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Action-labelled transition systems (LTSs) have proved to be a fundamental model for

describing and proving properties of concurrent systems. In this paper we introduce

Multiple-Labelled Transition Systems (MLTSs) as generalisations of LTSs that enable us to

deal with system features that are becoming increasingly important when considering

languages and models for network-aware programming. MLTSs enable us to describe not

only the actions that systems can perform but also their usage of resources and their

handling (creation, revelation . . . ) of names; these are essential for modelling changing

evaluation environments. We also introduce MoMo, which is a logic inspired by

Hennessy–Milner Logic and the µ-calculus, that enables us to consider state properties in a

distributed environment and the impact of actions and movements over the different sites.

MoMo operators are interpreted over MLTSs and both MLTSs and MoMo are used to

provide a semantic framework to describe two basic calculi for mobile computing, namely

µKlaim and the asynchronous π-calculus.

1. Introduction

A well-established and successful approach to modelling and verifying the properties

of concurrent systems uses process algebras and temporal logics as a basis. Concurrent

systems are specified as terms of a process description language, while properties are

specified as temporal logic formulae. Labelled transition systems are associated with

terms via a set of structural operational semantics rules, and model checking is used

to determine whether the transition systems associated with terms enjoy the property

specified by the temporal formulae.

A Labelled Transition System (LTS) consists of a set of states S , a set of transition

labels L and a transition relation →⊆ S ×L× S . States correspond to the configurations

that the system can reach. Labels describe the actions that the system can perform

to interact with the environment. Transition relations describe the system’s evolution as

determined by the execution of specific actions. Temporal logic formulae are a mix of

logical operators and modal operators. The former are the usual boolean operators, while

the latter are the operators that permit reasoning about the system’s evolution in time

and for dealing with the LTS’s dynamic aspects. The success of these two formalisms

has led to interesting results and to the development of general tools and theorems for
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minimisation and animation of LTSs and for model checking satisfaction of temporal

formulae over them.

In the last ten years, and stimulated by new applications of network-aware program-

ming, several new formalisms based on process algebras, but with new constructs for

modelling network topology, name passing, resources usage and mobility, have been

proposed. Here, we will just mention the Distributed Join-calculus (Fournet et al. 1996),

the Distributed π-calculus (Hennessy and Riely 2002), the Ambient calculus (Cardelli and

Gordon 2000), the Seal calculus (Castagna et al. 2005), Nomadic Pict (Wojciechowski and

Sewell 1999) and Klaim (De Nicola et al. 1998).

The new primitives of these distributed nominal calculi, are such that not only actions,

but also names and resources play a central role. This makes it more difficult to use

LTSs, operational semantics and classical temporal logics to deal with the new calculi.

To model some of their distinguishing features, such as name scoping or process and data

distribution, transition labels had to be enriched to carry information not only about the

actions performed, but also about the state of the system. This interplay has made the

development of a general approach to distributed nominal calculi more difficult, and we

have witnessed the development of a number of theories tailored to specific calculi that

cannot be easily generalised.

A side effect of this lack of homogeneity has been the proposal of many different

temporal logics devised for reasoning about the different calculi. Two variants of HML

(Hennessy–Milner Logic (Hennessy and Milner 1985)) for specifying and verifying prop-

erties of π-calculus processes were introduced in Milner et al. (1993) and in Dam (1996).

Cardelli and Gordon (2006) introduced a spatial and modal logic for specifying and

verifying properties of Mobile Ambients. On the other hand, MobileUnity (McCann

and Roman 1998) and MobAdtl (Ferrari et al. 2002) are two program logics designed

specifically for specifying and reasoning about mobile systems by exploiting a Unity-like

proof system.

We feel that it is important to come up with a general operational model that can play

the same role for distributed nominal calculi that LTSs have played for process algebras.

Such an operational model should allow us to capture all main aspects of the new class of

systems in a natural way and should represent the natural basis for interpreting temporal

logics for describing system properties. A central role in the new set of mobile calculi

is played by names. Names can be public, that is, known by the environment where the

system is executing, or private. Systems, during execution, can discover some of the private

names. Thus, the behaviour of terms of mobile calculi cannot be described without taking

into account the names they use, and classical LTS do not have a natural and explicit

handling of names.

In this paper we propose a variant of LTSs, which we call Multiple-Labelled Transition

Systems (MLTSs), as a candidate general operational model. MLTSs are equipped with

a number of transition relations that capture the different aspects of system behaviour,

namely action execution, resource creation and consumption and name revelation. An MLTS

consists of:

— a set of states, which describe system configurations;
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— a set of resources, which model data (for example, the values exchanged over a

channel), computational environments (for example, the locations where processes can

be executed) and network links (which can be used for interaction);

— a set of transition labels;

— a naming structure, which enables us to associate public (known by the environment)

names with each state;

— three transition relations:

– the computation relation describes the interaction with the environment;

– the resource relation describes resource usage;

– the revelation relation describes the names revealed to the environment.

In order to model the properties of an MLTS, we introduce a temporal logic (MoMo),

which consists of a number of basic operators to be used to describe specific proper-

ties/behaviours of mobile and distributed systems. Thus, together with the usual logical

connectives and the operators for minimal and maximal fixed points, MoMo is equipped

with operators for describing dynamic behaviours (temporal properties), for modelling

resource management (state properties), for the handling of names (nominal properties),

and for controlling mobile processes (mobility properties).

To show the usefulness of our proposal, we show how MLTSs can be used to describe the

operational semantics of two formalisms with opposite objectives, namely µKlaim (Bettini

et al. 2003) and the asynchronous π-calculus (Aπ) (Boudol 1992; Honda and Tokoro 1991).

µKlaim is a simplified version of Klaim, which is an experimental programming language

that supports a programming paradigm where both processes and data can be moved

across different computing environments, and which relies on the use of explicit localities.

Aπ is the generally recognised minimal common denominator of calculi for mobility.

We also introduce two dialects of MoMo for reasoning about the two calculi under

consideration.

The rest of the paper is organised as follows. In Section 2, we introduce our general

MLTS model, while in Sections 3 and 4 we show how MLTSs can be used to describe the

operational semantics of Aπ and µKlaim, respectively. The modal logic for mobility is

presented in Section 5, and its dialects are discussed in Section 6, where we also specify a

few properties of a simple client–server system. Section 7 contains some results about the

relationships between the equivalence induced on Aπ by MoMo and the classical notion

of bisimulation. The final section contains some concluding remarks.

2. Multiple-Labelled Transition Systems

In this section we introduce our variant of LTSs, which will be used as a general framework

for describing the semantics of mobile calculi. We will begin by introducing a few basic

definitions.

Definition 2.1. Let N be a set of names and X be a subset of N . A name substitution is

a function σ : N → N , where:

— {y1/x1, . . . , yn/xn} denotes the substitution that maps xi into yi and is the identity on

the other names;
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— σ1 · σ2 is the composition of σ1 and σ2;

— σ1\X is the substitution σ2 such that

σ2(n) =

{
n if n ∈ X
σ1(n) otherwise;

— � denotes the identity substitution;

— Σ denotes the set of substitutions σ.

Definition 2.2. With X ⊆ N and σ ∈ Σ, we define σ(X) to be the image of X with respect

to σ, namely

σ(X) = {x′|∃x ∈ X : σ(x) = x′} .

Definition 2.3. A naming structure for a set S is a triple � = 〈N , η, ◦〉 such that:

— N is a countable set of names

— η : S → 2N is the naming function

— ◦ : S × Σ→ S is the renaming function

where, for each s ∈ S and σ ∈ Σ, if we use s ◦ σ to denote ◦(s, σ), we have

— η(s) is finite

— s ◦� = s

— η(s ◦ σ) = σ(η(s)).

Intuitively, a naming structure for S enables us to consider the elements of S as

containers of names. For each element s in S , η(s) gives the set of names that appear in

s, while the application of an element s to a substitution σ (s ◦ σ) yields the element of S

obtained by renaming each name in s according to σ.

If one considers the set of π-calculus processes Proc where

— Ch is the set of channel names

— fn(P ) ⊆ Ch yields the free-names in P

— P ◦ σ returns the process obtained from P by replacing each free name in P as

determined by substitution σ,

then the triple 〈Ch, fn, ·〉 is a naming structure for Proc.

A Multiple-Labelled Transition System, MLTS for short, consists of a set of states S ,

a set of resources R, a set of transition labels L and a naming structure 〈N, η, σ〉 for each

of S , R and L. States describe the configurations of a system modelled by an MLTS.

Naming structures label each state by a set of names. These are the names that are public

(known by the environment) when the system is in that state. Resources are the necessary

prerequisites for system evolutions. Transition labels typically identify the actions a system

can perform to interact with the environment. We also assume that L contains a special

distinct transition label τ denoting internal/silent evolution of a system.

MLTSs provide information about:

— the actions that a system can perform to interact with the environment;

— a system’s reactions to creation/deletion of new resources; and

— a system’s handling of privite/public names.
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The modelling via an MLTS is based on three different transition relations:

— the computation relation −→ S × L× S;

— the resource relation ........� ⊆ S × ({⊕,�} ×R)× S;

— the revelation relation ↪→⊆ S ×N × S .

As already mentioned, the three transition relations of an MLTS enable us to model

a system’s behaviour with respect to three different aspects. The computation relation

plays the same role as the transition relation in an LTS in that it describes the actions a

system can perform to interact with the environment. The resource relation describes how

a system evolves when resources are created or consumed. If r is a resource, we have that

s1 ........
�r
� s2 is possible if r is available at state s1; after r is consumed state s2 is reached.

Similarly, we have s1 .........
⊕r
� s2 if s2 can be obtained from s1 by adding resource r. The

revelation relation describes the capability of a system to reveal a private name to the

environment.

To guarantee the correct management of names, we need to require some specific

properties for the three transition relations, namely that they have to be preserved by

name permutations, that is, by bijective substitutions.

Definition 2.4. Let � = 〈N , η, ◦〉 be a naming structure for A1, . . . , An. We say that a

relation R ⊆ A1 × . . .×An is preserved by name permutations if and only if for each name

permutation σ,

(a1, . . . , an) ∈ R ⇔ (a1 ◦ σ, . . . , an ◦ σ) ∈ R .

Definition 2.5. A Multiple-Labelled Transition System is a 7-tuple

M = 〈S ,R,L,�,−→, ........� , ↪→〉

where:

— S , R and L are countable sets of states, resources and transition labels;

— � = 〈N , η, ◦〉 is a naming structure for S , R, L and N ; and

— the three relations

·−→ ⊆ S × L× S;

........� ⊆ S × ({⊕,�} ×R)× S
↪→ ⊆ S ×N × S

are preserved by name permutations.

In the rest of this paper we will use MS , MR, ML and M� to denote the set of states,

the set of resources, the set of transition labels and the naming structure of an MLTS M,

respectively.

In the next two sections we will show how MLTSs can be used for describing the

behaviour of asynchronous π-calculus and µKlaim.
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3. Asynchronous π-calculus

In this section we consider the asynchronous π-calculus (Aπ) (Boudol 1992; Honda and

Tokoro 1991), which is a subset of the π-calculus in which there is no output prefixing.

