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Abstract

Let G/K be an irreducible symmetric space, where G is a noncompact, connected Lie group and K is
a compact, connected subgroup. We use decay properties of the spherical functions to show that the
convolution product of any r = r(G/K) continuous orbital measures has its density function in L2(G)
and hence is an absolutely continuous measure with respect to the Haar measure. The number r is
approximately the rank of G/K. For the special case of the orbital measures, νai , supported on the
double cosets KaiK, where ai belongs to the dense set of regular elements, we prove the sharp result that
νa1 ∗ νa2 ∈ L2, except for the symmetric space of Cartan class AI when the convolution of three orbital
measures is needed (even though νa1 ∗ νa2 is absolutely continuous).
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1. Introduction

Let G be a real, connected, noncompact, semisimple Lie group with finite center, and
K a maximal compact subgroup of G. The quotient space, G/K, is a symmetric space
of noncompact type, which we also assume to be irreducible. For a ∈ G�NG(K), we
let νa denote the K-bi-invariant, orbital, singular measure supported on the compact
double coset KaK in G. The smoothness properties of convolution products of these
orbital measures has been of interest for many years and is related to questions about
products of double cosets and spherical functions. Ragozin, in [21], proved that for
r ≥ dim G/K, the convolution product measure, νa1 ∗ · · · ∗ νar , is absolutely continuous
with respect to any Haar measure on G; equivalently, its density function is a compactly
supported function in L1(G). This was improved in a series of papers, culminating with
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[8, 13], where r was reduced to either rank G/K or rank G/K + 1 depending on the Lie
type. See [11] for a good history of this problem.

For the special case of regular elements, aj, it was shown in [2] that the density
function of νa1 ∗ · · · ∗ νar belongs to the smaller space of compactly supported
functions in L2(G) for r ≥ dim G/K + 1. The decay properties of spherical functions
and the Plancherel theorem were used to prove this. In this paper, we develop a more
refined analysis of the decay properties of spherical functions, using the classification
of these symmetric spaces in terms of their restricted root systems, to significantly
improve this result. This analysis allows us to both extend the L2 result to convolutions
of all orbital measures νa for a � NG(K), as well as to reduce the number of convolution
products to approximately rank G/K; the precise values are given in Section 4 and
depend only on the Lie and Cartan types of the symmetric space. In the special case
of convolution products of orbital measures at regular elements, we prove that r = 2
suffices, except for one symmetric space (Cartan class AI of rank one), where r = 3 is
both necessary and sufficient. This latter fact shows that, unlike the situation for the
analogous problem in compact Lie groups and algebras, it is not true that νka belongs
to L2 if and only if νka is absolutely continuous (where the exponent means convolution
powers). The decay properties are also applied to study the differentiability of orbital
measures.

2. Notation and basic facts

2.1. Lie algebra setup. Let G be a real, connected, noncompact, semisimple Lie
group with finite center and let K be a maximal compact subgroup of G fixed by the
Cartan involution θ. We assume that G/K is irreducible. The quotient space, G/K, is a
symmetric space of noncompact type III in Helgason’s terminology [19]. Let g = t ⊕ p
be the corresponding Cartan decomposition of the Lie algebra g of G, where t is the
Lie algebra of K and p is the orthogonal complement of t with respect to the Killing
form of g. We fix a maximal abelian (as a subalgebra of g) subspace a of p and let a∗

denote its dual. The rank of G/K is the dimension of a. If we put A = exp a, where
exp : g→ G is the exponential function, then G = KAK.

The set of restricted roots, Φ, is defined by

Φ = {α ∈ a∗ : gα � 0},

where gα are the root spaces. The multiplicity of the restricted root α is denoted

mα = dim gα.

The subset of positive restricted roots is denoted Φ+. The set Φ is a root system,
although not necessarily reduced, as it is possible for both α and 2α to be in Φ.

Take a basis B for a∗ consisting of positive simple roots and let a+ be the elements
H ∈ a with α(H) > 0 for all α ∈ B. Similarly, letD ⊆ a be the dual basis to B and let

a∗+ = {λ ∈ a∗ : λ(H) > 0 for all H ∈ D}.
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We have a∗ =
⋃

w∈W w(a∗+) for W equal to the Weyl group, with a similar statement
holding for a.

Consequently, G = Kexp a+K. Indeed, given any g ∈ G, there are a pair k1, k2 ∈ K
and a unique Xg ∈ a+ such that g = k1(exp Xg)k2. We can thus view λ ∈ a∗ as also acting
on g ∈ A by setting λ(g) = λ(Xg).

The symmetric spaces can be classified by their Cartan class and the Lie type of
their restricted root system, these being one of types An, Bn, Cn, BCn, Dn (the classical
types) or G2, F4, E6, E7, E8 (the exceptional types), the subscript in all cases being the
rank of the symmetric space. We remark that for types Bn and Cn, we may assume
that n ≥ 2, as the symmetric spaces of Lie types B1 and C1 are isomorphic to type
A1. Similarly, with Dn, we may assume that n ≥ 4. For more details, please see the
appendix.

For further background on this material and proofs of the facts stated above we refer
the reader to [18–20].

2.2. Orbital measures. Next, we introduce the orbital measures of interest in this
paper. We let dm denote normalized Haar measure on K.

DEFINITION 2.1. Let a ∈ A. By an orbital measure on G, we mean the measure
denoted νa defined by the rule∫

G
f (g) dνa(g) =

∫
K

∫
K

f (k1ak2) dm(k1) dm(k2)

for all continuous, compactly supported functions f on G.

The orbital measure νa is the K-bi-invariant, probability measure supported on the
compact, double coset KaK ⊆ G. Orbital measures are always singular with respect to
Haar measure on G and they are continuous measures (that is, have no atoms) when
a � NG(K), the normalizer of K in G.

