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We present a novel theoretical framework for the emission and absorption of
two-dimensional internal waves in a density stratified medium. Our approach uses a
weakly nonlinear perturbation expansion of a streamfunction field that exposes the
harmonic structure emitted from a flexible boundary of infinite extent. We report the
discovery of a special symmetry in polychromatic waves that share a common horizontal
component of phase velocity. Under these conditions, there can be no wave–wave
interactions in the domain interior, and therefore all harmonic generation is from
the boundary. By activating polychromatic waves on this same flexible surface, we
then consider the equivalent inverse problems of emission of a prescribed harmonic
signature and absorption of wave energy from a given flow field. Specialising to
monochromatic waves, to calculate the amplitudes and phases of the harmonics generated
by a monochromatic boundary displacement and to find the explicit form of the absorbing
boundary condition for a monochromatic internal wave, we present algorithms that refine
lengthy algebraic processes down to a set of executable instructions valid for arbitrary
order in the small parameter of the expansion. Finally, we compare our theoretical
predictions up to third order with a sophisticated, digitally controlled experimental
realisation that we call a ‘magic carpet’, and we find that harmonic analysis of the flow
field convincingly supports our theory.

Key words: internal waves

1. Introduction

Internal waves provide one of the most important energy transmission systems on
Earth: lunar diurnal excitation alone drives around 1 TW of wave power within the
world’s oceans (Egbert & Ray 2001). This energy causes, for example, the upwelling
2.5× 107 m3 s−1 of dense, salty water from the deep ocean to the surface that forms part
of sustaining the meridional overturning circulation (Nikurashin & Ferrari 2013). Without
the ocean currents transporting heat from the equator towards the poles, much of western
Europe would be profoundly colder. However, much remains to be understood about the
generation mechanisms of internal waves. For example, van Haren, Maas & van Aken
(2002) observed that the frequency spectrum in the deep ocean contains multiple peaks, of
which only some correspond directly to the diurnal tide or wind-generated surface waves.

† Email address for correspondence: andrew.lawrie@bristol.ac.uk
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It is widely known that bodies oscillating at a single frequency, ω, at large amplitudes
emit additional harmonics of frequency nω (where n ∈ Z�2 and Z is the set of integers),
which could explain some of the peaks observed by van Haren et al. In the laboratory,
Mowbray & Rarity (1967) observed additional harmonics when vertically oscillating a
small cylinder with its axis horizontal, and Ermanyuk, Flór & Voisin (2011) produced
them from a horizontally oscillating sphere. Furthermore, they are even generated by a
quasi-monochromatic travelling sinusoidal boundary displacement (Mercier et al. 2010),
for which linear theory predicts a single monochromatic internal wave. Thus, harmonics
are necessarily a nonlinear phenomenon.

Weakly nonlinear theory has been used to model the emission of additional wave
beams arising from nonlinear processes. For example, at second order in the small
perturbation parameter, Tabaei, Akylas & Lamb (2005) predicted the second harmonic
that is produced when an internal wave reflects off a rigid surface. In addition, Sutherland
(2016) considered the generation of second harmonics arising from the interaction of
bounded internal wave modes. Bourget et al. (2013) also used second-order analysis to
predict the dominant pair of waves produced when triadic resonant instability splits an
internal wave beam. Conversely, Ermanyuk et al. (2011) did not formally use a perturbation
expansion to consider the higher harmonics emitted by a small horizontally oscillating
sphere, but rather measured the experimental difference with the linear theory, for which
they still found behaviours indicative of a weakly nonlinear regime.

With the exception of Ermanyuk et al. (2011), these examples only consider wave–wave
interactions in an inviscid fluid. The oscillating sphere additionally permits nonlinear
generation of waves at the boundary of the sphere. These are the only two possible
generation mechanisms of additional harmonics in a laminar, inviscid flow. Introducing
a turbulent boundary layer, which requires viscosity, would provide a notable third
mechanism, which may also introduce other, non-harmonic frequencies (Clark &
Sutherland 2010). For simplicity, here we only consider low- to moderate-amplitude
displacements.

In this paper, we consider the comparatively straightforward boundary condition of a
prescribed two-dimensional displacement about a flat, horizontal plane. This geometry
is representative of a current flowing over an ocean basin and also of the surface of the
ocean, where wind shear can generate internal waves (Pollard 1970). In the laboratory,
this geometry is motivated by the ‘magic carpet’ wave maker of Dobra, Lawrie & Dalziel
(2019) and also approximately applies to the wave generator of Gostiaux et al. (2007). We
will use a weakly nonlinear perturbation expansion to calculate the harmonics produced by
a horizontally phase-locked boundary displacement, and then to solve the inverse problem
of determining the boundary displacement required to produce a given wave field, such
as a monochromatic internal wave with no additional harmonics. This is dependent on
the symmetry, which we will demonstrate in § 3.3, that the harmonics are generated
solely at the boundary for phase-locked inputs. To address the more general case where
wave–wave interactions may occur, we have developed a method using Green’s functions
to calculate these interactions (Dobra 2018), and we expect to publish these aspects
shortly.

This article is arranged as follows. First of all, we outline the weakly nonlinear
perturbation expansion in § 2. In § 3, we present the process of calculating the harmonic
spectrum for arbitrary horizontally phase-locked boundary displacements, including
generalising d’Alembert’s solution for a completely arbitrary linear waveform in § 3.2.
Then, we compare these predictions with experiments in § 4. In § 5, we repurpose
the perturbation expansion to calculate the boundary displacement required to give a
chosen flow field, which we exemplify for a monochromatic internal wave and verify
experimentally. Finally, we summarise our findings in § 6.
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Harmonics from a magic carpet 911 A29-3

2. Approach

We develop a weakly nonlinear framework, in a similar vein to Tabaei et al. (2005), for
two-dimensional, inviscid internal waves generated by a low-amplitude forcing of vertical
displacement h(x, t) along our wave maker, where x = (x, z) are the horizontal and
vertically upwards coordinates, with z = 0 at the equilibrium height of the wave maker,
and t is time. The waves propagate through a quiescent liquid with a linear, Boussinesq
density stratification, ρ0(z), with no diffusion of mass or heat. Here, the buoyancy, or
Brunt–Väisälä, frequency,

N =
√
− g
ρ00

dρ0

dz
, (2.1)

is constant, where g is the gravitational acceleration, ρ00 is the reference density and thus
ρ0(z) = ρ00(1− (N2/g)z). Furthermore, the Boussinesq approximation implies that the
fluid is incompressible and thus does not admit acoustic waves (Sutherland 2010), thereby
simplifying the following analysis. Let a be the dimensionless order of magnitude of the
boundary forcing, h; for example, if h is a sinusoid of amplitude A and wavenumber k, then
a = Ak. In the weakly nonlinear regime, |a| � 1, we will expand the governing equations
and the boundary conditions in powers of a.

2.1. Governing equation
Let u be the velocity field, p′ the pressure perturbation from hydrostatic, ρ ′ the density
perturbation from the background stratification, ρ0, and ei the unit vector along the i axis.
Then, the three nonlinear governing equations are the conservation of momentum (Euler
equation),

ρ00

(
∂u
∂t
+ u · ∇u

)
= −∇p′ − ρ ′gez, (2.2)

the conservation of mass,
∂ρ ′

∂t
+ u · ∇(ρ0 + ρ ′) = 0, (2.3)

and the conservation of volume,
∇ · u = 0. (2.4)

We re-express these equations in terms of the buoyancy, b = −gρ ′/ρ00, and the
streamfunction, ψ , which is defined by u = ∇ × (ψey) = (−∂ψ/∂z, ∂ψ/∂x) and
automatically satisfies volume conservation (2.4), thereby reducing the number of
simultaneous scalar equations to solve from four to three.

Taking the curl of the momentum equation (2.2) and defining the Jacobian determinant
of two scalars α and β, ∣∣∣∣∂(α, β)∂(x, z)

∣∣∣∣ = ∂α

∂x

∂β

∂z
− ∂α
∂z
∂β

∂x
, (2.5)

which has the form and algebraic properties of the Poisson bracket in classical Hamiltonian
dynamics, yields the vorticity equation,

∂

∂t
∇2ψ +

∣∣∣∣∣∂
(
ψ,∇2ψ

)
∂(x, z)

∣∣∣∣∣ = ∂b
∂x
. (2.6)

The quantity −∇2ψ is the vorticity, which points in the y direction for two-dimensional
flows.
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911 A29-4 T. E. Dobra, A. G. W. Lawrie and S. B. Dalziel

The conservation of mass (2.3) is transformed by simple substitution of variables,

∂b
∂t
+
∣∣∣∣∂(ψ, b)
∂(x, z)

∣∣∣∣ = −N2 ∂ψ

∂x
. (2.7)

This formulation explicitly shows the buoyancy frequency, N, is intrinsic to the flows
in a stratified fluid. All of the nonlinear terms are now contained in the two Jacobian
determinants, which are the transformation of the advection operator, u · ∇.

We expand the streamfunction, ψ , in powers of the small dimensionless amplitude, a,

ψ = aψ1 + a2ψ2 + a3ψ3 + · · · =
∞∑

n=1

anψn, (2.8)

and similarly for the buoyancy, b. For the following analysis, we assume that the coefficient
functions ψn(x, z, t) are no greater than ord(1), which is required for the sum to converge.
Substitution of these expansions into the vorticity equation (2.6) gives

∂

∂t
∇2

( ∞∑
n=1

anψn

)
+
∣∣∣∣∣∣
∂
(∑∞

p=1 apψp,∇2
(∑∞

q=1 aqψq

))
∂(x, z)

∣∣∣∣∣∣ =
∂

∂x

( ∞∑
n=1

anbn

)
. (2.9)

Setting n = p+ q in the Jacobian term and noting that 1 � p = n − q � n − 1, so that
the summation is now over n and p, enables factorisation to yield an outer sum in terms of
powers of a,

∞∑
n=1

an

⎧⎨
⎩ ∂∂t
∇2ψn +

n−1∑
p=1

∣∣∣∣∣∂
(
ψp,∇2ψn−p

)
∂(x, z)

∣∣∣∣∣
⎫⎬
⎭ =

∞∑
n=1

an ∂bn

∂x
. (2.10)

Similarly, inserting the perturbation expansion (2.8) into the equation of conservation of
mass (2.7) and summing over powers of a gives

∞∑
n=1

an

⎧⎨
⎩N2 ∂ψn

∂x
+

n−1∑
p=1

∣∣∣∣∂(ψp, bn−p)

∂(x, z)

∣∣∣∣
⎫⎬
⎭ = −

∞∑
n=1

an ∂bn

∂t
. (2.11)

Comparing coefficients of powers of a in the expanded governing equations (2.10) and
(2.11) gives the two equations at ord(an),

∂

∂t
∇2ψn +

n−1∑
p=1

∣∣∣∣∣∂
(
ψp,∇2ψn−p

)
∂(x, z)

∣∣∣∣∣ = ∂bn

∂x
, (2.12a)

N2 ∂ψn

∂x
+

n−1∑
p=1

∣∣∣∣∣∂
(
ψp, bn−p

)
∂(x, z)

∣∣∣∣∣ = −∂bn

∂t
. (2.12b)

The buoyancy at each order, bn , can be eliminated by differentiating (2.12a) with respect
to t and (2.12b) with respect to x and then adding the resulting equations to give the
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Harmonics from a magic carpet 911 A29-5

inhomogeneous internal wave equation for ψn ,

∂2

∂t2
∇2ψn + N2 ∂

2ψn

∂x2
= −

n−1∑
p=1

{
∂

∂t

∣∣∣∣∣∂
(
ψp,∇2ψn−p

)
∂(x, z)

∣∣∣∣∣+ ∂

∂x

∣∣∣∣∣∂
(
ψp, bn−p

)
∂(x, z)

∣∣∣∣∣
}
. (2.13)

The homogeneous part of this equation consists of the sum of two temporal derivatives
and two spatial derivatives, so forms a wave equation. Its spatially anisotropic structure
yields the unusual properties of internal waves. At first order (n = 1), the summation
vanishes, leaving just the equation for linear internal gravity waves. For all higher-order
contributions to the streamfunction, the internal wave equation is inhomogeneous, but all
terms in the summation arise from lower orders. Consequently, we can inductively evaluate
all orders. This set of equations governs all weakly nonlinear wave–wave interactions in
free space. However, especially in the case of a flow driven by a moving material surface,
such as of our wave maker, it is necessary to consider in detail the role of boundary
conditions.

