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Abstract

We consider the discounted continuous-time Markov decision process (CTMDP), where
the negative part of each cost rate is bounded by a drift function, say w, whereas the
positive part is allowed to be arbitrarily unbounded. Our focus is on the existence of a
stationary optimal policy for the discounted CTMDP problems out of the more general
class. Both constrained and unconstrained problems are considered. Our investigations
are based on the continuous-time version of the Veinott transformation. This technique
has not been widely employed in the previous literature on CTMDPs, but it clarifies the
roles of the imposed conditions in a rather transparent way.
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1. Introduction

Discounted continuous-time Markov decision processes (CTMDPs) have been studied int-
ensively since the 1960s, with one of the first works being [36]. Initially, the theory was
mainly developed for the finite state space models with bounded cost and transition rates. Later
developments extend to models in a Borel state space with unbounded transition and cost rates;
see, e.g. [13], [20], and [33]. When the cost rates are unbounded from both above and below,
a standard setup is to assume that there is a weight (or Lyapunov) function, say w, bounding
the growth of the absolute value of the cost rates and the transition rates in a suitable sense,
so that the value function will also be bounded by this function w. Then the investigation is
based on the applicability of Dynkin’s formula to the class of w-bounded functions, for which
some additional conditions must also be imposed. This line of reasoning was followed and
demonstrated in [4], [21], [33], and [35]. If, as in the present paper, we only bound the growth
of the negative part of each cost rate using the drift function w, which is thus called a lower
bounding function, then the value function is in general not w-bounded. The approach based
on the Dynkin’s formula becomes less adequate.

On the other hand, now it is well known that a discounted CTMDP problem is equivalent to
a total undiscounted discrete-time Markov decision process (DTMDP) problem with the same
action space; see [12] and [13]; see also [22], [30], and [32] for the total undiscounted CTMDP
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problem. This approach has been applied to the study of the discounted CTMDP problem with
arbitrarily unbounded transition rate and nonnegative cost rates; see [13]. Nevertheless, the
case where the cost rates can take both positive and negative values has never been treated with
this approach, to the best of the authors’ knowledge. The reason is that when the transition rate
is unbounded, the induced DTMDP is, in general, not absorbing in the sense of [1] and [14];
see Example 3.2 below. When the cost functions can take both positive and negative values, the
studies of such DTMDPs, especially for constrained problems, are challenging, as demonstrated
in [15], and are still underdeveloped; see, e.g. [8].

Having said the above, discounted CTMDP problems with a lower bounding function
have not been studied in the literature. The corresponding model in discounted discrete-time
problems was treated in [3], [25], and [26]. This type of cost functions appears in the literature
of economics when one considers, for example, the logarithmic utility function, where it is set
as − ln(0) := ∞; see [29, Section 7]. Note that they can be reduced to equivalent discounted
problems with nonnegative cost functions; see [39] and [40]; see also [1] and [9]. We shall
demonstrate the continuous-time version of this technique. In [3], this type of model was
studied for a specific piecewise deterministic Markov decision process with jumps driven by
a Poisson process, but following a different method based on the Young topology, compared
with the one here.

Our main contributions are as follows. Under conditions similar to those in [4], we show
the existence of a deterministic stationary (respectively, stationary) optimal policy for the
unconstrained (respectively, constrained) discounted CTMDP problems with a lower bounding
function. Our argument is based on a transformation for nonhomogeneous Markov pure-jump
processes, which, under some additional conditions, allows us to reduce the original problems
to equivalent problems with nonnegative cost rates, so as for the reduction technique to apply.
The roles of the additional conditions for this reduction are self-justified in a rather transparent
way, as compared to the justification based on their relation to the Dynkin’s formula; see [4],
in which the authors considered only the discounted problem with a w-bounded cost rate in a
denumerable state space, and is restricted to stationary policies. With a better understanding of
the roles of the conditions, even in the specific case, where the cost rates are bounded by the drift
function w, we improve the existing results in [20] and [33] by withdrawing and weakening
several conditions assumed therein.

The rest of the paper is organized as follows. In Section 2 we formulate the optimal control
problems under consideration. The main statement is presented and proved in Section 3. Some
auxiliary definitions and facts are included in Appendix A.

2. Model description and problem statement

The objective of this section is to describe briefly the controlled process similar to that of
[12], [13], [27], and [33], and the associated optimal control problem of interest in this paper.

In what follows, B(X) is the Borel σ -algebra of the Borel space X, 1 denotes the indicator
function, and δ{x}(·) is the Dirac measure concentrated on the singleton {x}. A measure is σ -
additive and [0, ∞]-valued. Below, unless stated otherwise, the term of measurability is always
understood in the Borel sense. Throughout this paper, we adopt the conventions of 0

0 := 0,
0 · ∞ := 0, 1

0 := +∞, and ∞ − ∞ := ∞.
The primitives of a CTMDP are the following elements: {S, A, A(·), q}, where S is a

nonempty Borel state space, A is a nonempty Borel action space, the B(A)-valued multifunction
x ∈ S → A(x) is, by assumption, with a measurable graph K := {(x, a) ∈ S × A : a ∈
A(x)}, and q denotes a signed kernel q(dy | x, a) on B(S) given (x, a) ∈ K such that
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q̃(� | x, a) := q(� \ {x} | x, a) ≥ 0 for all � ∈ B(S). Throughout this paper, we assume
that q(· | x, a) is conservative and stable, i.e. q(S | x, a) = 0 and q̄x = supa∈A(x) qx(a) < ∞,
where qx(a) := −q({x} | x, a). The signed kernel q is often called the transition rate. Below
we assume that the set K contains the graph of some measurable mapping from S to A.

Let us take the sample space � by adjoining to the countable product space S × ((0, ∞) ×
S)∞ the sequences of the form (x0, θ1, . . . , θn, xn, ∞, x∞, ∞, x∞, . . . ), where x0, x1, . . . , xn

belong to S, θ1, . . . , θn belong to (0, ∞), and x∞ /∈ S is the isolated point. We equip � with
its Borel σ -algebra F .