It is a classical problem to study the smoothness of convolution products of
continuous orbital measures. Some of the earliest work was done by Ragozin in [21],
who showed that νa1 ∗ · · · ∗ νar is absolutely continuous if and only if the product of
double cosets, Ka1Ka2 · · ·KarK, has nonempty interior in G. He, then, used geometric
arguments to prove that the latter statement was true whenever r ≥ dim G/K. Using
algebraic methods, this was subsequently improved to r ≥ rank G/K + 1 by Graczyk
and Sawyer in [8], who also showed that this was sharp in the case of noncompact
symmetric spaces with restricted root systems of type An. Inspired by Graczyk and
Sawyer’s work in [9, 10], in [13] the authors proved that r ≥ rank G/K is the sharp L1

result for all the classical noncompact symmetric spaces except those of type An, and
characterized precisely which convolution products are absolutely continuous for the
classical types.

2.3. L1–L2 dichotomy. Similar smoothness questions have been explored in a
number of related settings, including K-bi-invariant measures supported on double
cosets in compact symmetric spaces G/K, invariant measures supported on conjugacy
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classes of compact Lie groups or Ad-invariant measures supported on adjoint orbits
of compact Lie algebras. In the case of compact Lie groups and algebras, the authors
in [12, 14] used a combination of harmonic analysis and geometric arguments to show
that convolution powers of such measures belong to L1 if and only they belong to L2,
and determined the sharp exponent for each such measure. In contrast, in [3], it was
shown that this dichotomy fails to hold in the compact symmetric space SU(2)/SO(2).

The harmonic analysis approach to the L2 problem for compact Lie groups involved
studying the rate of decay of the characters of the group and applying the Plancherel
theorem. For symmetric spaces, the analogous approach is to study, instead, the decay
of the spherical transform. We recall the definitions of the spherical function and
spherical transform.

DEFINITION 2.2. The spherical transform of a compactly supported measure ν on the
noncompact Lie group G is defined by

ν̂(λ) =
∫

G
φλ(g−1) dν(g),

where φλ is the spherical function corresponding to λ ∈ a∗ given by the expression

φλ(g) =
∫

K
exp((iλ − ρ)H(gk)) dm(k).

Here ρ is half the sum of the positive roots and H is the Iwasawa projection; that
is, H(gk) is the unique element in a such that gk ∈ K expH(gk)N, where N is a Lie
subgroup of G with Lie algebra n =

∑
α∈Φ+ gα.

This formula for the spherical function can be found in [19, Ch. IV, Theorem 4.3],
where it is also seen that φλ = φw(λ) for all w ∈ W and λ ∈ a∗.

From the definition of orbital measures it is easy to see that ν̂a(λ) = φλ(a−1), while
in [2] it is shown that

(νa1 ∗ · · · ∗ νar )̂(λ) =
r∏

i=1

φλ(a−1
i ).

A version of Plancherel’s theorem holds in this setting. For the remainder of the
paper, c = c(λ) is the Harish-Chandra c function and dλ denotes Lebesgue measure
on a∗.

THEOREM 2.3 (Plancherel, see [19, Ch. IV, Theorem 9.1]). The K-bi-invariant
measure μ belongs to L2(G) if and only if

‖μ‖2L2(G) =

∫
a∗
|̂μ(λ)|2|c(λ)|−2dλ < ∞.

COROLLARY 2.4. The k-fold convolution product of the orbital measure νa belongs to
L2(G) if and only if |φλ(a)|k |c(λ)|−1 ∈ L2(a∗).

It is known that the spherical functions have good decay properties. To explain, it is
helpful to introduce further terminology and notation.
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DEFINITION 2.5.

(i) Given a ∈ A (or a ∈ a), by the set of annihilating roots of a we mean the set

Φ(a) = {α ∈ Φ : α(a) = 0}.

Put Φ+(a) = Φ(a) ∩ Φ+. By (Φ+(a))c we mean the complement of Φ(a) in Φ+,
that is, (Φ+(a))c = {α ∈ Φ+ : α(a) � 0}.

(ii) If Φ(a) is empty, the element a is called regular. If a is regular, we call νa a
regular orbital measure.

We let

A0 = {g ∈ A : g � NG(K)}.
The set NG(K) can be characterized as the set of elements g ∈ G such that α(g) = 0
for all roots α; and hence the set of annihilating roots of an element in A0 is a proper
root subsystem. The set of regular elements is dense in A and in the special case of a
rank-one symmetric space all the elements of A0 are regular.

Here is the decay result that we use.

PROPOSITION 2.6 ([6, Theorem 11.1], see also [2, Proposition 4.1]). For each a ∈ A0,
there is a constant Ca such that for all λ ∈ a∗,

|φλ(a)| ≤ Ca

∑
w∈W

∏
α∈(Φ+(w(a)))c

(1 + |〈λ,α〉|)−mα/2. (2-1)

It is well known (see [19, Ch. IV, Proposition 7.2]) that there is a constant C such
that

|c(λ)|−1 ≤ C
∏
α∈Φ+

(1 + |〈λ,α〉|)mα/2;

thus,

(|φλ(a)|k |c(λ)|−1)2

≤ Ca max
w∈W

∏
α∈(Φ+(w(a)))c

|1 + |〈λ,α〉||−mαk
∏
α∈Φ+
|1 + |〈λ,α〉||mα (2-2)

for a new constant Ca. Combined with Plancherel’s theorem, this implies that νka
belongs to L2(G) provided∫

a∗+
max
w∈W

∏
α∈(Φ+(w(a)))c

|1 + 〈λ,α〉|−mαk
∏
α∈Φ+
|1 + 〈λ,α〉|mαdλ < ∞. (2-3)

3. L2 results for convolutions of orbital measures at regular elements

In [2], bounds were found for the right-hand side of (2-2) that were sufficient to
show that any convolution product of more than dim G/K regular orbital measures
was in L2(G). We begin by improving this result, in fact, obtaining sharp L2 results for
convolution products of regular orbital measures.
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THEOREM 3.1. Suppose that a ∈ A0 is a regular element. The convolution products,
νka, belong to L2(G) if and only if k ≥ 2, except if the symmetric space G/K has a
restricted root system of type A1 and is of Cartan class AI, in which case k ≥ 3 is both
necessary and sufficient.

REMARK 3.2. We remark that k ≥ 2 is necessary since νa is always a singular measure.

We first obtain bounds for |φλ(a)|k |c(λ)|−1 for the symmetric spaces of classical Lie
types. Let η0 denote the multiplicity of the standard roots ei ± ej, η1 the multiplicity of
the short roots ei and η2 the multiplicity of the long roots 2ei (should there be roots of
these forms). The reader can find the values of ηj for each type in the appendix.