2.2. Boundary conditions
The kinematic boundary condition on the wave maker is of no penetration. Since it is
assumed inviscid, the fluid may slip along the boundary. Because the actuating rods of the
wave maker move vertically, the velocity of its surface is in the vertical direction,

U(x, t) = ∂h
∂t

ez. (2.14)

No penetration of the boundary requires that the normal velocity of the fluid, in the
direction of unit vector n, matches that of the surface of the wave maker at z = h(x, t),

u · n = U · n. (2.15)

Let α be the angle the local tangent to the flexible wave maker surface makes with the
horizontal, so that tanα = ∂h/∂x , then using trigonometry, the normal vector pointing
into the fluid can be expressed as n = (− sinα, cosα). Extracting a common factor of
cosα, substituting into the boundary condition (2.15), expressing u in terms of ψ and U
following (2.14), then written in the order nzuz + nx ux = nzUz, we obtain

∂ψ

∂x

∣∣∣∣
z=h

+ ∂h
∂x

∂ψ

∂z

∣∣∣∣
z=h

= ∂h
∂t
. (2.16)

A physical interpretation of this equation is that there is no penetration of the fluid material
surfaces, uz = Dh/Dt, where we have used the material (total) time derivative.

Solving partial differential equations on domains with time-varying, curved boundaries
(z = h) is usually analytically intractable and here is no exception. Instead, under the low
steepness approximation, |a| � 1, we Taylor expand the streamfunction about z = 0 with
the summation variable q,

∞∑
q=0

hq

q!

(
∂

∂x
+ ∂h
∂x

∂

∂z

)
∂qψ

∂zq

∣∣∣∣
z=0
= ∂h
∂t
. (2.17)

This expansion will be specialised and fully expanded in powers of a in §§ 3.1 and 5.2
according to the configuration under consideration.
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911 A29-6 T. E. Dobra, A. G. W. Lawrie and S. B. Dalziel

3. Evaluating harmonic spectra generated by boundary displacement

We develop a weakly nonlinear framework using the perturbation expansion introduced
in § 2 for evaluating the harmonic spectra for several classes of two-dimensional boundary
displacement. We begin, in § 3.1, by fully expanding the kinematic boundary condition
and obtain a double summation over orders of a and a Taylor’s expansion of the boundary.
This summation can be condensed into a graph of dependencies where the flow moves
from lower-order to higher-order solutions in the streamfunction variable. In § 3.2, we
go on to show d’Alembert’s Solution for the linear wave equation in the general case
of arbitrary spectra and phase relationships, and present the complementary evanescent
solution, because higher harmonics at some point will fall into this category. We then make
a specialisation, in § 3.3, to horizontally phase-locked but otherwise arbitrary spectra,
because these exhibit an interesting symmetry that we need to efficiently evaluate the
special case of monochromatic displacements. The outcome of this algebra is a concise
algorithm through which higher powers of sinusoids can be systematically converted into
the higher harmonics, which we present in § 3.4. Thus, we can uncover the relationships
between harmonics and account for all the subharmonic contributions made by those
higher harmonics.

3.1. Boundary conditions
In the weakly nonlinear regime, we assume that the prescribed boundary displacement, h,
is no greater than ord(a), so we define ĥ = ord(1) such that h = aĥ. In addition, we assume
that the characteristics of the internal waves each only intersect the wave maker once,
which requires max |∂h/∂x | < min cotΘ , where, as we will see in § 3.2,Θ is the angle of
the direction of energy propagation of one such internal wave to the vertical.

Then, we expand the streamfunction (2.8) in the kinematic boundary condition (2.16),
collect terms of equal order (powers of a) and express as a double sum,

∞∑
q=0

∞∑
r=1

aq+r

q!
ĥq

(
∂

∂x
+ a

∂ ĥ
∂x

∂

∂z

)
∂qψr

∂zq

∣∣∣∣
z=0
= a

∂ ĥ
∂t
. (3.1)

Now all quantities are either ord(1) or are powers of a, so this has been fully expanded. It
is convenient to factor out powers of a and sum over them with summation variable n and
use separate inner summations over q for each term. After adjusting the summation limits
accordingly, we have

∞∑
n=1

an

⎧⎨
⎩

n−1∑
q=0

ĥq

q!
∂q+1ψn−q

∂x ∂zq

∣∣∣∣
z=0
+

n−2∑
q=0

ĥq

q!
∂ ĥ
∂x

∂q+1ψn−q−1

∂zq+1

∣∣∣∣
z=0

⎫⎬
⎭ = a

∂ ĥ
∂t
. (3.2)

The system is forced only at ord(a), so the right-hand side contains no contributions for
n � 2, and terms of those orders on the left-hand side must themselves balance.

At ord(an), the q = 0 term in the first summation reduces to ∂ψn/∂x |z=0. The remaining
terms in the first q summation all arise from the Taylor’s expansion that extrapolates
evaluation of the vertical fluid velocity from z = 0 to the material surface at z = h. The
second q summation contains corrections due to the variations of the surface normal, n,
about the vertical and these unavoidably contain the horizontal fluid velocity, which we
also Taylor expand to extrapolate from z = 0 to z = h. Except for the q = 0 term in
the first summation, which yields ψn , all terms that appear at ord(an) are contributions
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Harmonics from a magic carpet 911 A29-7

ψ1
u1

w1

ψ2
u2

w2

ψ3
u3

w3

ψ4
u4

w4

FIGURE 1. Graph of dependencies of contributions to the streamfunction at each order. The
black triangular arrows indicate vertical (z) derivatives and grey triangular arrows indicate
horizontal (x) derivatives. The other arrows only show the direction of dependence; no other
operations occur.

from lower orders. The forcing of the governing equation for ψn (2.13) also only depends
on lower orders. Hence, as shown in figure 1, there exists a unidirectional cascade of
dependence from lower- to higher-order streamfunction contributions.

In addition to the kinematic boundary condition (3.2), the solution must satisfy
causality: the time-averaged energy flux must be directed away from z � h for all
components of the generated flow. For internal waves, this is equivalent to saying the
group velocity has a positive vertical component. Let the time average over one period
of oscillation be denoted by angle brackets 〈·〉. Then, causality requires 〈 p′w〉 � 0
for all linearly independent components of the flow (derived, for example, in Dobra 2018,
pp. 143–144).

3.2. D’Alembert’s solution for arbitrary boundary displacements
Setting n = 1 in the expansion of the governing equation (2.13) yields the first-order
contribution to the streamfunction, ψ1,

∂2

∂t2
∇2ψ1 + N2 ∂

2ψ1

∂x2
= 0. (3.3)

This is the linearised form of the wave equation for internal waves. As noted earlier, it
has an anisotropic structure, and here we use a method of characteristics that generalises
d’Alembert’s solution to the classical wave equation (d’Alembert 1747). While a Fourier
transform could be performed to obtain a dispersion relation directly, in general a Fourier
approach cannot be used at higher orders containing quadratic Jacobian determinants,
except for cases exhibiting a special symmetry, which we discovered and will report in
§ 3.3. Furthermore, our approach identifies the hyperbolic structure and the geometry of
the characteristics, which we have shown in Dobra (2018) is an important consideration
for wave–wave interactions. The algebra given here is a preparatory step for extension
to higher-order harmonics from a monochromatic boundary displacement, which we will
discuss in § 3.4.
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911 A29-8 T. E. Dobra, A. G. W. Lawrie and S. B. Dalziel

The linear kinematic boundary condition is given by taking all terms of ord(a) in the
expansion (3.2) (n = 1, q = 0),

∂ψ1

∂x

∣∣∣∣
z=0
= ∂ ĥ
∂t
. (3.4)

We integrate this with respect to x ,

ψ1|z=0 =
∫
∂ ĥ
∂t

dx, (3.5)

where the arbitrary constant of integration will be chosen such that ψ represents the
perturbation to the (constant) background streamfunction with no net volume flux through
z = 0; in other words,

〈
ψ1|z=0

〉 = 0.
Any smooth boundary displacement profile can be expressed as a real Fourier transform,

ĥ =
∫∫

A(k, ω) sin (kx − ωt)+ B(k, ω) cos (kx − ωt)dω dk, (3.6)

where the functions A and B of k and ω are the Fourier coefficients. Substituting this form
into the kinematic boundary condition (3.5) gives

ψ1|z=0 = −
ω

k

∫∫
A(k, ω) sin (kx − ωt)+ B(k, ω) cos (kx − ωt) dω dk. (3.7)

Since the operation of integration, the governing equation (3.3) and the boundary
conditions are all linear, we will consider each term independently for a particular (k, ω)
and then integrate over these contributions to recover the full streamfunction field.

Taking only the terms at a particular frequency ω, which we denote as ψω, we seek
a wave-like sinusoidal solution, so the linear internal wave equation reduces to the
two-dimensional partial differential equation

− ω2∇2ψω + N2 ∂
2ψω

∂x2
= 0, (3.8)

which readily rearranges into the form of the classical wave equation,

(
N2

ω2
− 1
)
∂2ψω

∂x2
− ∂

2ψω

∂z2
= 0. (3.9)

In the case ω > N, this is an elliptic equation, so does not admit propagating wave
solutions, but instead evanescent waves form, which we will discuss later in this section.
Internal waves are the solutions that occur along characteristics when ω < N and thus the
system is hyperbolic. Although elliptic equations can often be solved more readily than
hyperbolic equations (for example, Hurley (1972) used analytic continuation to extend an
elliptic solution to propagating internal waves), here we specialise d’Alembert’s direct
approach for the solution of hyperbolic forms (d’Alembert 1747) to linear internal waves.
Solutions are projected along the characteristics, so satisfying the boundary condition at
z = 0 provides a streamfunction everywhere in the fluid interior.
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Harmonics from a magic carpet 911 A29-9

Factorising the hyperbolic differential operator yields(√
N2

ω2
− 1

∂

∂x
+ ∂

∂z

)(√
N2

ω2
− 1

∂

∂x
− ∂

∂z

)
ψω = 0. (3.10)

This form clearly shows the fundamental property of internal waves (when ω < N) that
the characteristics of the streamfunction, which are also the streamlines, are parallel at a
constant angle to the vertical. Let Θ1 be the angle these make with the vertical, where
0 < Θ1 < π/2, and η1± be the normalised characteristic variables,

η1± = x cosΘ1 ± z sinΘ1. (3.11)

The difference in η between two parallel characteristics is the perpendicular distance
between them in (x, z) space. The derivatives with respect to η1± are found using the
chain rule,

∂

∂η1±
= secΘ1

∂

∂x
± cosecΘ1

∂

∂z
= cosecΘ1

(
tanΘ1

∂

∂x
± ∂

∂z

)
. (3.12)