Let t0(ω) := 0 =: θ0 and, for each n ≥ 0 and each element ω := (x0, θ1, x1, θ2, . . . ) ∈ �,
let tn(ω) := tn−1(ω) + θn and t∞(ω) := limn→∞ tn(ω). Obviously, tn(ω) are measurable
mappings on (�, F ). In what follows, we often omit the argument ω ∈ � from the presentation
for simplicity. Also, we regard xn and θn+1 as the coordinate variables, and note that the pairs
{tn, xn} form a marked point process with the internal history {Ft }t≥0, i.e. the filtration generated
by {tn, xn}; see [27, Chapter 4] for further details. The marked point process {tn, xn} defines
the stochastic process on (�, F ) of interest {ξt , t ≥ 0} by

ξt =
∑
n≥0

1{tn≤t<tn+1} xn + 1{t∞≤t} x∞.

Here we accept 0 · x := 0 and 1 · x := x for each x ∈ S∞, where S∞ := S ∪ {x∞}.
Definition 2.1. (i) A policy π for the CTMDP is a P (A)-valued predictable process with
respect to the internal history {Ft } so that

π(da | ω, t) = 1{t≥t∞} δa∞(da) +
∞∑

n=0

1{tn<t≤tn+1} πn(da | x0, θ1, . . . , θn, xn, t − tn)

for each ω = (x0, θ1, x1, θ2, . . . ) ∈ � and t ∈ (0, ∞), where a∞ /∈ A is some isolated
point. Here, P (A) is the space of probability measures on B(A) endowed with the usual weak
topology and, for each n = 0, 1, 2, . . . , πn(da | x0, θ1, . . . , xn, s) is a stochastic kernel on A

concentrated on A(xn), given x0 ∈ S, . . . , xn ∈ S, s ∈ (0, ∞). We identify a policy π with the
sequence of stochastic kernels {πn}∞n=0.

(ii) A policy π is called Markov if, for some stochastic kernel ϕ on A concentrated on A(x)

from (x, t) ∈ S × (0, ∞), one can write π(da | ω, t) = ϕ(da | ξt−, t) whenever t < t∞.
A Markov policy is identified with the underlying stochastic kernel ϕ.

(iii) A policy π = {πn}∞n=0 is called stationary if, with a slight abuse of notation,

πn(da | x0, θ1, . . . , xn, s) = π(da | xn)

for each of the stochastic kernels πn. A stationary policy is further called deterministic if
πn(da | x0, θ1, . . . , xn, s) = δ{f (xn)}(da) for some measurable mapping f from S to A such
that f (x) ∈ A(x) for each x ∈ S. We shall identify such a deterministic stationary policy with
the underlying measurable mapping f .

The class of all policies for the CTMDP is denoted by �, and the class of all Markov policies
is �M.
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Under a policy π = {πn}∞n=0 ∈ �, we define the following predictable random measure νπ

on S × (0, ∞) by

νπ (dt, dy) :=
∫

A

q̃(dy | ξt−(ω), a)π(da | ω, t) dt

=
∑
n≥0

∫
A

q̃(dy | xn, a)πn(da | x0, θ1, . . . , θn, xn, t − tn) 1{tn<t≤tn+1} dt

with qx∞(a∞) = q(dy | x∞, a∞) := 0 =: qx∞(a) for each a ∈ A. Then, given the initial
distribution γ , where γ is a probability measure on B(S), there exists a unique probability
measure P

π
γ such that

P
π
γ (x0 ∈ dx) = γ (dx),

and with respect to P
π
γ , νπ is the dual predictable projection of the random measure associated

with the marked point process {tn, xn}; see [24] and [27]. Below, when γ is a Dirac measure
concentrated at x ∈ S, we use the notation P

π
x . Expectations with respect to P

π
γ and P

π
x are

denoted as E
π
γ and E

π
x , respectively.

According to [24], we can write the conditional distribution of (θn+1, xn+1)with the condition
on x0, θ1, . . . , θn, xn with xn ∈ S as

P
π
γ (θn+1 ∈ �1, xn+1 ∈ �2 | x0, θ1, x1, . . . , θn, xn)

=
∫

�1

exp

(
−

∫ t

0

∫
A

qxn(a)πn(da | x0, θ1, . . . , θn, xn, s) ds

)

×
{∫

A

q̃(�2 | xn, a)πn(da | x0, θ1, . . . , θn, xn, t)

}
dt

for all �1 ∈ B((0, ∞)), �2 ∈ B(S),

P
π
γ (θn+1 = ∞, xn+1 = x∞ | x0, θ1, x1, . . . , θn, xn)

= exp

(
−

∫ ∞

0

∫
A

qxn(a)πn(da | x0, θ1, . . . , θn, xn, s) ds

)
,

and, for xn = x∞,

P
π
γ (θn+1 = ∞, xn+1 = ∞ | x0, θ1, x1, . . . , θn, xn) = 1.

Let ∞ > α > 0 be a fixed discount factor. For each j = 0, 1, . . . , N , with N ≥ 1 being a
fixed integer, let cj be a (−∞, ∞]-valued measurable function on K, representing a cost rate,
and dj be a fixed finite constant, representing a corresponding constraint. We shall consider
the following unconstrained and constrained α-discounted optimal control problems for the
CTMDP {S, A, A(·), q}, respectively:

(I) minimize over π ∈ � : E
π
x

[∫ ∞

0
e−αt

∫
A

c0(ξt , a)π(da | ω, t) dt

]
, x ∈ S,

(II) minimize over π ∈ � : E
π
x

[∫ ∞

0
e−αt

∫
A

c0(ξt , a)π(da | ω, t) dt

]
,

subject to E
π
x

[∫ ∞

0
e−αt

∫
A

cj (ξt , a)π(da | ω, t) dt

]
≤ dj , j = 1, 2, . . . , N .
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Here and below, we set

c(x∞, a) := 0 for all a ∈ A ∪ {a∞}. (2.1)

The conditions we impose below will ensure that the performance measures in the above two
problems are well defined, though not necessarily finite.

