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The Weak Order on Weyl Posets

Joël Gay and Vincent Pilaud

Abstract. We deûne a natural lattice structure on all subsets of a ûnite root system that extends the
weak order on the elements of the corresponding Coxeter group. For crystallographic root systems,
we show that the subposet of this lattice induced by antisymmetric closed subsets of roots is again a
lattice. We then study further subposets of this lattice that naturally correspond to the elements, the
intervals, and the faces of the permutahedron and the generalized associahedra of the corresponding
Weyl group. hese results extend to arbitrary ûnite crystallographic root systems the recent results of
G. Chatel, V. Pilaud, and V. Pons on the weak order on posets and its induced subposets.

1 Introduction

he weak order is a fundamental ordering of the elements of a Coxeter group. It can
be deûned as the preûx order in reduced expressions of the elements of the group,
or more geometrically as the inclusion poset of the inversion sets of the elements of
the group. For ûnite Coxeter groups, the weak order is known to be a lattice [Bjö84],
and its Hasse diagram is the graph of the permutahedron of the group oriented in a
linear direction. he rich theory of congruences of the weak order [Rea04] yield to
the construction of Cambrian lattices [Rea06] with its connection to Coxeter Catalan
combinatorics and ûnite type cluster algebras [FZ02, FZ03a]. his point of view was
fundamental for the construction of generalized associahedra [HLT11]. We refer the
reader to the survey papers [Rea12,Rea16,Hoh12] for details on these subjects.

More recently, some eòorts were devoted to developing certain extensions of the
weak order beyond the elements of the group. his led in particular to the notion of
facial weak order of a ûnite Coxeter group, pioneered in type A in [KLN+01], deûned
for arbitrary ûnite Coxeter groups in [PR06], and proved to be a lattice in [DHP18].
his order is a lattice on the faces of the permutahedron that extends the weak order
on the vertices.

In type A, an even more general notion of weak order on integer binary relations
was recently introduced in [CPP17]. his order is deûned byR ≼ S⇐⇒ RInc ⊇ SInc and
RDec ⊆ SDec for any two binary relations R, S on [n], where RInc ∶= {(a, b) ∈ R ∣ a < b}
and RDec ∶= {(b, a) ∈ R ∣ a < b}, respectively, denote the increasing and decreasing
subrelations of R. It turns out that the subposet of this weak order induced by posets
on [n] is a lattice. In fact, many relevant lattices can be recovered as subposets
of the weak order on posets induced by certain families of posets. Such families
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Figure 1: he weak order on A2-posets (le�) and on B2-posets (right).

include the vertices, the intervals, and the faces of the permutahedron, associahedra
[Lod04,HL07], permutreehedra [PP18], cube, etc. For the vertices, the correspond-
ing lattices are the weak order on permutations, the Tamari lattice on binary trees, the
type ACambrian lattices, the permutree lattices [PP18], the boolean lattice on binary
sequences, etc.

he goal of this paper is to extend these results beyond type A using subsets of
root systems. We deûne the weak order on subsets R, S of a ûnite root system Φ by
R ≼ S ⇐⇒ R+ ⊇ S+ andR− ⊆ S−, where R+ ∶=R ∩ Φ+ andR− ∶=R ∩ Φ−. his order is
a lattice on all subsets of Φ, which are the analogues of type A integer binary relations.
In turn, the analogues of type A integer posets are Φ-posets, i.e., subsets R of Φ that
are both antisymmetric (α ∈ R implies −α ∉ R) and closed (in the sense of [Bou68],
α, β ∈ R and α+β ∈ Φ implies α+β ∈ R). Our central result is that the subposet of the
weak order induced by Φ-posets is also a lattice when the root system Φ is crystallo-
graphic. For example, the weak orders on A2-, B2- and G2-posets are represented in
Figures 1 and 2. Surprisingly, this property fails for non-crystallographic root systems,
and the proof actually requires us to develop delicate properties on subsums of roots
in crystallographic root systems.

We then switch our focus to our motivation to study the weak order on Φ-posets.
We consider Φ-posets corresponding to the vertices, the intervals, and the faces of
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Figure 2: he weak order on G2-posets.

the permutahedron, the associahedra, and the cube of type Φ. Considering the sub-
posets of the weak order induced by these speciûc families of Φ-posets allows us to
recover the classical weak order and the Cambrian lattices, their interval lattices, and
their facial lattices. A roadmap presenting the diòerent families of subsets of roots
considered in this paper is given in Figure 3.

2 Root Systems

his section gathers some notions and properties of ûnite crystallographic root
systems and Weyl groups. We refer the reader to the textbooks by J. Humphreys
[Hum90], N. Bourbaki [Bou68], and A. Björner and F. Brenti [BB05] for further de-
tails on basic deûnitions and classical properties.

2.1 Root Systems

Let V be a real Euclidean space with scalar product ⟨⋅ ∣ ⋅⟩. For α ∈ V ∖ {0}, we
deûne α∨ ∶= 2α/⟨α ∣ α⟩. We denote by sα the re�ection orthogonal to a non-zero vec-
tor α ∈ V , deûned by sα(v) = v − ⟨α∨ ∣ v⟩ α. A ûnite root system Φ is a ûnite set
of non-zero vectors in V such that Φ ∩ Rα = {α,−α} and sαΦ = Φ for all α ∈ Φ.
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Figure 3: A roadmap through the diòerent families of subsets of roots studied in this paper. An
arrow→ indicates a subposet, while an arrow↠ indicates a sublattice. he dashed arrow is a
conjectural sublattice relation. he label on each arrow refers to the corresponding statement
in this paper.

Wedenote byW theCoxeter group generated by the re�ections sα for α ∈ Φ. hrough-
out this paper, we will denote by R(Φ) the collection of all subsets of Φ.

We choose a generic linear functional f and denote the set of positive roots by
Φ+ ∶= {α ∈ Φ ∣ f (α) > 0} and the set of negative roots by Φ− ∶= {α ∈ Φ ∣ f (α) < 0}.
We denote by ∆ the simple roots. hey are the roots of the rays of the coneR≥0Φ+ and
form a linear basis, so that any positive root is a positive linear combination of simple
roots. he height of a root α = ∑δ∈∆ αδδ is h(α) = ∑δ∈∆ αδ . he absolute height of α
is ∣h∣(α) = ∣h(α)∣.

he root system Φ is crystallographic if ⟨α∨ ∣ β⟩ ∈ Z for any α, β ∈ Φ. Equiva-
lently, the Coxeter group W stabilizes the lattice ZΦ and is called a Weyl group.
In most of the paper, we restrict our attention to crystallographic root systems.
Remarks 2.6, 2.7, 2.13, 3.16, 3.19, and 3.23 justify this restriction.

Example 2.1 (Type A) Let (ei)i∈[n+1] be the standard basis of Rn+1. he symmet-
ric group Sn+1 acts on Rn+1 by permutation of coordinates. It is the Weyl group
of type An . he roots are ΦAn = {ei − e j ∣ 1 ≤ i ≠ j ≤ n + 1}, the positive roots are
Φ+
An

= {ei − e j ∣ 1 ≤ i < j ≤ n + 1} and the simple roots are ∆An = {ei − ei+1 ∣ i ∈ [n]}.
A subset of ΦAn can thus be identiûed with a binary relation on [n] via the bijec-
tion (i , j) ∈ [n]2 ←→ ei − e j ∈ ΦA. Note that the height of ei − e j is j − i.

2.2 Sums of Roots in Crystallographic Root Systems

We now gather statements on sums of roots in crystallographic root systems that are
needed throughout the paper and that we consider interesting for their own sake.
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We start by a statement from [Bou68] providing suõcient conditions for the sum or
diòerence of two roots to again be a root in a crystallographic root system Φ.

heorem 2.2 ([Bou68, Chap. 6, 1.3, hm. 1]) For any α, β in a crystallographic root
system Φ,
(i) if ⟨α ∣ β⟩ > 0, then α − β ∈ Φ or α = β;
(ii) if ⟨α ∣ β⟩ < 0, then α + β ∈ Φ or α = −β.

We say that a (multi)set X ⊆ Φ
● is summable if its sum ΣX is again a root of Φ,
● has no vanishing subsum if ΣY ≠ 0 for any ∅ ≠ Y ⊆ X.
Proposition 2.3 andheorems 2.4 and 2.5 ensure that a summable set of roots with no
vanishing subsum has many summable subsets. We start with sums of three roots.

Proposition 2.3 Let Φ be a crystallographic root system. If α, β, γ ∈ Φ are such that
α + β + γ ∈ Φ has no vanishing subsum, then at least two of the three subsums α + β,
α + γ, and β + γ are in Φ.

Proof Assume bymeans of contradiction that α+β ∉ Φand α + γ ∉ Φ. Since α+β+γ
has no vanishing subsum, α ≠ −β and α ≠ −γ. By contraposition of heorem 2.2(ii),
we obtain that ⟨α ∣ β⟩ ≥ 0 and ⟨α ∣ γ⟩ ≥ 0. herefore,

⟨α + β + γ ∣ β + γ⟩ = ⟨α ∣ β⟩ + ⟨α ∣ γ⟩ + ⟨β + γ ∣ β + γ⟩ > 0,

since β + γ ≠ 0. It follows that either ⟨α + β + γ ∣ β⟩ > 0 or ⟨α + β + γ ∣ γ⟩ > 0. Assume
for instance ⟨α + β + γ ∣ β⟩ > 0. heorem 2.2(i) then implies that either α + γ ∈ Φ
or α + γ = 0, contradicting either of our assumptions on α + γ. ∎

It is proved in [Bou68, Chap. 6, 1.6, Prop. 19] that any summable subset X of positive
roots admits a ûltration X1 ⊊ X2 ⊊ ⋅ ⋅ ⋅ ⊊ X∣X∣−1 ⊊ X∣X∣ = X of summable subsets. We
now use Proposition 2.3 to extend this property in two directions: ûrst, we consider
subsets of all roots (positive and negative); second, we show that we can additionally
prescribe the initial set X1 to be a chosen root of Φ. his latter improvement will be
crucial throughout the paper.

heorem 2.4 Let Φ be a crystallographic root system. Any summable set X ⊆ Φ with
no vanishing subsum admits a ûltration of summable subsets

{α} = X1 ⊊ X2 ⊊ ⋅ ⋅ ⋅ ⊊ X∣X∣−1 ⊊ X∣X∣ = X

for any α ∈ X.

Proof he proof works by induction on ∣X∣. It is clear for ∣X∣ = 2, so we consider
∣X∣ > 2. By induction, it suõces to ûnd a summable subset X∣X∣−1 of size ∣X∣ − 1 such
that α ∈ X∣X∣−1 ⊂ X. Since∑β∈X⟨β ∣ ΣX⟩ = ⟨ΣX ∣ ΣX⟩ > 0, there exists β ∈ X such that
⟨β ∣ ΣX⟩ > 0. Since X has no vanishing subsum, we have β ≠ ΣX. heorem 2.2(i) thus
ensures that X∖{β} is summable. If α ≠ β, then we set X∣X∣−1 ∶= X∖{β} and conclude
by induction. Otherwise, we have proved that both {α} and X ∖ {α} are summable.
Let Y be inclusion maximal with α ∈ Y ⊊ X such that both Y and X∖Y are summable.
Assume that ∣X ∖ Y∣ ≥ 2. By induction hypothesis, there exists Z ⊂ X ∖ Y summable
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with ∣Z∣ = ∣X ∖ Y∣ − 1 ≥ 1. Let γ be the root in (X ∖ Y) ∖ Z. Since γ, ΣY, and ΣZ
are roots and γ + ΣY + ΣZ = ΣX ∈ Φ, Proposition 2.3 aõrms that either {γ} ∪ Y
or Y ∪ Z is summable, contradicting the maximality of Y. We therefore obtained a
summable subset Y with α ∈ Y ⊆ X with ∣Y∣ = ∣X∣ − 1. We set X∣X∣−1 ∶=Y and conclude
by induction. ∎

Finally, we obtain the following generalization of Proposition 2.3.

heorem 2.5 Let Φ be a crystallographic root system. Any summable set X ⊆ Φ with
no vanishing subsum admits at least p distinct summable subsets of size ∣X∣ − p + 1, for
any 1 ≤ p ≤ ∣X∣.