Comparing this with the factorised form of the wave equation (3.10) shows that

∂2ψω

∂η1+∂η1−
= 0 (3.13)

and tanΘ1 =
√
(N/ω)2 − 1, so

ω = N cosΘ1, (3.14)

which we identify as the dispersion relation for linear internal waves. Therefore, the
characteristics are parallel to the group velocity. Although the tangent function could take
either sign, we take tanΘ1 to be positive throughout this paper, because it represents a
positive square root. The general solution of the transformed equation (3.13) is the sum of
two arbitrary functions each of one variable,

ψω = f (η1+)+ g(η1−). (3.15)

Applying the boundary condition (3.7) at this chosen frequency, ω, to the general
solution implies that this contribution to the streamfunction is of the form

ψω = −ωk
∫

CA sin [k(x + z tanΘ1)− ωt]+ (1− C)A sin [k(x − z tanΘ1)− ωt]

+ DB cos [k(x + z tanΘ1)− ωt]+ (1− D)B cos [k(x − z tanΘ1)− ωt] dk,
(3.16)

where C and D are constants to be determined from the causality condition, 〈pωwω〉 � 0
on z = 0. In fact, due to the characteristic nature of the system, this condition holds
everywhere in the fluid domain, z � 0. The vertical velocity component wω is given by
∂ψω/∂x , and we find the corresponding pressure perturbation by integrating the linearised
horizontal momentum equation (2.2) with respect to x ,

pω = ρ00

∫
∂2ψω

∂t∂z
dx, (3.17)

where the integration constant will be set to zero to ensure zero time-averaged
perturbation. Alternatively, one could derive this by considering the force balance on a
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911 A29-10 T. E. Dobra, A. G. W. Lawrie and S. B. Dalziel

fluid parcel; see Dobra (2018, pp. 144–145) for details. We now consider each sinusoid in
turn, noting that time averages of cross terms equal zero. For the first sinusoid,

〈pωwω〉 = C2A2

〈
−ρ00

ωk tanΘ1

k
k cos2 [k(x + z tanΘ1)− ωt]

〉
= −1

2
C2A2ρ00kω tanΘ1,

(3.18)

where we have used that the mean square of a sinusoid is half its amplitude. In preparation
for considering phase-locked waves in § 3.3, we define cx = ω/k to be the horizontal phase
velocity, and so

〈pωwω〉 = − 1
2 C2A2ρ00k2cx tanΘ1. (3.19)

Causality is only satisfied for waves generated by the lower boundary when this quantity
is positive, so sin [k(x + z tanΘ1)− ωt] is physical only when cx < 0 (i.e. k and ω
have opposite signs). Conversely, for the second sinusoid, the same method shows that
〈pωwω〉 = 1

2(1− C)2A2ρ00k2cx tanΘ1, so is only causal when cx > 0. These properties
hold for the third and fourth sinusoids, when the sine is replaced by a cosine, because it is
simply a phase shift. Therefore, the coefficients C and D are either zero or one, according
to the sign of the horizontal phase velocity. We succinctly express this using the sign
function,

ψω = −ωk
∫

A(k, ω) sin [k(x − sgn(kω)z tanΘ1)− ωt]

+ B(k, ω) cos [k(x − sgn(kω)z tanΘ1)− ωt] dk. (3.20)

Instead, if ω > N, linear internal waves cannot propagate and are evanescent.
Furthermore, the spatial equation (3.9) becomes elliptic, meaning that there are no real
characteristics and information at one point propagates throughout the whole domain. We
seek a separable solution, which we will denote ψe, that is harmonic in x , so must be
exponential in z with growth/decay rate k

√
1− (N/ω)2. In order to satisfy causality, the

disturbance decays into the fluid domain, so the contribution to the streamfunction in the
evanescent case is

ψe = −ωk
∫

A(k, ω) exp

⎛
⎝−kz

√
1−

(
N
ω

)2
⎞
⎠ sin (kx − ωt)

+ B(k, ω) exp

⎛
⎝−kz

√
1−

(
N
ω

)2
⎞
⎠ cos (kx − ωt) dk. (3.21)

This is simply the (unstratified) potential flow response, but with a rescaled vertical
coordinate, z 	→ z

√
1− (N/ω)2; potential flow is smoothly recovered in the unstratified

limit, N → 0. These forced oscillations are in phase with the boundary forcing. The
disturbance extends further up into the fluid as the strength of the stratification increases
and does not decay at all at the point where internal waves start to propagate, N = ω.
Unlike propagating internal waves, evanescent waves are reversible in time, meaning that
it would not be possible to determine if a video of one is being played backwards. Thus,
steady evanescent waves do not transport any energy.
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Harmonics from a magic carpet 911 A29-11

Assembling the propagating (3.20) and evanescent (3.21) wave solutions gives the
linear contribution to the streamfunction generated by an arbitrary boundary displacement
expressed in the form (3.6),

ψ1 =
∫ −N

−∞
ψe dω +

∫ N

−N
ψω dω +

∫ ∞
N
ψe dω. (3.22)

3.3. Symmetries of phase-locked internal waves
Here, we derive a symmetry of phase-locked internal waves, both propagating and
evanescent, which have the same horizontal phase velocity cx . Such propagating waves
may have an arbitrary amplitude spectrum according to

ψ =
∫

A(k) sin [k(x − sgn(cx)z tanΘ − cx t)]

+ B(k) cos [k(x − sgn(cx)z tanΘ − cx t)] dk, (3.23a)

where, from the dispersion relation (3.14), the angle Θ = cos−1(kcx/N) and thus depends
on k. The corresponding form of evanescent waves is

ψ =
∫

exp

⎛
⎝−kz

√
1−

(
N
ω

)2
⎞
⎠ {A(k) sin [k(x − cx t)]+ B(k) cos [k(x − cx t)]} dk.

(3.23b)

This is a general description of travelling wavepackets of both finite and infinite extent
along a material surface, such as the surface of the wave maker. This includes classes
of problem such as atmospheric lee waves (e.g. Scorer 1949; Dalziel et al. 2011; Dobra
et al. 2019), though excludes cases such as standing waves because they are superpositions
of waves of opposing phase velocities. For such a propagating wave spectrum, the
Jacobian terms (which correspond to the advection terms, u · ∇, of the vorticity equation
(2.6) and conservation of mass (2.7)) vanish. This important symmetry shows not only
that resonant interactions in the domain interior are not admissible but in fact that
all second-order interactions between waves arising from a horizontally phase-locked
spectrum are inadmissible. We also note that, although linear, such a spectrum fully
satisfies the nonlinear governing equations (2.2)–(2.4) at all amplitudes, which is a
remarkable generalisation of this property observed for monochromatic plane waves by
McEwan (1973) and Tabaei & Akylas (2003).

We now derive this symmetry by first differentiating the phase-locked form of the
propagating streamfunction (3.23a) to obtain the negative of the vorticity,

∇2ψ1 = −
∫ (

k2 + k2 tan2Θ
)

A(k) sin [k(x − sgn(cx)z tanΘ − cx t)]

+ (k2 + k2 tan2Θ
)

B(k) cos [k(x − sgn(cx)z tanΘ − cx t)] dk. (3.24)

Using trigonometry and the dispersion relation (3.14) gives

k2 + k2 tan2Θ = k2 sec2Θ = N2

c2
x

, (3.25)

which is a constant and so can be factored out of the integral. Therefore, the vorticity is
proportional to the streamfunction with the constant of proportionality depending only on
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911 A29-12 T. E. Dobra, A. G. W. Lawrie and S. B. Dalziel

the buoyancy frequency, N, and the horizontal phase velocity, cx ,

∇2ψ = −N2

c2
x

ψ. (3.26)

Applying the Laplacian to the evanescent form of the streamfunction (3.23b) gives the
same result. From the linear and antisymmetric properties of Jacobians, we now show that
the Jacobian corresponding to the vorticity is zero,

∣∣∣∣∣∂
(
ψ,∇2ψ

)
∂(x, z)

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
∂

(
ψ,−N2

c2
x

ψ

)
∂(x, z)

∣∣∣∣∣∣∣∣∣
= −N2

c2
x

∣∣∣∣∂(ψ,ψ)∂(x, z)

∣∣∣∣ = 0. (3.27)

Similarly considering the buoyancy, b, each term in the integrand is a plane internal
wave, which satisfies the linear internal wave equation (3.3), so we calculate the buoyancy
for each component separately, denoted by a prime, using the linearised conservation of
mass (2.6),

∂b′

∂t
= −N2 ∂ψ

′

∂x
, (3.28)

and then integrate over the resulting contributions. For both propagating and evanescent
waves, integrating mass conservation with respect to time gives b′ = (N2/cx)ψ

′, where the
constant of integration has been set to zero to enforce zero average perturbation. Like the
vorticity, the constant of proportionality is independent of the horizontal wavenumber, k,
so may be factored out of the integral, yielding b = (N2/cx)ψ . Therefore, the Jacobian
containing the buoyancy is also zero,

∣∣∣∣∂(ψ, b)
∂(x, z)

∣∣∣∣ = N2

cx

∣∣∣∣∂(ψ,ψ)∂(x, z)

∣∣∣∣ = 0, (3.29)

and the symmetry of phase-locked internal waves is proven.
Consequently, for a phase-locked boundary displacement ĥ, the streamfunction

contribution, ψn , is also phase locked and thus is generated solely at the wave maker
surface at all orders. We will now prove this using the strong principle of induction by first
assuming that ψq is phase locked with horizontal phase velocity cx for all q < n. Then, the
Jacobian terms in the expanded internal wave equation (2.13) at ord(an), which depend
only on the lower, phase-locked orders, are all zero, so no wave–wave interactions can
occur and the fluid response, ψn , is generated solely at the surface of the wave maker.
The kinematic boundary condition (3.2) at ord(an) consists of ∂ψn/∂x |z=0 and terms
proportional to

ĥq ∂
q+1ψn−q

∂x∂zq

∣∣∣∣
z=0

and ĥq ∂ ĥ
∂x

∂q+1ψn−q−1

∂zq+1

∣∣∣∣
z=0
, (3.30a,b)

which all sum to zero for n � 2, or ∂ ĥ/∂t when n = 1. By the induction assumption, each
of these terms is an integral over products of sines and cosines with uniform horizontal
phase velocity cx . The product of a pair of such sinusoids also has phase velocity cx ,
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Harmonics from a magic carpet 911 A29-13

Order Kinematic boundary condition at nth order

1st
∂ψ1

∂x

∣∣∣∣
z=0

= −ω
k

cosφ

2nd
∂ψ2

∂x

∣∣∣∣
z=0
+ 1

k
sinφ

∂2ψ1

∂x∂z

∣∣∣∣
z=0
+ cosφ

∂ψ1

∂z

∣∣∣∣
z=0

= 0

3rd

∂ψ3

∂x

∣∣∣∣
z=0
+ 1

k
sinφ

∂2ψ2

∂x∂z

∣∣∣∣
z=0
+ 1

2k2 sin2 φ
∂3ψ1

∂x∂z2

∣∣∣∣
z=0

+ cosφ
∂ψ2

∂z

∣∣∣∣
z=0
+ 1

k
sinφ cosφ

∂2ψ1

∂z2

∣∣∣∣
z=0

= 0

TABLE 1. Kinematic boundary condition at the first three orders for a monochromatic boundary
displacement.

because, for example,

cos [A(x − cx t)] cos [B(x − cx t)]

= 1
2 (cos [(A+ B)(x − cx t)]+ cos [(A− B)(x − cx t)]) , (3.31)

where A and B are arbitrary constants, and thus all of the product terms in the kinematic
boundary condition have horizontal phase velocity cx . Therefore, integrating the boundary
condition with respect to x and setting the integration constant to zero to ensure no net
flux through z = 0 gives that ψn|z=0 is also phase locked. Since the Jacobian determinants
are zero, the internal wave equation (2.13) at ord(an) reduces to the linear internal wave
equation (3.3), and so, from the linear solution (3.20), the streamfunction contribution
ψn is phase locked everywhere in the domain. Finally, we already know from the linear
solution that ψ1 is phase locked. Therefore, by induction, the streamfunction is phase
locked at all orders.