If Ch is a countable set of channels (whose elements are ranged over by a, b, . . . ), we

let ProcAπ be the set of Aπ processes (P , Q,. . . ) defined by the following syntax:

P ,Q ::= ab | G | P |Q | νa.P | !G
G ::= 0 | a(b).P | τ.P | G+ G

where G denotes guarded processes.

In Aπ, processes interact by exchanging messages over channels.

The process ab is used to indicate the availability of message b over channel a; it models

non-blocking outputs.

A guarded process G can be:

— 0, the deadlocked process;

— a(b).P , the process that retrieves a value over channel a and then behaves like process

P , and where the name b is bound to the retrieved value;

— τ.P , the process that performs an internal action and then behaves like P ;

— G1 + G2, the process that can non-deterministically behave like G1 or G2.

Processes are composed via parallel composition: P |Q describes a system composed

from two components (specified by P and Q, respectively) that can proceed independently

and can interact via shared channels.

Private names are defined using restriction: νa.P denotes the fact that a is a private

name in P .

Infinite behaviours are modelled via process replication (!G). This can be thought of as

an infinite composition of G (G|G| . . .).
Note that both input prefixing b(a).P and name restriction νa.P act as binders for

name a within P . In the rest of the paper we shall use f n(P ) to denote the set of names

free in P . We will also write P =α Q to denote the fact that P and Q are equal up-to

renaming of bound names. For instance, a(x).b(x) =α a(y).b(y) and ν a.ba =α ν c.bc. Let

P be a process and σ a name substitution, we write P ◦ σ to mean the process obtained

from P by replacing every free name a with σ(a).

Terms that intuitively represent the same process are identified by means of standard

structural congruence ≡. This relation is defined as the smallest congruence relation over

Aπ processes induced by the laws in Table 1. The structural laws express the fact that |
is commutative and associative and that the empty process can always be safely removed

from or added to a parallel composition. Structural equivalence also states that !P is

equivalent to !P |P , and that if a does not occur in Q, then ν a.(P |Q) is equivalent to

ν a.P |Q. In the rest of the paper, elements in ProcAπ will be considered equal up to

structural equivalence.

We will now introduce a simple Aπ specification for a simple system, which we will use

as a running example in the rest of the paper.

Example 3.1. A proxy is a system such that, given two channels a and b, if appropriate,

it will emit the values read from channel a on channel b.
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Table 1. ProcAπ Structural equivalence

P |0 ≡ P P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)

!P ≡ P |!P
a �∈ f n(Q)

ν a.(P |Q) ≡ (ν a.P )|Q

Table 2. Labelled transition system for Aπ

τ.P
τ�−→ P a(b).P

ac�−→ P [c/b] ab
ab�−→ nil

P
ab�−→ P ′ a �= b

ν b.P
a(b)�−→ P ′

P
λ�−→ P ′ a �∈ n(λ)

ν a.P
λ�−→ ν a.P ′

P
ab�−→ P ′ Q

ab�−→ Q′

P |Q τ�−→ P ′|Q′

P
a(b)�−→ P ′ Q

ab�−→ Q′ b �∈ f n(Q)

P |Q τ�−→ ν b.P ′|Q′
G

λ�−→ P

G+ G′
λ�−→ P

G
λ�−→ P

!G
λ�−→ P |!G

P
λ�−→ P ′ f n(Q) ∩ bn(α) = �

P |Q λ�−→ P ′|Q′

A possible Aπ specification for this system is

Proxy1 =!a(x).τ.bx

where process Proxy1 models the system as the infinite replication of a process that first

reads a value x from channel a, then performs some internal actions, and, finally, emits x

on channel b.

The operational semantics of Aπ processes is described in Amadio et al. (1998) by

means of the LTS relation ( �−→), which is defined in Table 2, where it is assumed

that �−→ is closed with respect to the structural congruence relation ≡. This means that

P ≡ Q Q
λ�−→ Q′ Q′ ≡ P ′

P
λ�−→ P ′

.

As usual, bound and free names are considered, and we have n(λ) = f n(λ)∪bn(λ) where

f n(τ) = � f n(a(b)) = {a} f n(ab) = f n(a(b)) = {a, b}
bn(τ) = � bn(a(b)) = {b} bn(ab) = bn(a(b)) = �.

The transition relation �−→ of Amadio et al. (1998) makes use of labels of the form

λ ::= τ | ab | a(b) | a(b) ,

and describes behaviours by considering different aspects at the same time. Labels τ

and a(b) are used to describe computations of a process: P
τ�−→ P ′ if P can perform

an internal synchronisation and then behaves like P ′; while P
a(b)
�−→ P ′ if P behaves like
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Table 3. MAπ: transition relations

τ.P
τ−→ P a(b).P |ac τ−→ P [c/b]

P
τ−→ P ′

P |Q τ−→ P ′|Q
P

τ−→ P ′

ν a.P
τ−→ ν a.P ′

P ........
⊕ab� P |ab P |ab ........

�ab� P

a �= b

ν a.(P ‖ ba) ↪→a P ‖ ba

P ′ after value b is retrieved from channel a. The same relation is used to describe the

state/spatial configuration of a process: P
ab�−→ P ′ if P ≡ P ′|ab. Moreover, if the value b

is private in P (P ≡ ν b.(P ′|ab)), P evolves to P ′ with a label a(b) denoting the fact that

b is bound in P ′ and that b is communicated in some way to the environment, so b is no

longer private in P ′.

We shall now see how MLTSs can be used to describe the behaviour of Aπ processes in

such a way that computations, spatial configurations and name revelations are modelled

separately. We will define an MLTS (named MAπ) that can be used as a semantic

model for Aπ processes. The set of states in MAπ will be the set of all Aπ processes.

Since processes during their computations consume and produce values over channels, we

consider our resources to be the set of terms denoting the availability of messages over

channels.

The computation relation will only consider internal actions and synchronisation. For

this reason, the set of transition labels in MAπ will contain τ labels only.

We let MAπ be the MLTS defined by

〈ProcAπ,ResAπ,LabAπ,�Aπ,−→, ........� , ↪→〉 (1)

where:

— ResAπ = {ab|a, b ∈ Ch};
— LabAπ = {τ};
— �Aπ = 〈Ch, fn, ◦〉;
— −→, .........� and ↪→ are the transition relations induced by the rules of Table 3, plus

those induced by the closure of the relations under ≡ as defined in Table 1.

The computation relation describes internal computation of a system caused by internal

moves (τ.P ) or by process synchronisation. The resource relation staes that starting from

a process P , a resource ab can be created leading to process P |ab. Conversely, a resource

ab can be consumed in P ≡ Q|ab to obtain Q. Finally, a process P reveals a name a, if

this is available over a public channel b. Intuitively, this means that the environment is

able to know the private name.

To show that the MAπ defined above is indeed an MLTS, we need to prove that �Aπ is

a named structures for states, resources and transition labels, and that all the transition

relations considered are preserved by name permutation.
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�av

τ

�bv

τ

Fig. 1. A portion of the MLTS for Proxy1 of Example 3.1

Lemma 3.2. �Aπ is a naming structure for ProcAπ , ResAπ , LabAπ and Ch.

Proof. The thesis follows easily by noting that:

— for each process P and substitution σ, we have f n(P ) is finite, P ◦ � = P and

f n(P ◦ σ) = σ(f n(P ));

— for each a ∈ Ch, we have f n(a) = {a} and a ◦ σ = σ(a);

— f n(τ) = � and τ ◦ σ = τ.

Lemma 3.3. −→, ........� and ↪→ are preserved by name permutation.

Proof. We prove the claim for −→; the proofs for ........� and ↪→ are similar.

Let σ be a permutation, we have to prove that for each P and Q, if P
τ−→ Q, then

P ◦ σ τ−→ Q ◦ σ.

We proceed by induction on the derivation for P
τ−→ Q.

Base of induction: We can distinguish two cases:

— P = τ.Q

— P = a(b).R|ac with Q = R[c/b].

In both the cases, for each permutation σ, P ◦ σ τ−→ Q ◦ σ.

Induction hypothesis: For each P and Q, if P
τ−→ Q is derivable in i steps, then for each

permutation σ, P ◦ σ τ−→ Q ◦ σ.

Induction step: Let P
τ−→ Q be derivable in i+ 1 steps. We can distinguish three cases:

— P = P ′|R, P ′
τ−→ Q′ and Q = Q′|R;

— P ≡ P ′, P ′ τ−→ Q′ and Q′ ≡ Q;

— P = ν a.P ′ (σ(a) = a), P ′
τ−→ Q′ and Q = ν a.Q′;

In these cases, we use the induction hypothesis for each permutation σ to get P ′ ◦σ τ−→
Q′ ◦ σ. Thus the thesis follows easily from the fact that for each R and S:

— (S |R) ◦ σ = (S ◦ σ)|(R ◦ σ);

— ν a.S ◦ σ = ν a.S ◦ σ (σ(a) = a); and

— if R ≡ S , then for each σ, R ◦ σ ≡ S ◦ σ.

In Figure 1, we present a portion of the MLTS describing the behaviour of Proxy1 (see

Example 3.1), where dashed arrows denote resource transitions. Note that only a subset
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of the possible transitions is shown in the figure; because v could be any of the admissible

values and resources could be added at any state.

We now consider the following lemma, which enables us to establish a strong corres-

pondence between the LTS semantics of Amadio et al. (1998) and the MLTS semantics

presented in this paper.

Lemma 3.4. The following assertions hold:

1 P
τ�−→ P ′ ⇔ P

τ−→ P ′.

2 P
ab�−→ P ′ ⇔ P ........

�ab
� P ′.

3 P
a(b)
�−→ P ′ ⇔ ∃P ′′.P ↪→b P ′′ ........

�ab
� P ′.

Proof.

1 P
τ�−→ P ′ if and only if, either

— P ≡ ν ã.(τ.Q1|Q2) and P ′ = ν ã.Q1|Q2; or

— P ≡ ν ã.(ab|a(c).Q1|Q2) and P ′ ≡ ν ã.(Q1[c/b]|Q2).

But the above holds if and only if P
τ−→ P ′.

2 P
ab�−→ P ′ if and only if P ≡ ab|P ′. Moreover, P ≡ abP ′ if and only if P ........

�ab
� P ′.

3 P
a(b)
�−→ P ′ if and only if P ≡ ν b.(ab|P ′) and b �= a. However, this holds if and only if

P ↪→b ab|P ′ and ab|P ′ ........
�ab
� P ′.

4. µKlaim

Klaim (De Nicola et al. 1998) is a formalism that can be used to model and program

mobile systems. It has been designed to provide programmers with primitives for

handling the physical distribution, scoping and mobility of processes. Klaim is based on

process algebras but makes use of Linda-like asynchronous communication and models

distribution via multiple shared tuple spaces (Carriero and Gelernter 1989; Gelernter

1985; Gelernter 1989). Tuple spaces and processes are distributed over different localities

and the classical Linda operations are indexed by the location of the tuple space they

operate on.