Proof Note that it holds for p = 1 and p = ∣X∣. We now proceed by induction on ∣X∣
to prove the result for 1 < p < ∣X∣. By heorem 2.4, X admits a summable subset Y of
size ∣X∣ − 1. Since 1 < p, we can apply the induction hypothesis to ûnd p − 1 distinct
summable subsets Z1 , . . . , Zp−1 of Y of size ∣Y∣− p+2 = ∣X∣− p+ 1. Moreover, byheo-
rem 2.4 there exists at least one summable subset Zp of X of size ∣X∣ − p+ 1 containing
the root α in X ∖ Y. his subset Zp is distinct from all the subsets Z1 , . . . , Zp−1 of Y,
since it contains α. his concludes the proof. ∎

Remark 2.6 All results presented in this section fail for non-crystallographic root
systems. For example, consider the Coxeter group of type H3 with Dynkin diagram

and the positive roots α ∶= α1, β ∶= α2 and γ ∶= s1s2s3(α2) = ψ(α1+α2+α3),
where ψ = −2 cos(4π/5). hen
● ⟨α ∣ β⟩ < 0 when α + β ∉ Φ and α ≠ −β;
● α + β + γ ∈ Φ when α + β ∉ Φ and β + γ ∉ Φ (although α + γ ∈ Φ).

Remark 2.7 For later purposes, we need an even stronger counter-example to
heorem 2.4 in non-crystallographic root systems. Consider the Coxeter group of
type H2 = I2(5) and the roots α ∶= α1, β ∶= α2, γ ∶=ψα1 + ψα2 and δ ∶= − α1 − ψα2,
where ψ = −2 cos(4π/5). It is not diõcult to check that

Φ ∩ {aα + bβ + cγ + dδ ∣ a, b, c, d ∈ N} = {α, β, γ, δ, α + β + γ + δ}.
In particular, there is not even a single �ag X1 ⊊ X2 ⊊ X3 ⊊ {α, β, γ, δ} of summable
subsets of {α, β, γ, δ}, even though {α, β, γ, δ} is itself summable.

2.3 Φ-posets

In Section 3, we will consider certain speciûc families of collections of roots. We start
with the simple deûnition of symmetric and antisymmetric subsets of roots.

Deûnition 2.8 A subset R ⊆ Φ is symmetric if −R = R and antisymmetric if
R ∩ −R = ∅. We denote by S(Φ) (resp. A(Φ)) the set of symmetric (resp. antisym-
metric) subsets of roots of Φ.

We now want to deûne closed sets of roots. he next statement is proved by
A. Pilkington [Pil06, Sect. 2] for subsets of positive roots. We extend it to subsets
of all roots using heorem 2.4.
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Lemma 2.9 In a crystallographic root system Φ, the following conditions are equiva-
lent for R ⊆ Φ:
(i) α + β ∈ R for any α, β ∈ R such that α + β ∈ Φ;
(ii) mα + nβ ∈ R for any α, β ∈ R and m, n ∈ N such that mα + nβ ∈ Φ;
(iii) α1 + ⋅ ⋅ ⋅ + αp ∈ R for any α1 , . . . , αp ∈ R such that α1 + ⋅ ⋅ ⋅ + αp ∈ Φ.

Proof he proof follows [Pil06, Sect. 2]. he implications (iii)⇒ (ii)⇒ (i) are clear.
Assume now (i) and let α1 , . . . , αp ∈ R such that α1 + ⋅ ⋅ ⋅ + αp ∈ Φ. By heorem 2.4,
there exists a �ag X1 ⊊ X2 ⊊ ⋅ ⋅ ⋅ ⊊ Xp = {α1 , . . . , αp} of summable subsets of Φ.
Applying (i) inductively, we get that ΣXi ∈ R for all i ∈ [p], and thus α1 + ⋅ ⋅ ⋅ + αp ∈ R.

∎

Deûnition 2.10 In a crystallographic root system Φ, a subset R ⊆ Φ is closed if it
satisûes the equivalent conditions of Lemma 2.9. We denote by C(Φ) the set of closed
subsets of roots of Φ.

Deûnition 2.11 In a crystallographic root system Φ, the closure of R ⊆ Φ is the
set Rcl ∶=NR ∩ Φ.

Remark 2.12 hemap R ↦ Rcl is a closure operator on Φ, meaning that

∅cl = ∅, Φ ⊆ Φcl , R ⊆ SÔ⇒ Rcl ⊆ Scl , and (Rcl)cl = Rcl

for all R, S ⊆ Φ. Moreover Rcl is closed and R is closed if and only if R = Rcl.

Remark 2.13 Lemma 2.9 fails for non-crystallographic root systems. For example,
consider the roots α, β, γ, δ of Remark 2.7. hen the set R ∶= {α, β, γ, δ} satisûes (i)
but not (iii).

Remark 2.14 As studied in detail by A. Pilkington in [Pil06], even in crystallo-
graphic root systems, there are other possible notions of closed sets of roots. Namely,
one says that R ⊆ Φ is

(i) N-closed if mα + nβ ∈ R for α, β ∈ R and m, n ∈ N with mα + nβ ∈ Φ;
(ii) R-closed if xα + yβ ∈ R for α, β ∈ R and x , y ∈ R with xα + yβ ∈ Φ;
(iii) convex if R = Φ ∩ C for a convex cone C in V .

Note that convex implies R-closed, which implies N-closed, but that the converse
statements are wrong even for ûnite root systems [Pil06, p. 3192]. In this paper, we
will only work with the notion of N-closedness in crystallographic root systems, as it
is discussed in [Bou68]. Remarks 3.17 and 3.20 justify this restriction.

Example 2.15 (Type A) Following Example 2.1, identify subsets of roots with inte-
ger binary relations via the bijection (i , j) ∈ [n]2 z→ ei − e j ∈ ΦA. A subset of roots
is symmetric (resp. antisymmetric, resp. closed) if the corresponding integer binary
relation is symmetric (resp. antisymmetric, resp. transitive). (Note that here the three
notions of closed sets of roots mentioned in Remark 2.14 coincide in type A.)

his example motivates the deûnition of the central object of this paper.
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Deûnition 2.16 In a crystallographic root system Φ, a Φ-poset is an antisymmetric
and N-closed subset of roots of Φ. We denote by P(Φ) the set of all Φ-posets.

We speak of Weyl posets when we do not want to specify the root system. We
will introduce in Section 3.4 a natural lattice structure on Φ-posets. We will see in
Section 4 various subfamilies of Φ-posets arising from classical Coxeter and Coxeter
Catalan combinatorics.

To conclude this preliminary section on Φ-posets, we gather simple observations
on their subsums and their extensions.

Lemma 2.17 For anyΦ-posetR and any roots α1 , . . . , αp ∈ R, we have α1+⋅ ⋅ ⋅+αp ≠ 0.

Proof Assume that R is aΦ-poset and there are α1 , . . . , αp ∈R such that α1+⋅ ⋅ ⋅+αp = 0.
hen α2 + ⋅ ⋅ ⋅ + αp = −α1 is a root, so Lemma 2.9(iii) ensures that α2 + ⋅ ⋅ ⋅ + αp ∈ R,
since R is closed. We obtain that α1 ∈ R and −α1 ∈ R, contradicting the antisymmetry
of R. ∎

Finally, we need Φ-poset extensions. he subsets of Φ are naturally ordered
by inclusion, and we consider the restriction of this inclusion order on Φ-posets.
For R ∈ P(Φ), we call extensions of R the Φ-posets S containing R, and we let
E(R) ∶= {S ∈ P(Φ) ∣ R ⊆ S}. Note that R ∈ E(R) and R ⊆ S for all S ∈ E(R) so that
R = ⋂E(R). For later purposes, we are interested in maximal Φ-posets in the exten-
sion order.

Proposition 2.18 For R ∈ P(Φ), we have E(R) = {R} if and only if {α,−α} ∩ R ≠ ∅
for all α ∈ Φ.

Proof Clearly, if {α,−α} ∩ R ≠ ∅ for all α ∈ Φ, then adding any root to R breaks
the antisymmetry, so that E(R) = {R}. Reciprocally, assume that there exists α ∈ Φ
such that {α,−α} ∩ Φ = ∅. Let S ∶= (R ∪ {α})cl and T ∶= (R ∪ {−α})cl. By deûnition,
both S and T are closed, and we claim that at least one of them is antisymmetric, thus
proving that R admits a non-trivial extension. Assume bymeans of contradiction that
neither S nor T are antisymmetric. Let β ∈ S ∩ − S and γ ∈ T ∩ − T. By deûnition of
the closure, we can write

β = ∑
δ∈R

λδδ + λαα = −∑
δ∈R

κδδ − καα,

γ = ∑
δ∈R

µδδ − µαα = −∑
δ∈R

νδδ + ναα,

where λδ , κδ , µδ , νδ are non-negative integer coeõcients for all δ ∈ R ∪ {α}. More-
over, we have λα + κα ≠ 0 ≠ µα + να , since R is antisymmetric and closed. his implies
that

∑
δ∈R

((λα + κα)(µδ + νδ) + (µα + να)(λδ + κδ)) δ = 0.

Lemma 2.17 thus ensures that (λα + κα)(µδ + νδ) + (µα + να)(λδ + κδ) = 0, which in
turns implies that λδ = κδ = µδ = νδ = 0 for all δ ∈ R, a contradiction. ∎
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3 Weak Order on Φ-posets

3.1 Weak Order on All Subsets

Let Φ be a ûnite root system (not necessarily crystallographic for the moment) with
positive roots Φ+ and negative roots Φ−. We denote by R(Φ) the set of all subsets of
Φ. For R ∈ R(Φ), we denote by R+ ∶=R ∩ Φ+ its positive part and R− ∶=R ∩ Φ− its
negative part. he following order was considered in type A in [CPP17].

Deûnition 3.1 he weak order on R(Φ) is deûned by
R ≼ S ⇐⇒ R+ ⊇ S+ and R− ⊆ S− .

Remark 3.2 he name for this order relation will be transparent in Section 4. Note
that there is an arbitrary choice of orientation in Deûnition 3.1. he choice we have
made here may seem unusual, as the apparent contradiction in Proposition 4.5 sug-
gests. However, it is more coherent with the case of type A as treated in [CPP17], and
it simpliûes the presentation of Section 4.1.3.

Proposition 3.3 he weak order on R(Φ) is a lattice with meet and join

R ∧R S = (R+ ∪ S+) ⊔ (R− ∩ S−) and R ∨R S = (R+ ∩ S+) ⊔ (R− ∪ S−).
Furthermore, it is graded by R ↦ ∣R−∣ − ∣R+∣, and its cover relations are given by

R ≼ R ∖ {α} for α ∈ R+ and R ∖{β} ≼ R for β ∈ R− .