In general, the Jacobian determinant gives the area of the image of a unit element
having undergone a coordinate transformation. Here, these zero Jacobian determinants
indicate that the transformations into the two-dimensional streamfunction–buoyancy and
streamfunction–vorticity spaces are singular for arbitrary superpositions of phase-locked
internal waves, namely that all points map onto straight lines through the origin
of gradients N2/cx and N2/c2

x respectively. Conversely, the image space remains
two-dimensional for an unconstrained superposition of internal waves and other flows.

3.4. Algorithmic evaluation of higher-order contributions for monochromatic
boundary displacement

We now present the process by which we obtain contributions to monochromatic boundary
displacements for arbitrary order. The steps in this process we divide into a pair of
interconnected algorithms 1 and 2, then for convenience we illustrate their use by explicitly
calculating key expressions at first, second and third orders in tables 1–3.

In § 3.3, we showed that the expansion of the internal wave equation (2.13) is linear at all
orders for a phase-locked boundary displacement. A special case is of a monochromatic
sinusoid travelling to the right, which is infinite in extent, h = A sin (kx − ωt), where
we use the convention k, ω > 0. Defining the dimensionless amplitude as a = Ak, we
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Order Contribution to the streamfunction, ψn

1st − ω
k2 sin [k(x − z tanΘ1)− ωt]

2nd − ω

2k2 tanΘ1 sin [2k(x − z tanΘ2)− 2ωt]

3rd

ω

8k2 tanΘ1{(tanΘ1 − 4 tanΘ2) sin [3k(x − z tanΘ3)− 3ωt]

+ (4 tanΘ2 − 3 tanΘ1) sin [k(x − z tanΘ1)− ωt]}

TABLE 2. Contributions to the streamfunction at the first three orders, provided 3ω < N.

Order Contribution to the streamfunction, ψn

1st − ω

k2 sin [k(x − z tanΘ1)− ωt]

2nd − ω

2k2 tanΘ1 exp

⎛
⎝−2kz

√
1−

(
N
2ω

)2
⎞
⎠ sin [2kx − 2ωt]

3rd

ω

8k2 tanΘ1

⎧⎨
⎩
⎛
⎝tanΘ1 sin [3kx − 3ωt]+ 4

√
1−

(
N
2ω

)2

cos [3kx − 3ωt]

⎞
⎠

× exp

⎛
⎝−3kz

√
1−

(
N
3ω

)2
⎞
⎠− 3 tanΘ1 sin [k(x − z tanΘ1)− ωt]

− 4

√
1−

(
N
2ω

)2

cos [k(x − z tanΘ1)− ωt]

⎫⎬
⎭

TABLE 3. Contributions to the streamfunction at the first three orders when the first harmonic is
propagating but the second is evanescent, ω < N < 2ω. The tangent functions are replaced by
explicit square roots when the corresponding frequency is above the buoyancy frequency.

have ĥ = (1/k) sin (kx − ωt). For this case, we may derive analytic expressions for the
produced spectrum of harmonics at each of the first three orders by noting that the flow
at each order is only generated at the boundary. The expansion of the kinematic boundary
condition (3.2) becomes

∞∑
n=1

an

⎧⎨
⎩

n−1∑
q=0

sinq φ

q!kq

∂q+1ψn−q

∂x ∂zq

∣∣∣∣
z=0
+

n−2∑
q=0

sinq φ cosφ
q!kq

∂q+1ψn−q−1

∂zq+1

∣∣∣∣
z=0

⎫⎬
⎭ = −a

ω

k
cosφ.

(3.32)

Since this condition at ord(an) depends on all of the lower orders, the contribution to the
streamfunction at each order is evaluated in turn, according to algorithm 1.
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Harmonics from a magic carpet 911 A29-15

Result: ψ

ψ ← 0
for n ∈ Z�1 do

Evaluate kinematic boundary condition (3.32) at ord(an)

for p← 1 to n − 1 do
Evaluate ∂q+1ψp

∂x ∂zq

∣∣∣
z=0

and ∂qψp

∂zq

∣∣∣
z=0

, q < n, following the pattern of (3.33)

Express the terms as products of sinφ and cosφ using (3.34)
Express these products as sums of harmonics using ALGORITHM 2

end
Collect like terms
Integrate ψn with respect to x , setting the integration constant to zero
for p← 1 to n do

if pω � N then
Project the pω harmonic along its characteristics using (3.20)

else
Project the pω harmonic as an evanescent wave into z � 0 using (3.21)

end
end
ψ ← ψ + anψn

end

ALGORITHM 1. Calculation of streamfunction ψ .

To calculate the contribution to the streamfunction at ord(an), denoted by ψn , firstly
we take the first n terms of the outer summation in (3.32). These are shown for the first
three orders in table 1. The boundary condition at all orders contains ∂ψn/∂x |z=0, which
is the vertical velocity at ord(an). Higher orders also include derivatives of lower-order
contributions to the streamfunction, and these are multiplied by sines and cosines of
integer multiples of the horizontal phase, φ = kx − ωt. All derivatives are evaluated at
the equilibrium height of the wave maker, z = 0. Secondly, we evaluate and substitute for
the derivatives of the lower-order contributions to the streamfunction. For example, the
required derivatives of ψ1 follow the pattern

∂q+1ψ1

∂x ∂zq

∣∣∣∣
z=0
=
{
(−1)(q+2)/2ωkq−1 tanqΘ1 cosφ for even q,

(−1)(q+1)/2ωkq−1 tanqΘ1 sinφ for odd q,
(3.33a)

and
∂q+1ψ1

∂zq+1

∣∣∣∣
z=0
= tanΘ1

∂q+1ψ1

∂x∂zq

∣∣∣∣
z=0
. (3.33b)

We are left with a product of sines and cosines of several multiples of φ for each term
in the boundary condition. The next stage is to simplify these as sums of harmonics,
or equivalently express a Fourier series, using the formulae derived using standard
methods in appendix A. We first expand all of the higher harmonic terms into powers
of trigonometric functions of the fundamental using, for p ∈ Z,

cos (pφ) =
p/2∑
β=0

(−1)β
(

p
2β

)
cosp−2β φ sin2β φ (3.34a)
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Result: S

for j = 0 to α + β do
C[ j]← 0
if j ≡ α + β (mod 2) then

B← max
{

1
2(β − α − j), 0

}
if j = 0 then T ← β

2 − 1 else T ← min
{

1
2 (β + α − j) , β

}
for k = B to T do

C[ j]← C[ j]+ (−1) β2 �+k

2α+β−1

(
α

1
2(α + β − j)− k

)(
β

k

)
end

end
end

if α even and β even then C[0]← C[0]+ 1
2α+β

(
α
α

2

)(
β
β

2

)

if β even then S←
α+β∑
j=0

C[ j] cos ( jφ) else S←
α+β∑
j=0

C[ j] sin ( jφ)

ALGORITHM 2. Expressing cosα φ sinβ φ as a sum of harmonics.

and

sin (pφ) =
(p−1)/2∑
β=0

(−1)β
(

p
2β + 1

)
cosp−2β−1 φ sin2β+1 φ, (3.34b)

where
(n

r

)
is the binomial coefficient. Then, we collect the terms into a single product and

expand as a series of harmonics using formula (A 15), which we re-express for convenience
as algorithm 2. Collecting like terms shows that ∂ψn/∂x |z=0 is equal to a sum of harmonics
with constant amplitudes. Moreover, we find that these harmonics need to be represented
by cosine functions in order to match the symmetry of the boundary displacement about
x = 0, and up to the nth harmonic, denoted by nφ, is included. For odd n, all and only the
odd-numbered harmonics are present (up to the nth harmonic); conversely, for even n, we
have all and only even-numbered harmonics.

Such a form is readily integrated with respect to x to give the contribution to the
streamfunction, ψn , evaluated at z = 0. We find that it is equal to a sum of sinusoids of
phase nφ. The integration constant is set to zero to enforce that the equilibrium height of
the wave maker is at z = 0.

Since the streamfunction is a discrete sum of linearly independent temporal (and spatial)
harmonics along the boundary and it satisfies the linear internal wave equation (3.3),
we project each harmonic with a frequency less than the buoyancy frequency along the
corresponding characteristics, which are at angleΘn to the vertical, given by the dispersion
relation (3.14). Then, each harmonic takes the form of the linear solution (3.20). The
harmonics above the buoyancy frequency generate evanescent waves, whose contribution
takes the form of the linear evanescent waves (3.21), with k and ω multiplied by the
appropriate value of n. Finally, the contribution to the streamfunction, ψn , is given
by the linear superposition of these propagating and evanescent internal waves, even
though the solution is nonlinear. Provided the third harmonic is not evanescent, these
contributions are listed in table 2 and are plotted in figure 2 together with a phase plot
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FIGURE 2. Predictions for the first three harmonics generated by an input sinusoid of frequency
ω = 0.4 = 0.25N and wavenumber k = 0.4, where units for frequency and wavenumber
are freely chosen provided they are self-consistent: (a) vertical displacement amplitude;
(b) time-averaged energy flux, which has a similar profile to the energy density; and (c) phase
profile showing the characteristics where ψ decreases through zero, equivalently where the
vertical displacement increases through zero. The expansion is valid for Ak < 1, since thereafter
some of the characteristics will intersect the flexible boundary more than once.

in physical space. We note that in this case all harmonics are in phase with the boundary
displacement.

The leading-order contribution to the nth harmonic comes from nth order and so
grows as an . Higher-order corrections to this harmonic arise at orders (n + 2), (n + 4),
(n + 6), . . . , but these corrections become decreasingly significant as a reduces. All of
the corrections to the lower harmonics are also given by sine functions, thereby ensuring
odd symmetry about x = 0. Considering the expression 4 tanΘ2 − 3 tanΘ1 as a function
of ω shows that the third-order correction to the first harmonic reinforces its amplitude for
0 < ω < N

2 , and this reinforcement is more pronounced for smaller ω. Superlinear growth
has been observed previously in experiments (Ermanyuk, Shmakova & Flór 2017); here, in
figure 2(a), we find it appearing on all three propagating harmonics within and beyond the
domain of applicability (kA < cotΘ1) in which each internal wave characteristic intersects
the sinusoidal boundary exactly once.

Since each mode satisfies the linear equation (3.3), the energy density of each mode
is proportional to the square of the amplitude with uniform constant of proportionality
1
2ρ00N2 for all harmonics, and their time-averaged energy fluxes (〈p′|u|〉) are equal to
their energy densities multiplied by their group velocities, which are given by cx sinΘn .
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Although product terms are developed for all pairs of harmonics in the series, by
orthogonality, the time averages of the cross terms are zero, leaving only the linear
contributions for each mode. Thus, the energy density and the energy flux have very
similar profiles, and as an illustration, we show the energy flux in figure 2(b). We see
that for a given monochromatic input, the total energy flux is greater than that contained
in the single wave beam predicted by the linear theory. The increased energy flux is not a
violation of causality, because the power that the flexible boundary transmits to the fluid
is not specified, only the position of its surface.

On the other hand, if at least one of the first three harmonics were evanescent (3ω > N),
some of the tangent functions would be replaced by explicit square roots, tanΘn =√
(N/nω)2 − 1 	→ √

1− (N/nω)2, as can be seen in the linear evanescent solution (3.21).
Moreover, the z derivatives of an evanescent wave have a different phase to those of the
corresponding propagating wave, so if the mth harmonic is the lowest evanescent one, all
contributions at (m+ 1)th and higher orders are shifted in phase relative to the boundary
displacement. For any given order of perturbation expansion, the explicit form of the
solution depends on the number of propagating harmonics, and we provide up to the
third-order contributions in table 3 for when only the first harmonic is propagating. In
this case, the first three harmonics again grow superlinearly.