A policy π∗ is called optimal for the unconstrained problem (I) if

E
π∗
x

[∫ ∞

0
e−αt

∫
A

c0(ξt , a)π∗(da | ω, t) dt

]

= inf
π∈�

E
π
x

[∫ ∞

0
e−αt

∫
A

c0(ξt , a)π(da | ω, t) dt

]
for each x ∈ S. A policy π is called feasible for the constrained problem (II) if it satisfies all
the inequalities therein. A feasible policy π for problem (II) is said to be of a finite value if

E
π
x

[∫ ∞

0
e−αt

∫
A

c±
0 (ξt , a)π(da | ω, t) dt

]
< ∞.

A policy π∗ is said to be optimal for problem (II) if it is feasible and satisfies

E
π∗
x

[∫ ∞

0
e−αt

∫
A

c0(ξt , a)π∗(da | ω, t) dt

]
≤ E

π
x

[∫ ∞

0
e−αt

∫
A

c0(ξt , a)π(da | ω, t) dt

]
for each feasible policy π .

Note that the definition of optimality of a feasible policy for the constrained problem (II)
requires a fixed initial state x ∈ S. Here, we did not consider the more general case of a fixed
initial distribution for brevity and readability. The case of a fixed initial distribution γ can be
similarly treated with additional conditions regarding γ .

We would like to allow the possibility of cost rates unbounded from both above and below.
We consider the following set of conditions to guarantee that the performance measures in
problems (I) and (II) are well defined.

Condition 2.1. There exists a [1, ∞)-valued measurable function w on S such that

(i) for some finite constant 0 ≤ ρ < α,∫
S

w(y)q(dy | x, a) ≤ ρw(x) for all (x, a) ∈ K;

(ii) for some finite constant L > 0,

c−
i (x, a) ≤ Lw(x) for all (x, a) ∈ K, i = 0, 1, . . . , N.

Here, for each i = 0, 1, . . . , N , c−
i is the negative part of the function ci .

Below, we allow w(x∞) := 0. The cost rates satisfying part (ii) of the above condition are
said to be lower bounded by the drift function w; see [3, p. 251] for a related definition for
piecewise deterministic Markov decision processes.

Lemma 2.1. Suppose that Condition 2.1 is satisfied. Let a policy π be arbitrarily fixed. Then

E
π
x

[∫ ∞

0
e−αtw(ξt ) dt

]
< ∞ for all x ∈ S.
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In particular, for each x ∈ S, the integrals

E
π
x

[∫ ∞

0
e−αt

∫
A

ci(ξt , a)π(da | ω, t) dt

]
, i = 0, 1, . . . , N,

are well defined.

Proof. This follows from Lemma 2 of [34] and (2.1). �
Assumption 2.1. Throughout this paper, unless stated otherwise, Condition 2.1 is assumed to
hold automatically, without specific reference.

3. Main statement and its proof

3.1. Conditions, statements, and comments

Condition 3.1. There exist a (0, ∞)-valued measurable function w′ on S and a monotone
nondecreasing sequence of measurable subsets {Zm}∞m=1 ⊆ B(S) such that the following
hold:

(i) Zm ↑ S as m → ∞;

(ii) supx∈Zm
qx < ∞ for each m = 1, 2, . . . ;

(iii) for some constant ρ′ ∈ (0, ∞),∫
S

w′(y)q(dy | x, a) ≤ ρ′w′(x) for all x ∈ S, a ∈ A(x);

(iv) infx∈S\Zm w′(x)/w(x) → ∞ as m → ∞, where the function w comes from Condi-
tion 2.1.

Let a [0, ∞)-valued function v on S be fixed. A function g on S is called v-bounded if
‖g‖v := supx∈S |g(x)|/v(x) < ∞; here the convention of 0

0 = 0 is in use.

Condition 3.2. (i) The multifunction x ∈ S → A(x) ∈ B(A) is compact-valued and upper
semicontinuous.

(ii) For each w-bounded continuous function g on S, (x, a) ∈ K → ∫
S
g(y)q̃(dy | x, a) is

continuous. Here and below, the function w is from Condition 2.1.

(iii) The function w is continuous on S, and the functions ci are lower semicontinuous on K.

The conditions formulated in the above can be satisfied when the negative part of each cost
rate is bounded by a drift function, whereas the positive part is arbitrarily unbounded. In the
literature of economics, such a cost rate might appear, e.g. when one considers the logarithmic
utility function, where it is set as − ln 0 := ∞; see [29, Section 7]; see also Example 2 of [25].
We formulate an example of such a CTMDP as follows.

Example 3.1. Consider a controlled M/M/∞ queueing system. We set S = {0, 1, . . . }. The
state x ∈ S represents the number of customers in the system. The control is the arrival rate
a ∈ [0, x] ⊆ [0, ∞) for each x ∈ S. The service rate μ > 0 is uncontrolled. The cost rate
is given by c0(x, a) = − ln a, and the constraint cost rate is given by c1(x, a) = x. Then
Conditions 2.1–3.2 are satisfied (for a large enough discount factor); one can put w(x) = x + 1
and w′(x) = 1 + x2. On the other hand, there is no finite bounding function for |c0|.
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The next condition is for the constrained problem only.

Condition 3.3. There exists a feasible policy for problem (II) with a finite value.

The main statement of this paper is the following theorem.

Theorem 3.1. Suppose that Conditions 2.1–3.2 are satisfied. Then the following assertions
hold.

(i) There exists a deterministic stationary optimal policy for the unconstrained problem (I).
In fact, one can always take a deterministic stationary policy providing the minimum in
(3.5) is a deterministic stationary optimal policy.

(ii) If Condition 3.3 is also satisfied, then there exists a stationary optimal policy for the
constrained problem (II).