Proof It is the Cartesian product of two boolean lattices (the reverse inclusion poset
on the positive roots and the inclusion poset on the negative roots). ∎

his section is devoted to showing that the restriction of the weak order to certain
families of subsets of roots (antisymmetric, closed and Φ-posets — see Figure 3 for a
roadmap) still deûnes a lattice structure when Φ is crystallographic, and expressing
its meet and join operations. For example, the weak orders on A2-, B2- andG2-posets
are represented in Figures 1 and 2.

3.2 Weak Order on Antisymmetric Subsets

We start with the antisymmetry condition.

Proposition 3.4 hemeet ∧R and the join ∨R both preserve antisymmetry. hus, the
setA(Φ) of antisymmetric subsets ofΦ induces a sublattice of the weak order onR(Φ).

Proof Consider two antisymmetric subsets R, S ∈ R(Φ) and let α ∈ (R ∧R S)+ =
R+ ∪ S+. Assume, for instance, that α ∈ R+. Since R is antisymmetric, −α ∉ R−, so
that −α ∉ R− ∩ S− = (R∧R S)−. We conclude that R∧R S is antisymmetric. he proof
for R ∨R S is similar. ∎

Proposition 3.5 All cover relations in the weak order on A(Φ) are cover relations
in the weak order on R(Φ). In particular, the weak order on A(Φ) is still graded by
R ↦ ∣R+∣ − ∣R−∣.
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Proof Consider a cover relation R ≼ S in the weak order onA(Φ). We have R+ ⊇ S+
and R− ⊆ S− where at least one of the inclusions is strict. Suppose ûrst that R+ ≠ S+.
Let α ∈ R+ ∖ S+ and T ∶= R ∖{α}. Note that T ∈ A(Φ) and R ≺ T ≼ S. Since S covers
R, we get S = T = R ∖ {α}. Similarly, if S− ≠ R−, let α ∈ S− ∖ R− and T ∶= S− ∖{α}.
hen T ∈ A(Φ), and R ≼ T ≺ S implies that T = R = S ∖ {α}. In both cases, R ≼ S is a
cover relation of the weak order on R(Φ). ∎

Corollary 3.6 In the weak order on A(Φ), the antisymmetric subsets that cover a
given antisymmetric subset R ∈ A(Φ) are precisely the following relations:
● R ∖ {α} for any α ∈ R+,
● R ∪ {β} for any β ∈ Φ− ∖ R− such that −β ∉ R+.

3.3 Weak Order on Closed Subsets

Wewant to prove that the weak order on closed subsets of Φ is also a lattice. Contrary
to Propositions 3.3 and 3.4, we now need to assume that the root system Φ is crystal-
lographic (see Remarks 2.13, 3.16, and 3.19). Unfortunately, as C(Φ) is stable by inter-
section but not by union, it is not preserved by the meet ∧R and the join ∨R, so that it
does not induce a sublattice of the weak order onR(Φ). Proving that it is still a lattice
requires more work. Following [CPP17], we start with a weaker notion of closedness.
We say that a subset R = R+ ⊔ R− is semiclosed if both R+ and R− are closed. We de-
note by SC(Φ) the set of semiclosed subsets of Φ. Note that C(Φ) ⊆ SC(Φ) but that
the reverse inclusion does not hold in general.

Proposition 3.7 he weak order on SC(Φ) is a lattice with meet and join

R ∧SC S = (R+ ∪ S+)cl ⊔ (R− ∩ S−) and R ∨SC S = (R+ ∩ S+) ⊔ (R− ∪ S−)cl .

Proof Observe ûrst that R ∧SC S is indeed semiclosed (Tcl is always closed andC(Φ)
is stable by intersection). Moreover, R ∧SC S ≼ R and R ∧SC S ≼ S. Assume now that
T ⊆ Φ is semiclosed such that T ≼ R and T ≼ S. hen T+ ⊇ R+ ∪ S+ and T− ⊆ R− ∩ S−.
Moreover, since T+ is closed, we get that T+ ⊇ (R+ ∪ S+)cl so that T ≼ R ∧SC S. We
conclude that R∧SCS is indeed themeet of R and S. he proof is similar for the join.∎

Proposition 3.8 All cover relations in the weak order on SC(Φ) are cover relations
in the weak order on R(Φ). In particular, the weak order on SC(Φ) is still graded by
R ↦ ∣R−∣ − ∣R+∣.

Proof Consider a cover relationR ≼ S in theweak order onSC(Φ). We haveR+ ⊇ S+
and R− ⊆ S− where at least one of the inclusions is strict. We distinguish two cases.

Suppose ûrst that R+ ≠ S+, and consider α ∈ R+ ∖ S+ of minimal height in R+ ∖ S+.
Observe that α cannot be decomposed in R+: if α = γ + δ with γ, δ ∈ R+, then
h(γ), h(δ) < h(α), so γ, δ ∈ S+ by minimality of h(α), which contradicts the closed-
ness of S+. Consider now T ∶= R ∖{α}. Let γ, δ ∈ T+ with γ + δ ∈ Φ. hen γ, δ ∈ R+
so that γ + δ ∈ R+, since R+ is closed. Since γ + δ ≠ α, this implies that γ + δ ∈ T+.
his shows that T+ is closed. Since T− = R− is also closed, we obtain that T is semi-
closed. Since R ≠ T and R ≼ T ≼ S, this proves that T = S = R ∖ {α}.
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Assume now that R− ≠ S−, and let β ∈ S− ∖ R− of minimal height (or equivalently
maximal absolute height). Consider T ∶= R ∪ {β}. Let γ, δ ∈ T− with γ + δ ∈ Φ.
If γ, δ ∈ R−, then γ + δ ∈ R−, since R− is closed. Assume now that δ = β. hen
γ, β ∈ S− and S− is closed, we have γ + β ∈ S− and h(γ + β) < h(β), which ensures
that γ + β ∈ R− by minimality of h(β). his shows that T− is closed. Since T+ = R+
is also closed, we obtain that T is semiclosed. Since R ≠ T and R ≼ T ≼ S, this proves
that T = S = R ∪ {β}. ∎

Corollary 3.9 In the weak order on SC(Φ), the semiclosed subsets of Φ that cover a
given semiclosed subset R ∈ SC(Φ) are precisely the relations:
● R ∖ {α} for any α ∈ R+ such that there is no γ, δ ∈ R+ with α = γ + δ,
● R ∪ {β} for any β ∈ Φ− ∖ R− such that β + γ ∈ Φ Ô⇒ β + γ ∈ R for all γ ∈ R−.

We now come back to closed subsets of Φ introduced in Deûnition 2.16. Unfortu-
nately, C(Φ) still does not induce a sublattice of SC(Φ). We thus need a transforma-
tion similar to the closure R ↦ Rcl to transform a semiclosed subset of Φ into a closed
one.

Deûnition 3.10 For R ∈ R(Φ), we deûne the negative closure deletion Rncd and the
positive closure deletion Rpcd by

Rncd
∶=R ∖ {α ∈ R− ∣ ∃X ⊆ R+such that α + ΣX ∈ Φ ∖ R} ,

Rpcd
∶=R ∖ {α ∈ R+ ∣ ∃X ⊆ R−such that α + ΣX ∈ Φ ∖ R} .

Remark 3.11 Note that in the formulas for Rncd and Rpcd in Deûnition 3.10, the
following hold:
(i) he notation ΣX denotes the sum of all roots in X, as in Section 2.2.
(ii) We do not assume that X is summable, just that X ∪ {α} is.
(iii) In the case where R is semiclosed, we can assume that the set X is such that the

α + ΣX has no vanishing subsum. Observe ûrst that no vanishing subsum can
contain α. Indeed, if Y ⊆ X is such that α + ΣY = 0, then X ∖ Y ⊆ R− and R−
closed implies that α + ΣX = Σ(X ∖ Y) ∈ R. Now if Y ⊆ X is such that ΣY = 0,
then α + Σ(X ∖ Y) = α + ΣX ∉ R, so that we can replace X by X ∖ Y.

Lemma 3.12 For any R ∈ R(Φ), we have Rncd ≼ R ≼ Rpcd.

Proof AsRncd (resp. Rpcd) is obtained fromRdeleting negative (resp. positive) roots,
we get (Rncd)+ = R+ ⊇ (Rpcd)+ and (Rncd)− ⊆ R− = (Rpcd)−, so that Rncd ≼ R ≼ Rpcd.

∎

Lemma 3.13 If Φ is crystallographic and R ⊆ Φ is semiclosed, then both Rncd and
Rpcd are closed.

Proof Assume bymeans of contradiction that R is semiclosed andRncd is not closed.
hen there are roots α, β ∈ Rncd such that α + β ∈ Φ ∖ Rncd. Consider two such roots
such that α + β has minimal absolute height. We distinguish four cases:
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(1) If α, β ∈Φ+, then α, β ∈ (Rncd)+=R+, which is closed, so that α+β ∈R+ =(Rncd)+.
Contradiction.

(2) If α ∈ Φ− and β ∈ Φ+, we distinguish again two cases:
● If α + β ∉ R, then the set {β} ensures α ∉ Rncd. Contradiction.
● If α + β ∈ R, then since α + β ∈ R ∖ Rncd, there exists X ⊆ R+ such that
α + β + ΣX ∈ Φ ∖ R. Since β ∈ R+, the set {β} ∪ X ensures α ∉ Rncd. Con-
tradiction.

(3) If α ∈ Φ+ and β ∈ Φ−, the argument is symmetric.
(4) If α, β ∈ Φ−, then α + β ∈ R−, since R− is closed. As α + β ∈ R ∖ Rncd, there exists

X ⊆ R+ such that (α + β) + ΣX ∈ Φ ∖ R. By Remark 3.11 (iii), we can assume that
(α + β) + ΣX has no vanishing subsum. By heorem 2.4, there exists γ ∈ X such
that α + β + γ ∈ Φ. By Proposition 2.3, we can assume without loss of generality
that β + γ ∈ Φ. We now distinguish four cases:
● If β + γ ∉ R, then the set {γ} ensures β ∉ Rncd. Contradiction.
● If β+γ ∈ R+, then T = {β+γ} ∪ (X∖{γ}) ⊆ R+ satisûes α+ΣT = α+ β+ΣX ∈

Φ ∖ R so that α ∉ Rncd. Contradiction.
● If β+γ ∈ R−∖Rncd, then there exists a subset T ⊆ R+ such that β+γ+ΣT ∈ Φ∖R.

Since γ ∈ R+, the set {γ} ∪ T ensures that β ∉ Rncd. Contradiction.
● If β + γ ∈ (Rncd)−, then we have α ∈ Rncd and β + γ ∈ Rncd with α + β + γ ∈ Φ.

Moreover, h(α+β+γ) < h(α+β), since α+β ∈ Φ− while γ ∈ Φ+ and β+γ ∈ Φ−.
By minimality in the choice of α + β, we obtain that α + β + γ ∈ Rncd. Observe
now that X ∖ {γ} ⊆ R+ and α + β + γ + Σ(X ∖ {γ}) = α + β + ΣX ∈ Φ ∖ R.
herefore, the following hold:
– if α+β+γ is negative, the set X∖{γ} ensures α+β+γ ∉ Rncd. Contradiction.
– if α + β + γ is positive, then R+ is not closed. Contradiction.