4. Experimental validation

This section presents a sequence of experiments conducted to verify the predictions
made in § 3.4 for the fluid response to monochromatic displacement of a flexible boundary.
In § 4.1, we briefly describe the ‘magic carpet’ used to provide these displacements, and
the reader is referred to Dobra et al. (2019) for a more detailed discussion and validation
of the apparatus. The following section, § 4.2, outlines our data acquisition pipeline from
raw camera images to estimates of the amplitude of each harmonic. Finally, we present
a detailed comparison between the predicted and observed amplitudes of each harmonic
in § 4.3.

4.1. Magic carpet
The Arbitrary Spectrum Wave Maker (ASWaM, Dobra et al. 2019) is a 1 m flexible section
in the base of a tank that is 11 m long, 0.255 m wide and 0.48 m deep. The wave maker’s
shape is controlled by an array of 100 Portescap 26DBM10D1B-L linear stepper motors
positioned at a pitch of 10 mm along the flexible section, each of which has a vertical
resolution of 0.0127 mm and a stroke of 48 mm.

For generating the digital input signals to these stepper motors, we constructed a coupled
set of Texas Instruments Beaglebone Blacks (revision C). Each Beaglebone contains a
processor where every instruction takes exactly 5 ns, on which we deploy an efficient
assembly-language algorithm to issue signals to motor drivers. The signal timings are
compiled from analytic functions specified in a text file. The waveforms produced for this
paper have a temporal resolution of 30 ns.

The surface of the wave maker is a nylon-faced neoprene foam sheet that is 3 mm thick
(similar to that used for wetsuits). At zero displacement, the neoprene surface is flush with
the base of the tank, but in operation is deformed by 100 horizontal rods, each spanning
the width of the tank and driven by one of the stepper motors. The lengthwise edges
of the sheet are not sealed to the tank wall, and there is a cavity of fluid 80 mm deep
beneath the neoprene with both sides of the sheet wetted. However, there is almost no
pressure gradient to drive a leakage flow from the underlying cavity into the working
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FIGURE 3. Vertical gradient of the normalised density perturbation, (1/ρ00)(∂ρ
′/∂z), for a

sinusoid of input amplitude 4 mm when ω = 0.3 rad s−1, k = 40 rad m−1 and N = 1.58 rad s−1,
exhibiting four harmonics, indicated by the arrows. The fourth harmonic is just visible but is too
weak to measure its amplitude using our diagnostics.

section of the tank, provided the chosen waveform conserves volume. To leading order,
three-dimensional effects are limited to wall boundary layers.

The neoprene attaches to sleeves around the horizontal rods using hook-and-loop
fasteners. The material has some resistance to bending, and conveniently the sleeves
can rotate about the rods, minimising the tensile stress in the sheet and the bending
moments on the actuators. Our modelling (Dobra et al. 2019) indicates that this produces
C2-continuous profiles, despite being specified by a discrete set of actuation rods. We find
that the wave maker can reliably produce sinusoids of steepness |∂h/∂x | � 0.6 without
the motors stalling or neoprene detaching.

4.2. Method
We filled the tank using the double bucket method (Fortuin 1960; Oster 1965) with a
linear density stratification of the form ρ0(z) = ρ00 + z(dρ0/dz), which gives a constant
buoyancy frequency N = 1.58 rad s−1, using sodium chloride as the solute.

Quasi-monochromatic waveforms of six complete wavelengths (k = 40 rad m−1) were
driven along the magic carpet. Starting from rest, we increased the amplitude at a constant
rate of 2 mm min−1 until the desired amplitude was obtained. By increasing the amplitude
slowly, the formation of a boundary layer was minimised, ensuring maximum transmission
of internal waves. Then, the wave maker continued to run at constant amplitude for 80 s
for data acquisition, before decreasing the amplitude at a rate of 6 mm min−1 in order to
minimise mixing in the tank due to impulsive flows, which would degrade the stratification
for future runs. A typical wave field is shown in figure 3.

We observed the produced density perturbations using the optical technique of Synthetic
Schlieren (Dalziel, Hughes & Sutherland 1998; Sutherland et al. 1999; Dalziel, Hughes &
Sutherland 2000). A static, random pattern of black and white dots was displayed 0.2 m
behind the tank on a 4k (UHD) television screen measuring 1.4 m (55′′) on the diagonal,
in order to maximise the contrast between colours, similar to that implemented by Sveen
& Dalziel (2005). The light rays emitted by the screen bend as they pass through the
varying refractive indices in the tank, and the distorted image was recorded at 4 fps
on a 12-megapixel ISVI IC-X12CXP video camera located 3.8 m in front of the tank.
A pattern-matching algorithm in the software package DigiFlow (Dalziel Research
Partners 2018) was used to reconstruct the density fields from the recorded images.
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To measure the amplitudes of the harmonics produced, we cropped the output video
sequence from the Synthetic Schlieren to a rectangular window, entirely contained in all of
the observed wave beams, that was 0.32 m wide and 0.11 m high and its base was 0.034 m
above the surface of the wave maker. By excluding the region very close to the wave maker,
any boundary layer effects are eliminated from this analysis. Within this window, we used
harmonic analysis to extract the amplitude and phase of each of the harmonics. Any real
signal f (t) that is periodic with period 2T can be expressed as the complex Fourier series,
using an asterisk ∗ to denote the complex conjugate,

f (t) = c0 +
∞∑

n=1

[
cn exp

(
i
nπt
T

)
+ c∗n exp

(
−i

nπt
T

)]
, (4.1)

with the complex coefficients given by

cn = 1
2pT

∫ 2pT

0
f (t) exp

(
−i

nπt
T

)
dt, (4.2)

averaged over p complete periods to reduce experimental noise. The choice of summing
only over positive n is possible because the function f (t) being real requires c−n = c∗n . Each
pixel in an image sequence is treated as an independent signal, fj(t), and its first few Fourier
coefficients, cn , are found. The amplitude of the signal with angular frequency ω = nπ/T
is given by |cn|/2 and phase by the argument of cn . Then, the pixels are assembled to form
amplitude and phase images at each harmonic frequency.

For each mode, the dominant internal wave travels up and to the right (with a very weak
wave to the left, as observed by Mercier et al. 2010) before reflecting off the top surface
of the water to travel down and to the right. To separate these and provide the amplitude
of the dominant wave at each pixel, we applied the Hilbert transform to each mode, which
filters by direction in wavevector space and was first applied to internal waves by Mercier,
Garnier & Dauxois (2008). Finally, we estimated the amplitude of each harmonic by taking
the mean over all points in the window and also calculated the standard deviation to
evaluate the uncertainty.

4.3. Results and discussion
Graphs comparing the measured amplitudes of each of the harmonics against the
theoretical predictions in table 2 are shown in figure 4 for input frequency ω =
0.3 rad s−1 = 0.190N and in figure 5 for ω = 0.4 rad s−1 = 0.253N. The error bars
represent one standard deviation either side of the mean of the measured amplitude after
taking the Hilbert transform (see § 4.2). The first four harmonics are propagating waves
in the first set, but only the first three are propagating in the second set. However, the
signal-to-noise ratio using our apparatus for the fourth harmonic is very low, so we cannot
reliably measure its very small amplitude of order 0.01 mm, in the domain of validity, and
we omit it from figure 4.

From these graphs, we find that our solution predicts the relative amplitudes of the
harmonics well at moderately low amplitudes, within the weakly nonlinear regime. In
particular, we observe the predicted superlinear growth of the first harmonic. As stated
in § 3.1, our model assumes that each internal wave characteristic only intersects the
wave maker once. This requires the gradient of the fundamental mode, cotΘ1, to be
greater than the maximum gradient of the input sinusoid, a = Ak. Thus, the domain of
applicability is A < (1/k) cotΘ1, which is the unshaded region on the graphs, and we do
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FIGURE 4. Observed vertical displacement amplitudes of the first three harmonics (points with
error bars) compared with predictions correct to third order (lines) for monochromatic sinusoids
with frequency 0.3 rad s−1. The predictions are linearly scaled by a factor of 0.14 to match the
smaller responses generated by the wave maker. A fourth harmonic was observed but is too weak
to be analysed.
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FIGURE 5. Observed vertical displacement amplitudes of the first three harmonics (points with
error bars) compared with predictions correct to third order (lines) for monochromatic sinusoids
with frequency 0.4 rad s−1. The predictions are linearly scaled by a factor of 0.21.

not expect the experimental data to fit the predictions in the shaded regions. Nevertheless,
the experiments still conform fairly well to the theory just above this critical amplitude.

We needed to linearly scale down all of the predictions in order to match the
experiments. The scaling factor is uniform for each graph, that is for each input frequency,
wavelength and buoyancy frequency but it is independent of the amplitude. This factor is
a measure of the efficiency of our ‘magic carpet’ at generating internal waves: no scaling
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would be required if the vertical displacement of the fluid equals the vertical displacement
of the wave maker. It arises because of the formation of a boundary layer in the vicinity
of the wave maker, where the flow ceases to follow the strict characteristic structure of
linear internal waves. Instead, the material surface at the top edge of the boundary layer
is deformed by the complex flow beneath, and the laminar internal waves are effectively
generated by this oscillating surface. This boundary layer also forms around oscillating
bodies within the stratification (Ermanyuk 2000; Clark & Sutherland 2010) and near
cam-driven wave generators (Gostiaux et al. 2007; Mercier et al. 2010), which exhibit
displacement efficiencies of around 0.5 in near-optimal cases. Displacement efficiency of
our wave maker is a propagation-angle-dependent quantity, which ranges from 0.1 to 0.9
(Dobra 2018). In the present experiments where fundamentals emanate obliquely, these
are 0.14 (figure 4) and 0.21 (figure 5).

In addition, the stratification within the boundary layer is not uniform. Firstly, moving
the boundary into the stratification is likely to cause enhanced diffusion due to the
deformation of isopycnals and possibly small-scale turbulent mixing. Secondly, although
assumed to the contrary, salt is perpetually diffusing through the tank at a rate proportional
to the saline gradient. However, salt cannot diffuse through the base of the tank, so the
density gradient and hence the buoyancy frequency are zero there. Thus, there is an
unknown stratification within the boundary layer. Consequently, our model should only
be applied to the material surface at the top of the boundary layer.

Above the critical amplitude, there is a regime change: the response amplitudes of the
harmonics cease growing and the higher frequencies contain a greater proportion of the
energy. Here, shear flows within the boundary layer generate turbulence and significant
flow separation occurs. As a result, a broader frequency and wavevector spectrum is
generated at values ceasing to be restricted to integer multiples of the input waveform.
Therefore, increasing amounts of energy are dispersed into frequencies not measured here
and our weakly nonlinear model is thoroughly violated at large amplitudes.

5. Generating a pure wave field

5.1. Approach
We saw in § 3.4 that a monochromatic boundary forcing produces a full spectrum of
internal wave harmonics. However, to study the free-space dynamics of internal waves
experimentally, such as for the interaction of two incident wave beams (Smith & Crockett
2014), wave fields without the extra harmonics are desirable.