For simplicity, we shall use a simplified version of Klaim, called µKlaim (see, for

example, Bettini et al. (2003)). The main differences between Klaim and µKlaim is that

the former allows high-level communication (processes can be used as tuple fields) while

the latter only permits the remote evaluation of processes. Moreover, the simpler language

does not make any distinction between physical and logical localities, and does not need

allocation environments.

A µKlaim system, called a net, is a set of nodes, each of which is identified by a locality.

Localities can be seen as the addresses of nodes. We shall use Loc to denote the set of

localities l, l1, . . .. Every node has a computational component (a set of processes running

in parallel) and a data component (a tuple space). Processes interact with each other

either locally or remotely, by inserting and withdrawing tuples from tuple spaces.

A tuple is a sequence of actual fields. Each actual field can be either a locality (l), a

value v from the (finite) set of basic values Val (not specified here), or a variable x from
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Table 4. µKlaim syntax

N ::= Nets

0 empty net

| l :: C located component

| N1 ‖ N2 net composition

| ν l.N name restriction

C ::= P | 〈t〉 Components

act ::= Actions

out(t)@l output

| eval(P )@l migration

| in(T )@l input

P ::= Processes

| nil Empty process

| act.P Action Prefixing

| P |P Par. Composition

| P + P Nondet. Choice

| X Recursion Variable

| recX.P Recursion

| ν l.P Name restriction

t ::= f | f, t Tuples

f ::= l | v | x Fields

T ::= F | F, T Templates

F ::= f | ! l | ! x Temp. Fields

the set of variables Var. Tuples are retrieved from tuple spaces via pattern matching using

templates (T ). Templates are sequences of actual and formal fields. The latter are variables

that will get a value when a tuple is retrieved, and are distinguished by a ‘!’ before the

variable name.

The pattern-matching function match is defined in Table 5. The meaning of the rules

is straightforward: a template matches against a tuple if both have the same number of

fields and the corresponding fields match; two values (localities) match only if they are

identical, while formal fields match any value of the same type. A successful matching

returns a substitution function σ associating the variables contained in the formal fields of

the template with the values contained in the corresponding actual fields of the accessed

tuple.

The syntax of µKlaim nets is defined in the first part of Table 4. Term 0 denotes the

empty net, that is, the net that does not contain any node. Terms l :: P (located process)

and l :: 〈t〉 (located tuple) are used to describe basic µKlaim nodes: the former states that

process P is running at l, and the latter that the tuple space located at l contains tuple

〈t〉. µKlaim nets are obtained by parallel composition (‖) of located processes and tuples.

Finally, ν l.N states that l is a private name within N.

The following term denotes a net consisting of two nodes, named l1 and l2.

l1 :: P1 ‖ l1 :: P2 ‖ l2 :: (Q1|Q2) ‖ l2 :: 〈t1〉 ‖ l2 :: 〈t2〉

Processes P1 and P2 are running at l1 while Q1 and Q2 are running at l2. The tuple

space located at l2 contains tuples 〈t1〉 and 〈t2〉, while that located at l1 is empty

The syntax of µKlaim processes is defined in the second part of Table 4, where: nil

stands for the process that cannot perform any actions; P1|P2 stands for the parallel

composition of P1 and P2; and act.P stands for the process that executes action act then

behaves like P . Possible actions are out(t)@l, in(T )@l and eval(P )@l.

Action out(t)@l adds t to the tuple space located at l. Action eval(P )@l spawns a

process P at locality l. Action in(T )@l is used to retrieve tuples from tuple spaces. Unlike

out, this is a blocking operation: the computation is blocked until a tuple matching
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Table 5. Matching rules

(M1) match(l, l) = [] (M2) match(! l1, l2) =
[
l2/l1

]

(M3)
match(F, l) = σ1 match(T , t) = σ2

match( (F, T ) , (l, t) ) = σ1 · σ2

Table 6. Structural congruence

N1 ‖ N2 ≡ N2 ‖ N1 (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

l :: C ≡ l :: C ‖ l :: nil l :: recX.P ≡ l :: P [recX.P/X]

l :: (P1|P2) ≡ l :: P1 ‖ l :: P2

l �∈ f n(N2)

ν l.(N1 ‖ N2) ≡ (ν l.N1) ‖ N2

N1 ‖ 0 ≡ N1 ν l.0 ≡ 0

N1 =α N2

N1 ≡ N2

l2 �= l1

l1 :: ν l2.P ≡ ν l2.l1 :: P

template T is found in the tuple space located at l. When such a tuple t is found, it is

removed from the tuple space and the continuation process is closed with substitution

σ = match(T , t), which replaces the formals in T with the corresponding values in t. For

instance, if T = (!u, 4) and et = (l, 4), then match(T , t) = [l/u]. For this reason, in(T )@l.P

acts as a binder for variables in the formal fields of T . Finally, ν l.P declares a new name

l that will be used in P , so ν l.N and ν l.P act as binders for l in N and P , respectively.

In the rest of the paper, we will use l̃ to denote a finite sequence of names. Moreover, if

l̃ = l1, . . . , ln, we will write ν l̃.N for ν l1. . . . ν ln..N, and use {̃l} to denote the set {l1, . . . , ln}.
We will use f n(γ), where γ is a generic syntactic term, to denote the set of free names in

γ. Finally, we will write P1 =α P2 whenever P1 is equal to P2 up to renaming of bound

names and variables.

In the rest of this section we will use the structural congruence ≡ to identify terms that,

intuitively, represent the same net. It is defined as the smallest congruence relation over

nets that satisfies the laws in Table 6. The structural laws express the following facts:

— ‖ is commutative and associative;

— α-equivalent processes give rise to equivalent nodes;

— the null process and the empty net can always be safely removed/added;

— a process identifier can be replaced by the body of its definition; and

— it is always possible to transform a parallel of co-located processes into a parallel over

nodes.

Note that the commutativity and associativity of ‘|’ is derived from the commutativity

and associativity of ‘‖’ and from the fact that l :: (P |Q) ≡ l :: P ‖ l :: Q.
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Table 7. A simple µKlaim system

Printer :: recX.in(!from)@Printer.

(X|out(from)@PrintServer.nil

PrintServer :: 〈PrintSlot〉
| 〈PrintSlot〉
| recX.in(Print, !from)@PrintServer.

(X|out(from)@Printer.

in(from)@PrintServer.

out(PrintOk)@from.

out(PrintSlot)@PrintServer.nil)

Example 4.1 (Proxy specification in µKlaim). The proxy described in Example 3.1 can be

specified in µKlaim as a system consisting of two locations identified by localities la and

lb. When a tuple (matching !l) is stored in the tuple space located at la, this is retrieved

and stored in the tuple space located at lb. Two of the possible µKlaim implementations

of such a system are:

kProxy1 = la :: recX.in(!l)@la.out(l)@lb.X ‖ lb :: nil (2)

kProxy2 = la :: recX.in(!l)@la.eval(out(l)@lb.nil)@lb.X ‖ lb :: nil (3)

In kProxy1, located at la, there is a process that waits for a tuple t matching !l and

then stores t at lb. In kProxy2, the process located at la withdraws a tuple matching !l

and then spawns at lb a process that adds the retrieved tuples locally.

Example 4.2 (A print server). In Table 7 we show how µKlaim can be used to model

a simple print server with two µKlaim nodes: PrintServer and Printer. Located at

PrintServer there is a process that waits for a print request. Each such request contains

the locality from which it has been sent. When a request appears in the tuple space at

PrintServer, the process sends the document to the printer (out(from)@Printer), waits

for the printing signal (in(from)@PrintServer) and sends an ack (out(PrintOk)@from) to

the client. To send a print request, a print client has to retrieve a PrintSlot from the tuple

space located at PrintServer, where two PrintSlots are available.

We now present the operational semantics of µKlaim nets in terms of MLTSs. We will

define an MLTS MµK by singling out a set of states describing the configurations that

µKlaim nets can reach; a set of labels describing the actions nets can perform to interact

with the environment; and a set of resources used/produced by µKlaim nets in their

computation. We will then define the three transition relations that describe: the actions

a net can perform; how a net reacts when resources are created or consumed; and when

a net reveals private names. The MLTS-based semantics proposed here is just a different

presentation of the one, based on LTS, proposed in De Nicola and Loreti (2005). Indeed,

it is easy to establish a correspondence between the transition relations of De Nicola and

Loreti (2005) and those proposed here.
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Table 8. MµK: computation relation

l1 :: out(t)@l2.P
l1:t�l2−−−−−→ l1 :: P ‖ l2 :: 〈t〉

σ = match(T , t)

l1 :: in(T )@l2.P
l1:t�l2−−−−−→ l1 :: P {σ}

l1 :: eval(Q)@l2.P
l1:Q�l2−−−−−→ l1 :: P ‖ l2 :: Q

N1

l1:et�l2−−−−−→ N ′1

N1 ‖ l2 :: C
τ−→ N ′1 ‖ l2 :: C

N1

l1:t�l2−−−−−→ N ′1

N1 ‖ l2 :: 〈t〉 τ−→ N ′1

N1

l1:Q�l2−−−−−→ N ′1

N1 ‖ l2 :: C
τ−→ N2 ‖ l2 :: C

N1
λ−→ N2 λ′ = λ/l

ν l.N1
λ′−−→ ν l.N2

λ′ is relevant
N1

λ−→ N2

N1 ‖ N
λ−→ N2 ‖ N

The set of states in MµK coincides with the set Net of µKlaim nets. Transition labels

have a complex structure and contain information about the actions performed by located

processes. Moreover, the set of resources ResµK will contain locality names and tuples

with an indication of their location.

Let MµK be the MLTS defined by

〈Net,ResµK,LabµK,�µK,−→, ........� , ↪→〉
where:

— ResµK is the set of resources r defined by the syntax

r ::= l | 〈t〉@l .

— LabµK is the set of transition labels λ defined using the grammar

λ ::= τ | l1 : t� l2 | l1 : t� l2 | l1 : P � l2 .

— �µK = 〈Loc, fn, ◦〉.
— −→, ........� and ↪→ are the transition relations, closed with respect to ≡, induced by

the rules of Table 8 and Table 9.

Resource 〈t〉@l indicates the presence of tuple t in the tuple space located at l, and l

indicates that location l does indeed exist.

Label τ denotes silent transitions while l1 : t � l2, l1 : t � l2 and l1 : P � l2 denote,

respectively, the fact that a process located at l1:

— inserts tuple t in the tuple space located at l2;

— withdraws tuple t from the tuple space located at l2;

— spawns process P to be evaluated at l2.

The computation relation (−→) respects the intuitive meaning of µKlaim operations. A

net N1 reduces to N ′1 with label l1 : t� l2 if there is a process located at l1 that performs
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Table 9. MµK: resource relation and revelation relation

l :: 〈t〉 .........
�〈t〉@l� l :: nil l :: C ........

�l� l :: C

N1
........
�r� N ′1 l �∈ r

ν l.N1
........
�r� ν l.N ′1

N1
........
�r� N ′1

N1 ‖ N2
�r−−→ N ′1 ‖ N2

N1
.........
⊕〈t〉@l� N1 ‖ l :: 〈t〉 N1

........
⊕l� N1 ‖ l :: nil

l1 �= l2 l2 ∈ t
ν l1.(N ‖ l2 :: 〈t〉) ↪→l1 N ‖ l2 :: 〈t〉

out(t)@l2. The same net N1 evolves with a τ when it is composed in parallel with node l2.