In all cases, we have reached a contradiction. We conclude that if R is semiclosed,
then Rncd is closed. he proof is symmetric for Rpcd. ∎

Proposition 3.14 When Φ is crystallographic, the weak order on C(Φ) is a lattice
with meet and join

R ∧C S = ((R+ ∪ S+)cl ⊔ (R− ∩ S−))ncd and R ∨C S = ((R+ ∩ S+) ⊔ (R− ∪ S−)cl)pcd .

Proof First, the weak order ≼ on C(Φ) is a subposet of the weak order ≼ on R(Φ),
and it is bounded below by Φ+ and above by Φ−. We therefore just need to show that
there is a meet and a join and that they are given by the above formulas.

Let R, S ∈ C(Φ) and M = R ∧SC S so that Mncd = R ∧C S. Observe that we have
Mncd ≼ M ≼ R and Mncd ≼ M ≼ S by Lemma 3.12. Moreover, since M is semiclosed,
Mncd is closed by Lemma 3.13. herefore, Mncd is closed and below both R and S.
Consider now T ∈ C(Φ) such that T ≼ R and T ≼ S. Since T ∈ SC(Φ) and

M = R ∧SC S, we have T ≼ M. herefore, T+ ⊇ M+ = (Mncd)+ and T− ⊆ M−. Assume
by means of contradiction that T /≼ Mncd. hen we have T− /⊆ (Mncd)−. Consider
α ∈ T− ∖ (Mncd)− of minimal absolute height. By deûnition of Mncd, there exists
X ⊆ M+ such that α + ΣX ∈ Φ ∖M. Since M+ = (R ∧SC S)+ = (R+ ∪ S+)cl, we can
rewrite each root of X as a sum of roots in R+ ∪ S+, and thus we can assume without
loss of generality that X ⊆ (R+ ∪ S+). By Remark 3.11 (iii), we can moreover assume

878

https://doi.org/10.4153/S0008414X19000063 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000063


heWeak Order on Weyl Posets

that α + ΣX has no vanishing subsum. By heorem 2.4, there exists β ∈ X such that
α + β ∈ Φ.

Since β ∈ X ⊆ (R+∪ S+), we can assume that β ∈ R+. Since α ∈ T− ⊆ R−, β ∈ R+ ⊆T+
and both R and T are closed, we obtain that α + β ∈ R ∩ T. We now distinguish two
cases:
● If α + β is positive, then α + β ∈ R+ ⊆ M+. Since X ∖ {β} ⊆ M+ and M+ is closed,
we obtain that α + ΣX = (α + β) + Σ(X ∖ {β}) ∈ M+. Contradicion.

● If α+ β is negative, we have α+ β ∈ T−. Moreover, α+ β has smaller absolute height
than α, since α ∈ Φ−, β ∈ Φ+ and α + β ∈ Φ−. By minimality in the choice of α,
we obtain that α + β ∈ Mncd. Since X ∖ {β} ⊆ M+, this implies that

α + ΣX = (α + β) + Σ(X ∖ {β}) ∈ M.

Contradiction.
Since we reached a contradiction in both cases, we obtain that T ≼ Mncd. Hence, Mncd

is indeed the meet of R and S for the weak order on C(Φ). he proof is similar for the
join. ∎

Remark 3.15 In contrast to Propositions 3.5 and 3.8 and Corollaries 3.6 and 3.9, the
cover relations in the weak order on C(Φ) are more intricate, and the weak order on
C(Φ) is not graded in general.

Remark 3.16 All results presented in this section fail for non-crystallographic root
systems. In view of Remark 2.13, it might a priori depend of the notion of N-closed
subsets considered. However, the following example works for any of the notions (i),
(ii), and (iii) of Lemma 2.9.
Consider the Coxeter group of type H3 with Dynkin diagram .

Consider α ∶= α1 ∈ Φ+, β ∶=−α1 − ψα2 ∈ Φ− and γ ∶=−ψα1 − α2 − α3 ∈ Φ−, where
ψ = −2 cos(4π/5). Note that β + γ ∈ Φ− and α + β + γ ∈ Φ−, while α + β ∉ Φ and
α+γ ∉ Φ. Consider the sets R ∶= {α, β, γ, β+γ, α+β+γ}, S ∶= {β, γ, β+γ}, U ∶= {α, β},
and V ∶= {α, γ}. Note that R, S, U, and V are closed, and that both U and V are weak
order smaller than both R and S. Moreover, we claim that there is no closed subset T
that is weak order larger than bothU andV andweak order smaller than both R and S.
Indeed, such a set T should contain α, β, γ and thus β+γ and α+ β+γ by closedness,
which would contradict T ≼ S. his implies that R and S have no meet and that U and
V have no join in the weak order on closed subsets of Φ, thus contradicting the result
of Proposition 3.14 in the non-crystallographic typeH3. In fact, even Lemma 3.13 fails
in type H3 since {α, β, γ, β + γ}ncd = {α, β, γ} is not closed.

Remark 3.17 As mentioned in Remark 2.14, even for crystallographic root systems
there are diòerent possible notions of closed subsets (which all coincide in type A).
Unfortunately, it turns out that Proposition 3.14 fails for the other notions of closed
sets. he smallest counter-example is in type B3. Consider the sets

R ∶= {−α1 ,−α1 − α2 ,−α1 − α2 − α3 ,−α1 − 2α2 − 2α3 , α3},
S ∶= {−α1 ,−α1 − α2 − α3 ,−α1 − 2α2 − 2α3},
U ∶= {−α1 − 2α2 − 2α3 , α3}, and V ∶= {−α1 , α3}.
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Note that R, S, U, and V are convex, and that both U and V are weak order smaller
than both R and S. Moreover, we have U∨CV = R∧C S = {−α1 ,−α1 − 2α2 − 2α3 , α3},
but this set is not convex. In fact, we claim that there is no convex subset T that is weak
order larger than both U and V and weak order smaller than both R and S. Indeed,
such a set T should contain {−α1 ,−α1 − 2α2 − 2α3 , α3} and thus also the root

−α1 − α2 = (−α1)/2 + (−α1 − 2α2 − 2α3)/2 + α3 ,

contradicting T ≼ S. his implies that R and S have no meet and that U and V have
no join in the weak order on convex subsets of Φ.

3.4 Weak Order on Φ-posets

Recall fromDeûnition 2.16 thatP(Φ) denotes the set of Φ-posets, i.e., of antisymmet-
ric closed subsets of Φ. We ûnally show that the restriction of the weak order to the
Φ-posets still deûnes a lattice structure. he weak orders on A2-, B2-, and G2-posets
are represented in Figures 1 and 2.

heorem 3.18 hemeet ∧C and the join ∨C both preserve antisymmetry. hus, when
Φ is crystallographic, the set P(Φ) ofΦ-posets induces a sublattice of the weak order on
C(Φ).

Proof Let R, S ∈ P(Φ) and M = R ∧SC S so that Mncd = R ∧C S. Assume Mncd

is not antisymmetric, and let α ∈ (Mncd)+ such that −α ∈ (Mncd)−. Since we have
(Mncd)− ⊆ M− = R− ∩ S− and both R and S are antisymmetric, we get α ∉ R+ ∪ S+.
Since we have α ∈ (Mncd)+ = (R+ ∪ S+)cl, there exists X ⊆ R+ ∪ S+ such that ∣X∣ ≥ 2
and α = ΣX. By heorem 2.4, there exists β ∈ X such that Σ(X ∖ {β}) ∈ Φ. Since
X ∖ {β} ⊆ M+ ⊆ Mncd, −α ∈ Mncd, and Mncd is closed, we get Σ(X ∖ {β}) + (−α) =
−β ∈ (Mncd)− ⊆ R− ∩ S−. As β ∈ R+ ∪ S+, this contradicts the antisymmetry of either
R or S. ∎

Remark 3.19 heorem 3.18 fails for non-crystallographic types. An example in type
H3 is given in Remark 3.16 (since the sets R, S, U, andV are all antisymmetric and thus
Φ-posets).

Remark 3.20 Even for crystallographic root systems, heorem 3.18 fails for the
other notions of closed sets. An example in type B3 is given in Remark 3.17 (since the
sets R, S, U and V are all antisymmetric and thus Φ-posets).

Proposition 3.21 All cover relations in the weak order on P(Φ) are cover relations
in the weak order on R(Φ). In particular, the weak order on P(Φ) is still graded by
R ↦ ∣R−∣ − ∣R+∣.

Proof Consider a cover relation R ≼ S in the weak order onP(Φ). We have R+ ⊇ S+
and R− ⊆ S− where at least one of the inclusions is strict. Suppose ûrst that R+ ≠ S+
and let X ∶= {α ∈ R+ ∖ S+ ∣ / ∃ β, γ ∈ R+ with α = β + γ}. hisset X is nonempty, as it
contains any α in R+ ∖ S+ with ∣h∣(α) minimal. Consider now α ∈ X with ∣h∣(α)
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type A B/C D (n ≥ 4)
#antisym. 31 , 33 , 36 , 310 [A047656] 31 , 34 , 39 [A060722] 312 [A053764]
#semiclosed 22 , 72 , 402 , 3572 [A006455] 22 , 122 , 1722 , 53102

/ 53182 8882

#closed 4, 29, 355, 6942 [A000798] 4, 55, 1785 / 1803 18291
#Φ-posets 3, 19, 219, 4231 [A001035] 3, 37, 1235 / 1225 219
#WOEP 2, 6, 24, 120 [A000142] 2, 8, 48, 384 [A000165] 192 [A002866]
#WOIP 3, 17, 151, 1899 [A007767] 3, 27, 457 3959
#WOFP 3, 13, 75, 541 [A000670] 3, 17, 147, 1697 [A080253] 865 [A080254]
#COEP 2, 5, 14, 42 [A000108] 2, 6, 20, 70 [A000984] 50 [A051924]
#COIP(bip) 3, 13, 70, 433 3, 18, 138, 1185 622
#COIP(lin) 3, 13, 68, 399 [A000260] 3, 18, 132, 1069 578
#COFP 3, 11, 45, 197 [A001003] 3, 13, 63, 321 [A001850] 233
#BOEP 2, 4, 8, 16, 32 [A000079] 2, 4, 8, 16, 32 [A000079] 16 [A000079]
#BOIP 3, 9, 27, 81 [A000244] 3, 9, 27, 81 [A000244] 81 [A000244]
#BOFP 3, 9, 27, 81 [A000244] 3, 9, 27, 81 [A000244] 81 [A000244]

Table 1: Numerology in types An , Bn , Cn and Dn for small values of n. Further values
can be found using the given references to [OEI10].

maximal and let T ∶= R ∖{α}. We claim that T is still a Φ-poset. It is clearly still
antisymmetric. For closedness, assume by means of contradiction that there are β,
γ ∈ T such that α = β + γ. Since α ∈ X ⊆ Φ+, we can assume that β ∈ R− and γ ∈ R+,
and we choose β so that ∣h∣(β) is minimal. We claim that there are no δ, ε ∈ R+ such
that γ = δ + ε. Otherwise, since α = β + γ = β + δ + ε ∈ Φ, we can assume by
Proposition 2.3 that β+δ ∈ Φ ∪ {0}. If β+δ ∈ Φ−, then β+δ ∈ R− (since R is closed),
which contradicts the minimality of β. If β + δ ∈ Φ+, then β + δ ∈ R+ (since R is
closed), which together with γ ∈ R+ and (β + δ) + γ = α contradicts α ∈ X. Finally,
if β + δ = 0, then β = −δ, which contradicts the antisymmetry of R. his proves that
there is no δ, ε ∈ R+ such that γ = δ + ε. By maximality of h(∣α∣) in our choice of α
this implies that γ ∈ S. Since β ∈ R− ⊆ S−, we therefore obtain that β+γ = α ∉ S, while
β, γ ∈ S, contradicting the closedness of S. his proves that T is closed and thus it is
a Φ-poset. Moreover, we have R ≠ T and R ≼ T ≼ S where S covers R, which implies
that S = T = R∖{α}. We prove similarly that if R− ≠ S−, there exists α ∈ Φ− such that
S = R ∪ {α}. In both cases, R ≼ S is a cover relation in the weak order on R(Φ). ∎

Corollary 3.22 In the weak order on P(Φ), the Φ-posets that cover a given Φ-poset
R ∈ SC(Φ) are precisely the relations
● R ∖ {α} for any α ∈ R+ such that there is no γ, δ ∈ R+ with α = γ + δ,
● R ∪ {β}, for any β ∈ Φ− ∖ R− such that −β ∉ R+ and β + γ ∈ Φ⇒ β + γ ∈ R for all

γ ∈ R.

