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EXISTENCE OFMODELING LIMITS FOR SEQUENCES OF SPARSE
STRUCTURES

JAROSLAV NEŠETŘIL AND PATRICE OSSONA DEMENDEZ

Abstract. A sequence of graphs is FO-convergent if the probability of satisfaction of every first-order
formula converges. A graph modeling is a graph, whose domain is a standard probability space, with the
property that every definable set is Borel. It was known that FO-convergent sequence of graphs do not
always admit a modeling limit, but it was conjectured that FO-convergent sequences of sufficiently sparse
graphs have a modeling limits. Precisely, two conjectures were proposed:
1. If a FO-convergent sequence of graphs is residual, that is if for every integer d the maximum relative
size of a ball of radius d in the graphs of the sequence tends to zero, then the sequence has amodeling
limit.

2. A monotone class of graphs C has the property that every FO-convergent sequence of graphs from
C has a modeling limit if and only if C is nowhere dense, that is if and only if for each integer p there
is N (p) such that no graph in C contains the pth subdivision of a complete graph on N (p) vertices
as a subgraph.

In this article we prove both conjectures. This solves some of the main problems in the area and among
others provides an analytic characterization of the nowhere dense–somewhere dense dichotomy.

§1. Introduction. Combinatorics is at a crossroads of severalmathematical fields,
including logic, algebra, probability, and analysis. Bridges have been built between
these fields (notably at the instigation of Leibniz andHilbert). From the interactions
of algebra and logic is bornmodel theory, which is founded on the duality of seman-
tical and syntactical elements of a language. Several frameworks havebeen proposed
to unify probability and logic, which mainly belong to two kinds: probabilities over
models (Carnap, Gaifman, Scott and Kraus, Nilsson, Väänänen, Valiant,. . . ), and
models with probabilities (H. Friedman, Keisler and Hoover, Terwijn, Goldbring
and Towsner,. . . ). See [19] for a partial overview.
Recently, new bridges appeared between combinatorics and analysis, which are
based on the concept of graph limits (see [21] for an in-depth exposition). Twomain
directions were proposed for the study of a “continuous limit” of finite graphs by
means of statistics convergence:

• the left convergence of a sequence of (dense) graphs, for which the limit object
can be either described as an infinite exchangeable random graph (that is a
probability measure on the space of graphs over N that is invariant under the
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natural action of S�) [2, 16], or as a graphon (that is a measurable function
W : [0, 1]× [0, 1]→ [0, 1]) [5,7,22].

• the local convergence of a sequence of bounded degree graphs, for which the
limit object can be either described as a unimodular distribution (a probability
distribution on the space of rooted connected countable graphs with bounded
degrees satisfying some invariance property) [3], or as a graphing (a Borel graph
that satisfies some Intrinsic Mass Transport Principle or, equivalently, a graph
on a Borel space that is defined by means of finitely many measure preserving
involutions) [9].
A general unifying framework has been introduced by the authors, under the
generic name “structural limits” [29]. In this setting, a sequence of structures is
convergent if the satisfaction probability of every formula (in a fixed fragment of
first-order logic) for a (uniform independent) random assignment of vertices to the
free variables converges. The limit object can be described as a probability measure
on a Stone space invariant by some group action, thus generalizing approaches
of [2, 16] and [3]. This may be viewed as a natural bridge between combinatorics,
model theory, probability theory, and functional analysis [31].
The existence of a graphing-like limit object, called modeling, has been studied
in [32, 35], and the authors conjectured that such a limit object exists if and only
if the structures in the sequence are sufficiently “structurally sparse”. For instance,
the authors conjectured that if a convergent sequence is nondispersive (meaning that
the structures in the sequence have no “accumulation elements”) then a modeling
limit exists:
Conjecture 1.1 ([32]). Every convergent residual sequence of finite structures
admits a modeling limit.
For the case of sequences of graphs from a monotone class (that is a class of finite
graphs closed by taking subgraphs) the authors conjectured the following exact
characterization, where nowhere dense classes [27,28] form a large variety of classes
of sparse graphs, including all classes with excluded minors (as planar graphs),
bounded degree graphs, and graph classes of bounded expansion [24–26].
Conjecture 1.2 ([35]). A monotone class of graphs C admits modeling limits if
and only if C is nowhere dense.
Note that this conjecture is known in one direction [35]. To prove the existence
of modeling limits for sequences of graphs in a nowhere dense class is the main
problem addressed in this article.
Nowhere dense classes enjoy a number of (nonobviously) equivalent characteriza-
tions and strong algorithmic and structural properties [30]. For instance, deciding
properties of graphs definable in first-order logic is fixed-parameter tractable on
nowhere dense graph classes (which is optimal when the considered class is mono-
tone, under a reasonable complexity theoretic assumption) [15]. Modeling limits
exist for sequences of graphs with bounded degrees (as graphings are modelings),
and this has been so far verified for sequences of graphs with bounded tree-depth
[35], for sequences of trees [32], for sequences of plane trees and sequences of graphs
with bounded pathwidth [14], and for sequences of mappings [34] (which is the sim-
plest form of nonrelational nowhere dense structures). (See also related result on
sequences of matroids [17].)
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In this article, we prove both Conjectures 1.1 and 1.2 in their full generality.
Our article is organized as follows: In Section 2 we recall all necessary notions,
definitions, and notations. In Section 3 we will deal with limits with respect to
the fragment FO1 of all first-order formulas with at most one free variable. This
is achieved by using nonstandard methods in combination with Friedman L(Qm)
logic. In Section 4 we deduce a proof of Conjecture 1.1. In Section 5, using a
characterization of nowhere denses from [33], we prove that Conjecture 1.2 holds.
The strategy of the proof will be as follows (see picture bellow):
We consider an FO-convergent sequence of graphs (Gn) in a nowhere dense
class. First, we mark a skeleton in the graphs in the sequence as well as their
neighbours (using countably many marks). We then compute an FO1-modeling
L of the marked sequence (with some additional zero/nonzero properties). Then
we aim to prove that L is actually an FO-modeling limit of the sequence. To do
this, we fix some ε > 0 and remove the edges incident to the first m(ε) vertices
of the skeleton (operation I1 in the picture) thus obtaining a sequence (G∗

n ) which
is close to being residual. This logically defined operation is continuous for our
notions of convergence, and it follows that an FO1-limit of the sequence (with the
same additional zero/nonzero properties as above) can be obtained by applying the
operation I1 toL, thus obtaining amodelingL∗. The sequence (G∗