In the previous literature, general discounted CTMDPs have not been considered when the
cost rates were bounded below by a lower bounding function, and arbitrarily unbounded from
above, although for specific piecewise deterministic Markov decision processes with jumps
driven by a Poisson process, this was considered in [3] following a different method. Discrete-
time problems with a lower bounding function were considered in [3] and [26], and in the
latter reference, the motivation for considering such cost functions was explained with their
applications to economics. For discounted DTMDP problems, the treatment in [3] and [26] was
direct. But it is possible to reduce this to equivalent problems with nonnegative cost functions,
using the technique of [39, p. 101], see also [1, p. 79] and [9]. The proof of Theorem 3.1 will
be based on a similar technique for CTMDPs, which, to the best of the authors’ knowledge, has
not been widely applied to CTMDPs.

For the more restrictive case, where the cost rates are w-bounded, with w coming from
Condition 2.1, Theorem 3.1(i) was obtained in [4] under essentially equivalent conditions for
discounted CTMDPs in a denumerable state space but restricted to the class of stationary
policies. Here we show that it is without loss of generality to be restricted to this narrower class
of policies under the imposed conditions. Otherwise, this sufficiency result seems not to follow
from other known results in the relevant literature. The approach of [4] was directly based on
the application of Dynkin’s formula, and is different from ours. When the cost rates are only
lower w-bounded, the value function is, in general, not w-bounded. Since under the conditions
of [4] and here, Dynkin’s formula is only applicable to the class of w-bounded functions, the
treatment of [4] does not directly apply to the general case dealt with here.

Also, when the cost rates are w-bounded, Theorem 3.1(ii) was obtained in, e.g. [33] but
under stronger conditions. We include them here for ease of reference.

Instead of Condition 3.1, the following condition was imposed in [33].

Condition 3.4. There exists a (0, ∞)-valued measurable function w̃′ on S such that the fol-
lowing hold:

(i) for some constant L̃′ ∈ (0, ∞), qx ≤ L̃′w̃′(x) for each x ∈ S;

(ii) for some constant ρ̃′ ∈ (0, ∞),
∫
S
w̃′(y)q(dy | x, a) ≤ ρ̃′w̃′(x) for each (x, a) ∈ K;

(iii) For some constant L̃ ∈ (0, ∞), (qx + 1)w(x) ≤ L̃w̃′(x) for each x ∈ S, where the
function w comes from Condition 2.1.

It is easy to see that, if the above condition is satisfied, then so is Condition 3.1 with
w′ = w̃′ + 1, ρ′ = ρ̃′, and Zm = {x ∈ S : (w̃′(x) + 1)/w(x) ≤ m} for each m = 1, 2, . . . .
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Furthermore, under Conditions 2.1, 3.1, and 3.3, in addition to Condition 3.2, it was also
assumed in [33] that the function w̃′/w was a moment function on K, see Definition E.7 of [23],
in order to apply the Prokhorov theorem in their proof; see Proposition E.8 and Theorem E.6
of [23]. This is not needed here. The investigations in [33] were largely based on Dynkin’s
formula, and do not handle the more general cost rates considered here.

In the rest of this section we prove Theorem 3.1. On the way, we comment and clarify the
roles of the imposed conditions, and present the auxiliary statements.

3.2. Proof of the main statement

The proof of Theorem 3.1 follows from a sequence of lemmas. The outline of the proof
steps is announced in the next remark.

Remark 3.1. The main themes in the proof of Theorem 3.1 can be summarized as follows.

1. Under Condition 2.1, the w-transformation, see Lemma 3.2, allows us to reduce the
original problems (I) and (II) to problems (III) and (IV) for the w-transformed CTMDP
model with cost rates bounded from below, equivalently.

2. Under the extra Condition 3.1, problems (III) and (IV) are reduced to discounted CTMDP
problems (V) and (VI) with nonnegative cost rates by adding some large enough constant.
This is possible because Condition 3.1 ensures that the controlled process in the w-
transformed CTMDP model is nonexplosive under each Markov policy, according to
Lemma 3.3.

3. By applying the reduction technique in [12] and [13], discounted CTMDP problems (V)
and (VI) with nonnegative cost rates are reduced to total undiscounted DTMDP problems
(VII) and (VIII) with nonnegative cost functions.

4. Apply the optimality results of [10] to the DTMDP problems (VII) and (VIII) with
nonnegative cost functions. Then deduce from here the corresponding optimality results
for the original problems (I) and (II).

The details are as follows.

Proof of Theorem 3.1. The following statement is a consequence of Theorem 4.2 of [16],
see also [18], and is the starting point of our reasoning.

Lemma 3.1. For each initial state x ∈ S and policy π , there exists a Markov policy ϕ such
that

E
π
x

[∫ ∞

0
e−αt

∫
A

f (ξt , a)π(da | ω, t) dt

]
= E

ϕ
x

[∫ ∞

0
e−αt

∫
A

f (ξt , a)ϕ(da | ξt , t) dt

]

for each [0, ∞]-valued measurable function f on K.

The above lemma implies that, without loss of generality, we can restrict to the class of
Markov policies for problems (I) and (II), i.e. if we obtain an optimal policy out of the class
of Markov policies for problem (I) (or (II)), then that policy is optimal for problem (I) (or (II))
out of the general class.

We recall some definitions related to the process {ξt , t ≥ 0} under a Markov policy ϕ. Let
us consider the signed kernel on S from S × [0, ∞) defined by

qϕ(dy | x, t) :=
∫

A

q(dy | x, a)ϕ(da | x, t) for all x ∈ S, t ∈ [0, ∞).
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Then qϕ is a conservative and stable Q-function in the sense of [17, p. 262]. For ease of
reference, we recall some relevant definitions and facts about Q-functions in Appendix A.