Similar considerations apply for input and eval.

The rule for restriction (ν l.N1) relies on name hiding: if λ is a transition label, λ/l

denotes the transition label obtained from λ by hiding location l, namely by replacing l

with a special distinct locality 
 denoting the unknown location.

Definition 4.3.

1 Let 
 be a special distinct name in Loc. We let

l1/l2 =

{

 if l1 = l2
l1 otherwise.

2 λ/l is defined inductively as follows:

— τ/l = τ

— (l1 : t� l2)/l = (l1/l) : (t[
/l]) � (l2/l)

— (l1 : t� l2)/l = (l1/l) : (t[
/l]) � (l2/l)

— (l1 : P � l2)/l = (l1/l) : P [
/l] � (l2/l).

A transition label is relevant if it is τ or it takes effect on a visible/public location.

Formally, we have the following definition.

Definition 4.4. A transition λ is relevant if and only if:

— λ = τ; or

— λ is l1 : t� l2, l1 : t� l2 or l1 : P � l2 and l2 �= 
.

If N1 reduces with λ to N ′1, and λ/l is relevant, ν l.N1 reduces with λ/l to ν l.N ′1.

The resource relation (........�) is as expected. If in N1 a tuple space located at l contains

tuple t, then N1 evolves with �〈t〉@l by removing such a tuple. Conversely, N1 evolves with

⊕〈t〉@l by adding tuple t to the tuple space located at l. Reductions concerning �l and ⊕l
are similar. If N1 contains a node named l, then N1

�l−−→ N1, while N1
⊕l−−→ N1 ‖ l :: nil.

Note that in the case of �l nothing is removed from N1: resource l is used without being

consumed.
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Finally, a net N1 reveals a private name l if there exists a tuple t containing l located

in a public tuple space, that is, a tuple space located at a non-private node.

As with the Aπ, we now have to prove that �µK is a naming structure for Net, ResµK ,

LabµK and Loc, and that −→, .......� and ↪→ are preserved by name (locality) permutation.

Lemma 4.5. �µK is a naming structure for Net, LabµK , ResµK and Loc.

Lemma 4.6. −→, ........� and ↪→ are preserved by name (locality) permutation.

The proofs for the lemmas above follow along the same lines as the proofs of Lemmas 3.2

and 3.3.

5. MoMo: a modal logic for mobility

In this section, we present MoMo logic, which is a modal logic that enables us to

specify properties of MLTSs. With MoMo we lay the basis for defining a common logical

framework for specifying properties of mobile calculi whose semantics is given in terms of

an MLTS. A variant of MoMo that was specifically designed for specifying and verifying

properties of Klaim systems was introduced in De Nicola and Loreti (2005).

MoMo contains four groups of logical operators:

— The kernel fragment contains standard first-order logic operators and recursive formulae

that enable us to describe recursive properties.

The remaining fragments rely on the three transition relations contained in an MLTS.

— State formulae are used to assert properties concerning the allocation of resources in

a system; their interpretation function will be defined in terms of the relation ........� .

— Temporal formulae, which are interpreted by considering the computation relation −→,

describe the action a system can perform to interact with the environment. These are

parametrised with respect to a set A of label predicates that will be instantiated for

the different calculi.

— The properties of names, such as freshness or revelation, are specified using nominal

formulae, whose semantics are given using the relation ↪→.

In the rest of this section we describe and motivate each fragment of the logic separately,

and discuss formulae satisfaction. Models for MoMo formulae are pairs of the form

〈M,�〉 where M is an MLTS and � is a function that maps label predicates to sets of

transition labels belonging to ML. The formal syntax and semantics of MoMo will be

defined in Section 5.5.

5.1. Kernel fragment

This fragment of the logics is standard. The propositional part of this fragment contains

True (T), Conjunction (φ1 ∧ φ2) and Negation (¬φ). The interpretation of this part of the

logic is as expected. Every state satisfies True, a state satisfies φ1 ∧ φ2 if and only if both

φ1 and φ2 are satisfied, and ¬φ is satisfied by each state that does not satisfy φ.

The kernel fragment also contains formulae for specifying recursive properties: maximal

fixed point and logical variables. Intuitively, a state s satisfies νκ.φ if s satisfies φ[νκ.φ/κ].
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Formally, the interpretation of νκ.φ is defined as the maximal fixed point of the

interpretation of φ.

If �[[]] is the interpretation function of the proposed logic (which is formally defined

later), the set of nets satisfying νκ.φ is defined as the maximal fixed point of the function

Fφ : 2M
S → 2M

S
defined as follows:

Fφ(S)
def
= �[[φ]][κ �→ S]

where �[[φ]][κ �→ S] identifies the set of states satisfying φ when it is assumed that each

state in S satisfies κ.

To guarantee well-definedness of the interpretation function, it is assumed that in every

formula νκ.φ, the logical variable κ is positive within φ (that is, it appears within the

scope of an even number of negations). This enables us to define �[[·]] as the composition

of monotonic functions in 2M
S → 2M

S
; since 2M

S
is a complete lattice, Tarski’s Fixed

Point Theorem guarantees the existence of a unique maximal fixed point for �[[φ]].

5.2. State properties

This fragment of the logic is intended to be used for describing properties concerning the

availability of resources and a system’s reactions to the placement of new resources in a

state.

Typical properties one could specify using this fragment of the logic are:

‘Two instances of resource ρ are available.’ (†)

‘Eventually after the insertion of resource ρ1, resource ρ2 will be available.’ (‡)

An analysis of the resources present in a given state can be described by means of the

consumption operator ρ→ φ. Intuitively, a state s satisfies ρ→ φ if resource ρ is available

at s and, once it is removed, formula φ is satisfied.

By using the consumption operator, property (†) above would be rendered as

ρ→ ρ→ T .

Production properties are used to state properties depending on the availability of new

resources. These properties are specified by using the production operator ρ ← φ, which

is satisfied by every state that satisfies φ after a resource ρ is produced. Hence, a state s1

satisfies ρ← φ if there exists s2 such that s1 ........
⊕ ρ
� s2 and s2 satisfies φ.

Property (‡) can be formalised in MoMo as

ρ1 ← Eventually(ρ2 → T)

where Eventually(φ) is a derivable operator, which we use as a macro in MoMo, asserting

that sooner or later a state satisfying φ will be reached.

Note that the production operator is reminiscent of the separating implication of

Separation Logic (Reynolds 2002). This operator allows one to describe the properties of

shared memories extended with a set of values satisfying a given specification.
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5.3. Temporal properties

Temporal properties are specified using diamond operator 〈·〉φ. This is a variant of the

HML diamond operator that, instead of being indexed by a set of transition labels, is

indexed by a label predicate α from a given set of label predicates A. The interpretation

of modal operator 〈·〉φ relies on function � that, for each label predicate α, yields the set

of transition labels satisfying α.

Formally, a state s1 satisfies 〈α〉φ if and only if there exist s2 and λ such that λ ∈ �(α),

s1
λ−−→ s2 and s2 satisfies φ.

5.4. Nominal properties

In this section we introduce operators for dealing with name properties. They will enable

us to describe properties of the form ‘there exists a name that is used in a specific way’

or ‘a private name is used accordingly to a given protocol’. Below, we shall consider four

different operators: quantification; revelation; name freshness and name matching.

Name quantification (∃n.φ) enables us to quantify properties with respect to names – a

state s satisfies ∃n.φ if there exists n′ such that s satisfies φ[n′/n].

Name revelation (n � φ) is used to describe properties concerning the disclosure of

private names. A state satisfies n � φ if n can be uncovered (revealed) before reaching

a state satisfying φ. A state s1 reveals n if there exists s2 such that s1 ↪→n s2. Hence, s1
satisfies n � φ if and only if there exists s2 such that s1 ↪→n s2 and s2 satisfies φ.

Name Freshness (|⁄|nφ) acts as a quantifier over all names that do not occur free either

in the formula φ or in the state. It is an adaptation of the Gabbay–Pitts quantifier |⁄|lφ
(Gabbay and Pitts 1999). The fresh name quantifier, when used with state formulae (and,

in particular, with the production operator), enables us to assert properties related to the

creation of new resources.

Given the MLTS M, where M� = 〈N , η, ◦〉, a state s ∈MS satisfies |⁄|nφ if and only

if there exists n′ that is not in η(s) and does not appear in φ such that φ[n′/n] is satisfied

by s.

Name matching ({n1 = n2}) enables us to verify whether two names are equal. Namely,

a state satisfies {n1 = n2} if n1 and n2 refer to the same name.

5.5. Syntax and Semantics of MoMo

The actual syntax of MoMo is summarised in Table 10 and its interpretation function is

formally defined in Table 11.

MoMo formulae are interpreted with respect to a pair 〈M,�〉, where M is an MLTS

and � is a function that maps label predicates to sets of transition labels. Formulae

interpretation function (�[[]]〈M,�〉) is parametrised with respect to such a pair. We will

omit explicit reference to 〈M,�〉 whenever it is clear from the context.

Formulae are interpeted under a function, called the logical environment and denoted

by ε, that associates to each logical variable a set of states. We use ε0 to denote the logical

environment such that, for each logical variable κ, ε0(κ) = �.
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Table 10. The syntax of formulae

φ::= Formulae

T true

| φ ∧ φ conjunction

| ¬φ negation

| νκ.φ maximal fixed point

| κ logical variable

| ρ→ φ consumption

| ρ← φ production

| 〈α〉φ2 diamond

| ∃n.φ name quantification

| {n1 = n2} name matching

| n � φ revelation

| |⁄ |nφ fresh name quantification

Table 11. The interpretation of formulae

Kernel Fragment

�〈M,�〉[[T]]ε = S

�〈M,�〉[[¬φ]]ε = S −�〈M,�〉[[φ]]ε

�〈M,�〉[[φ1 ∧ φ2]]ε = �〈M,�〉[[φ1]]ε ∩�〈M,�〉[[φ2]]ε

�〈M,�〉[[νκ.φ]]ε = νF
�〈M,�〉[[κ]]ε = ε(κ)

where:

F (x) = �〈M,�〉[[φ]]ε · [κ �→ x]}

State Formulae

�〈M,�〉[[ρ→ φ]]ε = {s1|s1 .......
�ρ� s2 and s2 ∈�〈M,�〉[[φ]]ε}

�〈M,�〉[[ρ← φ]]ε = {s1|s1 .......
⊕ρ� s2 and s2 ∈�〈M,�〉[[φ]]ε}

Temporal Formulae

�〈M,�〉[[〈α〉φ]]ε =

{
s1|∃s2 ∈�〈M,�〉[[φ]]ε.s1

λ−−→ s2, λ ∈ �(α))

}

Nominal Properties

�〈M,�〉[[∃n.φ]]ε =
⋃
n′∈N �〈M,�〉[[φ[n′/n]]]ε

�〈M,�〉[[n � φ]]ε =
{
s1|∃s2 ∈�〈M,�〉[[φ]]ε.s1 ↪→n s2

}
�〈M,�〉[[| ⁄ |nφ]]ε = {s|∃n′.n′ �∈ f n(φ) ∪ η(s) and s ∈�〈M,�〉[[φ[n′/n]]]ε}

The interpretation function �[[]]〈M,�〉 takes a formula φ and a logical environment ε

and yields the set of states in M satisfying φ, that is, the set of state that are models of φ.