n ) being close to be
residual (with parameter related to ε), the modeling L∗ is at distance less than f(ε)
from the FO-limit of (G∗

n ). Then we consider a logical operation I2 reconstructing
the adjacencies deleted by operation I1, which is (uniformly) continuouswith respect
to FO-convergence. (Note that I2 ◦ I1 is the identity mapping.) We deduce that the
modeling L (recovered by applying I2 on L∗) is at distance at most ε from the FO-
limit of the sequence (Gn) (recovered by applying I2 on (G∗

n )). As this holds for
every ε we deduce that L is a modeling FO-limit of the sequence (Gn).
Finally, we discuss some possible developments in Section 6. The scheme of the
concepts involved in this article is depicted bellow; our proofs will make use of
results from model theory, logic, analysis, and combinatorics.
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§2. Preliminaries, definitions, and notations.
2.1. Structures and formulas. A signature is a set � of function or relation sym-
bols, each with a finite arity. In this article we consider finite or countable signatures.
A �-structureA is defined by its domainA, and by the interpretation of the symbols
in �, either as a relation RA (for a relation symbol A) or as a function fA (for a
function symbol f). A signature � also defines the (countable) set FO(�) of all
first-order formulas built using the relation and function symbols in �, equality,
the standard logical conjunctives, and quantification over elements of the domain.
The quotient of FO(�) by logical equivalence has a natural structure of countable
Boolean algebra, the Lindenbaum-Tarski algebra B(FO(�)) of FO(�).
For a formula φ with p free variables and a structure A we denote by φ(A) the
set of all satisfying assignments of φ in A, that is

φ(A) = {(v1, . . . , vp) ∈ Ap : A |= φ(v1, . . . , vp)}.
If A is a finite structure (or a structure whose domain is a probability space), we
define the Stone pairing 〈φ,A〉 of φ andA as the probability of satisfaction of φ in A
for a random assignments of the free variables. Hence if A is finite (and no specific
probability measure is specified on the domain of A) it holds

〈φ,A〉 = |φ(A)|
|A|p .

Generally, if the domain of A is a probability space (with probability measure �A)
and φ(A) is measurable then

〈φ,A〉 = �⊗pA (φ(A)),
where �⊗pA denotes the product measure on Ap.
For a �-structure A we denote by Gaifman(A) the graph with vertex set A, such
that two (distinct) vertices x and y are adjacent in Gaifman(A) if both belong to
some relation in A (that is if ∃R ∈ � : {x, y} ⊆ RA).
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2.2. Stone space and representation by probability measures. The term of Stone
pairing comes from a functional analysis point of view: Let S(FO(�)) be the
Stone dual of the Boolean algebra B(FO(�)). Points of S(FO(�)) are equivalently
described as the ultrafilters on B(FO(�)), the homomorphisms from B(FO(�)) to
the two-element Boolean algebra, or themaximal consistent setsT of formulas from
FO(�) (point of view we shall make use of here). The space S(FO(�)) is a compact
totally disconnected Polish space, whose topology is generated by its clopen sets

k(φ) = {T ∈ S(FO(�)) : φ ∈ T}.
Let A be a finite �-structure (or a �-structure on a probability space such that every
first-order definable set is measurable). Identifying φ with the indicator function
1k(φ) of the clopen set k(φ), the map φ 	→ 〈φ,A〉 uniquely extends to a continuous
linear formon the spaceC (S(FO(�))). ByRiesz representation theorem there exists
a unique probability measure �A such that for every φ ∈ FO(�) it holds

〈φ,A〉 =
∫
S(FO(�))

1k(φ) d�A.

Note that the permutation group S� defines a (subgroup of the) group of automor-
phisms of B(FO)(�) (by permuting free variables) and acts naturally on S(FO(�)).
The probability measure �A associated to the structure A is obviously invariant
under the S�-action.
For more details on this representation theorem we refer the reader to [29].

2.3. Structural limits. Let � be a signature, and let X be a fragment of FO(�).
A sequence AAA = (An)n∈N of �-structures is X -convergent if 〈φ,An〉 converges as
n grows to infinity or, equivalently, if the associated probability measures �An on
S(X ) converge weakly [29].
In our setting, the strongest notion of convergence is FO-convergence (corre-
sponding to the full fragment of all first-order formulas). Convergence with respect
to the fragment FO0 (of all sentences, that is of all formulas without any free
variables) is called elementary convergence. Existence of elementary limits that
are (at most) countable �-structures when the signature � is (at most) count-
able follows from Gödel compactness and completeness theorems and downward
Löwenheim–Skolem Theorem. Convergence with respect to the fragment QF− (of
all quantifier-free formulas without equality) is equivalent to the left convergence
introduced by Lovász et al. [5, 6, 22]. (It is also equivalent to convergence with
respect to the fragment QF of all quantifier-free formulas, provided that the sizes
of the structures in the sequence tend to infinity.) For bounded degree graphs,
convergence with respect to the fragment FOlocal1 of local formulas with a single
free variable is equivalent to the local convergence introduced by Benjamini and
Schramm [3]. (Recall that a formula is local if its satisfaction only depends on a
fixed neighborhood of its free variables.) Also, in this case, local convergence is
equivalent to convergence with respect to the fragment FOlocal of all local formulas,
provided that the sizes of the structures in the sequence tend to infinity. For a dis-
cussion on the different notions of convergence arising from different choices of the
considered fragment of first-order logic, we refer the interested reader to [29,32,35].
An important consequence of Gaifman locality theorem [13] is that a sequence of
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�-structures is FO-convergent if and only if it is both elementary convergent and
FOlocal-convergent [29].
Note that the equivalence of X -convergence with the weak convergence of the
probability measures on S(X ) associated to the finite structures in the sequence is
stated in [29] as a representation theorem, which generalizes both the representation
of the left limit of a sequence of graphs by an infinite random exchangeable graph
[2] and the representation of the local limit of a sequence of graphs with bounded
degree by an unimodular distribution on the space of rooted connected countable
graphs [3].