One approach is to modify the wave maker so that it is mounted perpendicular to the
characteristics of the intended internal wave, thus at angle Θ to the horizontal. Then,
the velocity of the surface of the modified wave maker, U , is always perpendicular to its
equilibrium plane, thus has the same direction as the characteristics of the internal wave
and hence the fluid velocity, u. Therefore, the kinematic boundary condition (2.15) implies
that U = u on the wave maker surface, and the monochromatic response exactly satisfies
the nonlinear boundary condition, so no additional harmonics are generated. Moreover, a
monochromatic sinusoidal internal wave of any amplitude satisfies the linear internal wave
equation (3.3) (McEwan 1973), so the response is monochromatic even in the strongly
nonlinear regime, provided there is no overturning or shear instability. In particular, we
note that for our unmodified horizontal wave maker, critically evanescent internal waves
(ω = N) have vertical characteristics, which are perpendicular to our wave maker, so these
are the only monochromatic fluid oscillations for which our horizontal wave maker can
eliminate harmonics entirely.
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Alternatively, we can use the unique ability of our wave maker to choose a polychromatic
input waveform that generates a monochromatic wave at some other angle to the
vertical, Θ . As an example, suppose we wish to solve the inverse problem of constructing
the input waveform, h, that produces exactly the internal wave field (3.20) of the linear
solution in § 3.2, then we would have

ψ = aψ̂ = −aω
k2

sin [k(x − z tanΘ)− ωt]. (5.1)

We know from § 3 that the wave maker profile

h = ah1 = A sin (kx − ωt) = a
k

sinφ (5.2)

is the leading-order (linear) input required to generate ψ , but it also produces higher
harmonics that are in this case unwanted. Thus, seeking a solution valid in the weakly
nonlinear regime (|a| � 1), this time we expand h and seek a series solution of the form,

h =
∞∑

n=1

anhn, (5.3)

that generates the monochromatic internal wave field (5.1).
At ord(a2), the second harmonic that is generated by the linear forcing (5.2) is given

by ψ2, which is stated in table 2. We can cancel this second harmonic by superposing
a corresponding correction, a2h2, on the wave maker. Since the linearised kinematic
boundary condition (3.4) is ∂h/∂t = ∂ψ/∂x |z=0 and it needs to negate ψ2, we deduce
that

h2 = −
∫
∂ψ2

∂x

∣∣∣∣
z=0

dt = − 1
2k

tanΘ sin [2(kx − ωt)], (5.4)

with the constant of integration set to zero so that 〈h〉 = 0. It then follows that

h = a
k

sinφ − a2

2k
tanΘ sin (2φ)+ O(a3). (5.5)

However, since the input waveform has now been modified, h /=A sinφ, the expansion of
the kinematic boundary condition (2.16) needs to be recalculated to obtain the internal
wave field at ord(a3), ψ3, which would then lead to further such corrections.

5.2. Kinematic boundary condition
Such approaches rapidly become unwieldy. Instead, we take the approach that our wave
field is entirely specified by ψ = aψ̂ and by this definition one cannot make higher-order
corrections to ψ . Instead, we choose to expand the dependent function, h, using (5.3) in
the Taylor-expanded kinematic boundary condition (2.17),

∞∑
q=0

hq

q!

(
∂

∂x
+ ∂h
∂x

∂

∂z

)
∂qψ

∂zq

∣∣∣∣
z=0
= ∂h
∂t
, (5.6)
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which gives

∞∑
q=0

1
q!

( ∞∑
s=1

ashs

)q (
∂

∂x
+
( ∞∑

r=1

ar ∂hr

∂x

)
∂

∂z

)
∂q
(

aψ̂
)

∂zq

∣∣∣∣∣∣
z=0

=
∞∑

n=1

an ∂hn

∂t
. (5.7)

Although a truncation of this expansion of h may generate evanescent harmonics, this
possibility does not need to be considered here, because the only fluid flows are those
specified in ψ̂ , which can consist of arbitrary non-internal wave motions.

Next, we manipulate this expansion to factor out all the powers of a. Firstly, we
re-express the infinite sum raised to an arbitrary finite integer q as a new power series,( ∞∑

s=1

ashs

)q

= aq

( ∞∑
s=0

ashs+1

)q

= aq
∞∑

s=0

ascs, (5.8)

where the coefficients cs are given by the recurrence relation,

cs+1(q) = 1
(s+ 1)h1

s∑
p=0

[q(s+ 1)− p(q+ 1)]cphs−p+2, (5.9)

and c0 = hq
1. While aspects of this formula are standard material (see, for example,

Gradshteyn & Ryzhik 2014), appendix B contains our derivation, from which we obtain
the next three coefficients,

c1 = qhq−1
1 h2, (5.10a)

c2 = 1
2h1

[2qh3c0 + (q− 1)h2c1] = qhq−1
1 h3 + 1

2
q(q− 1)hq−2

1 h2
2, (5.10b)

c3 = 1
3h1

[3qh4c0 + (2q− 1)h3c1 + (q− 2)h2c2]

= qhq−1
1 h4 + q(q− 1)hq−2

1 h2h3 + 1
6

q(q− 1)(q− 2)hq−3
1 h3

2. (5.10c)

Then, the kinematic boundary condition becomes
∞∑

q=0

aq+1

q!

( ∞∑
s=0

ascs (q)

)(
∂q+1ψ̂

∂x∂zq

∣∣∣∣∣
z=0

+ ∂q+1ψ̂

∂zq+1

∣∣∣∣∣
z=0

∞∑
r=1

ar ∂hr

∂x

)
=
∞∑

n=1

an ∂hn

∂t
. (5.11)

The first term can be straightforwardly rearranged to isolate powers of a. The second term
requires the Cauchy product (B 5), which evaluates the product of two summations, before
the reorganisation in powers of a,

∞∑
q=0

∞∑
s=0

aq+s+1

q!

(
cs(q)

∂q+1ψ̂

∂x∂zq

∣∣∣∣∣
z=0

+ ∂q+1ψ̂

∂zq+1

∣∣∣∣∣
z=0

s∑
r=1

cs−r(q)
∂hr

∂x

)
=
∞∑

n=1

an ∂hn

∂t
. (5.12)

Finally, letting n = q+ s+ 1 and adjusting the summation limits accordingly gives the
expansion of the kinematic boundary condition factorised into powers of a,

∞∑
n=1

n−1∑
q=0

an

q!

(
cn−q−1(q)

∂q+1ψ̂

∂x∂zq

∣∣∣∣∣
z=0

+ ∂q+1ψ̂

∂zq+1

∣∣∣∣∣
z=0

n−q−1∑
r=1

cn−q−r−1(q)
∂hr

∂x

)
=
∞∑

n=1

an ∂hn

∂t
.

(5.13)
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Order Kinematic boundary condition at nth order

1st
∂ψ̂

∂x

∣∣∣∣∣
z=0

= ∂h1

∂t

2nd
∂ψ̂

∂z

∣∣∣∣∣
z=0

+ h1
∂2ψ̂

∂x∂z

∣∣∣∣∣
z=0

= ∂h2

∂t

3rd
∂h2

∂x

∂ψ̂

∂z

∣∣∣∣∣
z=0

+ h2
∂2ψ̂

∂x∂z

∣∣∣∣∣
z=0

+ h1
∂h1

∂x

∂2ψ̂

∂z2

∣∣∣∣∣
z=0

+ 1
2

h2
1
∂3ψ̂

∂x∂z2

∣∣∣∣∣
z=0

= ∂h3

∂t

TABLE 4. Kinematic boundary condition at the first three orders, after the cs coefficients have
been expanded in terms of hq.

In this structure, at ord(an), hn only appears on the right-hand side. On the left-hand
side, the cs terms produce orders of h up to s+ 1, but c0(0) = 1 and cs(0) = 0 for s � 1,
so the highest order appearing is hn−1. Thus, hn depends only on lower-order contributions
to the solution, and we obtain a similar hierarchy of dependencies to that found for ψn

in § 2.2 (depicted in figure 1).
This boundary condition (5.13) holds for any fluid flow, ψ̂ , in the weakly nonlinear

regime, which need not consist of internal waves. Since it is derived only from the
kinematic boundary condition (2.15) of no penetration and thus is only evaluated at
the boundary, this equation is independent of the fluid dynamics in the interior of the
domain, provided the flow is inviscid and incompressible, and holds for arbitrary density
stratifications, or indeed no stratification at all. As a result, not only can we prescribe the
wave maker displacement, h(x, t), required for any arbitrary flow field, but we can also
solve the inverse problem of deducing a suitable displacement on the wave maker that will
fully absorb any incoming waves: a non-reflecting boundary condition for internal waves.
Furthermore, given sufficiently many spatially separate measurements of velocity distant
from z = 0, the Taylor’s expansion at z = 0 can be computed and thus the spectrum of the
source may be inferred.

5.3. Algorithmic calculation of boundary displacement for a single
spectrum of internal wave harmonics

We consider a single spectrum of harmonics to be one arising from a common
fundamental, so have frequencies nω that are integer multiples of the fundamental and
have a common horizontal phase velocity, cx , which restricts the wavevectors to be
kn = (nk,−nk tanΘn). This is sufficiently general to admit a polychromatic spectrum
constructed with arbitrary amplitudes of such harmonics to form a Fourier series and
thus may represent arbitrary translating periodic shapes. In this section, we present a
procedure to explicitly calculate order-by-order the boundary displacement, h, required to
generate a single spectrum of internal wave harmonics with streamfunction ψ = aψ̂ ; this
is summarised in algorithm 3. As an example, we illustrate how a polychromatic spectrum
of three harmonics would be expanded to obtain h correct to second order, with related
expressions listed in tables 4 and 5. We then specialise to a monochromatic wave and give
the corresponding boundary displacement in table 6.
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Order Contribution to the boundary displacement, hn

1st −1
k

sinφ − A2

kA1
sin (2φ)− A3

kA1
sin (3φ)

2nd

− A2

2kA1
{tanΘ1 − 2 tanΘ2 + A3

A1
(2 tanΘ2 − 3 tanΘ3)} sinφ

− 1
2k

{
tanΘ1 + A3

A1
(tanΘ1 − 3 tanΘ2)

}
sin (2φ)

− A2

2kA1
{tanΘ1 + 2 tanΘ2} sin (3φ)− A2A3

2kA2
1
{2 tanΘ2 + 3 tanΘ3} sin (5φ)

TABLE 5. Contributions to the boundary displacement at the first two orders that generate three
in-phase internal wave harmonics (5.14).

Order Contribution to the boundary displacement, hn

1st
1
k

sinφ

2nd − 1
2k

tanΘ sin (2φ)

3rd
1
k

tan2Θ

{
3
8

sin (3φ)− 1
8

sinφ
}

TABLE 6. Contributions to the boundary displacement at the first three orders that generate a
monochromatic internal wave (5.1).

Result: h

h← 0
for n ∈ Z�1 do

Evaluate kinematic boundary condition (5.13) at ord(an)
Calculate cn−1(q; h1, . . . , hn−1) using (5.9)

Calculate ∂nψ̂

∂x∂zn−1

∣∣∣
z=0

, ∂n−1ψ̂

∂zn−1

∣∣∣
z=0

and ∂hn−1

∂x following the pattern of (5.15b)

Substitute these calculated quantities into (5.13) at ord(an)

Express the terms as products of sinφ and cosφ using (3.34)
Express the trigonometric products as sums of harmonics using ALGORITHM 2
Integrate with respect to t, setting the integration constant to zero
h← h+ anhn

end

ALGORITHM 3. Calculation of boundary displacement, h, to obtain a single set of internal wave
harmonics with a common phase angle.
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To calculate hn , first we take all of the terms at ord(an) in the kinematic boundary
condition (5.13). We note that the linear condition is the same as for the forwards
problem (3.4). Second, we evaluate the coefficients cs in terms of hq and substitute
these into the boundary condition; these are listed for the first three orders in
table 4. Third, we evaluate and substitute all of the required derivatives and boundary
displacement contributions. The expansion is now a sum of products of sines and cosines
with phases of the form αφ, where α ∈ Z. Exactly as in § 3.4, we re-express these as
a sum of terms of the form sinα φ cosβ φ, where α, β ∈ Z, using the general compound
angle formulae (3.34), and then convert them to a sum of harmonics using algorithm 2
(see appendix A for derivations of these formulae). After simplification, we are left with
∂hn/∂t equal to a sum of harmonics with fundamental phase φ. We integrate this with
respect to time, t, setting the integration constant to zero to enforce no net displacement.
This yields the contribution to h at nth order.