We shall use �A to denote the set of MoMo formulae that use label predicates belonging

to A.

The following lemma guarantees that names can be consistently replaced in nets and

formulae while preserving the satisfaction relation.
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Table 12. Derivable operators

µκ.φ
def
= ¬νκ.¬φ[¬κ/κ] φ1 ∨ φ2

def
= ¬(¬φ1 ∧ ¬φ2)

ρ⇒ φ
def
= ¬ρ→ ¬φ [α]φ

def
= ¬〈α〉¬φ

∀n.φ def
= ¬∃n.¬φ {n1 �= n2}

def
= ¬{n1 = n2}

Lemma 5.1. Let M be an MLTS, and M� = 〈N , η, ◦〉, for every state s ∈MS , formula

φ and names n1 and n2 in N , we have s ∈ �〈M,�〉[[φ]]ε if and only if s ◦ {n2/n1} ∈
�〈M,�〉[[φ[n2/n1]]].

Proof. The proof follows easily by induction on the structure of the syntax of formulae

thanks to the fact that all the transition relations in M are preserved under name

permutations.

In the rest of this paper we will use �〈M,�〉[[φ]] to denote �〈M,�〉[[φ]]ε0, and s |=〈M,�〉 φ

will be used to indicate that s ∈�〈M,�〉[[φ]].

In Table 12 we present a set of fairly standard derivable operators, which we will use

as macros of the logic in the examples in the rest of the paper.

6. MoMo dialects for the analysis of mobile and distributed systems

In this section we present two different dialects of MoMo that eanble us to specify and

verify properties of mobile and distributed systems specified using Aπ and µKlaim. To

define each of these dialects we will single out a set of label predicates (A) and an

interpretation function (�) that identifies the set of transition labels satisfying a given

label predicate.

6.1. MoMoAπ

Since we have only considered a single transition label (τ) in MAπ , we will just consider

a single label predicate
√

. Moreover, we shall use the trivial interpretation function

�Aπ[[
√

]] = {τ}.
MoMoAπ syntax can be summarised as follows (propositional and recursive formulae

are omitted):

φ ::= . . . | ab→ φ | ab← φ | 〈
√
〉φ | ∃a.φ | a � φ | |⁄|aφ .

The interpretation of these formulae, which is obtained by considering MAπ as a model

in the definition of Table 11, can be described informally as follows:

— P |=〈MAπ,�Aπ〉 ab→ φ if and only if P ≡ ab|Q and Q |=〈MAπ,�Aπ〉 φ;

— P |=〈MAπ,�Aπ〉 ab← φ if and only if P |ab |=〈MAπ,�Aπ〉 φ;

— P |=〈MAπ,�Aπ〉 〈
√
〉φ if and only if P

τ−→ Q and Q |=〈MAπ,�Aπ〉 φ;

— P |=〈MAπ,�Aπ〉 ∃a.φ if and only if there exists b ∈ f n(P ) such that P |=〈MAπ,�Aπ〉 φ[b/a];

— P |=〈MAπ,�Aπ〉 a � φ if and only if P ≡ ν a.(Q|ba) (a �= b) and Q|ba |=〈MAπ,�Aπ〉 φ;
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— P |=〈MAπ,�Aπ〉 |⁄|aφ if and only if there exists b �∈ f n(P ) and b �∈ f n(φ) such that

P |=〈MAπ,�Aπ〉 φ[b/a].

We will now show how the proposed logic can be used to specify properties of the

system described in Example 3.1. For this system, we may be interested in guaranteeing

the following properties:

PROP1 Every message sent over channel a will eventually be emitted over channel b.

PROP2 The order of messages is preserved by the proxy.

The first property can be rephrased as if we let c be a new name, then if c is made

available over channel a (by creating resource ac), then sooner or later resource bc can be

consumed. In the logic, this can be formalised as

φ1
def
= |⁄|cac← Evn(bc→ true) (4)

where

Evn(φ)
def
= νκ.φ ∨ (

[√]
κ ∧ 〈

√
〉true) .

It easy to prove that Proxy1 satisfies (4).

Property PROP2 can be rephrased as if we let c and d be two names, then it is not the

case that if d is sent over a after c, then c is emitted over b after d. This property can be

rendered in MoMoAπ as follows:

φ1
def
= ¬ac← 〈

√
〉ac⇒ false ∧ ad← φ2 (5)

where

φ2
def
= νκ.bc⇒ false ∧ (bd→ true∨)〈

√
〉κ .

Now we have that process Proxy1 does not satisfy formula (5), because there is no

synchronisation between two different instances of the replicated process.

Both PROP1 and PROP2 would be satisfied by a different implementation of the Aπ

proxy:

Proxy2
def
= ν c.(a(x).τ.(bx|c(c)))|(!c(y).a(x).τ.(bx|c(y)))

where a new istance of the replicated process can start only when the previous one is

terminated. This behaviour is guaranteed by the synchronisation over the private name c.

6.2. MoMoµK

Let AµK be the set of label predicates α defined as follows:

—
√

, identifying τ labels;

— l1 : t�l2, identifying the execution of an input;

— l1 : t�l2, corresponding to an output action;

— l1 : φ�l2, characterising the remote evaluation of a process.

The interpretation of
√

, l1 : t�l2 and l1 : t�l2 is trivial: they are satisfied by τ, l1 : t� l2
and l1 : t� l2, respectively. The interpretation of l1 : φ�l2 is more complicated. Intuitively,

a transition label λ satisfies l1 : φ�l2 if λ = l1 : P � l2 and l2 :: P satisfies φ. Hence,
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to define �µK (the interpretation of AµK ), we need a mutual recursion because we make

use of �〈MµK ,�µK 〉 when defining �µK . Indeed, the interpretation function of AµK is the

greatest lower bound of a chain of interpretation functions that depends on the depth of

temporal formulae.

Definition 6.1. Let depth(φ) and depth(α) be defined inductively as follows:

— depth(T) = depth(κ) = depth({n1 = n2}) = 0;

— depth(¬φ) = depth(νκ.φ) = depth(ρ → φ) = depth(ρ ← φ) = depth(∃n.φ) =

depth(n � φ) = depth(|⁄|nφ) = depth(φ)

— depth(〈α〉φ) = max{depth(α), depth(φ)}
— depth(φ1 ∧ φ2) = max{depth(φ1), depth(φ2)}

— depth(α) =

{
1 + depth(φ) if α = l1 : φ�l2
0 otherwise.

Definition 6.2. Let �[[α]] =
⋂
i∈� �i

µK[[α]] where for all i � 0:

— �i
µK [[
√

]] = {τ};
— �i

µK [[l1 : t�l2]] = {l1 : t� l2};
— �i

µK [[l1 : t�l2]] = {l1 : t� l2};
— �0

µK [[l1 : φ�l2]] = {l1 : P � l2|l2 :: P ∈ Net};

— �i+1
µK [[l1 : φ�l2]] =

{
{l1 : P � l2|l2 :: P ∈��i

[[φ]]ε0} if depth(φ) � i

{l1 : P � l2 | l2 :: P ∈ Net} otherwise.

To guarantee the well-definedness of �, we have to prove, for each α, that {�i
µK [[α]]}i∈� is

a chain in the complete lattice 2LabµK . Namely, that for each i, we have �i+1
µK [[α]] ⊆ �i

µK [[α]].

Lemma 6.3. The following assertions hold:

— For each α and for each i and j such that depth(α) � i and depth(α) � j, we have

�i
µK [[α]] = �j

µK [[α]] .

— For each φ and for each i and j such that depth(φ) � i and depth(φ) � j, we have

��i

[[φ]] = ��j

[[φ]] .

Proof. The proof is by induction on depth(α) and depth(φ).

Base of induction: It is easy to prove that if depth(α) = 0, then for each i and j

�i
µK [[α]] = �j

µK [[α]] .

Similarly, if depth(φ) = 0, then φ does not contain label predicates of the form

l1 : ψ�l2. Hence,

��i

[[φ]] = ��j

[[φ]] .

Induction hypothesis: We assume that:

— For each α, with depth(α) � k, and for each i and j such that depth(α) � i and

depth(α) � j, we have

�i
µK [[α]] = �j

µK [[α]] .

https://doi.org/10.1017/S0960129507006585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006585


Multiple-Labelled Transition Systems for nominal calculi and their logics 129

— For each φ with depth(φ) � k, and for each i and j such that depth(φ) � i and

depth(φ) � j, we have

��i

[[φ]] = ��j

[[φ]] .

Induction step: Let α be such that depth(α) = k + 1. Hence, α = l1 : ψ�l2 for some l1, l2
and ψ such that depth(ψ) = k. For each i � k + 1, we have

�i
µK[[α]] =

{
l1 : P � l2|l2 :: P ∈��i−1

[[ψ]]
}

= (A) .

By the induction hypothesis, we have that for each j � k + 1,

(A) =
{
l1 : P � l2|l2 :: P ∈��j−1

[[ψ]]
}

= �j
µK [[α]] .

Similarly, let φ be such that depth(φ) = k + 1. Without lost of generality we let

φ = 〈α〉ψ with depth(α) = k + 1 and depth(ψ) � k. Let i � k + 1. We have

��i

[[〈α〉ψ]] = {N|∃λ,N ′ : N λ−−→ N ′, λ ∈ �i
µK [[α]], and N ′ ∈��i

[[ψ]]} .

Using the induction hypothesis for each j � k, we have ��j

[[ψ]] = ��j

[[ψ]]. Moreover,

we have shown that, if depth(α) = k + 1, then for each j � k + 1 �i
µK[[α]] = �j

µK [[α]].

Thus, ��i

[[〈α〉ψ]] = ��j

[[〈α〉ψ]], and the statement follows.

Lemma 6.4. For each i � 0 and for each α, we have �i+1
µK [[α]] ⊆ �i

µK [[α]].

Proof. We can distinguish three cases:

— If depth(α) � i, then for each i and j, �i+1
µK [[α]] = �i

µK [[α]] (Lemma 6.3).

— If depth(α) = i+ 1, then α = l1 : φ�l2 for some l1, l2 and φ such that depth(φ) = i. We

have:

�i+1
µK [[α]] = {l1 : P � l2|l2 :: P ∈��i

[[φ]]ε0} ⊆ {l1 : P � l2|l2 :: P ∈ Net} = �i
µK [[α]] .

— If depth(α) > i+ 1, then we have

�i+1
µK [[α]] = �i

µK[[α]] = {l1 : P � l2|l2 :: P ∈ Net} .

The state fragment of MoMoµK (r → φ and r ← φ) relates formulae satisfaction to the

creation or consumption of resources and enables us to describe the spatial properties of a

system. On the other hand, the temporal fragment (〈α〉φ) enables us to describe properties

concerning interaction protocols among system components and to control properties of

agents migrating over the net.