Remark 3.23 We have gathered in Table 1 the number of Φ-posets for the root
systems of type An , Bn , Cn , and Dn for small values of n (the other lines of the table
will be explained in the next section). Note that the number of semiclosed sets, closed
sets, and posets diòer in types B4 and C4. his should not come as a surprise, since
the notion of closed sets used in this paper (Deûnition 2.10) is not preserved when

881

https://doi.org/10.4153/S0008414X19000063 Published online by Cambridge University Press

https://oeis.org/A047656
https://oeis.org/A060722
https://oeis.org/A053764
https://oeis.org/A006455
https://oeis.org/A000798
https://oeis.org/A001035
https://oeis.org/A000142
https://oeis.org/A000165
https://oeis.org/A002866
https://oeis.org/A007767
https://oeis.org/A000670
https://oeis.org/A080253
https://oeis.org/A080254
https://oeis.org/A000108
https://oeis.org/A000984
https://oeis.org/A051924
https://oeis.org/A000260
https://oeis.org/A001003
https://oeis.org/A001850
https://oeis.org/A000079
https://oeis.org/A000079
https://oeis.org/A000079
https://oeis.org/A000244
https://oeis.org/A000244
https://oeis.org/A000244
https://oeis.org/A000244
https://oeis.org/A000244
https://oeis.org/A000244
https://doi.org/10.4153/S0008414X19000063


J. Gay and V. Pilaud

passing from roots to coroots. his is just one more hint that crystallographic root
systems are the right notion for this paper rather than ûnite Coxeter groups.

4 Some Relevant Subposets

In this section, we consider certain speciûc families of Φ-posets corresponding to the
vertices, the intervals, and the faces in the permutahedron (Section 4.1), the general-
ized associahedra (Section 4.2), and the cube (Section 4.3). A roadmap through the
diòerent families of Φ-posets considered in this paper is given in Figure 3.

4.1 Permutahedron

heW-permutahedron Permp(W) is the convex hull of the orbit under W of a point
p in the interior of the fundamental chamber ofW . It has one vertex w(p) for each
element w ∈ W and its graph is the Cayley graph of the set S of simple re�ections of
W . Moreover, when oriented in the linear direction w○(p) − p, its graph is the Hasse
diagram of the weak order on W . Recall that the weak order is deûned equivalently
for any v ,w ∈W by v ≼ w if and only if the following hold:
● ℓ(v) + ℓ(v−1w) = ℓ(w), where ℓ(w) is the length of w, i.e., the minimal length of
an expression of the form ℓ = s1 ⋅ ⋅ ⋅ sk with s1 , . . . , sk ∈ S;

● v is a preûx of w, i.e., there exists u ∈W such that w = vu and ℓ(w) = ℓ(v) + ℓ(u);
● inv(v) ⊆ inv(w), where inv is the inversion set inv(w) ∶=Φ+ ∩ w(Φ−);
● there is an oriented path from v(p) to w(p) in the graph of the permutahedron

oriented in the linear direction w○(p) − p.
In the sequel, we will o�en drop p from the notationPermp(W) as the combinatorics
of Permp(W) is independent of p as long as this point is generic.

4.1.1 Elements

For an element w ∈W , we consider the Φ-poset
R(w) ∶=w(Φ+).

We say that R(w) is a weak order element poset and let
WOEP(Φ) ∶= {R(w) ∣ w ∈W}

denote the collection of all such Φ-posets.

Remark 4.1 Table 1 reports the cardinality ofWOEP(Φ) in type An , Bn , Cn , and
Dn for small values of n. It is just the order of W , which is known as the product
formula

∣WOEP(Φ)∣ = ∣W ∣ = ∏
i∈[n]

d i ,

where (d1 , . . . , dn) are the degrees ofW .

Remark 4.2 Geometrically, R(w) is the set of roots of Φ not contained in the cone
of Permp(W) at the vertex w(p), i.e.,

R(w) = Φ ∖ cone{w′(p) −w(p) ∣ w′ ∈W} .
See Figure 4.
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Figure 4: he sets R(xWI) of the standard parabolic cosets xWI in type A2 (le�) and B2 (right).
Note that positive roots point downwards.

We now characterize the Φ-posets ofWOEP(Φ).

Proposition 4.3 AΦ-poset R ∈ P(Φ) is inWOEP(Φ) if and only if α ∈ R or −α ∈ R
for all α ∈ Φ.

Proof his is folklore. See, for instance, [Bou68, Chap. 6, 1.7, Coro. 1]. ∎

Remark 4.4 We have already encountered these Φ-posets in Proposition 2.18: a
poset is in WOEP(Φ) if and only if it is its unique extension. In other words, the
maximal extensions of a Φ-poset R are all inWOEP(Φ), and it is thus natural to con-
sider L(R) ∶= {w ∈W ∣ R ⊆ R(w)}. For example, in type A, the set L(R) is the set of
linear extensions of the poset R. Note however that we have R = ⋂E(R), but some-
times R ≠ ⋂w∈L(R) R(w), in contrast to the type A situation (consider, for example,
R = {α1 + α2 , α2} in type B2).

he following statement connects the subposet of the weak order induced by
WOEP(Φ) with the classical weak order on W , and thus justiûes the name in Deû-
nition 3.1.

Proposition 4.5 For w ∈W, we have

inv(w) = Φ+ ∩ − R (w) and R (w) = (Φ+ ∖ inv(w)) ⊔ − inv(w).

In particular, for v ,w ∈ W, we have R(v) ≼ R(w) in the weak order on WOEP(Φ) if
and only if v ≼ w in the weak order on W.

Proof he ûrst equality is just the deûnition of inv(w) and the second comes from
the fact that ∣{α,−α} ∩ R (w)∣ = 1, which in turn implies that

R(w)− = Φ− ∖ −R(w)+ = Φ− ∖ − inv(w).
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Finally, v ≼ w in the weak order on W if and only if inv(v) ⊆ inv(w) if and only if
Φ+ ∖ inv(v) ⊇ Φ+ ∖ inv(w). his shows the equivalence with R(v) ≼ R(w). ∎

Remark 4.6 In fact,

R(v) ≼ R(w) ⇐⇒ R(v)+ ⊇ R(w)+ ⇐⇒ R(v)− ⊆ R(w)− ⇐⇒ v ≼ w .

Corollary 4.7 he weak order on WOEP(Φ) is a lattice with meet and join

R(v) ∧WOEP R(w) = R(v ∧W w) and R (v) ∨WOEP R(w) = R(v ∨W w).

he following statement connects this lattice structure onWOEP(Φ)with that on
P(Φ), and is our original motivation to study the weak order on P(Φ).

Proposition 4.8 he set WOEP(Φ) induces a sublattice of the weak order on
P(Φ).

Proof Let R, S ∈ WOEP(Φ) and M = R ∧SC S = (R+ ∪ S+)cl ⊔ (R− ∩ S−) so that
Mncd = R ∧C S. Assume by means of contradiction that Mncd is not in WOEP(Φ),
and consider a root α ∈ Φ+ with ∣h∣(α) minimal such that {α,−α} ∩Mncd = ∅.

Since (Mncd)+ = M+ = (R+ ∪ S+)cl, we have α ∉ R+ and α ∉ S+. Since we
have R, S ∈ WOEP(Φ), we get −α ∈ R− and −α ∈ S−, so that −α ∈ M−. herefore,
−α ∈ M ∖ Mncd, so that there exists X ⊆ M+ such that ΣX − α ∈ Φ ∖ M. Since
M+ = (R+ ∪ S+)cl, we can rewrite each root of X as a sum of roots in R+ ∪ S+, and we
can assume without loss of generality that X ⊆ (R+ ∪ S+). As usual, we can assume
moreover that X has no vanishing subsum. We ûnally choose an inclusion minimal
such subset X of R+ ∪ S+.
Assume ûrst that X = {β}. We have β ∈ R+ ∪ S+, say, for instance, β ∈ R+. Since

−α ∈ M− = R− ∩ S−, β ∈ R and R is closed, we have β − α ∈ R. Since β − α ∉ M+,
we obtain that β − α ∈ Φ−. herefore, as β ∈ Φ+, we have ∣h∣(β − α) < ∣h∣(α). By
minimality of ∣h∣(α), we obtain that α−β ∈ Mncd. We conclude that α−β ∈ Mncd and
β ∈ R+ ⊆ Mncd, while α ∉ Mncd, contradicting the closedness of Mncd.
Assume now that ∣X∣ ≥ 2. Since α ∉ M+ = (R+ ∪ S+)cl and X ⊆ R+ ∪ S+, we obtain

that X ∪ {−α} has no vanishing subsums. herefore, Proposition 2.5 ensures that
X ∪ {−α} has at least two strict summable subsets. In particular, there is Y ⊊ X such
that ΣY − α ∈ Φ. By minimality of X, we obtain that ΣY − α ∈ M. We distinguish two
cases:
● If ΣY− α ∈ M+, then ΣX− α ∉ M+, while ΣY− α ∈ M+ and X∖Y ⊆ M+ contradicts

the closedness of M+.
● If ΣY− α ∈ M−, then ∣h∣(ΣY− α) < ∣h∣(α). By minimality of ∣h∣(α), we obtain that
– either ΣY − α ∈ Mncd, which implies that ΣX − α = (ΣY − α) + (Σ(X ∖Y)) ∈ M,
a contradiction;

– or α−ΣY ∈ Mncd, which implies that α = (α−ΣY)+ΣY ∈ Mncd, which contradicts
our assumption on α.

As we reached a contradiction in all cases, we conclude that Mncd ∈ WOEP(Φ). he
proof is similar for the join. ∎
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4.1.2 Intervals

For w ,w′ ∈ W with w ≼ w′, we denote by [w ,w′] ∶= {v ∈W ∣ w ≼ v ≼ w′} the weak
order interval between w and w′. We associate with each weak order interval [w ,w′]
the Φ-poset

R(w ,w′) ∶= ⋂
v∈[w ,w′]

R(v) = R(w) ∩ R (w′) = R(w)− ⊔ R(w′)+ .

Say that R(w ,w′) is a weak order interval poset and let
WOIP(Φ) ∶= {R(w ,w′) ∣ w ,w′ ∈W ,w ≼ w′}

denote the collection of all suchΦ-posets. Table 1 reports the cardinality ofWOIP(Φ)
in type An , Bn , Cn , and Dn for small values of n.