2.4. Nonstandard limit structures. A construction of a nonstandard limit object
for FO-convergent sequences has been proposed in [29], which closely follows Elek
andSzegedy construction for left limits of hypergraphs [10].Oneproceeds as follows:
Let (An)n∈N be a sequence of finite �-structures and let U be a nonprincipal
ultrafilter. Let Ã =

∏
i∈N
Ai and let ∼ be the equivalence relation on Ã defined by

(xn) ∼ (yn) if {n : xn = yn} ∈ U . Then the ultraproduct of the structures An is the
structure L =

∏
U Ai , whose domain L is the quotient of Ã by ∼, and such that for

each relational symbol R it holds is defined by

([v1], . . . , [vp]) ∈ RL ⇐⇒ {n : (v1n, . . . , vpn ) ∈ RAn} ∈ U.
As proved by Łoś [20], for each formula φ(x1, . . . , xp) and each v1, . . . , vp ∈∏
n An we have∏

U

Ai |= φ([v1], . . . , [vp]) iff {i : Ai |= φ(v1i , . . . , vpi )} ∈ U.

In [29] a probability measure � is constructed from the normalised counting
measures �i of Ai via the Loeb measure construction, and it is proved that every
first-order definable set of the ultraproduct is measurable. The ultraproduct is then
a limit object for the sequence (An)n∈N. In particular, for every first-order formula
φ with p free variables it holds:

〈φ,
∏
U

Ai〉 =
∫

· · ·
∫
1φ([x1], . . . , [xp]) d�([x1]) . . . d�([xp]) = lim

U
〈φ,Ai〉.

Moreover, the above integral is invariant by any permutation on the order of the
integrations.
However, the constructed object is difficult to handle. In particular, the sigma-
algebra constructed on

∏
U An is not separable. For a discussion we refer the reader

to [8,10]. However the ultraproduct construction is used in the proof of Lemma 3.1
to prove consistency of some theories in Friedman’s Qm logic (see Section 2.6).

2.5. Modelings. By similarity with graphings, which are limit objects for local
convergent sequences of graphs with bounded degrees [9], the authors proposed
the term of modeling for a structure A built on a standard Borel space A, endowed
with a probability measure �A, and such that every first-order definable set is Borel
[35]. Such structures naturally avoid pathological behaviours (for instance, every
definable set is either finite, countable, or has the cardinality of continuum). The
definition of Stone pairing obviously extends to modeling by setting

〈φ,A〉 = �⊗p(φ(A)). (1)
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An X -convergent sequence (An)n∈N has modeling X -limit L (or simply modeling
limit L when X = FO) if L is a modeling such that for every φ ∈ X it holds

〈φ,L〉 = lim
n→∞〈φ,An〉.

Let C be a class of structures. We say that C admits modeling limits if every
FO-convergent sequence of structures (An)n∈N with An ∈ C has a modeling limit.
Note that not every FO-convergent sequence has a modeling limit: Consider a
sequence (Gn)n∈N of graphs, where Gn is a graph of order n, with edges drawn
randomly (independently) with edge probability 0 < p < 1. Then with probability
1 the sequence (Gn)n∈N is FO-convergent. However, this sequence has no modeling
limit, and even no modeling QF−-limit: Assume for contradiction that (Gn)n∈N has
a modeling QF-limit L. Because 〈x1 = x2, Gn〉 = 1/n → 0 the probability measure
�L is atomless thus L is uncountable. As L is a standard Borel space, there exists
zero-measure sets N ⊂ L and N ′ ⊂ [0, 1], and a bijective measure preserving map
f : L\N → [0, 1]\N ′. By the equivalence ofQF−-convergence and left-convergence
the modeling L defines a {0, 1}-valued graphonW : [0, 1]× [0, 1]→ [0, 1], which is
a left limit of (Gn)n∈N by:

W (x, y) =

{
1 if x, y /∈ N ′ and L |= f−1(x) ∼ f−1(y),
0 otherwise.

But a left limit of (Gn)n∈N is the constant graphonp, which is not weakly equivalent
toW (as it should, according to [4]) thus we are led to a contradiction.
This example is prototypal, and this allows us to prove that if a monotone class
of graphs admits modeling limits then this class has to be nowhere dense [35]. The
proof involves the characterization of nowhere dense classes by themodel theoretical
notions of stability and independence property [1], their relation to VC-dimension
[18], and the characterization of sequences of graphs admitting a random-free (i.e.,
almost everywhere {0, 1}-valued) left limit graphon [23]. Conjecture 1.2 asserts that
the converse is true as well: nowhere dense classes admit modeling limits.

2.6. H. Friedman’s Qm-logic. Friedman [11, 12] studied a logical system where
the language is enriched by the quantifier “there exists x in a nonzero-measure
set . . . ”, for which he studied axiomatizations, completeness, decidability, etc. A
survey including all these results was written by Steinhorn [37, 38]. In particular,
H. Friedman considered specific type of models, which he calls totally Borel, which
are (almost) equivalent to our notion of modeling: A totally Borel structure is a
structure whose domain is a standard Borel space (endowed with implicit Borel
measure) with the property that every first-order definable set (with parameters) is
measurable.
In this context, Friedman introduced a new quantifier Qm, which is to be under-
stood as expressing “there exists nonmeasure 0 many”, and initiated the study of the
extension L(Qm) of first-order logic, whose axioms are all the usual axiom schema
for first-order logic together with the following ones [38]:
M0 ¬(Qmx)(x = y);
M1 (Qmx)Ψ(x, . . . ) ↔ (Qmy)Ψ(y, . . . ), where Ψ(x, . . . ) is an L(Qm)-formula in
which y does not occur and Ψ(y, . . . ) is the result of replacing each free
occurrence of x by y;
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M2 (Qmx)(Φ ∨Ψ)→ (Qmx)Φ ∨ (Qmx)Ψ;
M3 [(Qmx)Φ ∧ (∀x)(Φ→ Ψ)]→ (Qmx)Ψ;
M4 (Qmx)(Qmy)Φ → (Qmy)(Qmx)Φ.
The rules of inference for L(Qm) are the same as for first-order logic: modus
ponens and generalization. Let the proof system just described be denoted by Km.
The standard semantic for Qm is as follows: for a structure M on a probability
space such that every first-order definable (with parameters) is measurable (for
probability measure �) it holds

M |= Qmx φ(x, a) ⇐⇒ �({x :M |= φ(x, a)}) > 0.
Note that the set of L(Qm)-sentences satisfied byM (for this semantic) is obviously
consistent in Km.
The following completeness theorem has been proved by Friedman [11] (see also
[38]):

Theorem 2.1. A set of sentences T in L(Qm) has a totally Borel model if and only
if T is consistent in Km.
It has been noted that one can require the domain of the totally Borel model to
be a Borel subset of R with Lebesgue measure 1.