LEMMA 3.3. Suppose that the restricted root system of G/K is one of the Lie types An,
Bn, Cn, BCn or Dn and that a ∈ A0 is a regular element. There is a positive constant C,
depending only on G/K and a, such that

(|φλ(a)|k |c(λ)|−1)2 ≤ C min(1, ‖λ‖(1−k)�) for all λ ∈ a∗ and k ≥ 1,

where

� = �(G/K) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η0n for Lie type An,

max(η0(2n − 3) + η1 + η2, 3)
for Lie types Bn, Cn, BCn

with n ≥ 2,
η1 + η2 for Lie type BC1,
η02(n − 1) for Lie type Dn.

PROOF. Throughout the proof, the constant C may vary from one occurrence to
another. We assume that G/K has rank n; and there is no loss of generality in assuming
that λ ∈ a∗+.

As a is regular, Φ(w(a)) is empty for all w ∈ W and thus

(|φλ(a)|k |c(λ)|−1)2 ≤ C
∏
α∈Φ+
|1 + 〈λ,α〉|mα(1−k). (3-1)

Of course, if ‖λ‖ ≤ 1, then
∏
α∈Φ+ |1 + 〈λ,α〉| ≤ C, so our interest is in ‖λ‖ ≥ 1.

We let

Tλ = {α ∈ Φ+ : 〈α, λ〉 ≥ cG‖λ‖} (3-2)

for cG = 1 for types An and Dn, and cG = 1/2 otherwise. Set

S0 = {ei ± ej : 1 ≤ i < j≤ n}, S1 = {ei : 1 ≤ i ≤ n} and S2 = {2ei : 1 ≤ i ≤ n}

(should they exist). For example, in type An, S0 = Φ
+ and S1, S2 do not exist. Notice

that mα = ηj if α ∈ Sj. Put

Uλ,j = Tλ ∩ Sj (3-3)

and write |Uλ,j| for the cardinality of this set.
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With this notation,

(|φλ(a)|k |c(λ)|−1)2 ≤ C min(1, ‖λ‖(1−k)
∑

j ηj |Uλ,j |). (3-4)

We find lower bounds on |Uλ,j| by analyzing on a type-by-type basis.

Type An: We can write λ =
∑n

i=1 aiλi, where λi are the fundamental dominant
weights (the dual basis to the basis of simple roots) and ai ≥ 0. Since all norms
are equivalent on a finite-dimensional normed space, we can take ‖λ‖ = maxi ai = am
(say). It suffices to determine which positive roots α =

∑n
i=1 biαi have bm > 0 (and

hence bm ≥ 1), for then 〈α, λ〉 = ∑i aibi ≥ ambm ≥ ‖λ‖ and Uλ,0 will contain that set of
roots. These will be the roots α = ei − ej, where 1 ≤ i ≤ m and m < j ≤ n + 1; thus, the
minimum value of |Uλ,0| is n.

Type Bn, Cn, BCn: We leave the very easy case of BC1 to the reader and assume
that n ≥ 2. Here we can write λ =

∑n
i=1 aiei, where ai ≥ 0 are nonincreasing and ei are

the standard basis vectors for Rn. Taking the Euclidean norm, we have a1 ≤ ‖λ‖ ≤ na1.
We have 〈α, λ〉 ≥ a1 if α = e1 + ej for j = 2, . . . , n or α = (2)e1. In particular, we have
|Uλ,j| ≥ 1 for j = 1 for type Bn, for j = 2 for type Cn and for both j = 1, 2 for type BCn. If
a2 ≤ a1/2, then we also have 〈α, λ〉 ≥ a1/2 if α = e1 − ej for j = 2, . . . , n. In this case,
|Uλ,0| ≥ 2(n − 1) and hence

∑
ηj|Uλ,j| ≥ 2η0(n − 1) + η1 + η2.

Otherwise, a2 > a1/2 and then 〈α, λ〉 ≥ a1/2 if a = e2 + ej, j = 3, . . . , n or α = (2)e2.
In this case, we have |Uλ,0| ≥ 2n − 3 and |Uλ,1| ≥ 2 for type Bn, with similar statements
for Cn and BCn, and then

∑
ηj|Uλ,j| ≥ η0(2n − 3) + 2(η1 + η2).

In either situation,
∑
ηj|Uλ,j| is both at least 3 and at least η0(2n − 3) + (η1 + η2).

Type Dn: As with type An, we write λ =
∑n

i=1 aiλi, where λi are the fundamental
dominant weights and ai ≥ 0. It suffices to determine which α =

∑
biαi have bm > 0,

where am = maxi ai. If m � n − 1, n, these will be the roots α = ei + ej for i ≤ m and j >
i and for α = ei − ej for i ≤ m < j. There are at least 2(n − 1) of these roots. If m = n, all
the roots ei + ej have the desired property, while, if m = n − 1, the positive roots ei −
en, i < n, and ei + ej, i < j < n, all work. Thus, for all λ, |Uλ,0| ≥ min(2(n− 1),

(
n
2

)
) =

2(n − 1), as we may assume that n ≥ 4 for this type. �

PROOF OF THEOREM 3.1. We begin by proving the sufficiency of the choice of k. As
in the lemma, the constant C > 0, depending on G/K and a, which appears throughout
may change from one occurrence to another. We again assume that G/K has rank n.

When G/K has a restricted root space of classical Lie type, the previous lemma
shows that

‖νka‖22 ≤ C
∫
a∗+

min(1, ‖λ‖(1−k)�) dλ ≤ C
∫ ∞

1
t(1−k)�tn−1dt (3-5)

and this will be finite if (1 − k)� + n − 1 < −1. It is a routine exercise, using the values
of � given in the lemma, to see that if k ≥ 2, then this is true for all these classical
types, except if G/K is of Lie type An and Cartan class AI. In this latter case, η0 = 1
and we have that the integral above is finite provided k ≥ 3.
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However, the argument can be improved for the Lie type An, Cartan class AI, when
n ≥ 2. Let

Λ0 =

{
λ =

n∑
i=1

aiλi ∈ a∗+ : aj = max ai for some j � 1, n
}
,

Λ1 =

{
λ =

n∑
i=1

aiλi ∈ a∗+ : a1 = an = max ai

}

and let Λ2 be the rest of a∗+. Note that

‖ν2a‖22 ≤ C
2∑

j=0

∫
Λj

(|φλ(a)|2|c(λ)|−1)2dλ.