According to Theorem 2.2 of [17], under a Markov policy, say ϕ, the process {ξt , t ≥ 0} is
a Markov pure-jump process on {�, F , {Ft }, P ϕ}, i.e. for each s, t ∈ [0, ∞),

P
ϕ(ξt+s ∈ � | Ft ) = P

ϕ(ξt+s ∈ � | ξt ) for all � ∈ B(X∞);
and each trajectory of {ξt ; t ≥ 0} is piecewise constant and right-continuous, such that for each
t ∈ [0, t∞), there are finitely many discontinuity points on the interval [0, t]; see Definition 1 of
[19, Chapter III]. Here and below, we omit the subscript in P

ϕ
γ , whenever the initial distribution γ

is irrelevant. Furthermore, by Theorem 2.2 of [17], pqϕ defined by (A.1) with q being replaced
by qϕ is the transition function corresponding to the process {ξt , t ≥ 0}, i.e. for each s ≤ t , on
{s < t∞},

P
ϕ(ξt ∈ � | Fs) = pqϕ (s, ξs, t, �) for all � ∈ B(S);

see [28, p. 1397]. Consequently, for each Markov policy ϕ,

E
ϕ
x

[∫ ∞

0
e−αt

∫
A

ci(ξt , a)ϕ(da | ξt , t) dt

]

=
∫ ∞

0

∫
S

e−αt

∫
A

ci(y, a)ϕ(da | y, t)pqϕ (0, x, t, dy) dt for all x ∈ S

and for each i = 0, 1, . . . , N .
Given the Q-function qϕ on S induced by a Markov policy ϕ, let us introduce the w-

transformed Q-function qw
ϕ on Sδ defined as follows.

Let
Sδ := S ∪ {δ}

with δ /∈ S being an isolated point concerning the topology of Sδ that satisfies δ = x∞. The
w-transformed (stable conservative) Q-function qw

ϕ on Sδ is defined by

qw
ϕ (� | x, s) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
�

w(y)qϕ(dy | x, s)

w(x)
if x ∈ S, � ∈ B(S), x /∈ �,

ρ −
∫
S

w(y)qϕ(dy | x, s)

w(x)
if x ∈ S, � = {δ},

0 if x = δ, � = Sδ ,

(3.1)

for each s ∈ [0, ∞), and

qw
ϕ x

(s) := ρ + qϕx(s) for all s ∈ [0, ∞).

Here, qϕx(s) = −qϕ(S \{x} | x, s); see Appendix A for more definitions and relevant notations
concerning a Q-function. This transformation is the continuous-time version of the Veinott
transformation, see [40], widely known in the literature of DTMDPs. For (uncontrolled)
homogeneous continuous-time Markov chains, this transformation was used in, e.g. [2], [37],
and [38].

Lemma 3.2. Let a Markov policy ϕ be fixed. For each x ∈ S, s, t ∈ [0, ∞), s ≤ t , and
� ∈ B(S), the following relation holds;

pqw
ϕ
(s, x, t, �) = e−ρ(t−s)

w(x)

∫
�

w(y)pqϕ (s, x, t, dy).

Proof. See Lemma A.3 of [41]. �
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By Lemma 3.2, we see that, for each i = 0, 1, . . . , N ,

w(x)

∫ ∞

0

∫
S

pqw
ϕ
(0, x, t, dy)

∫
A

ci(y, a)

w(y)
ϕ(da | y, t)e−(α−ρ)t dt

=
∫ ∞

0

∫
S

∫
A

ci(y, a)ϕ(da | y, t)e−αtpqϕ (0, x, t, dy) dt for all x ∈ S.

Hence, problem (I) is equivalent to

(III) minimize over ϕ ∈ �M :
∫ ∞

0

∫
S

pqw
ϕ
(0, x, t, dy)

×
∫

A

c0(y, a)

w(y)
ϕ(da | y, t)e−(α−ρ)t dt, x ∈ S,

and problem (II) is equivalent to

(IV) minimize over ϕ ∈ �M :
∫ ∞

0

∫
S

pqw
ϕ
(0, x, t, dy)

∫
A

ci(y, a)

w(y)
ϕ(da | y, t)e−(α−ρ)t dt ,

subject to
∫ ∞

0

∫
S

pqw
ϕ
(0, x, t, dy)

∫
A

cj (y, a)

w(y)
ϕ(da | y, t)e−(α−ρ)t dt

≤ dj

w(x)
, j = 1, 2, . . . , N .

Thus, one can consider the w-transformed CTMDP {Sδ, A∪{a∞}, Aδ(·), qw}, where Aδ(δ) :=
{a∞}, and Aδ(x) := A(x) for each x ∈ S, while the transition rate qw is defined by, see (3.1),

qw(� | x, a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
�

w(y)q(dy | x, a)

w(x)
if x ∈ S, � ∈ B(S), x /∈ �,

ρ −
∫
S

w(y)q(dy | x, a)

w(x)
if x ∈ S, � = {δ},

0 if x = δ, � = Sδ ,

for each x ∈ Sδ and a ∈ Aδ(x), and

qw
x (a) := ρ + qx(a) for all x ∈ S, a ∈ Aδ(x).

The requirement of α > ρ in Condition 2.1(i) is needed so that problems (III) and (IV) are
legitimate (α − ρ)-discounted problems of the w-transformed CTMDP with the cost rates cw

i

defined by

cw
i (x, a) := ci(x, a)

w(x)
for each x ∈ S, a ∈ A(x), and cw

i (δ, a∞) := 0.

According to the reduction technique for discounted CTMDPs, see [13], the CTMDP problems
(III) and (IV) can be reduced to equivalent total undiscounted problems for the DTMDP {Sδ ∪
{x∞}, A ∪ {a∞}, Aδ(·), T } with the cost functions Ci , where the transition probability T is
defined by

T (� | x, a) :=
∫
�

w(y)q(dy | x, a)

(α + qx(a))w(x)
for each � ∈ B(S), x /∈ �, a ∈ Aδ(x),

T ({δ} | x, a) := ρw(x) − ∫
S

w(y)q(dy | x, a)

(α + qx(a))w(x)
for each x ∈ S, a ∈ Aδ(x),

T ({x∞} | x, a) := α − ρ

α + qx(a)
for each x ∈ S, a ∈ Aδ(x),
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and

T ({x∞} | x∞, a∞) := 1 =: T ({x∞} | δ, a∞),

and the cost functions Ci are defined by

Ci(x, a) := ci(x, a)

(α + qx(a))w(x)
for each x ∈ S, a ∈ Aδ(x),

Ci(δ, a∞) := 0 =: Ci(x∞, a∞).