We can use MoMoµK to specify properties of the proxy specifications in µKlaim

presented in Example 4.1. As with the Aπ specification, we are interested in guaranteeing

the following properties:

PROP1 Every message sent over channel a will eventually be emitted over channel b.

PROP2 The order of messages is preserved by the proxy.

These can be rendered in MoMoµK using the following formulae:

|⁄|l〈l〉@la ← Evn(〈l〉@lb → true) (6)
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where

Evn(φ)
def
= νκ.φ ∨ (

[√]
κ ∧ 〈

√
〉true)

¬〈l1〉@la ← 〈
√
〉〈l1〉@la ⇒ false ∧ 〈l2〉@la ← φ2 (7)

where

φ2
def
= νκ.〈l1〉@lb ⇒ false ∧ (〈l2〉@lb → true∨)〈

√
〉κ .

It easy to prove that kProxy2 (see specification (2) in Section 4) satisfies both (6) and

(7) while kProxy1 (see specification (3) in Section 4) satisfies only (6).

Note that the formalisation of properties Prop1 and Prop2 in MoMoµK (6 and 7) and

MoMoAπ (4 and 5) coincide apart from the resource specification. Indeed, while in the

Aπ specification a resource is a channel with a value (ac), in µKlaim it is a located tuple

(〈t〉@l). We thus have that the properties of a generic proxy can be described in MoMo

while ignoring specific system implementations.

MoMoµK can also be used for specifying and verifying properties of Example 4.2. For

instance, a possible property to establish is that the print server handles all requests. In

other words, one could require that if a client retrieves a print slot and sends a document

for printing, then sooner or later the document will be printed and the client will be

notified. This property can be specified by the following formula:

φ
def
= (PrintSlot)@PrintServer →

l ←
(l, ”test”)@PrintServer ←

Evn(PrintOk@l → T)

(1)

(2)

(3)

(4)

This can be read as:

1 Let (PrintSlot) be a tuple available at PrintServer,

2 and let l be the locality of a print client,

3 if (l, ‘test′) is inserted at PrintServer,

4 then eventually tuple (PrintOK) will be at l.

7. Logical and behavioural equivalences

In the previous section we showed how dialects of MoMo logics can be used for specifying

and verifying properties of mobile and distributed applications specified using calculi like

Aπ and µKlaim.

An alternative method for proving properties of process calculi is the one based on be-

havioural equivalences that requires us to provide a concrete and an abstract specification

of the behaviour of a given system and then establish that they are ‘indistinguishable’

under appropriate assumptions. Equivalences also turn out to be important because they

would enable us to determine when parts of a system can be replaced without changing the

behaviour of the whole specification. If one considers the proxy specified in Example 3.1,

one could imagine that the τ action, which is performed after a message is retrieved

over channel a, models an internal behaviour and the system could be refined with an
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alternative implementation:

Proxy3 =!ν c.a(x).cx|c(y).by .

Obviously, formulae satisfaction also induces an equivalence on the interpretation model

and two system descriptions are equivalent if (and only if) they satisfy the same set of

formulae. A classical result relating modal logic and behavioural equivalence was given

in Hennessy and Milner (1985) and shows that the equivalence induced by a very simple

modal logic coincides with the so-called bisimulation equivalence.

Correspondence results between differently characterised relations are important in

many ways. They help us to gain confidence in the proposed formalisation, enable us to

use minimised models when checking formulae satisfaction and help us in studying the

properties of the more convenient variant of the equivalent specification.

In this section we shall provide a behavioural characterisation of the logical equivalence

induced by MoMo on an MLTS, and show that it coincides with a natural adaptation of

the bisimulation relations built on the three transition relations of our model.

The proposed behavioural equivalence is defined over the states of an MLTS. We first

define three relations that characterise the bisimulations over the three relations associated

with each MLTS.

Definition 7.1. Let M be an MLTS.

1 A relation R ⊆MS ×MS is a resource preserving bisimulation if and only if R is

symmetric and for each (s1, s2) ∈ R and r ∈MR, we have:

— If s1 ........
⊕r
� s′1, then there exists s′2 such that s2 ........

⊕r
� s′2 and (s′1, s

′
2) ∈ R.

— If s1 ........
�r
� s′1, then there exists s′2 such that s2 ........

�r
� s′2 and (s′1, s

′
2) ∈ R.

We use ∼R to denote the largest resource preserving bisimulation.

2 A relation R ⊆MS ×MS is a revelation bisimulation if and only if R is symmetric

and for each (s1, s2) ∈ R and n ∈MN , we have:

— If s1 ↪→n s′1, then there exists s′2 such that s2 ↪→n s′2 and (s′1, s
′
2) ∈ R.

We use ∼N to denote the largest revelation bisimulation.

3 A relation R ⊆ MS ×MS is an A -parameterised bisimulation whenever A ⊆
ML ×ML, if and only if R is symmetric and for each (s1, s2) ∈ R and λ1 ∈ML, we

have:

— If s1
λ1−−→ s′1, then there exist λ2 and s′2 such that s2

λ2−−→ s′2, (λ1, λ2) ∈ A and

(s′1, s
′
2) ∈ R;

We use ∼A
L to denote the largest A -parameterised bisimulation.

The required bisimulation for an MLTS is obtained as the intersection of the three

relations we have just introduced.

Definition 7.2. Let M be an MLTS and A ⊆ML×ML. We define ∼A =∼R ∩ ∼N ∩ ∼A
L .

Let M be an MLTS and A be a subset of ML×ML. We will now show how ∼A can

characterise the behavioural equivalence induced by formulae satisfaction �A. We will

first introduce the following technical lemma.
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Lemma 7.3. If A1 ⊆ A2, then for each s1 and s2, s1 ∼A1 s2 ⇒ s1 ∼A2 s2.

Proof. We prove that if A1 ⊆ A2, then ∼A1 is an A2-parameterised bisimulation.

Let s1 ∼A1 s2. Then, if s1
λ1−−→ s′1, there exists λ2 and s′2 such that s2

λ2−−→ s′2, (λ1, λ2) ∈ A1

and s′1 ∼A1 s′2. Since A1 ⊆ A2, we have (λ1, λ2) ∈ A2 and ∼A1 is an A2-parameterised

bisimulation and ∼A1⊆∼A2 .

We now show that for each s1 and s2, if s1 ∼A s2, then s1 and s2 satisfy the same set of

formulae in �A, under the assumption that relation A is respectful of interpretation �,

where ‘respectful of’ is defined as follows.

Definition 7.4. Let A ⊆ML ×ML, A be a set of label predicates and � : A→ 2M
L

be

the interpretation function. We say that

— A is respectful of � if and only if ∀α ∈ A,

(λ1, λ2) ∈ A if and only if λ1 ∈ �[[α]]⇔ λ2 ∈ �[[α]] .

Theorem 7.5. Let M be an MLTS, A be a set of label predicates, � : A → 2M
L

be the

interpretation function, and A ⊆ML ×ML be respectful of �. Then

s1 ∼A s2 =⇒ ∀φ ∈ �A.s1 |=〈M,�〉 φ iff s2 |=〈M,�〉 φ .

Proof. We prove the result for the recursion-free fragment of the logic, denoted by �−A.

Indeed, it is easy to prove that

∀φ ∈ �A.s1 |=〈M,�〉 φ⇔ s2 |=〈M,�〉 φ

if and only if

∀φ ∈ �−A.s1 |=〈M,�〉 φ⇔ s2 |=〈M,�〉 φ .

Let:

— R� = {(s1, s2)|∀φ ∈ �−A.s1 |=〈M,�〉 φ⇔ s2 |=〈M,�〉};
— size(φ) be defined inductively as follows:

– size(T) = 0

– size(φ1 ∧ φ2) = 1 + max{size(φ1), size(φ2)}
– size(¬φ) = 1 + size(φ)

– size(ρ→ φ) = 1 + size(φ)

– size(ρ← φ) = 1 + size(φ)

– size(〈α〉φ) = 1 + size(φ)

– size(∃n.φ) = 1 + size(φ)

– size({n1 = n2}) = 0

– size(n � φ) = 1 + size(φ)

– size(|⁄|nφ) = 1 + size(φ).
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We will prove by induction on size(φ) that for each φ ∈ �−A, if s1 ∼A s2, then

s1 |=〈M,�〉 φ if and only if s2 |=〈M,�〉 φ.

Base of induction: We have to prove that for each φ such that size(φ) = 0, if s1 ∼A s2,

then s1 |=〈M,�〉 φ if and only if s2 |=〈M,�〉 φ. We can distinguish two cases:

— φ = T;

— φ = {n1 = n2}.

In both cases the statement follows trivially.

Induction hypothesis: We assume that for each φ such that size(φ) � n, if s1 ∼A s2, then

s1 |=〈M,�〉 φ if and only if s2 |=〈M,�〉 φ.

Induction step: Let φ be such that size(φ) = n + 1. We prove that if s1 ∼A s2, then

s1 |=〈M,�〉 φ if and only if s2 |=〈M,�〉 φ. We can distinguish the following cases

according to the syntax of φ:

— φ = φ1 ∧ φ2:

s1 |=〈M,�〉 φ1 ∧ φ2 ⇔ s1 |=〈M,�〉 φ1 and s1 |=〈M,�〉 φ2

⇔ s2 |=〈M,�〉 φ1 and s2 |=〈M,�〉 φ2

for the induction hypothesis

⇔ s2 |=〈M,�〉 φ1 ∧ φ2 .

— φ = ρ→ φ:

s1 |=〈M,�〉 ρ→ φ ⇔ ∃s′1.s1 ........
�ρ
� s′1 and s′1 |=〈M,�〉 φ

⇔ ∃s′2.s2 ........
�ρ
� s′2 and s′1 ∼A s′2

since ∼A is a resource preserving bisimulation

⇔ s′2 |=〈M,�〉 φ

for the induction hypothesis

⇔ s2 |=〈M,�〉 ρ→ φ .

— φ = ρ← φ:

s1 |=〈M,�〉 ρ← φ ⇔ ∃s′1.s1 ........
⊕ρ
� s′1 and s′1 |=〈M,�〉 φ

⇔ ∃s′2.s2 ........
⊕ρ
� s′2 and s′1 ∼A s′2

since ∼A is a resource preserving bisimulation

⇔ s′2 |=〈M,�〉 φ

for the induction hypothesis

⇔ s2 |=〈M,�〉 ρ← φ .
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— φ = 〈α〉φ:

s1 |=〈M,�〉 〈α〉φ ⇔ ∃s′1.s1
λ1−−→ s′1, λ ∈ �[[α]]

and s′1 |=〈M,�〉 φ

⇔ ∃λ2, s
′
2.s2

λ2−−→ s′2, λ2 ∈ �[[α]]

and s′1 ∼A s′2
since ∼A is an A -parametrised bisimulation and A is respectful of �

⇔ s′2 |=〈M,�〉 φ

for the induction hypothesis

⇔ s2 |=〈M,�〉 〈α〉φ .

— φ = ∃n.φ:

s1 |=〈M,�〉 ∃n.φ ⇒ s1 |=〈M,�〉 φ[n′/n] for some n′ ∈MN

⇒ s2 |=〈M,�〉 φ[n′/n] for the induction hypothesis

⇒ s2 |=〈M,�〉 ∃n.φ .