Let Uλ,0 be as in the lemma. Note that |Uλ,0| ≥ n + 1 if λ ∈ Λ0 ∪ Λ1, whence one
can see that

∫
Λj

(|φλ(a)|2|c(λ)|−1)2dλ < ∞ for j = 0, 1.
If, instead, λ ∈ Λ2 (so either a1 or an is the unique maximal coordinate), then

|Uλ,0| = n. However, there will also be at least n − 1 positive roots α � Uλ,0 such that
〈α, λ〉 ≥ aJ , where aJ is the second largest coefficient. Using this fact, we obtain the
bound ∫

Λ2

(|φλ(a)|2|c(λ)|−1)2dλ

≤ C
∫ ∞

0
(1 + t1)−n

( ∫ t1

0
(1 + t2)−(n−1)tn−2

2 dt2
)

dt1

≤ C
(
1 +
∫ ∞

1
t−n
1

∫ t1

1
t−1
2 dt1

)

= C
(
1 +
∫ ∞

1
t−n
1 log t1dt1

)
and this is finite since we are assuming that n ≥ 2.

Thus, even when the symmetric space is of Cartan class AI, we have ν2a ∈ L2

provided the rank of G/K is at least n = 2. That completes the proof of sufficiency
of the choice of k for the classical Lie types.

For the symmetric spaces with restricted root spaces of exceptional Lie types, we
argue in a similar fashion. We define Tλ as in (3-2) and decompose the set of positive
restricted roots into maximal disjoint sets Sj, consisting of the positive roots of a given
multiplicity. Again, put Uλ,j = Tλ ∩ Sj and observe that again (3-4) holds.

If the restricted root space is of Lie type G2, E6, E7 or E8, then all the roots have
the same multiplicity, so we take S0 = Φ

+. It is shown in [15] (see, for example, Tables
2–4) that the minimum cardinality of Uλ,0 is at least 5, 16, 27 and 57, respectively.

If the restricted root space is of Lie type F4 and all the roots have the same
multiplicity, again S0 = Φ

+ and the minimum cardinality of Uλ,0 is shown in [15] to
be 15. Otherwise, there are two distinct multiplicities and we define S0, S1 accordingly.
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As can be seen from [15], |Uλ,0| ≥ 9 and |Uλ,1| ≥ 6. Using (3-5) again, it is easy to
check that k ≥ 2 suffices.

We turn now to proving the necessity of the choice of k. Since νa is a singular
measure with respect to Haar measure, k ≥ 2 is certainly necessary (in all cases). Thus,
we need only consider the symmetric space G/K of Lie type A1 and Cartan class AI
and show that ν2a does not belong to L2.

For this symmetric space, the spherical functions can be expressed in terms of the
hypergeometric functions 2F1 as follows. Denote by α the (single) positive root and
choose H0 ∈ a such that α(H0) = 1. For any t � 0, it is known [22, 11.5.15] that

φλ(exp tH0) =2 F1

(1 + iλ
4

,
1 − iλ

4
, 1,− sinh2 t

)
.

Next, we use the relationship between the hypergeometric functions and the Jacobi and
Bessel functions (cf. [7, Section 6.4]):

J(0,b)
u (t) =2 F1

(b + 1 + iu
2

,
b + 1 − iu

2
, 1,− sinh2 t

)
,

while

J(0,b)
u (t) = cJ0(ut) + O(u−3/2),

where J0(·) is the Bessel function and c is a nonzero constant depending on t. It is well
known [1, 9.2.1] that for z > 0,

J0(z) =
C
√

z
(cos(z − π/4) + O(z−1))

for some C � 0. Thus, for all λ > 0,

φλ(exp tH0) =
C
√
λ

cos(λt/2 − π/4) + O(|λ|−3/2), (3-6)

where the nonzero constant C depends only on t.
If λ is chosen from an interval of the form

Ij =
2
t

[
2jπ +

π

8
, 2jπ +

3π
8

]
for an integer j, then cos(λt/2 − π/4) ≥ cos π/8 = ε0 > 0. It follows from (3-6) that we
can choose λ1 sufficiently large so that if λ ∈ Ij and λ ≥ λ1, then

|φλ(exp tH0)| ≥ ε0

2
√
λ

.

It is shown in the proof of [19, Ch. IV, Proposition 7.2] that for the Harish-Chandra
c function, limλ→∞ c(λ)−1λ−1/2 = 2

√
π. Thus, c(λ)−1 ≥

√
πλ for all λ ≥ λ2, say. Choose
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j0 so large that if λ ∈ ⋃∞j=j0 Ij, then λ ≥ max(λ1, λ2). Since the intervals Ij are disjoint,

∫
|φ2
λ
(exp tH0)c(λ)−1|2dλ ≥

∞∑
j=j0

∫
Ij

|φ2
λ
(exp tH0)c(λ)−1|2dλ

≥
∞∑

j=j0

∫ (
ε0

2
√
λ

)4
(
√
πλ)2dλ ≥ C

∞∑
j=j0

∫
Ij

dλ
λ

.

We deduce that for a new constant C = C(t) > 0,∫
|φ2
λ
(exp tH0)c(λ)−1|2dλ ≥ C

∞∑
j=j0

length(Ij)

j
= ∞.

Consequently, φ2
λ
(exp tH0)c(λ)−1 � L2 and this proves that ν2a � L2 for any a =

exp tH0, t � 0, and hence for any regular a. �

REMARK 3.4. It is known that for any noncompact, rank-one symmetric space, νa ∗ νa
belongs to L1 for all a ∈ A0 [8]. Thus, the L1–L2 dichotomy fails for the symmetric
space of Lie type A1 and Cartan class AI. Interestingly, the L1–L2 dichotomy holds for
all the regular orbital measures in all the other symmetric spaces since we obviously
have νka ∈ L1 only if k ≥ 2.