Recall from Remark 4.4 that we denote byL(R) ∶= {w ∈W ∣ R ⊆ R(w)} the set of
maximal extensions of a Φ-poset R. We will use the following observation to charac-
terize these Φ-posets.

Lemma 4.9 A Φ-poset R ∈ P(Φ) is in WOIP(Φ) if and only if L(R) has a
unique weak order minimum w (resp. maximum w′) that satisûes R(w)− = R− (resp.
R(w′)+ = R+).

Proof Observe ûrst that Remark 4.6 implies that R(w ,w′) ⊆ R(v) if and only if
R(w)− ⊆ R(v)− and R(w′)+ ⊆ R(v)+ if and only if v ∈ [w ,w′]. herefore,
L(R(w ,w′)) has a unique weak order minimum w and a unique weak order max-
imum w′ and R(w)− = R(w ,w′)− while R(w′)+ = R(w ,w′)+.
Conversely, ifL(R) has a unique weak orderminimumw and a unique weak order

maximum w′ and R(w)− = R− while R(w′)+ = R+, then we have, by deûnition,
R = R(w)− ⊔ R(w′)+ = R(w ,w′). ∎

Remark 4.10 In Lemma 4.9, the ûnal hypothesis is crucial as it may happen that
R ≠ ⋂w∈L R(w) (consider for example R = {α1 + α2 , α2} in type B2).

We can now characterize the Φ-posets ofWOIP(Φ).

Proposition 4.11 AΦ-poset R ∈ P(Φ) is inWOIP(Φ) if and only if α+β ∈ R implies
α ∈ R or β ∈ R for all α, β ∈ Φ− and all α, β ∈ Φ+.

Proof By Lemma 4.9, this boils down to showing that the following assertions are
equivalent:
(i) L(R) has a unique weak order minimumw (resp. maximumw′) that moreover

satisûes R(w)− = R− (resp. R(w′)+ = R+).
(ii) α + β ∈ R implies α ∈ R or β ∈ R for all α, β ∈ Φ− (resp. for all α, β ∈ Φ+).
We prove the result for the maximum and α, β ∈ Φ+. he result for the minimum and
α, β ∈ Φ− follows by symmetry.
Assume ûrst that (ii) holds. Consider the set S ∶= R+ ∪ (Φ− ∖ −R+). Note that

R ⊆ S (since R is antisymmetric), that S is antisymmetric, and that T ≼ S for any
antisymmetric T such that R ⊆ T (as R has been completed with all possible negative
roots to obtain S). We claim, moreover, that S is closed. Indeed, consider α, β ∈ S such
that α + β ∈ Φ. We distinguish four cases:
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● If α ∈ R and β ∈ R, then α + β ∈ R ⊆ S.
● If α ∉ R and β ∈ R, then α ∈ S ∖ R ⊆ Φ− so that −α ∈ Φ+ ∖ R+. hen
– if α+β ∈ Φ+, thenwe have−α ∈ Φ+∖R+ and α+β ∈ Φ+ with−α+(α+β) = β ∈ R

so that condition (ii) ensures that α + β ∈ R,
– if α + β ∈ Φ−, then −(α + β) ∉ R (otherwise −α = −(α + β) + β∈R, a contradic-

tion). herefore, α + β ∈ Φ− ∖ −R+ ⊆ S.
● If α ∈ R and β ∉ R, the argument is symmetric.
● If α ∉ R and β ∉ R, then α, β ∈ S ∖ R ⊆ Φ− and −α,−β ∈ Φ+ ∖ R. By condition (ii),

this implies that −α − β ∈ Φ+ ∖ R+. herefore, α + β ∈ Φ− ∖ −R+ ⊆ S.
We thus obtained in all cases that α + β ∈ S so that S is closed. We conclude that S is
a Φ-poset and that T ≼ S for any antisymmetric T such that R ⊆ T. In particular, S is
the unique maximum of the set E(R) of extensions of R. Moreover, S+ = R+. Using
Propositions 2.18 and 4.3, we obtain that there existw′ ∈W such that S = R(w′). his
concludes the proof that (ii)⇒(i).
Conversely, assume by means of contradiction that (i) holds but not (ii). Let w′

denote the weak order maximal element of L(R), and let α, β ∈ Φ+ ∖ R be such that
α + β ∈ R. We then distinguish two cases:
● If α ∈ R(v) for all v ∈ L(R), then α ∈ R(w′)+ = R+. Contradiction.
● Otherwise, there exists v ∈ L(R) such that −α ∈ R(v). Since v ≼ w′, this gives
−α ∈ R(w′). Since α + β ∈ R ⊆ R(w′) and R(w′) is closed, we get β ∈ R(w′)+ = R+.
Contradiction. ∎

We now describe the weak order on WOIP(Φ). It corresponds to the Cartesian
product order on intervals of the weak order.

Proposition 4.12 For any two weak order intervals v ≼ v′ and w ≼ w′, we have
R(v , v′) ≼ R(w ,w′) in the weak order on WOIP(Φ) if and only if v ≼ w and v′ ≼ w′.

Proof From the deûnition of R(w ,w′) and Remark 4.6, we have

R (v , v′) ≼ R(w ,w′)
⇐⇒ R(v , v′)+ ⊇ R(w ,w′)+ and R(v , v′)− ⊆ R(w ,w′)−
⇐⇒ R(v′)+ ⊇ R(w′)+ and R(v)− ⊆ R(w)−
⇐⇒ v′ ≼ w′ and v ≼ w . ∎

Corollary 4.13 he weak order on WOIP(Φ) is a lattice with meet and join

R (v , v′) ∧WOIP R(w ,w′) = R(v ∧W w , v′ ∧W w′),
and R (v , v′) ∨WOIP R(w ,w′) = R(v ∨W w , v′ ∨W w′).

Remark 4.14 It follows from the expressions of ∧WOIP and ∨WOIP that WOEP(Φ)
also induces a sublattice ofWOIP(Φ).

Remark 4.15 To conclude on intervals, however, we observe that the weak order on
WOIP(Φ) is not a sublattice of the weak order on Φ-posets. For example, in type A2,
{α1 , α1+α2}∨C{α2 , α1+α2} = {α1+α2}, while {α1 , α1+α2}∨WOIP{α2 , α1+α2} = ∅.
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4.1.3 Faces

he faces of the permutohedron Permp(W) correspond to the cosets of the standard
parabolic subgroups of W . Recall that a standard parabolic subgroup of W is a sub-
groupWI generated by a subset I of the simple re�ections ofW . Its simple roots are the
simple roots ∆I of ∆ corresponding to I, its root system is ΦI = WI(∆I) = Φ ∩ R∆I
and its longest element is denoted by w○,I . A standard parabolic coset is a coset under
the action of a standard parabolic subgroup WI . Such a standard parabolic coset can
be written as xWI where x is its minimal length coset representative (thus x has no
descent in I, see Section 4.3). Each standard parabolic coset xWI (with I ⊆ S disjoint
from the descent set des(x) of x) corresponds to a face

F(xWI) = x(Permp(WI)) = Permx(p)(xWIx−1) .

See Figure 4 for an illustration in type A2 and B2.
In [DHP18], A. Dermenjian, C. Hohlweg, and V. Pilaud also associated with each

standard parabolic coset xWI the set of roots R(xWI) ∶= x(Φ− ∪ Φ+
I ). heseΦ-posets

were characterized in [DHP18] as follows.

Proposition 4.16 ([DHP18, Coro. 3.9]) he following assertions are equivalent for a
subset of roots R ∈ R(Φ):
(i) R = R(xWI) for some parabolic coset xWI of W.
(ii) R = {α ∈ Φ ∣ ψ(α) ≥ 0} for some linear function ψ ∶ V → R.
(iii) R = Φ ∩ cone(R) is convex closed and ∣R ∩ {α,−α}∣ ≥ 1 for all α ∈ Φ.

Moreover, they used this deûnition to recover the following order on faces of the
permutahedron, deûned initially in type A in [KLN+01] and later for arbitrary ûnite
Coxeter groups in [PR06].

Proposition 4.17 ([DHP18]) he following assertions are equivalent for two standard
parabolic cosets xWI = [x , xw○,I] and yWJ = [y, yw○, J] of W:
● x ≼ y and xw○,I ≼ yw○, J .
● R(xWI)+ ⊆ R(yWJ)+ and R(xWI)− ⊇ R(yWJ)−.
● xWI ≼ yWJ for the transitive closure ≼ of the two cover relations xWI ≺ xWI ∪ {s} for

s ∉ I ∪ des(x) and xWI ≺ (xw○,Iw○,I∖{s})WI∖{s} for s ∈ I.

he resulting order on standard parabolic cosets is the facial weak order deûned in
[KLN+01, PR06,DHP18]. his order extends the weak order on W, since xW∅ ≼ yW∅

if and only if x ≼ y for any x , y ∈W. Moreover, it deûnes a lattice on standard parabolic
cosets of W with meet and join

xWI ∧FW yWJ = z∧WK∧ and xWI ∨FW yWJ = z∨WK∨

where

z∧ = x ∧W y z∨ = xw○,I ∨W yw○, J ,
K∧ = des(z−1

∧ (xw○,I ∧W yw○, J)) and K∨ = des(z−1
∨ (x ∨W y)).
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Note that R(xWI) is not a Φ-poset as it is not antisymmetric when I ≠ ∅. Here,
we will therefore associate with xWI the set of roots

R(xWI) ∶=Φ ∖ R(xWI) = x(Φ+ ∖Φ+
I ).

Note that R(xWI) coincides with the weak order interval poset R(x , xw○,I). We say
that R(xWI) is a weak order face poset and we let

WOFP(Φ) ∶= {R(xWI) ∣ xWI standard parabolic coset ofW}
denote the collection of all suchΦ-posets. Table 1 reports the cardinality ofWOFP(Φ)
in type An , Bn , Cn , and Dn for small values of n.

Remark 4.18 Geometrically, R(xWI) is the set of roots of Φ not contained in the
cone of Permp(W) at the face F(xWI), i.e.,

R(xWI) = Φ ∖ cone{w′(p) −w(p) ∣ w ∈ xWI ,w′ ∈W} .

See Figure 4.

Proposition 4.16 yields the following characterization of the Φ-posets in
WOFP(Φ).

Proposition 4.19 he following assertions are equivalent for a subset of roots
R ∈ R(Φ):
(i) R is a weak order face poset ofWOFP(Φ).
(ii) R = {α ∈ Φ ∣ ψ(α) < 0} for some linear function ψ ∶ V → R.
(iii) R = Φ ∩ cone(R) is convex closed and ∣R ∩ {α,−α}∣ ≤ 1 for all α ∈ Φ.

Proof his immediately follows from the characterization of R(xWI) in Proposi-
tion 4.16 and the deûnition R(xWI) ∶=Φ ∖ R(xWI). ∎

We now observe that the weak order induced by WOFP(Φ) corresponds to the
facial weak order of [PR06,DHP18].

Proposition 4.20 For any standard parabolic cosets xWI and yWJ , we have that
R(xWI) ≼ R(yWJ) in the weak order on WOFP(Φ) if and only if xWI ≼ yWJ in the
facial weak order.