More precisely, given the initial state x ∈ S, for each Markov policy ϕ for the w-transformed
CTMDP, there is a strategy σ for the DTMDP {Sδ ∪ {x∞}, A ∪ {a∞}, Aδ(·), T } such that

∫ ∞

0

∫
S

pqw
ϕ
(0, x, t, dy)

ci(y, a)

w(y)
e−(α−ρ)t dt = E

σ
x

[ ∞∑
n=0

Ci(Xn, An)

]

for each i = 0, 1, . . . , N , and vice versa. Moreover, in the previous equality, if ϕ is a
deterministic stationary (respectively, stationary) policy then σ can be taken as a deterministic
stationary (respectively, stationary) strategy for the DTMDP, and vice versa. Here we use
E

σ
x to denote the expectation taken with respect to the strategic measure of the DTMDP

under the strategy σ , and {Xn} and {An} are the controlled and controlling processes in the
DTMDP. The term ‘strategy’ is reserved for the DTMDP to avoid the potential confusion with
the corresponding notion for the CTMDP. We refer the reader to, e.g. [23] and [31] for the
standard description of a DTMDP.

Note that, in general, the DTMDP {Sδ ∪ {x∞}, A ∪ {a∞}, Aδ(·), T } is not absorbing in the
sense of [1], [14], and the cost function Ci can take both positive and negative values. We
formulate such a CTMDP in the next example.

Example 3.2. Suppose that the CTMDP is an uncontrolled pure birth process with S =
{1, 2, . . . }. The birth rate at the state x ∈ S is 2x. The discount factor is α = 2. We set
ρ = 0 and w(x) = 1 for each x ∈ S. Suppose that the cost rate is only 0 at the state δ. For the
induced DTMDP, {x∞} is the absorbing set; the point δ can be excluded from the state space
because it is never reached starting from S ∪ {x∞}. Then one can show that starting from 1,
the expected time until the DTMDP reaches x∞ is infinite. In accordance with, e.g. [1], [14],
this means that the model is not absorbing, i.e. the expected time to absorption is not finite.

On the other hand, the functions cw
i , i = 0, 1, . . . , N , are bounded from below under

Condition 2.1(ii). Let some common lower bound be c ≤ 0. Let

c̃w
i := cw

i − c for each i = 0, 1, . . . , N. (3.2)

Then the functions c̃w
i are all nonnegative. In order for problems (III) and (IV) to be equivalent

to

(V) minimize over ϕ ∈ �M :
∫ ∞

0

∫
Sδ

pqw
ϕ
(0, x, t, dy)

×
∫

Aδ

c̃w
0 (y, a)ϕ(da | y, t)e−(α−ρ)t dt, x ∈ S,

https://doi.org/10.1017/jpr.2017.53 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.53


1082 X. GUO ET AL.

(VI) minimize over ϕ ∈ �M :
∫ ∞

0

∫
Sδ

pqw
ϕ
(0, x, t, dy)

∫
Aδ

c̃w
0 (y)ϕ(da | y, t)e−(α−ρ)t dt ,

such that
∫ ∞

0

∫
Sδ

pqw
ϕ
(0, x, t, dy)

∫
Aδ

c̃w
j (y)ϕ(da | y, t)e−(α−ρ)t dt

≤ dj

w(x)
− c

α − ρ
, j = 1, 2, . . . , N ,

respectively, we need the following relation to hold for each ϕ ∈ �M:

pqw
ϕ
(0, x, t, Sδ) = 1 for all x ∈ S, t ∈ [0, ∞). (3.3)

In general, problems (III) and (IV) are not equivalent to problems (V) and (VI). We demon-
strate this with the following example, which was also considered by Spieksma in [38].

Example 3.3. Let S = {0, 1, 2, . . . } and A(x) ≡ A = {0, 1}. We endow them with the discrete
topology. The transition rate is given by

q({y} | x, 0) =

⎧⎪⎨
⎪⎩

5
12 2x if x = 0, y = x + 1,
7

12 2x if x = 0, y = x − 1,

0 if x = 0,

and q({y} | x, 1) = 0 for each x, y ∈ S. Let w(x) = ( 7
5 )x for each x ∈ S. Then one can verify

that ∑
y∈S

w(y)q({y} | x, a) = 0 for all x ∈ S, a ∈ A,

and so let ρ = 0, and α = 1. Let c0(x, a) ≡ 0. Set c = −1. Conditions 2.1 and 3.2 are
satisfied.

Now

qw({y} | x, 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

7
12 2x if x = δ, x = 0, y = x + 1,
5

12 2x if x = δ, x = 0, y = x − 1,

0 if x = δ, y = δ,

0 if x = δ or x = 0,

qw
x (0) = 2x for each x = δ, 0, and qw

x (0) = 0 if x = 0, δ. Also qw
x (1) = 0 for each x ∈ Sδ .

Consider the following two deterministic stationary strategies: ϕ0(da | x, t) ≡ δ0(da) and
ϕ1(da | x, t) ≡ δ1(da). Clearly, they are both optimal for problem (III). On the other hand,∫ ∞

0

∫
Sδ

pqw
ϕi

(0, x, t, dy)

∫
Aδ

c̃w
0 (y, a)ϕi(da | y, t)e−(α−ρ)t dt

=
∫ ∞

0
pqw

ϕi
(0, x, t, Sδ)e

−t dt, x ∈ S, i = 0, 1.

Clearly, pqw
ϕ1

(0, x, t, Sδ) ≡ 1 = ∫ ∞
0 pqw

ϕ1
(0, x, t, Sδ)e−t dt . It was shown in [38, Section 5]

that (3.3) does not hold for ϕ = ϕ0 with some x ∈ S; this can also be checked using Theorem 2
of [5]. It follows that, for some x ∈ S,

∫ ∞
0 pqw

ϕ0
(0, x, t, Sδ)e−t dt < 1; see also Lemma 2.1

of [41]. Therefore, the policy ϕ1 is not optimal for problem (V), although it is optimal for
problem (III). Hence, in general, (III) and (IV) are not equivalent to problems (V) and (VI).

https://doi.org/10.1017/jpr.2017.53 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.53


Discounted continuous-time Markov decision processes 1083

Remark 3.2. In Example 3.3 we illustrate the role of requirement (3.3). Condition 3.1 is
precisely imposed for this purpose, as seen in the next statement. (An alternative justification
of the role of Condition 3.1 is that it validates Dynkin’s formula for the original CTMDP to a
certain class of functions; see [4] for the homogeneous denumerable case. But the explanation
here is more transparent in our opinion.) In the literature, e.g. [20], [33], and [35], stronger
conditions, e.g. Condition 3.4 rather than Condition 3.1, were imposed in order for (3.3) to
hold. The investigations there were not based on the reduction method to DTMDP.