COROLLARY 3.5. Let a1, a2, a3 be regular elements in A. If G/K is of Lie type A1 and
Cartan class AI, then νa1 ∗ νa2 ∗ νa3 ∈ L2. Otherwise, νa1 ∗ νa2 ∈ L2.

PROOF. We prove the first statement, as the second is even easier. Let μ = νa1 ∗ νa2 ∗
νa3 . By the Plancherel formula,

‖μ‖22 =
∫
a∗
|̂μ(λ)|2|c(λ)|−2dλ =

∫
a∗

∣∣∣∣∣
3∏

i=1

φλ(a−1
i )
∣∣∣∣∣2|c(λ)|−2dλ.

Applying the generalized Holder’s inequality gives

‖μ‖22 ≤
3∏

i=1

( ∫
a∗
|φλ(a−1

i )|6|c(λ)|−2dλ
)1/3
=

3∏
i=1

‖ν3ai
‖2/32

and the latter product is finite according to the theorem. �

4. Smoothness of convolutions of arbitrary orbital measures

4.1. L2 results. The goal of this section is to show that for all a ∈ A0 (not just
regular a) there is an index k such that νka ∈ L2(G). As in the proof of Theorem 3.1,
we continue to use the notation η0 to denote the multiplicity of the roots ei ± ej, η1 for
the multiplicity of the short roots ei and η2 for the multiplicity of the long roots 2ei

when the symmetric space is of classical Lie type An, Bn, Cn, BCn or Dn. We recall
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that the values of ηj depend on the Lie type and Cartan class and can be found in the
appendix.

THEOREM 4.1. Let G/K be a noncompact symmetric space of type An, Bn, Cn, Dn or
BCn. If va1 , . . . , vak are any orbital measures on G with ai ∈ A0, then va1 ∗ · · · ∗ vak ∈
L2(G) provided k > kG, where

kG =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n + n/η0 for type An,
n − 1 + n/(2η0) for type Dn,
2(n − 1) + (n + η1 + η2)/η0 for types Bn, Cn, BCn, n ≥ 3,
max(4, 2 + (η1 + η2)/(2η0)) for B2, C2, BC2.

REMARK 4.2. We remark that the symmetric spaces of Lie type An, (B)Cn or Dn have
rank n and dimension comparable to n2 + n(η1 + η2). Note that for type (B)Cn we can
assume that n ≥ 2, as the regular orbital measure case has already been done.

The key to the proof of this theorem is finding bounds for the products

Pw
G/K(λ, k, a) =

∏
α∈Φ+(w(a))c

|1 + 〈λ,α〉|−mαk
∏
α∈Φ+
|1 + 〈λ,α〉|mα (4-1)

and

PG/K(λ, k, a) = max
w∈W

Pw
G/K(λ, k, a)

for λ ∈ a∗+ since we have already seen in (2-2) that

(|φλ(a)|k |c(λ)|−1)2 ≤ CaPG/K(λ, k, a).

This will be mainly accomplished in two lemmas. We again write C for a positive
constant (depending only on G/K and a) that may change throughout the proof. We
begin with the symmetric spaces of Lie type An or Dn. These are easier, as all roots
have the same multiplicity.

LEMMA 4.3. Suppose that G/K is of Lie type An−1 or Dn and a ∈ A0. There is a
constant C such that

PG/K(λ, k, a) ≤ C min(1, ‖λ‖−η0 pk )

for all integers k ≥ n − 1 and λ ∈ a∗+, where

pk = pk(G/K) =

⎧⎪⎪⎨⎪⎪⎩k − n + 1 for G/K type An−1,
2(k − n + 1) for G/K type Dn.

PROOF. Obviously, there is a constant C such that if ‖λ‖ ≤ 1, then Pw
G/K(λ, k, a) ≤

C min(1, ‖λ‖−η0 pk ). Thus, our interest is with ‖λ‖ ≥ 1.
In [16], the analogous problem was studied for the invariant measures supported on

conjugacy classes in the classical simple compact Lie groups. Specifically, in (3.1) of
[16], it was shown that there is a constant C = C(G) such that if G is a compact Lie
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group of type An−1 or Dn, X+ is the set of positive roots for the Lie algebra associated
with G, Y+ is the set of positive roots of some maximal root subsystem (such as
Φ+(w(a))) and ρ is half the sum of the positive roots, then, for all representations λ
of G, ∏

α∈Y+
|〈ρ + λ,α〉|s

∏
α∈X+\Y+

|〈ρ + λ,α〉|s−1 ≤ C (4-2)

when s = 1/(n − 1). As 〈ρ + λ,α〉 ∼ 1 + 〈λ,α〉, this is equivalent to the statement that∏
α∈(Y+)c

|1 + 〈λ,α〉|−1 ≤ C
∏
α∈X+
|1 + 〈λ,α〉|−s ≤ C. (4-3)

The arguments of [16] were based on the combinatorial structure of root systems,
properties of roots and the fact that representations of a compact group belong to a∗+.
They did not rely upon the fact that group representations of a compact group belong
to the integer lattice of a∗+; thus, the same reasoning applies to all λ ∈ a∗+.

Now consider the compact Lie groupGwith the same root systemΦ as the restricted
root system of G/K (although, with all roots having multiplicity two, rather than η0).
For any a ∈ A0 and w ∈ W, the set of positive annihilating roots of w(a) is contained in
the set of positive roots of a maximal root subsystem of Φ, say Ψ+. Appealing to (4-3),
we deduce that

Pw
G/K(λ, k, a) ≤

( ∏
α∈(Ψ+)c

|1 + 〈λ,α〉|−k
∏
α∈Φ+
|1 + 〈λ,α〉|

)η0

≤ C
∏
α∈Φ+
|1 + 〈λ,α〉|(1−ks)η0

(for the appropriate choice of s). Hence, if we let q be the minimal number of
positive roots α (not counting multiplicity) such that 〈λ,α〉 ≥ ‖λ‖, then PG/K(λ, k, a) ≤
C‖λ‖(1−ks)η0q. Of course, ‖λ‖(1−ks)η0q ≤ 1 if ‖λ‖ ≥ 1. In the notation of (3-3), q =
minλ |Uλ,0|. Thus, q(An−1) = n − 1 and q(Dn) = 2(n − 1). Inputting the values for s and
q gives the desired result. �

LEMMA 4.4. Suppose that G/K is of Lie type Bn, Cn or BCn, λ ∈ a∗+ and a ∈ A0.