§3. Modeling FO1-limits. Let AAA = (An)n∈N be an FO-convergent sequence of
finite structures, and let T (AAA) be the union of a complete theory of an elementary
limit ofAAA together with, for each first-order formula φ with free variables x1, . . . , xp,

either (Qmx1) . . . (Qmxp) φ, if lim
n→∞〈φ,An〉 > 0;

or ¬((Qmx1) . . . (Qmxp) φ), if lim
n→∞〈φ,An〉 = 0.

The ultraproduct construction provides a model for T (AAA):

Lemma 3.1. For every FO-convergent sequence AAA of finite structures, the theory
T (AAA) is consistent in Km.
Proof. Using the standard semantic forQm it is immediate that any ultraproduct∏
U Ai is a model for T (AAA) hence T (AAA) is consistent in Km. �
Theorem 3.2. For every FO-convergent sequenceAAA of finite structures, there exists
a modelingM whose domainM is a Borel subset of R, and such that:
1. the probability measure �M associated toM is uniformly continuous with respect
to Lebesgue measure �;

2. M is a modeling FO1-limit of AAA;
3. for every φ ∈ FO it holds

〈φ,M〉 = 0 ⇐⇒ lim
n→∞〈φ,An〉 = 0.

Proof. According to Lemma 3.1 the theory T (AAA) is consistent in Km. Hence,
according to Theorem 2.1, T (AAA) has a totally Borel model L. (Furthermore, we
may assume that L is a Borel subset of R with Lebesgue measure 1.)
For every integer k, there exists an integerN(k) and formulas 	k1 , . . . , 	

k
N (k) (with

a single free variable) defining the local 1-types up to quantifier rank k in the
following sense: the formulas 	ki are local, they have quantifier rank k, they induce
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a partition (formalized as 	ki � ¬	kj if i �= j and � ∨
i 	
k
i ), and for every local

formula φ(x) with quantifier rank k and for every 1 ≤ i ≤ N(k) either it holds
	ki � φ, or 	ki � ¬φ.
Define Ik = {i : �(	ki (L)) > 0}. Define the probability measure 
k on L as
follows: for every Borel subset X of L define


k(X ) =
∑
i∈Ik

�(X ∩ 	ki (L))
�(	ki (L))

· lim
n→∞〈	ki ,An〉. (∗)

Obviously 
k weakly converges to some probability measure 
. Let M be the
modeling obtained by endowing L with the probability measure �M = 
. (Thus
φ(M) = φ(L) holds for every φ ∈ FO.) Note that �M is absolutely continuous
with respect to � by construction. It follows that for every integer p the product
measure �⊗pM is absolutely continuous with respect to the product measure �⊗p.
Hence Property (1) holds.
According to Gaifman locality theorem [13] every first-order formula in FO1 can
be expressed as a Boolean combination of sentences and local formulas with one
free variable. It follows (see also [29]) that in order to prove thatM is a modeling
FO1-limit of AAA it is sufficient to prove that it is both an elementary limit of AAA and
an FOlocal1 -limit ofAAA. As the complete (first-order) theory of the elementary limit of
AAA is included in T (AAA) the modelingM is an elementary limit of AAA by construction.
According to (∗), for every integers i, k (with i ≤ N(k)) we have

〈	ki ,M〉 = �M(	ki (M))
= lim
j→∞


j(	ki (M))

= 
k(	ki (L))

= lim
n→∞〈	ki ,An〉.

As every formula in FOlocal1 can be expressed as a Boolean combination of for-
mulas 	ki it follows that AAA is FO

local
1 -convergent toM. AsM is both an elementary

limit and an FOlocal1 -limit of AAA it is an FO1-limit of AAA. This proves property (2).
Now consider a formula φ ∈ FO with free variables x1, . . . , xp. The property

〈φ,M〉 = 0 is equivalent, by construction, to the property that �(φ(L)) = 0. This,
in turn, is equivalent to ¬((Qmx1) . . . (Qmxp) φ) ∈ T (AAA) (as L is a model of T (AAA))
thus (by construction) to limn→∞〈φ,An〉 = 0. Hence Property (3) follows. �
Theorem 3.2 immediately implies

Corollary 3.3. Every FO1-convergent sequence has a modeling FO1-limit.

§4. Modeling limits of residual sequences. We know that in general an FO-
convergent sequence does not have a modeling limit (hence Corollary 3.3 does not
extend to full FO). We will see that this nicely relates to sparse–dense dichotomy.
Recall that a class C of (finite) graphs is nowhere dense if, for every integer k, there
exists an integer n(k) such that the k-th subdivision of the complete graph Kn(k)
on n(k) vertices is the subgraph of no graph in C [27, 30]. (Note a subgraph needs
not to be induced.) Based on a characterization by Lovász and Szegedy [23] or
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random-free graphon and a characterization of nowhere-dense classes in terms of
VC-dimension (Adler and Adler [1] and Laskowski [18]) the authors derived in [35]
the following necessary condition for a monotone class C to have modeling limits.
Theorem 4.1. Let C be a monotone class of graphs. If every FO-convergent of
graphs from C has a modeling limit then the class C is nowhere dense.
However, there is a particular case where a modeling limit for an FO-convergent
sequence will easily follow from Theorem 3.2. That will be done next.

Definition 4.2. A sequence (An)n∈N is residual if, for every integer d it holds

lim
n→∞ supvn∈An

|Bd (An, vn)|
|An| = 0,

where Bd (An, vn) denotes the set of elements of An at distance at most d from vn
(in the Gaifman graph of An). Equivalently, (An)n∈N is residual if, for every integer
d , it holds

lim
n→∞〈dist(x1, x2) ≤ d,An〉 = 0.

The notion of residual sequence is linked to the one of residual modeling: A
residual modeling is a modeling, all components of which have zero measure (that
is if and only if for every integer d , every ball of radius d has zero measure).
It was proved in [32, Corollary 3] that a residual FO-convergent sequence admits
a modeling FO-limit if and only if it admits a modeling FOlocal1 -limit. A direct
consequence of Theorem 3.2 is thus a positive answer to Conjecture 1.1:

Corollary 4.3. Every FO-convergent residual sequence has a modeling limit.

