allows
suitable modification of the shape of the perturbation wavepacket via nonlinear effects.
A question that arises here is: what is the source of LOP is experiments? Fontane
et al. (2008) studied the dynamics of a vortex column in the presence of stochastic
forcing and showed that the most receptive flow structure resembles the optimal
perturbation for an isolated vortex. The justification for using stochastic forcing
was to emulate the effect of external noise that is generally present is experiments.
Schrader et al. (2009) investigated receptivity mechanisms in boundary layer and
suggested that free-stream turbulence can interact with a steady perturbation source
like surface roughness and trigger natural instability of the flow. We speculate that
perturbation sources near the wing (for example, turbulence at the wing boundary
layer, surface macro-roughness and/or wing deformation) might excite disturbances
resembling LOP.

We close this section with a note on the applicability of the results presented
in this paper. The numerical simulations have been carried out for an Re-range
(10006Re6 3000) that is several orders of magnitude lower than that encountered in
practical situations (Re∼O(106)). A question then arises is, are the results presented
in the paper practically significant? To this, we point out that in many practical
scenarios the wing-tip vortex has a laminar core (Cotel & Breidenthal 1999) and
its structure is similar to that obtained in the present work. A comparison between
the velocity profile of the tip vortex obtained via numerical simulation and large-Re
laminar vortex models is presented in the Appendix. The similarity in the structure
of low- and large-Re vortices suggests that the dynamics of the wing-tip vortex
brought out in the present work might be observed in practice as well. This serves
as a motivation for carrying out transient growth analysis in the large-Re flow
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regime. Since the trailing edge wake becomes turbulent with an increase in Re, a
different technique than the one used in the present work might be needed, for
example, using mean flow as the base solution for optimization. Transient growth
analysis using mean flow has been carried out in the past for turbulent flow systems
like channel and boundary layer flow (del Álamo & Jiménez 2006; Cossu, Pujals
& Depardon 2009). The mean flows in such works have mostly been obtained
via RANS (Reynolds-averaged Navier–Stokes) simulation. However, the standard
turbulence models employed for RANS simulations might be inadequate for flows
with curvature like wing-tip vortex, and hence require correction (Dacles-Mariani
et al. 1995; Shur et al. 2000). The validity of RANS models in simulation of trailing
vortices up to large distances from the wing, as attempted in the present study, has
received less attention as compared to other flows. Two works in this direction are by
Zeman (1995) and Czech et al. (2004). Czech et al. (2004), in particular, validated
RANS model by comparing numerical results obtained using parabolized simulations
with experimental data. Another approach for obtaining the mean flow could be
large eddy simulation (LES) for the flow past a wing. This, however, might present
challenges in terms of computational cost, especially if a parametric study, as carried
out in the present work, is undertaken.
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Appendix. Comparison of wing-tip vortex with vortex models
We compare the velocity profile of the wing-tip vortex obtained via numerical

simulation with two popular vortex models: the Batchelor (Batchelor 1964) and
Moore–Saffman vortex models (Moore & Saffman 1973). Figure 21 shows the
variation of the azimuthal and axial component of velocity with radial distance from
the vortex centre of the wing-tip vortex computed for Re = 3000. The velocity data
are for a streamwise distance of 40c from the leading edge of the wing. Also shown
in figure 21 are the least squares fits for the two velocity components corresponding
to the Batchelor and Moore–Saffman vortex models. The fitting has been carried out
simultaneously for both of the velocity components. The error between the computed
and modelled velocity profiles for each model is less than 10−8. It is observed
that the computed velocity profile agrees reasonably well with the Batchelor and
Moore–Saffman models. The latter gives a better estimate of the peak azimuthal
velocity as compared to the Batchelor model. The difference between the computed
and model velocity profiles may be attributed to the effect of the trailing edge wake
on the velocity distribution inside the wing-tip vortex. The effect is almost negligible
in experiments because of the turbulent wake, and therefore, the Batchelor and
Moore–Saffman vortex models are nearly free of this effect. Due to the constraint
on the size of the computational domain, the furthest downstream data that we have
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FIGURE 21. (Colour online) Results for Re= 3000 flow past a flat plate wing: comparison
of (a) azimuthal and (b) axial velocity profile inside the wing-tip vortex at a streamwise
location of x/c = 40 obtained via numerical simulation with the Batchelor and Moore–
Saffman vortex models. The two velocity components have been non-dimensionalized with
the free-stream velocity (U∞); and r/c is the non-dimensional radial distance from the
centre of the tip vortex.

are for the streamwise distance x/c= 40. The match between the computed and the
model velocity profiles is expected to become better further downstream owing to the
increase in the separation between the trailing edge wake and the wing-tip vortex,
and consequently, the decrease in the interaction between the two parts of the wake.
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