Proof By deûnition of R(xWI) and Proposition 4.17, we have

R (xWI) ≼ R(yWJ)
⇐⇒ R(xWI)+ ⊇ R(yWJ)+ and R (xWI)− ⊆ R(yWJ)−

⇐⇒ R(xWI)+ ⊆ R(yWJ)+ and R(xWI)− ⊇ R(yWJ)−

⇐⇒ xWI ≼ yWJ . ∎

Corollary 4.21 he weak order on WOFP(Φ) is a lattice with meet and join

R (xWI) ∧WOFP R(yWJ) = R(xWI ∧FW yWJ)
and R (xWI) ∨WOFP R(yWJ) = R(xWI ∨FW yWJ).
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Remark 4.22 To conclude, note that the weak order on WOFP(Φ) is a lattice but
not a sublattice of the weak order on P(Φ), nor on WOIP(Φ). his was observed in
[CPP17, Rem. 31] in type A. For example, already in type A2, we have

{−α1 , α2} ∨C ∅ = {−α1 , α2} ∨WOIP ∅ = {α2},

while {−α1 , α2} ∨WOIP ∅ = {α2 , α1 + α2}.

4.2 Generalized Associahedra

We now consider Φ-posets corresponding to the vertices, the intervals, and the faces
of the generalized associahedra of type Φ. hese polytopes provide geometric real-
izations of the type Φ cluster complex, in connection to the type Φ cluster algebra
of S. Fomin and A. Zelevinsky [FZ02, FZ03a]. A ûrst realization was constructed by
F. Chapoton, S. Fomin, and A. Zelevinsky in [CFZ02] based on the compatibility fan
of [FZ03b, FZ03a]. An alternative realization was constructed later by C. Hohlweg,
C. Lange, and H. homas in [HLT11] based on the Cambrian fan of N. Reading and
D. Speyer [RS09].
Although the sets of roots that we consider in this section have a strong connec-

tion to these geometric realizations (see Remarks 4.24 and 4.38), for our purposes we
do not really need the precise deûnition of the geometry of these associahedra or of
these Cambrian fans. We rather need a combinatorial description of their vertices
and faces. he combinatorial model behind these constructions is the Cambrian lat-
tice on sortable elements as developed by N. Reading [Rea06,Rea07a,Rea07b], which
we brie�y recall now.

Let c be a Coxeter element, i.e., the product of the simple re�ections of W in an
arbitrary order. he c-sorting word of an element w ∈ W is the lexicographically
smallest reduced expression for w in the word c∞ ∶= ccccc ⋅ ⋅ ⋅. We write this word as
w = cI1 ⋅ ⋅ ⋅ cIk where cI is the subword of c consisting only of the simple re�ections in I.
An element w ∈ W is c-sortable when these subsets are nested: I1 ⊇ I2 ⊇ ⋅ ⋅ ⋅ ⊇ Ik . An
element w ∈W is c-antisortable when ww○ is (c−1)-sortable. See [Rea07a] for details
onCoxeter sortable elements and their connections to otherCoxeter-Catalan families.
For an element w ∈ W , we denote by πc↓(w) the maximal c-sortable element

below w in weak order and by π↑c(w) the minimal c-antisortable element above w
in weak order. he projection maps πc↓ and π↑c can also be deûned inductively, see
[Rea07b]. Here, we only need that these maps are order preserving projections from
W to sortable (resp. antisortable) elements, and that their ûbers are intervals of the
weak order of the form [πc↓(w), π↑c(w)]. herefore, they deûne a lattice congruence
≡c of the weak order, called the c-Cambrian congruence. he quotient of the weak or-
der by this congruence ≡c is the c-Cambrian lattice. It is isomorphic to the sublattice
of the weak order induced by c-sortable (or c-antisortable) elements. In particular,
for two c-Cambrian classes X ,Y , we have X ≼ Y in the c-Cambrian lattice⇔ there
exists x ∈ X and y ∈ Y such that x ≼ y in the weak order on

W ⇐⇒ πc↓(X) ≼ πc↓(Y) ⇐⇒ π↑c(X) ≼ π↑c(Y).

We denote by X ∧c Y and X ∨c Y the meet and join of the two c-Cambrian classes
X ,Y .
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Figure 5: he sets R(F) for the faces F of the c-associahedron in type A2 (le�) and B2 (right).
Note that positive roots point downwards.

Let w○(c) = q1 ⋅ ⋅ ⋅ qN denote the c-sorting word for the longest element w○. It
orders Φ+ by αq1 <c q1(αq2) <c q1q2(αq3) <c ⋅ ⋅ ⋅ <c q1 ⋅ ⋅ ⋅ qN−1(αqN ). A subset R of
positive roots is called c-aligned if for any α <c β such that α + β ∈ R, we have α ∈ R.
It is known thatw ∈W is c-sortable if and only if its inversion set inv(w) is c-aligned
[Rea07b].

4.2.1 Elements

For a c-Cambrian class X, we consider the Φ-poset

R(X) ∶= ⋂
w∈X

R(w) = R(πc↓(X)) ∩ R (π↑c(X)) = R(πc↓(X))− ⊔ R(π↑c(X))+ .

Note that by deûnition, R(X) coincides with the weak order interval poset
R(πc↓(X), π↑c(X)). We say that R(X) is a c-Cambrian order element poset, and we
denote the collection of all such Φ-posets by

COEP(c) ∶= {R(X) ∣ X c-Cambrian class} .

Remark 4.23 Table 1 reports the cardinality of COEP(c) in type An , Bn , Cn and
Dn for small values of n. Observe that this cardinality is independent of the choice
of the Coxeter element c, and is the Coxeter–Catalan number (counting many related
objects from clusters of type Φ to non-crossing partitions ofW)

∣COEP(c)∣ = Cat(W) = ∏
i∈[n]

1 + d i

d i
,

where (d1 , . . . , dn) still denote the degrees ofW .

Remark 4.24 Geometrically, R(X) is the set of roots of Φ not contained in the
cone of the vertex corresponding to X in the generalized associahedron Asso(c) of
C. Hohlweg, C. Lange, and H. homas in [HLT11]. See Figure 5.

Let us now take a little detour to comment on a conjectured characterization of
these Φ-posets, inspired by a similar characterization in type A proved in [CPP17,
Prop. 60]. Note that it uses the c-Cambrian order interval posets formally deûned in
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the next section and characterized in Proposition 4.32. It also requires the notion of
c-snakes. A c-snake in a Φ-poset R is a sequence of roots α1 , . . . , αp ∈ R such that
● either α2i ∈ Φ−, α2i+1 ∈ Φ+ and α1 <c −α2 >c α3 <c −α4 >c ⋅ ⋅ ⋅,
● or α2i ∈ Φ+, α2i+1 ∈ Φ− and −α1 >c α2 <c −α3 >c α4 <c ⋅ ⋅ ⋅.
A c-snake decomposition of a root α in R is a decomposition α = ∑i∈[p] λ iα i , where
λ i ∈ N and α1 , . . . , αp is a c-snake of R. he following conjectural characterization of
c-Cambrian order element posets was proved in type A in [CPP17, Prop. 60] and has
been checked computationally for small Coxeter types using [Sd16].

Conjecture 4.25 A Φ-poset R ∈ P(Φ) is in COEP(c) if and only if it is in COIP(c)
(characterized in Proposition 4.32) and any root α ∈ Φ admits a c-snake decomposition
in R.

Evenwithout this characterization, we can at least describe theweak order on these
posets.

Proposition 4.26 For any two c-Cambrian classes X and Y, we have R(X) ≼ R(Y)
in the weak order on COEP(c) if and only if X ≼ Y in the c-Cambrian lattice.

Proof By deûnition, a c-Cambrian class X admits both a minimal element πc↓(X)
and a maximal element π↑c(X). herefore,

R(X) = R(πc↓(X), π↑c(X)) ∈WOIP(Φ).
Moreover, for two c-Cambrian classes X, Y , Proposition 4.12 implies that
R(X) ≼ R (Y) in the weak order on WOIP(Φ) if and only if πc↓(X)≼ πc↓(Y) and
π↑c(X)≼ π↑c(Y) in weak order onW . But this is equivalent to X ≼Y in the c-Cambrian
lattice as mentioned above. ∎

Remark 4.27 In fact,

R(X) ≼ R(Y) ⇐⇒ R(X)+ ⊇ R(Y)+ ⇐⇒ R(X)− ⊆ R(Y)− ⇐⇒ X ≼ Y .

Corollary 4.28 For any Coxeter element c, the weak order on COEP(c) is a lattice
with meet and join

R(X) ∧COEP(c) R(Y) = R(X ∧c Y) and R(X) ∨COEP(c) R(Y) = R(X ∨c Y).

Although it anticipates the c-Cambrian order interval posets studied in the next
section, let us state the following result that will be a direct consequence of Corol-
lary 4.34 and Proposition 4.35.

Proposition 4.29 For any Coxeter element c, the set COEP(c) induces a sublattice of
the weak order on COIP(c) and thus also a sublattice of the weak order onWOIP(Φ).

We conclude our discussion on COEP(c) with one more conjecture, which was
proved in type A in [CPP17, Coro. 88] and checked computationally for small Cox-
eter types using [Sd16]. Note that there is little hope to attack this conjecture before
proving either Conjecture 4.25 or Conjecture 4.36.
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Conjecture 4.30 For any Coxeter element c, the set COEP(c) induces a sublattice of
the weak order on P(Φ).

4.2.2 Intervals

For two c-Cambrian classes X , X′ with X ≼ X′ in the c-Cambrian order, we denote by
[X , X′] ∶= {Y c-Cambrian class ∣ X ≼ Y ≼ X′} the c-Cambrian order interval between
X and X′. We associate with each c-Cambrian order interval [X , X′] the Φ-poset

R(X , X′) ∶= ⋂
Y∈[X ,X′]

R(Y) = R(X) ∩ R (X′) = R(X)− ∪ R (X′)+ .

Note that by deûnition, R(X , X′) coincides with the weak order interval poset
R(πc↓(X), π↑c(X′)). We say that R(X , X′) is a c-Cambrian order interval poset, and
we denote the collection of all such Φ-posets by

COIP(c) ∶= {R(X , X′) ∣ X , X′ c-Cambrian classes, X ≼ X′} .

Remark 4.31 Table 1 reports the cardinality of COIP(c) in type An , Bn , Cn , and Dn
for small values of n and diòerent choices of the Coxeter element c. We have denoted
by bip the bipartite Coxeter element, and by lin the linear one (with the special vertex
ûrst in type B/C and the two special vertices ûrst in type D). Note that in contrast to
COEP(c), the cardinality ofCOIP(c) depends on the choice of the Coxeter element c
(this comes from the fact that the c-Cambrian lattices for diòerent choices of Coxeter
element c are not isomorphic and have distinct intervals, although they have the same
number of elements).

We now characterize the Φ-posets in COIP(c).

Proposition 4.32 A Φ-poset R ∈ P(Φ) is in COIP(c) if and only if α + β ∈ R and
α <c β implies β ∈ R for all α, β ∈ Φ+ (resp. α ∈ R for all α, β ∈ Φ−).