Lemma 3.3. Let some Markov policy ϕ be fixed. Suppose that Condition 2.1(i) and Condi-
tion 3.1 are satisfied. Then (3.3) holds.

Proof. According to Theorem A.1, for the statement to hold it suffices to verify that Condi-
tion A.1 is satisfied.

Since the Markov policy ϕ is fixed throughout this proof, we write qϕ as q for brevity. Note
that ∫

S

w′(y)

w(y)
qw(dy | x, s) =

∫
S

w′(y)

w(y)

w(y)

w(x)
q̃(dy | x, s) − (ρ + qx(s))

w′(x)

w(x)

=
∫

S

w′(y)

w(x)
q̃(dy | x, s) − (ρ + qx(s))

w′(x)

w(x)

≤ (ρ′ − ρ)
w′(x)

w(x)
for all x ∈ S, s ≥ 0. (3.4)

Consider the [0, ∞)-valued measurable function w̃ on [0, ∞)×Sδ defined for each v ∈ [0, ∞)

by w̃(v, x) = w′(x)/w(x) if x ∈ S and w̃(v, δ) = 0. Then Condition A.1, with S and q being
replaced by Sδ and qw, is satisfied by the monotone nondecreasing sequence of measurable
subsets {Ṽn}∞n=1 of R

0+ × Sδ defined by Ṽn = [0, ∞) × Vn ∪ {δ} for each n = 1, 2, . . . , and the
function w̃ on [0, ∞)×Sδ defined in the above. In greater detail, part (iv) of the corresponding
version of Condition A.1 is satisfied because, by (3.4),

∫ ∞

0

∫
Sδ

w̃(t + v, y) exp

(
−ρ′t −

∫
(0,t]

qw
x (s + v) ds

)
q̃w(dy | x, t + v) dt

≤
∫ ∞

0
exp

(
−ρ′t −

∫ t

0
qw
x (s + v) ds

)
(qx(t + v) + ρ′)w̃(v, x) dt

≤ w̃(v, x) for all x ∈ S,

and the last inequality holds trivially when x = δ.
Thus, by Theorem A.1, we see that relation (3.3) is satisfied, and the statement follows. �

By the way, under Condition 2.1(i), in certain models, Condition 3.1 is also necessary for
(3.3) to hold under certain policies; see [41]. In the homogeneous denumerable case, this was
first observed in [37]. For more concrete examples such as single birth processes, this necessity
part was known earlier; see [6].

As a result of the above lemma and the discussions above it, we see that under Condition 2.1
and Condition 3.1, one can reduce the α-discounted problems (I) and (II) for the original
CTMDP{S, A, A(·), q} to the (α − ρ)-discounted problems (V) and (VI) for the CTMDP
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{Sδ, Aδ, Aδ(·), qw} with nonnegative cost rates. Furthermore, according to the reduction
technique [13], which was also sketched above, problems (V) and (VI) can be reduced to

(VII) minimize over σ : E
σ
x

[ ∞∑
n=0

C̃0(Xn, An)

]
, x ∈ S,

(VIII) minimize over σ : E
σ
x

[ ∞∑
n=0

C̃0(Xn, An)

]
,

such that E
σ
x

[ ∞∑
n=0

C̃j (Xn, An)

]
≤ dj

w(x)
− c

α − ρ
, j = 1, 2, . . . , N ,

respectively, for the DTMDP {Sδ ∪ {x∞}, A ∪ {a∞}, Aδ(·), T } defined earlier. Here, the cost
functions C̃i for the DTMDP are defined by

C̃i(x, a) := c̃w
i (x, a)

(α + qx(a))
≥ 0 for each x ∈ Sδ , a ∈ Aδ(x) and C̃i(x∞, a∞) := 0,

with the functions c̃w
i being defined by (3.2). Note that the cost functions C̃i could be arbitrarily

unbounded from above.
Finally, if Conditions 2.1–3.2 are satisfied then it is easy to check that the DTMDP {Sδ ∪

{x∞}, A ∪ {a∞}, Aδ(·), T } with the nonnegative cost functions C̃i is a semicontinuous model;
see [3] and [11], and it is a standard result that there exists an optimal deterministic stationary
strategy for problem (VII). For the constrained problem (VIII), under the extra Condition 3.3,
one can refer to Theorem 4.1 of [10], see also TheoremA.2 of [7], for the existence of a stationary
optimal strategy for (VIII). Since these two DTMDP problems are equivalent to the original
CTMDP problems, according to the reduction technique for discounted CTMDP problems as
mentioned earlier, we immediately conclude the existence of an optimal deterministic stationary
policy for the unconstrained CTMDP problem (I) and an optimal stationary policy for the
constrained CTMDP problem (II). The proof of Theorem 3.1 is thus completed. �

We finish this section with the following observation. Suppose that Conditions 2.1 and 3.2
are satisfied. If one solves problem (V) with a deterministic stationary policy ϕ, which also
satisfies (3.3), then ϕ is also optimal for problem (III), despite the fact that Condition 3.1 has
not been assumed to hold uniformly in all actions.