§5. Modeling limits of quasiresidual sequences. Here we prove our main result in
the formof a generalization of Section 4 for quasiresidual sequences. Themotivation
for the introduction of the definition of quasiresidual sequences is the following:
Known constructions of modeling limits for some nowhere dense classes with
unbounded degrees [14,32,35] are based on the construction of a countable “skele-
ton” on which residual parts are grafted. We shall use the same idea here for
the general case. The identification of a countable skeleton will use the following
characterization of nowhere dense classes proved in [33]:

Theorem 5.1. Let C be a class of graphs. Then C is nowhere dense if and only if
for every integer d and every ε > 0 there is an integerN = N(d, ε) with the following
property: for every graph G ∈ C, and every subset A of vertices of G , there is S ⊆ A
with |S| ≤ N such that no ball of radius d in G [A \ S] has order greater than ε |A|.
This theorem justifies the introduction of the following relaxation of the notion
of residual sequence:

Definition 5.2. A sequence (An)n∈N (with |An| → ∞) is quasiresidual if, for
every integer d and every ε > 0 there exists an integer N such that it holds

lim sup
n→∞

inf
Sn∈(AnN )

sup
vn∈An\Sn

|Bd (Gaifman(An) \ Sn, vn)|
|An| < ε.

In other words, (An)n∈N is quasiresidual if, for every distance d and every ε > 0
there exists an integer N so that (for sufficiently large n) one can remove at mostN
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462 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DEMENDEZ

vertices in the Gaifman graph of An so that no ball of radius d will contain at least
ε proportion of An.
The next result directly follows from Theorem 5.1.

Corollary 5.3. Let C be a nowhere dense class of graphs and let (Gn)n∈N be a
sequences of graphs from C such that |Gn | → ∞. Then (Gn)n∈N is quasiresidual.

5.1. (d, ε)-residual sequences. We now consider a relaxation of the notion of
residual sequence and show how this allows to partially reduce the problem of
finding modeling FO-limits to finding modeling FO1-limits.

Definition 5.4. Let d be an integer and let ε be a positive real. A sequence
(An)n∈N is (d, ε)-residual if it holds

lim sup
n→∞

sup
vn∈An

|Bd (An, vn)|
|An| < ε.

Similarly, a modelingM is (d, ε)-residual if it holds

sup
v∈M
�M(Bd (M, v)) < ε.

Lemma 5.5. Let d ∈ N and let ε > 0 be a positive real. Assume (An)n∈N is a
FO-convergent (2d, ε)-residual sequence of graphs and assume L is a (2d, ε)-residual
modeling FO1-limit of (An)n∈N.
Then for every d -local formula φ with p free variables it holds

|〈φ,L〉 − lim
n→∞〈φ,An〉| < p2ε.

Proof. By restricting the signature to the symbols inφ if necessary,we can assume
that the signature � is finite. Let q be the quantifier rank of φ. Then there exists
finitely many local formula �1, . . . , �N with quantifier rank at most q (expressing
the rank q d -local type) such that:

• every element of every model satisfies exactly one of the �i (formally, �
∨
�i

and � (�i → ¬�j) if i �= j);
• two elements x and y satisfies the same local first-order formulas of quantifier
rank at most q if and only if they satisfy the same �i .

Let �(x1, . . . , xp) be the formula
∧
1≤i<j≤p d>2d (xi , xj). By d -locality of φ there

exists a subset X ⊆ [N ]p such that

� �
[
φ ↔

∨
(i1,...,ip)∈X

p∧
j=1

�ij (xj)
]
.

Let φ̃ =
∨
(i1,...,ip)∈X

∧p
j=1 �ij (xj). For every structure A it holds

〈φ̃,A〉 =
∑

(i1,...,ip)∈X

p∏
j=1

〈�ij ,A〉.

As L is a modeling FO1-limit of An it holds 〈�ij ,L〉 = limn→∞〈�ij ,An〉, hence
〈φ̃,L〉 = lim

n→∞〈φ̃,An〉.
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On the other hand, as � � (φ ↔ φ̃), for every structure A holds

|〈φ,A〉 − 〈φ̃,A〉| ≤ 〈¬�,A〉 ≤
(
p

2

)
〈d≤2d ,A〉.

Note that 〈d≤2d ,A〉 is nothing but the expected measure of a ball of radius 2d in A.
In particular, if A is (2d, ε)-residual, then it holds |〈φ,A〉 − 〈φ̃,A〉| < ε. Thus,

|〈φ,L〉 − lim
n→∞〈φ,An〉| < p2ε. �

5.2. Marked quasiresidual sequences. To allow an effective use of the properties
of quasiresidual sequences, we use a (lifted) variant of the notion of quasiresidual
sequence.
Let � be a countable signature and let �+ be the signature obtained by adding to
� countably many unary symbols {Mi}i∈N and {Zi}i∈N.
For integers d, i we define the formulas d,i and ̂d as

d,i(x1) := (∃z) d≤d (x1, z) ∧Mi (z), (2)

̂d (x1) := (∃z) d≤d (x1, z) ∧Zd (z). (3)

In other words, d,i(x) holds if x belongs to the ball of radius d centered at the
elementmarkedMi , and ̂d (x) holds ifx belongs to thed -neighborhoodof elements
marked by Zd .

Definition 5.6. A sequence (A+n )n∈N (with |A+n | → ∞) of �+-structures is a
marked quasiresidual sequence if the following condition holds:

• For every integers i, n it holds |Mi(A+n )| ≤ 1 (i.e., at most one element in A+n is
marked byMi);

• For every distinct integers i, j and every integer n, no element of A+n is marked
bothMi andMj ;

• For every integer d there is a nondecreasing unbounded function Fd : N → N

with the property that for every integer n it holds

Zd (A+n ) =
Fd (n)⋃
i=1

Mi(A+n ); (4)

• For every integer d and every positive real ε > 0 there is N ∈ N such that

lim sup
n→∞

sup
vn∈A+n \

⋃
N
i=1Mi (A

+
n )

|Bd (Gaifman(A+n ) \
⋃N
i=1Mi(A

+
n ), vn)|

|A+n | < ε. (5)

(In other words, every ball of radius d inGaifman(A+n )\
⋃N
i=1Mi(A

+
n ) contains

less than ε proportion of all the vertices, as soon as n is sufficiently large.)
• For every integer d the following limit equality holds:

lim
n→∞〈̂d ,A+n 〉 = limm→∞ limn→∞〈

m∧
i=1

d,m,A+n 〉. (6)
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The main purpose of this admittedly technical definition is to allow to make
use of the sets Sn arising in the definition of quasiresidual sequences by first-order
formula, by means of the marks Mi . The role of the marks Zd is to allow a kind
of limit exchange. (Note that d,i(A+) is nothing but the ball of radius d of A+

centered at the element marked byMi .)