(i) If n ≥ 3, there is a constant Cn such that if an integer

k ≥ κn := 2(n − 1) + (η1 + η2)/η0,

then

PG/K(λ, k, a) ≤ Cn min(1, ‖λ‖η0(2(n−1)−k)+η1+η2 ). (4-4)

(ii) Suppose that n = 2, m = min(η0, η1 + η2) and M = max(η0, η1 + η2). Then, if an
integer k ≥ κ2 = 1 +M/2m,

PG/K(λ, k, a) ≤ C2 min(1, ‖λ‖2m(1−k)+M). (4-5)
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PROOF. As noted previously, we obviously have PG/K(λ, k, a) uniformly bounded when
‖λ‖≤1. Moreover, when n≥3 and an integer k≥ κn, then η0(2(n−1)−k)+η1 +η2 ≤0
and, when k ≥ κ2, 2m(1 − k) +M ≤ 0. Thus, the task is to check that PG/K(λ, k, a) ≤
Cn‖λ‖η0(2(n−1)−k)+η1+η2 when n ≥ 3 and the corresponding statement of (ii) when n = 2.

Our proof of (i) proceeds by induction on n. We leave the arguments for the base
case until the end when it will be done in conjunction with the proof of (ii).

We give the proof for type BCn, but the modifications for the other types are
essentially notational. For the induction argument, it is natural to write Pn(λ, k, a)
rather than PG/K(λ, k, a) when the rank of G/K is n.

Let a ∈ A0. Since Φ+(w(a)) is a proper root subsystem, in bounding Pn(λ, k, a) we
may as well assume that Φ+(w(a)) = Ψ+, where Ψ is one of the finitely many maximal
root subsystems and that w = id.

The maximal root subsystems of a symmetric space of Lie type BCn are: (a) Lie
type BCn−1, (b) Lie type An−1 and (c) Lie types BCn−j × Aj−1 with n − j ≥ 1, j ≥ 2.

Any spherical representation in BCn can be written as λ =
∑n

i=1 λiei, where λi are
nonincreasing, nonnegative integers. Thus, λ1 ≤ ‖λ‖ ≤ nλ1 and, consequently,∏

α∈Φ+
|1 + 〈λ,α〉|mα ≤ Cλ2(n

2)η0+n(η1+η2)
1 . (4-6)

We now consider the three cases of maximal annihilating root subsystems sepa-
rately.

Case (a): Ψ is of type BCn−1. This means that there is some index n0 ∈ {1, . . . , n}
such that

Ψ+ = {ei ± ej, ek, 2ek : 1 ≤ i < j ≤ n, i, j, k � n0}
and hence

(Ψ+)c = {en0 ± ej, en0 , 2en0 : j � n0}
(where en0 − ej should be replaced by ej − en0 if j < n0).

If n0 = 1, then, as 1 + 〈λ, e1 + ej〉 ≥ λ1 for all j = 2, . . . , n and 1 + 〈λ, (2)e1〉 ≥ λ1, we
see that ∏

α∈(Ψ+)c

|1 + 〈λ,α〉|mα ≥ λ(n−1)η0+η1+η2
1 .

Thus, for such a,

Pn(λ, k, a) ≤ λ(n−1)η0(n−k)+(η1+η2)(n−k)
1 (4-7)

and that is dominated by the right-hand side of (4-4) when k ≥ κn.
So, assume that n0 � 1. Here we use an induction argument assuming that the

statement holds for n − 1. (Actually, all we need to inductively assume is that
Pn−1(λ, k, a) is uniformly bounded for k ≥ κn and the claims of the lemma certainly
ensure this.)

We consider the root subsystem

Φ′ = {ei ± ej, ek, 2ek : 2 ≤ i � j ≤ n, 2 ≤ k ≤ n} ⊆ Φ,
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with the same multiplicities. This can be viewed as the restricted root system of the
same Cartan class as G/K, but with rank n − 1. For instance, if G/K is of Cartan class
AIII, so that

G/K = SU(p, n)/SU(p) × SU(n)

for some p > n, then Φ′ is the restricted root system of the symmetric space

SU(p − 1, n − 1)/SU(p − 1) × SU(n − 1)

of Cartan class AIII and Lie type BCn−1. For the purposes of this proof, we call this
the ‘reduced symmetric space’. We remark that the reduced symmetric space has rank
n − 1 and that the multiplicities of the roots are unchanged.

By identifying a ∈ A0 with Xa ∈ a, we can assume that a =
∑n

i=1 aiei. We let a′ =∑n
i=2 aiei (understood, appropriately, as an element in the reduced symmetric space)

and observe that the annihilating root system of a′ is of type BCn−2.
Put λ′ =

∑n
i=2 λiei, so that for α ∈ Φ′, 〈α, λ′〉 = 〈α, λ〉. An elementary, but useful,

observation is that Φ+(a)c consists of the union of the nonannihilating positive roots
of a that belong to Φ′ together with those nonannihilating positive roots that do not
belong to Φ′, namely e1 ± en0 . Moreover, the nonannihilating roots that are in Φ′ are
precisely the nonannihilating roots of a′. Thus,

Pn−1(λ′, k, a′) =
∏

α∈(Ψ+)c∩Φ′+
|1 + 〈λ,α〉|−mαk

∏
α∈Φ′+

|1 + 〈λ,α〉|mα .