For example, the contributions to the boundary displacement correct to second order,
h = ah1 + a2h2, for a polychromatic internal wave field consisting of three harmonics that
are in phase at z = 0,

ψ = aψ̂ = A1 sin [k(x − z tanΘ1)− ωt]+ A2 sin [2k(x − z tanΘ2)− 2ωt]

+ A3 sin [3k(x − z tanΘ3)− 3ωt], (5.14)

are listed in table 5. In line with § 3, we define a to be the characteristic steepness of
the first harmonic of h predicted by linear theory, a = A1k2/ω. Expanding to third order
would introduce up to five harmonics along the boundary, but if expanded to all orders,
these components would cancel to produce only three internal wave harmonics.

Specialising further to generate a monochromatic internal wave field (5.1) with A1 =
−aω/k2 and A2 = A3 = 0, we note that ∂/∂z = − tanΘ(∂/∂x) due to the characteristic
structure, so the kinematic boundary condition (5.13) specialises to

∞∑
n=1

n−1∑
q=0

an

q!
∂q+1ψ̂

∂x ∂zq

∣∣∣∣∣
z=0

(
cn−q−1 − tanΘ

n−q−1∑
r=1

cn−q−r−1
∂hr

∂x

)
=
∞∑

n=1

an ∂hn

∂t
. (5.15a)

Recalling that φ = kx − ωt, the derivatives of the streamfunction, following formula
(3.33a), are given by

∂q+1ψ̂

∂x∂zq

∣∣∣∣∣
z=0

=
{
(−1)(q+2)/2ωkq−1 tanqΘ cosφ for even q
(−1)(q+1)/2ωkq−1 tanqΘ sinφ for odd q.

(5.15b)

The contributions to the boundary displacement at the first three orders that generate a
monochromatic internal wave are listed in table 6. The first two orders agree with the
solution for h (5.5) inferred from the internal wave field generated by a monochromatic
boundary forcing in § 5.1. As we would expect from the forwards problem at third order, a
third harmonic is required on the boundary to eliminate the third harmonic internal wave
that would be generated by a monochromatic boundary displacement. However, this is not
simply the negative of the third-order wave field, ψ3 (as listed in table 2), generated by
a monochromatic forcing along the boundary. Nonetheless, it does exhibit a third-order
reduction that is cubic in a to the amplitude fundamental frequency along the wave maker.
This qualitatively agrees with the observation in § 3.4 that there is a cubically increasing
response in the fundamental frequency internal wave due to a monochromatic forcing, so
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FIGURE 6. Vertical gradient of the normalised density perturbation (1/ρ00)(∂ρ
′/∂z) for: (a) a

monochromatic sinusoid of amplitude 4 mm, frequency 0.3 rad s−1 and wavenumber 40 rad m−1

in a stratification where the harmonic sequence decays in amplitude; and (b) the corresponding
polychromatic input to remove the second-order contributions to the second harmonic, which
in this configuration generates a significant third harmonic, as expected. Harmonic analysis
confirms that wavy perturbations in phase lines are not intrinsic to the first harmonic.

we expect a cubically decreasing input to counteract this and generate an internal wave
field of a given amplitude.

We remark that we could have alternatively derived the expanded kinematic boundary
condition for a monochromatic internal wave (5.15) by directly considering the fluid
velocities projected onto the direction of motion of the wave maker. Doing so for arbitrarily
large amplitudes produces physical inconsistencies, because our wave maker cannot take
multiple values of h at any value of x . However, within the single-valued constraint, it is
possible to compute an h(x, t) that matches a wave of arbitrary amplitude. One obtains a
strongly nonlinear equation where the dependent variable appears both inside and outside
a trigonometric function. This can be resolved by Taylor expanding on those trigonometric
functions and this leads to an expansion in h that is identical to equation (5.15). The details
of this calculation can be found in appendix C.

5.4. Experimental verification
We experimentally tested the predictions for a single spectrum of harmonics in § 5.3 using
the apparatus and method described in §§ 4.1 and 4.2. For these experiments, the tank
contained a nearly linear stratification of buoyancy frequency N = 1.4 rad s−1.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

91
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.911


Harmonics from a magic carpet 911 A29-29

0 0.2 0.4 0.6 0.8

−1.0

−0.5

0

0.5

1.0

(×10−3)

Distance along wave maker (m)

V
er

ti
ca

l 
d
is

p
la

ce
m

en
t 

(m
)

Profile calculated

from internal

wave field

Scaled input wave

maker height profile

Reference sinusoid

FIGURE 7. Vertical displacement profile calculated from the experiment in figure 6(b) showing
a good match to the input waveform, scaled down linearly to match the amplitudes. Also shown,
for reference, is a monochromatic sinusoid.

Initially, we displaced the magic carpet with a right-travelling monochromatic sinusoid
of frequency ω = 0.3 rad s−1 = 0.21N, wavenumber k = 40 rad m−1 and steady amplitude
A = 4 mm, giving Ak = 0.16; the resulting wave field is shown in figure 6(a). As expected
from § 3, there is a dominant first harmonic plus a visible second harmonic, but negligible
third harmonic. In contrast, we applied the corresponding second-order correction of
table 6 in figure 6(b) to almost eliminate the second harmonic but consequently generated
a significant third harmonic. We were unable to completely remove the second harmonic
using our theoretical waveform because of the nonlinear stratification and flow in the
boundary layer highlighted in § 4.3, which cannot be accommodated in this solution.
Nevertheless, we have demonstrated a useful technique in the experimental study of
internal waves: the substantial attenuation of an unwanted harmonic, which allows a
clearer view of the desired fundamental wave beam.

To test the polychromatic expansion given in table 5, we estimated the amplitudes of
the three internal wave harmonics in figure 6(b) using the method in § 4.2 and then
reconstructed the corresponding theoretical boundary displacement correct to second
order. We found that the second and third harmonics were in antiphase relative to the first
harmonic, so we multiplied the corresponding amplitudes in the model by −1. Figure 7
compares the inferred displacement, shown with a solid line, with the actual input along
the ‘magic carpet’ linearly scaled by a factor of 0.19, shown with a dashed line. A pure
sinusoid is also drawn in dots to demonstrate the modulation of a sinusoid introduced
by our expansion (5.13). The very similar shapes of the inferred and input waveforms,
except at phases corresponding to distance 0 m along the wave maker, confirm that the
second-order correction accurately determines the amplitude of the second harmonic
relative to the first harmonic. The small disagreement between the two curves arises
principally from an overestimation of the third harmonic. This is partially due to already
identified difficulty in measuring the amplitudes of weak harmonics but also due to the
boundary layer around the wave maker. The calculated profile is in fact for a material
surface just outside the boundary layer. Despite this small error, we have successfully
calculated the boundary displacement required to produce an observed spectrum of waves,
with a superior accuracy than would be given by a linear model.
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6. Conclusion

We demonstrated that triadic wave–wave interactions do not occur between internal
waves sharing the same horizontal component of the phase velocity. This has profound
implications for the spectral structure in many applications where the wave field is
generated by what is essentially a propagating boundary. In particular, the only source
of waves, or of their harmonics, is at the boundary itself. Consequently, the wave
field encodes considerable information about the boundary geometry. We have derived
a complementary pair of weakly nonlinear perturbation expansions: one to predict
the spectrum of harmonics of internal waves generated by a prescribed boundary
displacement, and its inverse to calculate the boundary displacement required to produce
a given flow field. Both of these expansions were specialised to a monochromatic
boundary displacement and a monochromatic internal wave field, respectively, for which
we gave succinct algorithms for calculating the corresponding polychromatic spectra. Each
successive order of the expansions not only introduces an additional harmonic but also
applies additive corrections to the lower harmonics. We successfully verified our models
using experiments driven by a ‘magic carpet’ in the base of a large tank. Our results may
be used to generate cleaner internal wave fields, especially monochromatic ones, in the
laboratory, and to deduce the boundary displacements corresponding to an observed flow
field, whether in a tank or in the ocean.
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Appendix A. Compound angle identities

The formulae in this appendix are used for algorithmically evaluating the perturbation
expansions of this paper at all orders.

A.1. Product of sinusoids as a sum of harmonics
The expansions throughout this paper frequently yield products of cosines and sines that
we need to express as a sum of harmonics. We consider the arbitrary product for a single
phase φ expressed as complex exponentials, for α, β ∈ Z�0,

cosα φ sinβ φ = 1
2α
(exp[iφ]+ exp[−iφ])α

1
(2i)β

(exp[iφ]− exp[−iφ])β . (A 1)

The binomial expansion gives the product of summations, where
(n

r

) = n!/(r!(n − r)!) is
the binomial coefficient,

cosα φ sinβ φ = 1
2α+β iβ

(
α∑
ξ=0

(
α

ξ

)
exp[i(α − ξ)φ] exp[−iξφ]

)

×
(

β∑
ε=0

(
β

ε

)
exp[i(β − ε)φ](−1)ε exp[−iεφ]

)
, (A 2)

which we combine as a double sum,

cosα φ sinβ φ = 1
2α+β iβ

α∑
ξ=0

β∑
ε=0

(−1)ε
(
α

ξ

)(
β

ε

)
exp[i(α + β − 2ξ − 2ε)φ]. (A 3)
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1 2 3 4

1

2

3

ξ

ε

FIGURE 8. Summation domain for cos4 φ sin3 φ(α = 4, β = 3). An example pair of conjugate
symmetric points is marked with crosses.