Lemma 5.7. For every quasiresidual sequence (An)n∈N of �-structures there exists
an FO-convergent marked quasiresidual sequence (B+n )n∈N of �-structures such that
(Forget(B+n ))n∈N is a subsequence of (An)n∈N, where Forget stands for the operation
of “forgetting” labelsMi and Zd .
Proof. Let � ′ be the signature obtained by adding to � countably many unary
symbols {Mi}i∈N. For n ∈ N we define the � ′-structure A′

n has the �
′-structure

obtained from An by defining marksMi are assigned in such a way that for every
d ∈ N and ε > 0 there is N ∈ N such that letting Sn =

⋃N
i=1Mi(A

′
n) it holds

lim sup
n→∞

sup
vn∈A′

n\Sn

|Bd (Gaifman(A′
n) \ Sn, vn)|

|A′
n |

< ε.

This is obviously possible, thanks to the definition of a quasiresidual sequence.
Considering an FO-convergent subsequence we may assume that (A′

n) is FO-
convergent.
For d ∈ N we define the constant

αd = lim
m→∞ limn→∞〈

m∨
i=1

d,i ,A′
n〉.

(Note that the values limn→∞〈∨mi=1 d,i ,A′
n〉 exist as (A′

n) is FO-convergent and that
they form, for increasing m, a nondecreasing sequence bounded by 1.)
Then for each d ∈ N there exists a nondecreasing function Fd : N → N such that
limn→∞ limFd (n) =∞ and

lim
n→∞〈

F (n)∨
i=1

d,i ,A′
n〉 = αd .

Then we define A+n to be the sequence obtained from A
′
n by marking by Zd all the

elements in
⋃Fd (n)
i=1 Mi(A

′
n). Now we let (B

+
n ) to be a converging subsequence of

(A+n )n∈N. �
Let �d be the formula asserting that the ball of radius d centered at x1 contains
x2 but no element marked Zd , that is

�d := d≤d (x1, x2) ∧ (∀z)(d≤d (x1, z)→ ¬Zd (z)).
Lemma 5.8. Let (A+n )n∈N be a marked quasiresidual sequence. Then

lim
n→∞〈�d ,A+n 〉 = 0.

Proof. Assume for contradiction that a = limn→∞〈�d ,A+n 〉 is strictly positive.
According to the definition of a marked quasiresidual sequence, there exists an
integer m such that no ball of radius d in Gaifman(A+n ) \

⋃m
i=1Mi(A

+
n ) contains

more than (a/2)|An| elements. Let n0 be such that Fd (n0) ≥ m, and let n1 ≥ n0 be
such that 〈�d ,A+n 〉 > a/2 holds for every n ≥ n1.
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Then there exists v such that the ball of radius d centered at v contains no
element marked Zd (hence no element marked M1, . . . ,Mm) and contains more
than (a/2)|An| elements, what contradicts the fact that this ball is a ball of radius d
in Gaifman(A+n ) \

⋃m
i=1Mi(A

+
n ). �

In general, a modeling FO1-limit of a (d, ε)-residual sequence does not need
to be (d ′, ε′)-residual. However, if we consider a sequence that is also marked
quasiresidual, and if we assume that the modeling FO1-limit satisfies the additional
properties asserted by Theorem 3.2 then we can conclude that the modeling is
(d/4, ε)-residual, as proved in the next lemma.

Lemma 5.9. Let (A∗
n) be a marked residual (4d, ε)-residual sequence and let L

∗ be
a modeling with the properties asserted by Theorem 3.2 then L∗ is (d, ε)-residual.

Proof. We first prove that the set Υ of vertices v ∈ L∗ such that the ball of
radius 2d centered at v has measure greater than ε has zero measure. According to
Lemma 5.8, it holds limn→∞〈�2d ,A∗

n〉 = 0 hence 〈�2d ,L∗〉 = 0. This implies that
the set V of x1 such that the ball of radius 2d centered at x1 contains no element
marked Z2d and has measure at least ε has zero measure. Hence we only have to
consider vertices v in the 2d -neighborhood of Z2d (L∗). Let

α2d = lim
m→∞ limn→∞〈

m∨
i=1

2d,i ,An∗〉.

Let k ∈ N. There exists m(k) such that

lim
n→∞〈

m(k)∨
i=1

2d,i ,A∗
n〉 > α2d − 1/k, (7)

which means that at least α2d − 1/k proportion of L∗ is at distance at most 2d from
elements markedM1, . . . ,Mm(k).
However, according to (6), and as L∗ is a modeling FO1-limit of (A∗

n)n∈N it holds

α2d = lim
n→∞〈̂2d ,A∗

n〉 = 〈̂2d ,L∗〉,

which means that a α2d proportion of L∗ is at distance at most 2d from elements
marked Z2d (which include elements marked M1, . . . ,Mm(k)). Thus the set Nk of
vertices in the 2d -neighborhood of Z2d (L+) but not in the 2d -neighborhood of⋃m(k)
i=1 Mi (L

∗) has measure at most 1/k.
Let v be in the 2d -neighborhood of

⋃m(k)
i=1 Mi(L

∗). Then the ball of radius 2d
centered at v is included in the ball of radius 4d centered at a vertex marked Mi ,
for some i ≤ m(k). But this ball has measure 〈4d,i ,L∗〉 = limn→∞〈4d,i ,A∗

n〉. As
the sequence (A+n ) is (4d, ε)-residual, it holds 〈4d,i ,A∗

n〉 < ε for sufficiently large n.
Hence the ball of L∗ of radius 2d centered at v (which is included in the ball of
radius 4d centered at the vertex markedMi) has measure less than ε.
It follows that the set Υ (of the vertices v such that the ball of radius 2d centered
at v has measure at least ε) is included in V ∪⋂

k Nk hence has zero measure.
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Now assume for contradiction that there exists a vertex v such that the ball B
of radius d centered at v has measure at least ε. Then for every w ∈ B the ball of
radius 2d centered at v has measure at least ε, which contradicts the fact that the
set Υ has zero measure. �
5.3. Color coding and mark elimination. We now consider how to turn a marked
quasiresidual into a (d, ε)-residual marked quasiresidual sequence.
The idea here is to encode each relation R with arity k > 1 with mk − 1 rela-
tions plus a sentence. The sentence expresses the behaviour of R when restricted
to elements marked M1, . . . ,Mm. The mk − 1 relations expresses which tuples of
nonmarked elements can be extended (and how)with elements markedM1, . . . ,Mm
to form a k-tuple of R.
As above, let �+ be a countable signature with unary relations Mi and Zi . Let
m ∈ N.
We define the signature �∗m as the signature obtained from �+ by adding, for
each symbolR ∈ � with arity k > 1 the relation symbolsNRI,f of arity k−|I |, where
∅ �= I � [k] and f : I → [m].
Let A+ be a �+-structure.
We define the structure Encodem(A+) as the �∗m-structure A∗, which has same
domain as A+, same unary relations, and such that for every symbol R ∈ �+ with
arity k > 1, for every ∅ �= I � [k] and f : I → [m], denoting i1 < · · · < i� the
elements of [k] \ I and i�+1, . . . , ik the elements of I , it holds
A∗ |= NRI,f(vi1 , . . . , vi� )