The justifications of this claim are as follows. In general, problems (III) and (IV) are not
equivalent to (V) and (VI), respectively; recall Example 3.3. According to [13], (V) is equivalent
to the DTMDP problem {Sδ ∪ {x∞}, A ∪ {a∞}, Aδ(·), T } with the cost function C̃0. Suppose
that ϕ∗ is an optimal deterministic strategy for this DTMDP problem. Under Conditions 2.1
and Condition 3.2, if V ∗ denotes the value function of this DTMDP problem then such an
optimal deterministic stationary strategy exists and can be obtained by taking the measurable
selector providing the minimum in the following:

V ∗(x) = inf
a∈Aδ(x)

{
C̃0(x, a) +

∫
Sδ

T (dy | x, a)V ∗(y)

}
for all x ∈ Sδ. (3.5)

We claim that ϕ∗ is also an optimal deterministic policy for the CTMDP problem (III),
provided that (3.3) holds for this particular strategy ϕ∗, i.e.

pqw
ϕ∗ (0, x, t, Sδ) = 1 for all x ∈ S, t ∈ [0, ∞). (3.6)
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Indeed, since ϕ∗ is optimal for the DTMDP {Sδ ∪ {x∞}, A ∪ {a∞}, Aδ(·), T } with the cost
function C̃0, which is equivalent to problem (V),

inf
ϕ∈�M

{∫ ∞

0

∫
Sδ

pqw
ϕ
(0, x, t, dy)

∫
Aδ

c̃w
0 (y, a)ϕ(da | y, t)e−(α−ρ)t dt

}

=
∫ ∞

0

∫
Sδ

pqw
ϕ∗ (0, x, t, dy)̃cw

0 (y, ϕ∗(y))e−(α−ρ)t dt

=
∫ ∞

0

∫
S

pqw
ϕ∗ (0, x, t, dy)

c0(y, ϕ∗(y))

w(y)
e−(α−ρ)t dt − c

α − ρ
for all x ∈ S.

Consider an arbitrarily fixed ϕ ∈ �M. Then, for each x ∈ S,∫ ∞

0

∫
S

pqw
ϕ∗ (0, x, t, dy)

c0(y, ϕ∗(y))

w(y)
e−(α−ρ)t dt − c

α − ρ

≤
∫ ∞

0

∫
Sδ

pqw
ϕ
(0, x, t, dy)

∫
Aδ

c̃w
0 (y, a)ϕ(da | y, t)e−(α−ρ)t dt

=
∫ ∞

0

∫
S

pqw
ϕ
(0, x, t, dy)

∫
A

c0(y, a)

w(y)
ϕ(da | y, t)e−(α−ρ)t dt

− c

∫ ∞

0
pqw

ϕ
(0, x, t, Sδ)e

−(α−ρ)t dt.

Since c ≤ 0, and pqw
ϕ
(0, x, t, Sδ) ≤ 1, it follows that∫ ∞

0

∫
S

pqw
ϕ∗ (0, x, t, dy)

c0(y, ϕ∗(y))

w(y)
e−(α−ρ)t dt

≤
∫ ∞

0

∫
S

pqw
ϕ
(0, x, t, dy)

∫
A

c0(y, a)

w(y)
ϕ(da | y, t)e−(α−ρ)t dt for all x ∈ S.

Condition (3.6) can be checked using Theorem A.1 in Appendix A. A similar reasoning also
holds for the constrained problem. To avoid repetition, we omit the details.

Appendix A. Some facts about Markov pure-jump processes

A (Borel-measurable) signed kernel q(dy | x, s) on B(S) from S × [0, ∞) is called a (con-
servative stable) Q-function on the Borel space S if the following conditions are satisfied.

• For each s ≥ 0, x ∈ S, and � ∈ B(S) with x /∈ �, ∞ > q(� | x, s) ≥ 0.

• For each (x, s) ∈ S × [0, ∞), q(S | x, s) = 0.

• For each x ∈ S, sups∈[0,∞){q(S \ {x} | x, s)} < ∞.

For each Q-function q on S, we set q̃(� | x, s) := q(� \ {x} | x, s), and qx(s) := q̃(S | x, s).
Given a Q-function q on S from S × [0, ∞), for each � ∈ B(S), x ∈ S, s, t ∈ [0, ∞), and

s ≤ t , one can define

p(0)
q (s, x, t, �) := δx(�) exp

(
−

∫ t

s

qx(v) dv

)
,

p(n+1)
q (s, x, t, �)

:=
∫ t

s

exp

(
−

∫ u

s

qx(v) dv

)(∫
S

p(n)
q (u, z, t, �)̃q(dz | x, u)

)
du for all n = 0, 1, . . . .
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It is clear that one can legitimately define the substochastic kernel pq(s, x, t, dy) on S by

pq(s, x, t, �) :=
∞∑

n=0

p(n)
q (s, x, t, �) (A.1)

for each x ∈ S, s, t ∈ [0, ∞), s ≤ t , and � ∈ B(S). This is Feller’s construction for a transition
function, i.e. pq satisfies

pq(s, x, s, dy) = δx(dy)

and the Kolmogorov–Chapman equation∫
S

pq(s, x, t, dy)pq(t, y, u, �) = pq(s, x, u, �) for all � ∈ B(S)

is valid for each 0 ≤ s ≤ t ≤ u < ∞.

Condition A.1. There exist a monotone nondecreasing sequence {Ṽn}∞n=1 ⊆ B([0, ∞) × S)

and a [0, ∞)-valued measurable function w̃ on [0, ∞) × S such that the following hold.

(i) As n ↑ ∞, Ṽn ↑ [0, ∞) × S.

(ii) For each n = 1, 2, . . . , sup
x∈V̂n, t∈[0,∞)

qx(t) < ∞, where V̂n denotes the projection of

Ṽn on S.

(iii) As n ↑ ∞, inf(t,x)∈([0,∞)×S)\Ṽn
w̃(t, x) ↑ ∞.

(iv) For some constant ρ′ ∈ (0, ∞), for each x ∈ S and v ∈ [0, ∞),∫ ∞

0

∫
S

w̃(t + v, y) exp

(
−ρ′t −

∫ t

0
qx(s + v) ds

)
q̃(dy | x, t + v) dt ≤ w̃(v, x).

The next statement follows from Theorem 3.2 of [41].

Theorem A.1. If Condition A.1 is satisfied then pq(s, x, t, S) = 1 for each x ∈ S, s, t ∈ [0, ∞)

such that s ≤ t .
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