Since 〈λ, e1 + en0〉 ≥ cλ1 and the induction assumption ensures that
Pn−1(λ′, k, a′) is bounded independently of λ′ and k, we see that

Pn(λ, k, a)

= Pn−1(λ′, k, a′)
∏

α∈(Ψ+)c�Φ′+

|1 + 〈λ,α〉|−mαk
∏

α∈Φ+�Φ′+
|1 + 〈λ,α〉|mα

≤ Pn−1(λ′, k, a′)
∏

α=e1±en0

|1 + 〈λ,α〉|−mαk
∏

α=e1±ej,j=2,...,n
e1,2e1

|1 + 〈λ,α〉|mα

≤ Pn−1(λ′, k, a′)λη0(2(n−1)−k)+η1+η2
1 ≤ Cλη0(2(n−1)−k)+η1+η2

1 . (4-8)

Case (b):Ψ is of type An−1. Hence,Ψ+ = {siei − sjej : 1 ≤ i < j ≤ n} for some choice
of si = ±1. We define Φ′, a′, λ′ as above, so that Φ′ is of type BCn−1 and the subset of
annihilating roots of a′ is of type An−2. Again we factor Pn(λ, k, a) and use the fact that
Pn−1(λ′, k, a′) is bounded to see that

Pn(λ, k, a)

= Pn−1(λ′, k, a′)
∏

α∈(Ψ+)c�Φ′+

|1 + 〈λ,α〉|−mαk
∏

α∈Φ+�Φ′+
|1 + 〈λ,α〉|mα

https://doi.org/10.1017/S1446788721000033 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788721000033


202 S. K. Gupta and K. E. Hare [15]

≤ Pn−1(λ′, k, a′)
∏

α=s1e1+sjej,
(2)e1

|1 + 〈λ,α〉|−mαk
∏
α=ε1±ej,

(2)e1

|1 + 〈λ,α〉|mα

≤ C
∏

α=s1e1+sjej,(2)e1

|1 + 〈λ,α〉|−mαk · λ2(n−1)η0+η1+η2
1 .

There is no loss in assuming that s1 = 1; thus,∏
α=s1e1+sjej,(2)e1

|1 + 〈λ,α〉|−mαk ≤ λ−#{j>1:sj=1}η0k
1 λ

−(η1+η2)k
1 .

If there is at least one j > 1 such that sj = 1, then

Pn(λ, k, a) ≤ Cλη0(2(n−1)−k)+(η1+η2)(1−k)
1 , (4-9)

agreeing with (4-4).
So, assume that sj = −1 for all j > 1. We note that if α = e1 − ej, then |1 + 〈λ,α〉| =

1 + λ1 − λj, so, if there is some j with λj ≤ λ1/2, then |1 + 〈λ,α〉| ≥ λ1/2. Hence,∏
α∈s1e1+sjej,(2)e1

|1 + 〈λ,α〉|−mαk ≤ Cλ−η0k−(η1+η2)k
1

and we can obtain the same bound on Pn(k, λ, a) as in (4-9) (with a different choice of
constant).

Thus, we can also assume that λj ≥ λ1/2 for all j > 1. Then we give a direct
argument, rather than appealing to induction. The choice of s1 = 1 and sj = −1 for
all j � 1 means that

Φ+(a)c = {e1 − ek, ei + ej, (2)et : 2 ≤ i < j ≤ n, k ≥ 2, t ≥ 1}.

Furthermore, |1 + 〈λ, ei + ej〉| ≥ λi + λj ≥ λ1 for all i, j ≥ 2 and similarly we have
|1 + 〈λ, (2)et〉| ≥ λ1/2 for all t ≥ 1. Thus,∏

α∈(Ψ+)c

|1 + 〈λ,α〉|mα ≥ λ(
n−1

2 )η0+n(η1+η2)
1 .

Coupled with (4-6), this gives

Pn(λ, k, a) ≤ Cλη0(2(n
2)−k(n−1

2 ))+n(η1+η2)(1−k)
1 . (4-10)

It is routine to check that this implies that the claim of the lemma holds.

Case (c): Ψ is of type BCn−j × Aj−1 with 2 ≤ j ≤ n − 1. In this situation, there are
disjoint sets of indices, I, J ⊆ {1, . . . , n}, where |I| = n − j, |J| = j ≥ 2, and a choice st =

±1 for t ∈ J such that

Ψ+ = {ei ± ej, (2)et : i < j, t ∈ I} ∪ {siei − sjej : i < j ∈ J}.

We set up the usual induction/factoring argument. If 1 ∈ I, then the set of annihilat-
ing roots of a′ is of type BCn−j−1 × Aj−1 in the reduced symmetric space of type BCn−1
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(or type An−2 in BCn−1 if j = n − 1). Under this assumption, (Ψ+)c�Φ′ contains all the
roots a = e1 + ej for j ∈ J and, for such α, we have 〈α, λ〉 ≥ λ1. As |J| ≥ 2,

Pn(λ, k, a) ≤ Cλ−kη0 |J|+2(n−1)η0+η1+η2
1 ≤ Cλη0(2(n−1)−2k)+η1+η2

1 , (4-11)

a better bound than (4-4).
Otherwise, 1 ∈ J, so the set of annihilating roots of a′ is of type BCn−j × Aj−2 in type

BCn−1 (or BCn−2 in BCn−1 if |J| = 2). Then (Ψ+)c�Φ′ contains the roots a = e1 + ei for
i ∈ I and (2)e1; hence, the usual arguments give

Pn(λ, k, a) ≤ Cλ−kη0 |I|−k(η1+η2)+2(n−1)η0+η1+η2
1 (4-12)

≤ Cλη0(2(n−1)−k)+(η1+η2)(1−k)
1 .

This completes the induction step.

We have seen that to start the induction argument we need only prove that P2(λ, k, a)
is uniformly bounded for k ≥ κ3. Since k ≥ κ3 ensures that 2m(1 − k) +M ≤ 0, we need
only prove (4-5) to see this. For BC2, we have Φ+ = {e1 ± e2, (2)e1, (2)e2}; thus,∏

α∈Φ+
|1 + 〈λ,α〉|mα ≤ Cλη0

1 (1 + λ1 − λ2)η0λ
η1+η2
1 λ

η1+η2
2 .

The maximal root subsystems of type BC2 are of type BC1 with positive root being
either (2)e1 or (2)e2, or of type A1 with the positive root being either e1 − e2 or e1 + e2.
We can analyze each of these cases separately, using the fact that λ1 − λ2 ∼ λ1 if λ2 ≤
λ1/2 and λ2 ∼ λ1 if λ2 ≥ λ1/2. It is these different cases that lead to the definitions of
m and M. The details are left for the reader. �

PROOF OF THEOREM 4.1. First, suppose that G/K is of Lie type An−1 or Dn. In the
notation of Lemma 4.3,

‖νka‖22 ≤ C
∫
a∗+

(|φλ(a)|k |c(λ)|−1)2dλ ≤ C
∫

min(1, ‖λ‖−η0 pk ) dλ

≤ C
∫ ∞

1
t−η0 pk tn−1dt.