⇐⇒ A+ |=
�∧
j=1

m∧
r=1

¬Mr(vij ) ∧
[
(∃vi�+1 , . . . , vik )

(
R(v1, . . . , vk) ∧

k∧
j=�+1

Mf(ij )(vij )
)]

and

A∗ |= R(v1, . . . , vk)

⇐⇒ A+ |= R(v1, . . . , vk) ∧
k∧
i=1

m∧
j=1

¬Mj(vi ).

Note that the Gaifman graph of A∗ can be obtained from the Gaifman graph of
A+ by removing all edges incident to a vertex markedM1, . . . ,Mm.
We now explicit how the relation R in A+ can be retrieved from A∗.
Form ∈ N,R ∈ � with arity k > 1, andZ ⊆ [m]k let �Z ,mR (x1, . . . , xk) be defined
as follows:

�Z ,mR :=
∨

(i1,...,ik )∈Z

k∧
j=1

Mij (xi ) ∨
[
R(x1, . . . , xk) ∧

k∧
i=1

m∧
j=1

¬Mj(xi )
]

∨
∨

∅
=I⊆[k]

∨
f:I→[m]

[
NI,f(xi1 , . . . , xi� ) ∧

∧
i∈I
Mf(i)(xi ) ∧

∧
i∈[k]\II

m∧
j=1

¬Mj(xi)
]

and let �ZR be the following sentence, which expresses that Z encodes the set of all
the tuples of elements markedM1, . . . ,Mm in R.
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�ZR :=
[ ∧
(i1,...,ik )∈Z

(∃x1, . . . , xk)
(
R(x1, . . . , xk) ∧

k∧
j=1

(Mij (xi)
)]

∧ ¬
[ ∨
(i1,...,ik)∈[m]k\Z

(∃x1, . . . , xk)
(
R(x1, . . . , xk) ∧

k∧
j=1

(Mij (xi)
)]
.

The following lemma sums up the main properties of our construction.

Lemma 5.10. Let A+ be a �+-structure, and let A∗ = Encodem(A+).
Let R ∈ � be a relation symbol with arity k > 1. Then
• there exists a unique subset Z of [m]k such that A+ |= �ZR
• for this Z and for every v1, . . . , vk ∈ A+ it holds

A+ |= R(v1, . . . , vk) ⇐⇒ A∗ |= �Z ,mR (v1, . . . , vk).

Proof. This lemma straightforwardly follows from the above definitions. �
Let m ∈ N be fixed.
An elimination theory is a set Tm containing, for each R ∈ � with arity k > 1,
exactly one sentence �ZR (for someZ ⊆ [m]k). For a �+-structureA+, the elimination
theory of A+ is the set of all sentences �ZR satisfied by A

+.
For a formula φ ∈ FO(�), we define the elimination formula φ̂ of φ with respect
to an elimination theory Tm as the formula obtained from φ by replacing each
occurence of relation symbol R with arity k > 1 by the formula �Z ,mR , where Z is
the unique subset of [m]k such that �ZR ∈ Tm.
It directly follows from Lemma 5.10 that if A+ is a �+-structure which satisfies all
sentences in an elimination theory Tm, then for every formula φ ∈ FO(�), denoting
φ̂ the elimination formula of φ with respect to Tm it holds

Encodem(A+) |= φ̂(v1, . . . , vp) ⇐⇒ A+ |= φ(v1, . . . , vp). (8)

5.4. Modeling limits of quasiresidual sequences. Let us recall Gaifman locality
theorem.

Theorem 5.11 ([13]). Every first-order formula �(x1, . . . , xn) is equivalent to a
Boolean combination of t-local formulae �(xi1 , . . . , xis ) and basic local sentences of
the form

∃y1 . . . ym
( m∧
i=1

φ(yi) ∧
∧

1≤i<j≤m
d>2r(yi , yj)

)
where φ is r-local. Furthermore r ≤ 7qr(�)−1, t ≤ 7qr(�)−1/2, m ≤ n + qr(�), and, if
� is a sentence, only basic local sentences occur in the Boolean combination.

From this theorem we deduce:

Lemma 5.12. Let (An)n∈N be an elementary convergent sequence of �-structures.
Then for every formula φ ∈ FO(�) with quantifier rank q there exists a 7q−1/2-local
formula φ̃ and an integer n0 such that for every n ≥ n0 it holds φ(An) = φ̃(An).
Proof. According to Theorem 5.11 φ is equivalent to a Boolean combination
of sentences and 7q−1/2-local formulas. Putting it in disjunctive normal form and
considering all Boolean combinations of the sentences, we get thatφ is equivalent to
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i=1 	i ∧ �i , for some sentences 	1, . . . , 	N and 7q−1/2-local formulas �1, . . . , �N ,
with the additional property that in every model exactly one of the sentences 	i is
satisfied. (Formally we require � ∨

i 	i and � (	i → ¬	j) for i �= j.) As (An)n∈N is
elementary convergent, there exists 1 ≤ a ≤ N and n0 ∈ N such that An |= 	a for
every n ≥ n0. Let φ̃ = �a . Then the result follows from 	a � (φ ↔ �a). �
We can now prove our main result, which directly implies Conjectures 1.1
and 1.2.

Theorem 5.13. Every quasiresidual FO-convergent sequence has a modeling limit.