This summation exhibits symmetry, whereby pairs of terms have the same values
of the binomial coefficients, so we can halve the number of terms in the summation.
The summation domain is rectangular in (ξ, ε) space, and the conjugate pairs of terms are
reflections in the line ξ + ε = 1

2(α + β), shown in red in figure 8, which passes through
the centre of the domain. Thus, we split the domain of summation about this line into the
shaded and unshaded regions in the figure, neither of which include the symmetry line,
and a separate summation over points lying on the line of symmetry itself, which occurs
when, and only when, α and β are either both odd or both even,

cosα φ sinβ φ = Sshaded + Sunshaded + Sline. (A 4)

In the first (shaded) sum, ξ runs from zero to the lesser of the intersection of the symmetry
line with the ε axis (exclusive) and the right edge of the rectangle (ξ = α, inclusive), and
ξ runs from zero to the lesser of the symmetry line (exclusive) and the top edge of the
rectangle (ε = β, inclusive),

Sshaded = 1
2α+β iβ

min { 1
2 (α+β−1),α}�∑
ξ=0

min { 1
2 (α+β−1)−ξ,β}�∑

ε=0

(−1)ε
(
α

ξ

)(
β

ε

)

× exp[i(α + β − 2ξ − 2ε)φ]. (A 5)

In Sunshaded, ξ runs from the greater of the intersection symmetry line with the top edge
of the rectangle, ξ = 1

2(α + β)− β = 1
2(α − β) (exclusive), and the left edge (ξ = 0,

inclusive) to the right edge (ξ = α, inclusive), and ε runs from the line of symmetry
(exclusive) to the top edge (inclusive),

Sunshaded = 1
2α+β iβ

α∑
ξ=�max { 1

2 (α−β+1),0}�

β∑
ε=�max { 1

2 (α+β+1)−ξ,0}�
(−1)ε

(
α

ξ

)(
β

ε

)

× exp[i(α + β − 2ξ − 2ε)φ]. (A 6)
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We now select a new set of variables to exploit the symmetries, μ = α − ξ and ν =
β − ε. On substitution, the summation domains become⌈

max
{

1
2(α − β + 1), 0

}⌉
� α − μ � α, (A 7a)⌈

max
{

1
2(α + β + 1)− (α − μ), 0

}⌉
� β − ν � β. (A 7b)

Subtracting α and β from each inequality, respectively, and multiplying through by −1,
noting that the maximum functions become minimum functions and the inequalities
reverse, gives⌊

min
{

1
2(α + β − 1), α

}⌋
� μ � 0,

⌊
min

{
1
2(α + β − 1)− μ, β}⌋ � ν � 0, (A 7c)

which is exactly the summation domain over (ξ, ε) in Sshaded (A 5). The binomials, ( αξ ) =
(

α
α−μ ) and ( βε ) = ( β

β−ν ), are symmetric about α/2 and β/2, respectively, so are equal to
their original forms, ( αμ ) and ( βν ). Thus, Sunshaded is of a very similar form to Sshaded,

Sunshaded = 1
2α+β iβ

min { 1
2 (α+β−1),α}�∑
μ=0

min { 1
2 (α+β−1)−μ,β}�∑

ν=0

(−1)β−ν
(
α

μ

)(
β

ν

)

× exp[i(−α − β + 2μ+ 2ν)φ]. (A 8)

Since (−1)−ν = (−1)ν for ν ∈ Z, and on changing the summation variables to (ξ, ε),
the contributions to cosα φ sinβ φ not on the line of symmetry total

Sshaded + Sunshaded = 1
2α+β iβ

min { 1
2 (α+β−1),α}�∑
ξ=0

min { 1
2 (α+β−1)−ξ,β}�∑

ε=0

(−1)ε
(
α

ξ

)(
β

ε

)

×(exp[i(α + β − 2ξ − 2ε)φ]+ (−1)β exp[−i(α + β − 2ξ − 2ε)φ]).
(A 9)

The exponential terms sum to 2 cos [(α + β − 2ξ − 2ε)φ] when β is even and
2i sin [(α + β − 2ξ − 2ε)φ] when β is odd. Finally, we choose to sum over harmonics
by letting γ = ξ + ε and summing over (γ, ε). We obtain the summation limits for the
shaded region from figure 8 by noting that lines of constant γ are parallel to the red line
of symmetry, so 0 � γ �  1

2(α + β − 1)�, and that the minimum value of ε on once such
line occurs either on the right or bottom edges of the rectangle and the corresponding
maximum value is on the left or top edge, max {γ − α, 0} � ε � min {γ, β}. Thus,

Sshaded + Sunshaded

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−1)β/2

2α+β−1

 1
2 (α+β−1)�∑
γ=0

min {γ,β}∑
ε=max {γ−α,0}

(−1)ε
(

α

γ − ε
)(
β

ε

)
cos [(α + β − 2γ )φ] for β even

(−1)(β−1)/2

2α+β−1

 1
2 (α+β−1)�∑
γ=0

min {γ,β}∑
ε=max {γ−α,0}

(−1)ε
(

α

γ − ε
)(
β

ε

)
sin [(α + β − 2γ )φ] for β odd

.

(A 10)
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Finally, we consider the contribution along the line of symmetry, where γ = 1
2(α + β)

and so ε has the same limits as before,

Sline = 1
2α+β iβ

min { 1
2 (α+β),β}∑

ε=max { 1
2 (β−α),0}

(−1)ε
(

α
1
2(α + β)− ε

)(
β

ε

)
. (A 11)

Again, this has a symmetry point at ε = β/2, so we split the summation into three
components, Sline = Slower + Supper + Spoint, where

Slower = 1
2α+β iβ

(β−1)/2∑
ε=max { 1

2 (β−α),0}
(−1)ε

(
α

1
2(α + β)− ε

)(
β

ε

)
, (A 12a)

Supper = 1
2α+β iβ

min { 1
2 (α+β),β}∑

ε=(β+1)/2

(−1)ε
(

α
1
2(α + β)− ε

)(
β

ε

)
, and (A 12b)

Spoint =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2α+β iβ

(−1)β/2

⎛
⎝αα

2

⎞
⎠
⎛
⎝ββ

2

⎞
⎠ for β even

0 for β odd

. (A 12c)

Similar to the method for Sunshaded, changing the summation variable of Supper to κ = β − ε,
recalculating the limits and manipulating the binomial coefficients gives

Supper = 1
2α+β iβ

(β−1)/2∑
κ=max { 1

2 (β−α),0}
(−1)β−κ

(
α

1
2(α + β)− κ

)(
β

κ

)
= (−1)βSlower, (A 13)

because (−1)−κ = (−1)κ . So, for odd β, the components of Sline total zero and for even β,
and hence even α (otherwise Sline = 0),

Sline = 1
2α+β

⎛
⎝αα

2

⎞
⎠
⎛
⎝ββ

2

⎞
⎠+ (−1)β/2

2α+β−1

(β−1)/2∑
ε=max { 1

2 (β−α),0}
(−1)ε

(
α

1
2(α + β)− ε

)(
β

ε

)
. (A 14)

Therefore, for α, β, γ, ε ∈ Z,

cosα φ sinβ φ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−1)β/2

2α+β−1

 1
2 (α+β−1)�∑
γ=0

min {γ,β}∑
ε=max {γ−α,0}

(−1)ε
(

α

γ − ε
)(
β

ε

)
cos [(α + β − 2γ )φ] for β even

(−1)(β−1)/2

2α+β−1

 1
2 (α+β−1)�∑
γ=0

min {γ,β}∑
ε=max {γ−α,0}

(−1)ε
(

α

γ − ε
)(
β

ε

)
sin [(α + β − 2γ )φ] for β odd

+ 1
2α+β

⎛
⎝αα

2

⎞
⎠
⎛
⎝ββ

2

⎞
⎠+ (−1)β/2

2α+β−1

(β−1)/2∑
ε=max

{
1
2 (β−α),0

}(−1)ε
(

α
1
2 (α + β)− ε

)(
β

ε

)
if α, β even.

(A 15)
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A.2. Harmonic as a product of sinusoids
Here, we derive the reverse operation, expressing a harmonic as a product of sinusoids at
the fundamental frequency. For n ∈ Z�0, de Moivre’s theorem states

cos (nφ)+ i sin (nφ) = (cosφ + i sinφ)n, (A 16)

which we expand using the binomial theorem,

cos (nφ)+ i sin (nφ) =
n∑
α=0

iα
(

n

α

)
cosn−α φ sinα φ. (A 17)

Firstly, taking the real part, which only has contributions for even α, and letting β = α/2
gives

cos (nφ) =
n/2∑
β=0

(−1)β
(

n

2β

)
cosn−2β φ sin2β φ. (A 18)

Secondly, taking the imaginary part, which only has contributions for odd α, and letting
β = (α − 1)/2 gives

sin (nφ) =
(n−1)/2∑
β=0

(−1)β
(

n

2β + 1

)
cosn−2β−1 φ sin2β+1 φ. (A 19)

Appendix B. Expression for infinite sum raised to integer power

In (5.8), we expressed an infinite power series raised to a finite integer power as a new
power series, ( ∞∑

s=0

ashs+1

)q

=
∞∑

s=0

ascs, (B 1)

with the coefficients cs to be determined. We will find a recurrence relation for cs by first
letting

g(a) =
∞∑

s=0

ashs+1 and f (a) = (g(a))q =
∞∑

s=0

ascs, (B 2a)

whose derivatives are, where ε = ξ + 1,

dg
da
=
∞∑

s=0

sas−1hs+1 =
∞∑

p=0

ap( p+ 1)hp+2 and
df
da
=
∞∑

s=0

as(s+ 1)cs+1. (B 2b)

We seek an equation relating different elements in the sequence cs by differentiating
f (g(a)) using the chain rule,

df
da
= qgq−1 dg

da
, (B 3)

which we multiply by g and recall that f = gq to yield

df
da

g = q f
dg
da
. (B 4)
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Both sides are a product of two summations, which we evaluate using the Cauchy product
of power series, ( ∞∑

s=0

asXs

)⎛⎝ ∞∑
p=0

apYp

⎞
⎠ = ∞∑

s=0

as
s∑

p=0

XpYs−p, (B 5)

on the power series forms for f , g and their derivatives (B 2) to give
∞∑

s=0

as
s∑

p=0

(p+ 1)cp+1hs−p+1 = q
∞∑

s=0

as
s∑

p=0

cp(s− p+ 1)hs−p+2. (B 6)

We now observe that this equation still holds if we change the lower limit of the
p summation on the left-hand side to p = −1 without changing the summand, because the
extra term that is introduced is equal to zero. Taking the terms at ord(as), we let r = p+ 1,
sum from r = 0 (rather than r = 1) on the left-hand side and separate the term involving
cs+1 to obtain

(s+ 1)cs+1h1 +
s∑

r=0

rcrhs−r+2 = q
s∑

p=0

(s− p+ 1)cphs−p+2. (B 7)

Rearranging this equation gives the recurrence relation (5.9). The seed of the sequence of
coefficients, c0, is found by setting a = 0 in the power series (B 1), which gives c0 = hq

1.

Appendix C. Strongly nonlinear approach to expanding h(x, t)

We can derive the monochromatic expansion (5.15) by substituting for ψ (5.1) in the
unexpanded kinematic boundary condition (2.16). Using the calculated derivatives of ψ̂
(5.15b), but remembering to evaluate them at z = h rather than z = 0, gives

− aω
k

(
1− tanΘ

∂h
∂x

)
cos [k(x − h tanΘ)− ωt] = ∂h

∂t
. (C 1)

There is no known closed-form solution to this strongly nonlinear equation where the
dependent variable, h, appears both inside and outside a trigonometric function. Instead,
we expand the cosine using its compound angle formula,

−aω
k

(
1− tanΘ

∂h
∂x

)
[cos (kx − ωt) cos (kh tanΘ)

+ sin (kx − ωt) sin (kh tanΘ)] = ∂h
∂t
, (C 2)

substitute for the horizontal phase velocity, φ = kx − ωt, and Taylor expand the
trigonometric functions of h about zero to obtain polynomials in h,

− aω
k

(
1− tanΘ

∂h
∂x

)⎡⎣cosφ
∑

q even, �0

(−1)q/2

q!
(kh tanΘ)q

+ sinφ
∑

q odd, �1

(−1)(q−1)/2

q!
(kh tanΘ)q

⎤
⎦ = ∂h

∂t
. (C 3)
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On comparison with the period pattern of the derivatives of ψ̂ (5.15b), we see that the
summed quantities are derivatives of ψ̂ , so we combine the summations,

a
(

1− tanΘ
∂h
∂x

) ∞∑
q=0

hq

q!
∂q+1ψ̂

∂x∂zq

∣∣∣∣∣
z=0

= ∂h
∂t
. (C 4)

This Taylor’s expansion of trigonometric functions matches that of Taylor expanding ψ̂
about z = 0 (2.17) (remembering that ∂/∂z = − tanΘ(∂/∂x) in this monochromatic case),
demonstrating that these two methods are equivalent. In addition, we note that the Taylor’s
expansions of sines and cosines have infinite radius of convergence, so this equation
still holds for h of any magnitude. Restricting h to small amplitudes and substituting its
expansion in powers of a (5.3) yields our expansion of the kinematic boundary condition
(5.7). Finally, following the same manipulations of the summations as before, we recover
our expansion grouped in powers of a (5.15).
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