— φ = n � φ:

s1 |=〈M,�〉 n � φ ⇔ s1 ↪→n s′1 and s′1 |=〈M,�〉 φ

⇔ s2 ↪→n s′2 and s′1 ∼A s′2
since s′1 ∼A s′2 is a revelation bisimulation

⇔ s′2 |=〈M,�〉 φ for the induction hypothesis

⇔ s2 |=〈M,�〉 n � φ .

— φ = |⁄|nφ:

s1 |=〈M,�〉 |⁄|nφ ⇔ s1 |=〈M,�〉 φ[n′/n] for some n′ �∈ ηS (s1)

⇔ s1 |=〈M,�〉 φ[n′′/n] for some n′′ �∈ ηS (s1) sup ηS (s2)

and n′′ not occurring in φ (see Lemma 5.1)

⇔ s2 |=〈M,�〉 φ[n′′/n] for the induction hypothesis

⇔ s2 |=〈M,�〉 |⁄|nφ .

— φ = ¬φ:

s1 |=〈M,�〉 ¬φ ⇔ s1 �|=〈M,�〉 φ

⇔ s2 �|=〈M,�〉 φ for the induction hypothesis

⇔ s2 |=〈M,�〉 ¬φ .

Let R� ⊆MS ×MS be the symmetric relation defined by

R� = {(s1, s2)|∀φ ∈ �−A.s1 |=〈M,�〉 φ⇔ s2 |=〈M,�〉} .

We want to prove that R� is a subset of ∼A .

First, we have to guarantee that M is tractable, namely that for each state in MS , only

a finite set of next states has to be considered.
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Definition 7.6. An MLTS M is image-finite with respect to the interpretation function

� : A → 2M
L

if and only if for each state s1, resource r, name n and label predicate α,

the following sets are finite:

— {s2|s1 ........
⊕r
� s2}

— {s2|s1 ........
�r
� s2}

— {s2|s1 ↪→n s2}
— {s2|∃λ ∈ �[[α]].s1

λ−−→ s2} .

Moreover, we also need � and A to discriminate between the different transitions

performed at each state.

Definition 7.7. Let M be an MLTS, A ⊆ ML ×ML, A be a set of label predicates

and � : A → 2M
L

be the interpretation function. We say that A and � are transition

respectful in M if and only if for each s ∈MS and λ ∈ML there exists α in A such that:

— λ ∈ �[[α]]

— for each λ′ such that s
λ′−−→,

(λ, λ′) �∈ A ⇐ λ′ �∈ �[[α]]

where s
λ′−−→ if there exists s′ such that s

λ′−−→ s′.

The following theorem enables us to guarantee that if s1 and s2 satisfy the same set of

formulae, then s1 is behaviourally equivalent to s2.

Theorem 7.8. Let M be an MLTS, A be a set of label predicates, � : A → 2M
L

be the

interpretation function and A ⊆ML ×ML such that:

1 A is respectful of � in M;

2 A and � are transition respectful in M;

3 M is image-finite with A and �.

Then,

s1 ∼A s2 ⇐= ∀φ ∈ �A.s1 |=〈M,�〉 φ iff s2 |=〈M,�〉 φ .

Proof. We will prove that R� is a resource preserving bisimulation, a revelation

bisimulation and an A -parameterised bisimulation.

Since ∼R, ∼N and ∼A
L are the the largest resource preserving bisimulations, revelation

bisimulations and A -parameterised bisimulations, respectively, it follows that

R� ⊆∼R ∩ ∼N ∩ ∼A
L =∼A .

We now give the formal proof that R� is an A -parameterised bisimulation: we will

omit the similar proofs that R� is a resource preserving bisimulation.

Let (s1, s2) ∈ R� and s1
λ1−−→ s′1 for some λ1. We have to prove that there exists λ2 and

s′2 such that (λ1, λ2) ∈ A , s2
λ2−−→ s′2 and (s′1, s

′
2) ∈ R�.
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We suppose that for each λ2 and s′2 such that (λ1, λ2) ∈ A , we have (s′1, s
′
2) �∈ R�. Let

X =

{
s′2|∃λ2.(λ1, λ2) ∈ A and s2

λ2−−→ s′2

}
.

Since M is image-finite, X is finite. For each s ∈ X there exists φs such that s′1 |=〈M,�〉 φs
while s |=〈M,�〉 ¬φs. If X is non-empty, we let

φX =
∧
s∈X

φs .

And if X is empty, we let φX = T.

A and � are transition respectful in M. Hence, there exists α such that:

— λ1 ∈ �[[α]]; and

— for each λ such that s
λ−−→, if (λ1, λ) �∈ A , then λ �∈ �[[α]].

We have that s1 |=〈M,�〉 〈α〉φX while s2 |=〈M,�〉 ¬〈α〉φX . Hence, (s1, s2) �∈ R�, which

contradicts the assumptions, so the statement is proved.

7.1. Logical characterisation of bisimulation for Aπ

In this section we will investigate the equivalence induced by the satisfaction of formulae

in �Aπ and their relationships with another well-studied behavioural equivalence between

Aπ processes, viz. the asynchronous bisimulation presented in Amadio et al. (1998). First

we note the following result.

Lemma 7.9.

— MAπ is image-finite with respect to AAπ and �Aπ .

— AAπ = {(τ, τ)} and �Aπ are transition respectful in MAπ .

Proof. Image-finiteness of MAπ with respect to AAπ and �Aπ follows easily from the

following:

— For each P and ab, we have {P ′|P ........
⊕ab
� P ′} = {P |ab}.

— For each P and ab, we have {P ′|P ........
�ab
� P ′} is {Q} if P ≡ Q ‖ ab, otherwise it is the

empty set.

— For each P and a, we have {P ′|P ↪→a P ′} = {P ′|∃P ′′.P ≡ ν a.P ′ and P ′ ≡ P ′′|ab},
which is finite since in P only a finite number of bound names can occur.

— For each P and α, we have {P ′|∃λ.λ ∈ �[[α]] and P
λ−−→ P ′} is equal to {P ′|P τ−→ P ′},

which is finite because in P only a finite number of synchronisations can occur.

Moreover, AAπ = {(τ, τ)}. Hence, for each P and λ1, we have λ1 ∈ �Aπ[[
√

]], while for

each λ2 ∈ LabAπ , we have (λ1, λ2) ∈ AAπ . Hence, AAπ and �Aπ are transition respectful in

MAπ .

Moreover, we will show that the equivalence ∼{(τ,τ)} defined over Aπ processes coincides

with the asynchronous bisimulation (∼a) defined in Amadio et al. (1998). This means that

�AAπ
characterises asynchronous bisimulation.
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Definition 7.10. A symmetric relation R on Aπ terms is a strong oτ-bisimulation if PRQ,

P
α�−→ P ′, α is not an input action, and bn(α) ∩ f n(Q) = � implies Q

α�−→ Q′ and P ′RQ′.

Let ∼oτ be the largest oτ-bisimulation.

Definition 7.11. A relation R is an asynchronous bisimulation if it is an oτ-bisimulation

and whenever PRQ and P
ab�−→ P ′, we have either:

— Q
ab�−→ Q′ and P ′RQ′; or

— Q
τ�−→ Q′ and P ′R(Q′|ab).

Definition 7.12. ∼a is the largest asynchronous bisimulation.

Definition 7.13. Let ∼1 be the largest relation R such that R is an oτ-bisimulation and

PRQ implies (P |ab)R(Q|ab) for all ab.

Theorem 7.14. ∼a=∼1

Proof. See Amadio et al. (1998).

Let P =!τ.0 and Q =!τ.0|a(b).ab. We have that P ∼a Q. Note that these processes can

be distinguished using the modal logics defined in Milner et al. (1993), Dam (1996) and

Caires (2004).

Theorem 7.15. ∼{(τ,τ)}⊆∼a

Proof. We first prove that ∼{(τ,τ)} is an oτ-bisimulation. We have to show that if PRQ,

then P
α�−→ P ′, α is not an input action, and bn(α) ∩ f n(Q) = � implies Q

α�−→ Q′ and

P ′RQ′.

Thanks to Lemma 3.4, it easy to prove that if P ∼{(τ,τ)} Q, then:

— P
τ−→ P ′ ⇒ ∃Q′.Q τ−→ Q′ and P ′ ∼{(τ,τ)} Q′.

— P ........
�ab
� P ′ ⇒ ∃Q′.Q ........

�ab
� Q′ and P ′ ∼{(τ,τ)} Q′.

— P ↪→b P ′′ ........
�ab
� P ′ ⇒ ∃Q′, Q′′.Q ↪→b Q′′ ........

�ab
� Q′ and P ′′ ∼{(τ,τ)} Q′′, P ′ ∼{(τ,τ)} Q′.

We now have to prove that for each ab, if P ∼{(τ,τ)} Q, then P |ab ∼{(τ,τ)} Q|ab. For

each ab, we have P ..........
⊕ab

� P |ab and Q ..........
⊕ab

� Q|ab. Since P ∼{(τ,τ)} Q, it follows that

P |ab ∼{(τ,τ)} Q|ab and that ∼{(τ,τ)} is an asynchronous bisimulation.

Since ∼a is the largest asynchronous bisimulation, this implies ∼{(τ,τ)}⊆∼a.

Theorem 7.16. ∼a⊆∼{(τ,τ)}

Proof. We prove that ∼a is a resource preserving bisimulation, a revelation bisimulation

and a {(τ, τ)}-parameterised bisimulation. We have to show that if P ∼a Q, then:

1 If P ........
⊕ab
� P ′, then there exists Q′ such that Q ........

⊕ab
� Q′ and P ′ ∼a Q′.

2 If P ........
�ab
� P ′, then there exists Q′ such that Q ........

�ab
� Q′ and P ′ ∼a Q′.

3 If P ↪→a P ′, then there exists Q′ such that Q ↪→a Q′ and P ′ ∼a Q′.
4 If P

τ−→ P ′, then there exists Q′ such that Q
τ−→ Q′ and P ′ ∼a Q′.
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The above follow directly from the definition of ∼a by noting that:

1 If P ........
⊕ab
� P ′, then P ′ ≡ P |ab.

2 If P ........
�ab
� P ′, then P

ab�−→ P ′.

3 If P ↪→b P ′, then P ′ = ab|P ′′ (a �= b) and P
a(b)
�−→ P ′′.

4 If P
τ−→ P ′, then P

τ�−→ P ′.

7.2. A bisimulation for MµK

In this section we introduce an equivalence between µKlaim transition labels (AµK ). This

will be used to define a bisimulation for MµK (∼AµK ) that agrees with the equivalence

induced by the satisfaction of formulae in �µK .

We will define AµK as the inf of a chain of equivalences (A i
µK ), each of which is

respectful of the corresponding interpretation �i (see Definition 6.2).

Definition 7.17. Let A i
µK be the subset of LabµK × LabµK defined inductively as follows:

— (λ1, λ2) ∈ A 0
µK if and only if either:

– λ1 = λ2; or

– λ1 = l1 : P � l2 and λ2 = l1 : Q� l2 for some l1, l2, P and Q.