Of course, the last integral is finite if k is chosen so that η0 pk > n. Using the values
obtained for pk in the lemma gives the specified choice of kG.

A similar argument can be applied for types Bn, Cn or BCn, using the claims of
Lemma 4.4.

To prove the statement about the convolution of k (possibly distinct) orbital
measures νai , with ai ∈ A0, we use the fact that νkai

∈ L2 for the specified choices of
k and apply the generalized Holder’s inequality in the same manner as in the proof of
Corollary 3.5. �

REMARK 4.5. The technique of Lemma 4.3 could be applied to the symmetric spaces
of type Bn or Cn that have the additional property that all restricted roots have the
same multiplicity. But the results are no better than can be obtained by Lemma 4.4.
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The induction technique of Lemma 4.4 could also be applied to types An and Dn. This
takes much more work than Lemma 4.3 and gives only modest improvements.

Similar techniques can also be applied to the symmetric spaces with root systems
of exceptional types.

PROPOSITION 4.6. Suppose that G/K is a symmetric space with restricted root system
of exceptional Lie type G2, F4, E6, E7 or E8. Then νa1 ∗ · · · ∗ νak ∈ L2 if k ≥ kG as stated
in the chart.

Lie type kG F4 – Cartan class kG
E7, E8 8 EII 7

G2 4 EVI 11
E6, F4 all same mult. 7 EIX 19

REMARK 4.7. For comparison, the dimension of G/K is 40 for EII, 64 for EVI and 112
for EIX.

PROOF. When all the restricted roots of the symmetric space have the same multiplic-
ity, we reason as in the proof of Lemma 4.3, using the fact (with the notation of that
lemma) shown in [17] that s = 1/(n − 1) if the Lie type is En, s = 1/5 for type F4 and
s = 2/5 for type G2.

For the final three cases (Lie type F4, Cartan classes EII, EVI or EIX), we note that
the maximal annihilating root systems are types A1 × A2, A1 × B2, A1 × C2, A1 × A1 ×
A1, B3 and C3, all of which have cardinality at most nine, and do a counting argument
similar to that done in the proof of Theorem 3.1. �

REMARK 4.8. It would be interesting to know the sharp L2 results and whether the
L1–L2 dichotomy only fails for the symmetric space of Lie type A1 and Cartan class
AI.

4.2. Differentiability properties. If νk ∈ L2, then ν2k = νk ∗ νk has a continuous
density function. However, more can be said about the smoothness of these measures
using the following fact shown in [4, Proposition 3 (vi)]:∣∣∣∣∣ dm

dtm (φλ(g exp(tX)))|t=0

∣∣∣∣∣ ≤ C1(1 + ‖λ‖)m.

In proving Theorems 3.1 and 4.1, we have seen that there are constants C and q(k) such
that |(φλ(a))kc(λ)−1|2 ≤ C min(1, ‖λ‖q(k)) for all λ. Thus, with n = rank G/K,∫

a∗

∣∣∣∣∣φλ(a)k d
dt

(φλ(g exp(tX)))|t=0|c(λ)|−2
∣∣∣∣∣ dλ

≤C
∫
a∗+
|φλ(a)k/2c(λ)−1|2(1 + ‖λ‖) dλ

≤C
∫
a∗+
‖λ‖q(k/2)(1 + ‖λ‖) dλ

≤C
∫ ∞

1
tn−1+q(k/2)+1dt
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and this is finite provided n + q(k/2) < −1. If k is chosen sufficiently large that this
inequality holds, then Leibniz’s rule applied to the inversion formula [19, Ch. IV,
Theorem 7.5] shows that

Xνka(g) =
1
|W |

∫
a∗
φλ(a)k d

dt
(φλ(g exp(tX)))|t=0|c(λ)|−2dλ

is well defined and hence νka is differentiable. More generally, νka is r-times differen-
tiable if n − 1 + q(k/2) + r < −1.

For example, if G/K is of Lie type An, then Lemma 4.3 yields q(k/2) ≤ η0(n − k/2).
Thus, we have that νka is differentiable for all a ∈ A0 if k > 2n + 2(n + 1)/η0. If a is a
regular element and G/K is not of Lie type A1 and Cartan class AI, then one can
similarly use Lemma 3.3 to check that νka is differentiable if k > 4. Similar statements
can be made about higher orders of differentiability. These observations improve upon
[2], where it was shown that if a is a regular element, then νka is differentiable for
k > dim G/K + 1.

5. Appendix

In the charts below we summarize some of the important facts about these
symmetric spaces. These are taken from [5] and [18, Ch. X].

Restricted
root space

Cartan
class G/K dim G/K

Multiplicities
η0; η1; η2

An−1 AI SL(n,R)
SO(n)

1
2 (n − 1)(n + 2) 1; 0; 0

An−1 AII SL(n,H)
Sp(n) (n − 1)(2n + 1) 4; 0; 0

BCn, p > n
Cn, p = n AIII SU(p,n)

S(U(p)×U(n)) 2pn 2; 1; 2(p − n)

Cn CI Sp(n,R)
U(n) n(n + 1) 1; 1; 0

BCn, p > n
Cn, p = n CII Sp(p,n)

Sp(p)×Sp(n) 4pn 4; 3; 4(p − n)

Cn DIII (even) SO∗(4n)
U(2n) 2n(2n − 1) 4; 1; 0

BCn DIII (odd) SO∗(4n+2)
U(2n+1) 2n(2n + 1) 4; 1; 4

Bn, p > n
Dn, p = n BDI SO0(p,n)

SO(p)×SO(n) pn 1; 0; p − n

Restricted
root space Cartan class dim G/K Multiplicities

BC2 EIII 32 8; 6; 1
A2 EIV 26 8
C3 EVII 54 8; 1

BC1 FII 16 8; 7
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Restricted
root space Cartan class dim G/K Multiplicities

G2 G 8 1

F4

EII
EVI
EIX
FI

40
64
112
28

1; 2
1; 4
8; 1
1

E6 EI 42 1
E7 EV 70 1
E8 EVIII 128 1
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