Proof. Let (An)n∈N be an FO-convergent quasiresidual sequence. According to
Lemma 5.7, up to considering a subsequence, there exists an FO-convergentmarked
quasiresidual sequence (A+n )n∈N of �-structures such that Forget(A+n ) = An.
Let L+ be a modeling with properties asserted by Theorem 3.2, and let L =
Forget(L+). Our aim is to prove that L is a modeling limit of the sequence (An)n∈N.
Let φ ∈ FO(�) be a formula with quantifier rank q and p free variables, and let
ε > 0 be a positive real.
Let d = 7q−1/2 and let m and n0 be integers such that for every n ≥ n0 no ball of
radius 8d in Gaifman(An) \

⋃m
i=1Mi(A

+
n ) contains at least (ε/p

2)|An | vertices.
Let A∗

n = Encodem(A
+
n ). Each relation of A

∗
n being defined by a fixed for-

mula from relations of A+n , the sequence (A
∗
n)n∈N is FO-convergent and L∗ =

Encodem(L+) is a modeling FO1-limit of (A∗
n)n∈N satisfying additional properties

asserted by Theorem 3.2.
Let Tm be the elimination theory of L+ (as defined above). As L+ is an FO1-limit
(hence an elementary limit) of (A+n )n∈N there exists n1 ≥ n0 such that for every
symbol R ∈ � with arity k > 1 used in φ, if �ZR ∈ Tm then A+n |= �ZR holds for every
n ≥ n1. Let φ̂ be the elimination formula of φ with respect to Tm. Note that φ̂ has
also quantifier rank at most q. According to Lemma 5.10, for every n ≥ n1 it holds
φ̂(A∗

n) = φ(A
+
n ). Thus, as φ(A

+
n ) = φ(An) (as φ only uses symbols in �) it holds

∀n ≥ n1 〈φ̂,A∗
n〉 = 〈φ,An〉. (9)

As L∗ satisfies Tm we get
〈φ̂,L∗〉 = 〈φ,L〉. (10)

Note that by our choice of m the sequence (A∗
n) is (8d, ε/p

2)-residual hence by
Lemma 5.9 the modeling L∗ is (2d, ε/p2)-residual.
According to Lemma 5.12 there exists a d -local formula φ̃ and an integer n2 ≥ n1
such that for every n ≥ n2 it holds φ̂(A∗

n) = φ̃(A
∗
n) hence

∀n ≥ n2 〈φ̃,A∗
n〉 = 〈φ,An〉. (11)

As L∗ is elementary limit of (A∗
n)n∈N it similarly holds

〈φ̃,L∗〉 = 〈φ,L〉. (12)

According to Lemma 5.5 (as φ̃ is d -local, (A∗
n) is (8d, ε/p

2)-residual and L∗ is
(2d, ε/p2)-residual) it holds

|〈φ̃,L∗〉 − lim
n→∞〈φ̃,A∗

n〉| < ε.
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Hence by (11) and (12) it holds

|〈φ,L〉 − lim
n→∞〈φ,An〉| < ε. (13)

As (13) holds for every ε > 0 we have

〈φ,L〉 = lim
n→∞〈φ,An〉.

As this holds for every formula φ ∈ FO(�), we conclude that L is a modeling limit
of (An)n∈N. �
From Theorem 5.1 it follows that any FO-convergent sequence of graphs from
a nowhere dense class is quasiresidual thus from Theorem 5.13 directly follows a
proof of Conjecture 1.2. (Recall that the reverse direction was proved in [35].)

Corollary 5.14. Let C be a monotone class of graphs. Then C has modeling limits
if and only if C is nowhere dense.

§6. Further comments.
6.1. Approximation. Let A and B be measurable subsets of the domain L of the
modeling limit of an FO-convergent sequence (An)n∈N of finite structures. Assume
that every element in A has at least b neighbours in B and every element in B has
at most a neighbours in A.
The strong finitary mass transport principle asserts that in such a case it should
hold

b �L(A) ≤ a �L(B). (14)

It is easily checked that if both A and B are first-order definable (without
parameters) then (14) holds: let A = φ(L) and B = �(L). Define

φ′(x) := φ(x) ∧ (∃y1 . . . yb)
b∧
i=1

(
(yi ∼ x) ∧ �(yi) ∧

∧
i<j≤b

(yi �= yj)
)
,

�′(x) := �(x) ∧ ¬(∃y1 . . . ya+1)
a+1∧
i=1

(
(yi ∼ x) ∧ φ(yi) ∧

∧
i<j≤a+1

(yi �= yj)
)
.

Then �L(A) = �L(φ′(L)) and �L(B) = �L(�′(L)). As b 〈φ′,An〉 ≤ a 〈�′,An〉 holds
for every integer n (as An is finite), by continuity we deduce b �L(A) ≤ a �L(B).
However, it is not clear whether an FO-convergent sequence of graphs from a
nowhere dense class has a modeling limit that satisfies the strong finitary mass
transport principle. This can be formulated as

Conjecture 6.1. One can require a version of the strong mass transport principle.

6.2. Characterization. In this context, it is natural to propose the following
generalization of Aldous-Lyons conjecture.

Conjecture 6.2. Let L be a modeling such that:

• the theory of L has the finite model property.
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• every interpretation of L satisfies the finitary mass transport principle. Precisely,
for every first-order formulas α, �, � such that

α(x) � (∃y1 . . . yb)
b∧
i=1

(
�(yi , x) ∧ �(yi) ∧

∧
i<j≤b

(yi �= yj)
)
,

�(x) � ¬(∃y1 . . . ya+1)
a+1∧
i=1

(
�(x, yi ) ∧ α(yi ) ∧

∧
i<j≤a+1

(yi �= yj)
)

it holds
b 〈α,L〉 ≤ a 〈�,L〉.

• for every integer d there is an integer N such that L does not contain the d -th
subdivision of KN .

Then L is the FO-limit of a sequence of finite graphs.
Note that there may be weaker versions of the finitary mass transport principle
nontrivially equivalent for it. See for instance what happens with mappings [36].
Note that the last condition implies that there exists no integer d such that L
includes the d -subdivision of Kℵ0,2ℵ0 , thus L has a countable skeleton, that is there
are s1, . . . , sn, · · · ∈ L such that for every integer d and every ε > 0 there is N with
the property

sup
v∈L\{s1 ,...,sN}

�L(Bd (L− {s1, . . . , sN}, v)) ≤ ε.

6.3. L(Qm)-theory of modelings.
Conjecture 6.3. For a modeling A, the knowledge of all 〈φ,A〉 ( for first-order
formulas φ) is sufficient to deduce the complete L(Qm)-theory of A.
As a support for Conjecture 6.3 consider the following L(Qm) sentences (where
φ is a first-order formula):

Φ : (∃y) (Qmx)φ(x, y),
Ψ : (∀y) (Qmx)φ(x, y).

Then it is easily checked that

M |= Φ ⇐⇒ 〈(∃y)φ(x1, y) ∧ φ(x2, y),M〉 > 0,
M |= Ψ ⇐⇒ lim

k→∞
〈(∃y)¬φ(x1, y) ∨ · · · ∨ ¬φ(xk, y),M〉1/k = 0.
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