— (λ1, λ2) ∈ A i+1
µK if and only if either:

– λ1 = λ2; or

– λ1 = l1 : P � l2 and λ2 = l1 : Q� l2 for some l1, l2, P and Q, and l2 :: P ∼A i
µK l2 :: Q.

We will now show that each A i
µK is respectful of �i (see Definition 6.2), and that A i

µK

and �i are transition respectful in MµK . This allows us to prove (using Theorems 7.5

and 7.8) that for each i:

N1 ∼A i
µK N2 if and only if N1 |=�i φ⇔ N2 |=�i φ .

Indeed, the following Lemma holds.

Lemma 7.18. MµK is image-finite with respect to �µK .

Proof. It is easy to prove that for each N1:

— {N2|N1
........
⊕r
� N2}

— {N2|N1
........
�r
� N2}

— {N2|N1 ↪→n N2}
— {N2|∃λ ∈ �[[α]].N1

λ−−→ N2}.

Lemma 7.19. For each i:

— A i
µK is respectful of �i.

— A i
µK and �i are transition respectful in MµK .

Proof. The proof is by induction on i.
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Base of induction (i=0): If (λ1, λ2) ∈ A 0
µK , then either λ1 = λ2 ∈ {τ, l1 : t � l2, l1 : t � l2}

(for some l1, l2 and t), or λ1 = l1 : P � l2 and λ2 = l1 : Q� l2 (for some l1, l2, P and Q).

In the first case we let α be
√

, l1 : t�l2 or l1 : t�l2, respectively: �0
µK [[α]] = {λ1} and

for each α′ �= α, λ1 �∈ �0
µK [[α′]].

In the second case we have that for each φ, λ1, λ2 ∈ �0
µK [[l1 : φ�l2]], while neither λ1

nor λ2 belongs to �0
µK[[α]] if α is

√
, l1 : t�l2 or l1 : t�l2.

Hence, (λ1, λ2) ∈ A 0
µK if and only if for each α ∈ AµK we have λ1 ∈ �0

µK [[α]] ⇔ λ1 ∈
�0
µK[[α]].

We now have to prove that for each N1 and λ1 there exists α such that:

— λ1 ∈ �0
µK [[α]]; and

— for each λ such that N1
λ−−→, if (λ1, λ) �∈ A 0

µK , then λ2 �∈ �0
µK [[α]].

The statement follows easily by considering α =
√

if λ1 = τ, α = l1 : t�l2 if

λ1 = l1 : t� l2, α = l1 : t�l2 if λ1 = l1 : t� l2 and α = l1 : T�l2 if λ1 = l1 : t� l2.

Induction hypothesis: For each i � n:

— A i
µK is respectful of �i.

— A i
µK and �i are transition respectful in MµK .

Induction step: Let (λ1, λ2) ∈ A n+1
µK . We have that either λ1 = λ2 and there exists α such

that �n+1
µK [[α]] = {λ1} (and for each α′ �= α λ1 �∈ �n+1

µK [[α′]]), or λ1 = l1 : P � l2,

λ2 = l1 : Q� l2 and l2 :: P ∼A n
µK l2 :: Q.

In the first case the statement follows directly from definition of �n+1.

In the second case, using the induction hypothesis, we have that for each φ, l2 :: P ∈
�A n

µK [[φ]] if and only if l2 :: Q ∈�A n
µK [[φ]]. Hence, for each φ such that depth(φ) � n,

we have l1 : P � l2 ∈ �n+1
µK [[φ]]⇔ l1 : Q� l2

We now prove that for each N1 and λ1 there exists an α such that:

— λ1 ∈ �n+1
µK [[α]]; and

— for each λ such that N1
λ−−→, if (λ1, λ) �∈ A n+1

µK , then λ2 �∈ �n+1
µK [[α]].

If λ1 is one of τ, l1 : t� l2 or l1 : t� l2 (for some l1, t or l2), the statement follows easily

by considering
√

, l1 : t�l2 or l1 : t�l2.
If λ1 = l1 : P � l2, we let X be the finite set defined by

X = {l1 : Q� l2|∃N2 : N1
λ2−−→ N2 and l2 :: P ∼A n

µK l2 :: Q} .

From the induction hypotheses, for each λ = l1 : Q � l2 ∈ X there exists φλ such

that l2 :: P |=�n φ and l2 :: Q |=�n ¬φ. We let α = l1 : φX�l2 where φX =
∧
λ∈X φλ.

Therefore:

— λ1 ∈ �n+1
µK [[α]]; and

— for each λ such that N1
λ−−→, if (λ1, λ2) �∈ A n+1

µK , then λ2 �∈ �n+1
µK [[α]].

Let AµK be the greatest lower bound of the chain A i
µK in the CPO 2LabµK×LabµK . Since

〈2LabµK×LabµK ,⊆〉 is a complete lattice, all we have to do to guarantee the well-definedness

of AµK is prove that for each i we have A i+1
µK ⊆ A i

µK .
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Lemma 7.20. For each i we have A i+1
µK ⊆ A i

µK .

Proof. The thesis follows directly from the definition of A i
µK and Lemma 6.3.

Definition 7.21. We define AµK =
⋂
i A

i
µK .

The following lemmas enable us to guarantee that AµK is respectful of �µK and that

AµK and �µK are transition respectful in MµK . Hence, ∼AµK characterises the equivalence

induced by the satisfaction of formulae in �µK .

Lemma 7.22. AµK is respectful of �µK .

Proof. We have

(λ1, λ2) ∈ AµK ⇒ ∀i.(λ1, λ2) ∈ A i
µK

⇒ ∀i.∀α.λ1 ∈ �i
µK[[α]]⇔ λ2 ∈ �i

µK [[α]]

⇒ ∀α.(∀iλ1 ∈ �i
µK [[α]])⇔ (∀iλ2 ∈ �i

µK[[α]])

⇒ ∀α.λ1 ∈ �[[α]]⇔ λ2 ∈ �[[α]] .

Moreover,

(λ1, λ2) �∈ AµK ⇒ ∃k.(λ1, λ2) ∈ A k
µK

⇒ ∃k.∃α.λ1 ∈ �i
µK [[α]] ∧ λ2 �∈ �i

µK[[α]]

⇒ ∃α.λ1 ∈ �[[α]] ∧ λ2 �∈ �[[α]] .

Lemma 7.23. If N1 �∼A i
µK N2, there exist k and φ such that depth(φ) � k and N1 |=�k φ

N2 |=�k ¬φ.

Proof. If N1 �∼A i
µK N2, there exists φ such that N1 |=�i φ N2 |=�i ¬φ.

If i > 0 for each P and ψ such that depth(ψ) � i− 1, then l1 : P � l2 ∈ �i
µK [[l1 : ψ�l2]],

and it follows that N1 |=�i φ′ N2 |=�i ¬φ′. Where φ′ is obtained from φ by replacing each

label predicate l1 : ψ�l2 (depth(ψ) � i) with l1 : T�l2. We have that depth(φ′) � i + 1,

and, moreover, N1 |=�i+1 φ′ N2 |=�i+1 ¬φ′.
If i = 0, we let φ′ be the formula obtained from φ by replacing each label predicate

l1 : ψ�l2 with l1 : T�l2. We have that depth(φ′) � 1, and, moreover, N1 |=�1 φ′

N2 |=�1 ¬φ′.

Lemma 7.24. AµK and �µK are transition respectful in MµK .

Proof. We now prove that for each N1 and λ1 there exists an α such that:

— λ1 ∈ �[[α]]; and

— for each λ2 and N2 such that N2
λ2−−→ N ′2 and (λ1, λ2) �∈ AµK , we have λ2 �∈ �n+1

µK [[α]].

If λ1 is one of τ, l1 : t� l2 or l1 : t� l2 (for some l1, t or l2), the statement follows easily

by considering
√

, l1 : t�l2 or l1 : t�l2.
If λ1 = l1 : P � l2, we let X be the finite set defined by

X = {l1 : Q� l2|∃N2 : N1

l1:Q�l2−−−−−→ N2 and l2 :: P �∼AµK l2 :: Q} .

There exists a k such that for each l1 : Q � l2 ∈ X, l2 :: P �∼AµK l2 :: Q. For each

λ = l1 : Q � l2 ∈ X there exists φλ such that l2 :: P |=�k φ, while l2 :: Q |=�k ¬φ.
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Let φX =
⋂
λ∈X φλ. We have that l1 : P � l2 ∈ �k

µK [[l1 : φX�l2]], while for each λ ∈ X,

λ ��∈∈ �k
µK [[l1 : φX�l2]]. Thus, l1 : P � l2 ∈ �[[l1 : φX�l2]], while for each λ ∈ X,

λ ��∈∈ �[[l1 : φX�l2]].
We can now state the final theorem of this section.

Theorem 7.25. ∼AµK characterises the equivalence induced by formulae satisfaction.

Proof. The statement follows directly from Lemmas 7.22 and 7.24 using Theorems 7.5

and 7.8.

8. Conclusions and future work

In this paper we have proposed a variant of LTSs, which we have called Multiple-Labelled

Transition Systems (MLTSs), as a candidate general operational model for distributed

calculi with names and mobility. To show the usefulness of our proposal, we used MLTSs

to describe the operational semantics of two formalisms, namely the asynchronous π-

calculus (Aπ) (Boudol 1992; Honda and Tokoro 1991) and µKlaim (Bettini et al. 2003),

that have the opposite objectives of expressivity and usability.

For modelling the properties of MLTSs, we introduced a temporal logic (MoMo) that

consists of a small set of operators to be used to describe specific properties/behaviours

of mobile and distributed systems. Together with the usual logical connectives and the

operators for minimal and maximal fixed points, the logic is equipped with operators

for: describing dynamic behaviours (temporal properties); modelling resource management

(state properties); taking into account name handling (nominal properties); and controlling

mobile processes (mobility properties).

We have also studied the relationships between the equivalences induced on Aπ by

MoMo and by bisimulation.

The main limitation of the proposed approach is that in order to establish system prop-

erties we need to provide detailed descriptions of the whole systems under consideration.

Obviously, this is a very strong assumption for wide area networks, since it is very often

the case that only some components of the system are known; and one has only a limited

knowledge of the overall context in which the component is operating. Nevertheless, one

would like to guarantee that components behave well whenever the context guarantees

specific resources or interactions.

For this reason, we plan to set up a framework for specifying contexts for distributed

calculi (whose semantics is specified in term of MLTSs). By means of contexts, we will be

able to provide abstract specifications of a given system and avoid the need to describe

all of its components in full. Indeed, some of these components could be known or

implemented only at a later stage. Then, the implemented component can be removed

from the context and added to the implemented part, thus performing a concretion

operation. We aim to set up a framework that would guarantee the preservation of

formulae satisfaction at each stage of refinement if the introduced implementation agrees

with the original specification.
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We also plan to use MLTSs to describe the behaviour of other calculi with explicit

notions of distribution and mobility, and, in particular, for modelling emerging calculi for

Service Oriented Architecture, such as SCC (Boreale et al. 2006). This will enable us to

specify and verify the properties of distributed service architecture using MoMo.
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