Proof Consider a Φ-poset R ∈ P(Φ). By deûnition, R is in COIP(c) if and only if
R = R(w ,w′) is in WOIP(Φ) where w is c-sortable while w′ is c-antisortable. How-
ever, w is c-sortable if and only if its inversion set

inv(w) = Φ+ ∩ − R(w) = −R(w)− = −R(w ,w′)− = −R−

is c-aligned, i.e., if and only if α + β ∈ R− ⇒ α ∈ R− for any α <c β. Similarly, w′ is
c-antisortable if and only if α + β ∈ R+ ⇒ β ∈ R+ for any α <c β. ∎

Proposition 4.33 For two c-Cambrian intervals X ≼ X′ and Y ≼ Y ′, we have
R(X , X′) ≼ R(Y ,Y ′) in the weak order on COIP(c) if and only if X ≼ Y and X′ ≼ Y ′

in the c-Cambrian order.
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Proof By deûnition of R(X , X′) and Remark 4.27, we obtain

R (X , X′) ≼ R(Y ,Y ′)
⇐⇒ R(X , X′)+ ⊇ R(Y ,Y ′)+ and R(X , X′)− ⊆ R(Y ,Y ′)−
⇐⇒ R(X′)+ ⊇ R(Y ′)+ and R(X)− ⊆ R(Y)−
⇐⇒ X′ ≼ Y ′ and X ≼ Y . ∎

Corollary 4.34 For any Coxeter element c, the weak order on COIP(c) is a lattice
with meet and join

R (X , X′) ∧COIP(c) R(Y ,Y ′) = R(X ∧c Y , X′ ∧c Y ′)
and R (X , X′) ∨COIP(c) R(Y ,Y ′) = R(X ∨c Y , X′ ∨c Y ′).

he following statement connects this lattice structure on COIP(c) with that on
WOIP(Φ).

Proposition 4.35 For any Coxeter element c, the set COIP(c) induces a sublattice of
the weak order on WOIP(Φ).

Proof Consider two c-Cambrian intervals X ≼ X′ and Y ≼ Y ′. By Corollary 4.13,
we have

R(X , X′) ∧WOIP R(Y ,Y ′) = R(πc↓(X), π↑c(X′)) ∧WOIP R(πc↓(Y), π↑c(Y ′))
= R(πc↓(X) ∧W πc↓(Y), πc↓(X′) ∧W πc↓(Y ′))
= R(πc↓(X ∧c Y), πc↓(X′ ∧c Y ′)) ,

where the last equality follows from the fact that c-sortable elements (resp.
c-antisortable elements) induce a sublattice of the weak order. ∎

he following conjecture indicates that COIP(c) behaves much better than
WOIP(Φ) as subposet ofP(Φ). his conjecture unfortunately remains open for now
but was proved in type A in [CPP17, Coro. 82] and veriûed for small Coxeter types
using [Sd16]. Note that it is not implied by Proposition 4.35, sinceWOIP(Φ) is not a
sublattice of P(Φ). Observe also that it would imply Conjecture 4.30.

Conjecture 4.36 For any Coxeter element c, the set COIP(c) induces a sublattice of
the weak order on P(Φ).

4.2.3 Faces

To remain at a combinatorial level and avoid geometric descriptions (see
Remark 4.38), we consider a combinatorial model for the faces of the associahedron
Asso(c) that rely on results of [DHP18, Sec. 4]. he c-Cambrian congruence ≡c ex-
tends to the c-Cambrian facial congruence on all faces of the permutahedron
Perm(W) deûned by xWI ≡c yWJ ⇐⇒ x ≡c y and xw○,I ≡c yw○, J . his relation is a
lattice congruence of the facial weak order on faces of the permutahedron Perm(W)

893

https://doi.org/10.4153/S0008414X19000063 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000063


J. Gay and V. Pilaud

[DHP18, Prop. 4.12], and we denote by Πc
↓ and Π↑c its down and up projections. More-

over, the c-Cambrian facial congruence classes precisely correspond to the faces of the
associahedron Asso(c) of [HLT11].
For a c-Cambrian facial congruence class F, we consider the Φ-poset

R(F) ∶= ⋂
xWI∈F

R(xWI) = R(Πc
↓(F))

− ∩ R (Π↑c(F))
+ .

Note that if Πc
↓(F) = xWI and Π↑c(F) = yWJ , then R(F) coincides with the weak

order interval poset R(x , yw○, J). We say that R(F) is a c-Cambrian order face poset
and denote the set of such Φ-posets by

COFP(c) ∶= {R(F) ∣ F c-Cambrian facial congruence class} .

Remark 4.37 Table 1 reports the cardinality of COFP(c) in type An , Bn , Cn , and
Dn for small values of n. Note that this cardinality is again independent of the choice
of the Coxeter element c (it is the number of faces in the generalized associahedron,
i.e., the number of partial clusters in the corresponding cluster algebra).

Remark 4.38 Geometrically, R(F) is the set of roots of Φ not contained in the cone
of the face F in the generalized associahedron Asso(c) of C. Hohlweg, C. Lange and
H. homas in [HLT11]. See Figure 5.

It would be particularly interesting to have a characterization of the Φ-posets in
COFP(c) similar to that given in [CPP17] in type A (see [CPP17, Prop. 46] for the
Tamari faces and [CPP17, Prop. 63] for the type ACambrian faces in general).

Here, we just connect theweak order onCOFP(c)with the facial weak order on the
associahedronAsso(c) considered in [DHP18, Sec. 4.7.2]. his order is the quotient of
the facial weak order on the faces of the permutahedronPerm(W) by the c-Cambrian
facial congruence ≡c .

Proposition 4.39 For any two c-Cambrian facial congruence classes F andG, we have
R(F) ≼ R(G) in the weak order on COFP(c) if and only if F ≼ G in the c-Cambrian
facial lattice.

Proof his is immediate from the deûnitions:

R (F) ≼ R(G)

⇐⇒ R(Π↑c(F))
+ ⊇ R(Π↑c(G))+ and R(Πc

↓(F))
− ⊆ R(Πc

↓(G))−

⇐⇒ Π↑c(F) ≼ Π↑c(G) and Πc
↓(F) ≼ Πc

↓(G)
⇐⇒ F ≼ G . ∎

Corollary 4.40 For any Coxeter element c, the weak order on COFP(c) is a lattice.

Remark 4.41 To conclude, note that the weak order onCOFP(c) is a lattice but not
a sublattice of the weak order on P(Φ), nor onWOIP(Φ), nor on COIP(c). his was
already observed in [CPP17, Rem. 47] in type A. For example, consider the example
of Remark 4.22 for the Coxeter element s1s2 in type A2.
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4.3 Cube

To conclude this paper, we consider Φ-posets corresponding to the vertices, the in-
tervals, and the faces of the cube (see Remarks 4.42 and 4.48), corresponding to the
descent congruence on W . Recall that a (le�) descent of w ∈ W is a simple root
α ∈ ∆ such that sαw ≼ w, or equivalently α ∈ inv(w). he descent set of w is
des(w) ∶= inv(w) ∩ ∆. he descent class ofw is the set of elements ofW that have pre-
cisely the same descent set asw. Note that descent classes correspond to subsets of ∆:
for A ⊆ ∆, we denote by ZA the descent class of elements ofW with A as descent set.
hese classes deûne the descent congruence onW , whose down and up projections we
denote by πd↓ and π↑d .

4.3.1 Elements

For a subset A ⊆ ∆ corresponding to the descent class ZA, we consider the Φ-poset

R(A) ∶= (−A⊔ (∆ ∖ A))cl = Φ ∩ N(−A⊔ (∆ ∖ A))
= ⋂

w∈ZA
R(w) = R(πd↓ (ZA)) ∩ R (π↑d(ZA)) = R(πd↓ (ZA))

− ⊔ R(π↑d(ZA))
+.

Note that by deûnition, R(A) coincides with the weak order interval poset R(πc↓(ZA),
π↑c(ZA)). We say that R(A) is a boolean order element poset and we denote the col-
lection of all such Φ-posets by BOEP(Φ) ∶= {R(A) ∣ A ⊆ ∆}. Note that there are 2n

many Φ-posets in BOEP(Φ), see Table 1.

Remark 4.42 Geometrically, R(A) is the set of roots of Φ not contained in the cone
of the vertex corresponding to A in the parallelepiped generated by the simple roots
∆. See Figure 6.

hese Φ-posets are characterized in the next statement. Its proof is delayed to
Section 4.3.2, as it requires the characterization of the boolean order interval posets.

Proposition 4.43 A Φ-poset R ∈ P(Φ) is in BOEP(Φ) if and only if
(i) α + β ∈ R⇒ α ∈ R and β ∈ R for all α, β ∈ Φ+ and all α, β ∈ Φ−,
(ii) α ∈ R or −α ∈ R for any simple root α ∈ ∆.

he following statement characterizes the weak order induced by BOEP(Φ).

Proposition 4.44 For any subsets A, B ⊆ ∆, we have R(A) ≼ R(B) in the weak order
on BOEP(Φ) if and only if A ⊆ B in boolean order.

Proof From the deûnition R(A) = Φ ∩ N(−A⊔ (∆ ∖ A)), we obtain that

R(A) ≼ R(B) ⇐⇒ R(A)+ ⊇ R(B)+ and R(A)− ⊆ R(B)−
⇐⇒ ∆ ∖ A ⊇ ∆ ∖ B and A ⊆ B. ∎

Remark 4.45 In fact,

R(A) ≼ R(B) ⇐⇒ R(A)+ ⊇ R(B)+ ⇐⇒ R(A)− ⊆ R(B)− ⇐⇒ A ⊆ B.
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Figure 6: he sets R(F) for the faces F of the cube in type A2 (le�) and B2 (right). Note that
positive roots point downwards.

Corollary 4.46 he weak order on BOEP(Φ) is a lattice with meet and join

R(A) ∧BOEP R(B) = R(A ∩ B) and R (A) ∨BOEP R(B) = R(A ∪ B).

Although it anticipates the boolean order interval posets studied in the next sec-
tion, let us state the following result, which will be a direct consequence of Corol-
lary 4.51 and Proposition 4.52.

Proposition 4.47 he set BOEP(Φ) induces a sublattice of the weak order on
BOIP(Φ) and therefore on the weak orders on P(Φ), on WOIP(Φ) and on COIP(c)
for all Coxeter element c.

4.3.2 Intervals and Faces

We ûnally consider intervals in the boolean order or, equivalently, faces of the cube
(see Remark 4.48). For two subsets A ⊆ A′ of ∆, we consider

R(A,A′) ∶= ⋂
A⊆B⊆A′

R(B) = R(A) ∩ R (A′) = R(A)− ⊔ R(A′)+ .

Note that by deûnition, R(A,A′) coincides with the weak order interval poset
R(πc↓(ZA), π↑c(ZA′)). Observe also that BOIP(Φ) ⊆ COIP(c) for any Coxeter ele-
ment c, since the descent congruence coarsens the c-Cambrian congruence. We say
that R(A,A′) is a boolean order interval poset and we denote the set of such Φ-posets
by BOIP(Φ) ∶= {R(A,A′) ∣ A ⊆ A′ ⊆ ∆}.

Remark 4.48 Geometrically, R(A,A′) is the set of roots of Φ not contained in the
cone of the face corresponding to A ⊆ A′ in the parallelepiped generated by the simple
roots ∆. See Figure 6.

hese Φ-posets are characterized as follows.

Proposition 4.49 AΦ-poset R ∈ P(Φ) is inBOIP(Φ) if and only if α+β ∈ R implies
α ∈ R and β ∈ R for all α, β ∈ Φ+ and all α, β ∈ Φ−.
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Proof Consider ûrst R(A,A′) ∈ BOIP(Φ) and α + β ∈ R(A,A′) with α, β ∈ Φ−.
For γ ∈ ∆, denote by [α ∶ γ] the coeõcient of γ in the decomposition of α on the sim-
ple root basis. If [α ∶ γ] ≠ 0, then [α + β ∶ γ] ≠ 0, which implies that γ ∈ A, since
α + β ∈ R(A,A′)− = R(A)− ⊆ N(−A). We get α ∈ Φ ∩ N(−A) = R(A)− ⊆ R(A,A′).
By symmetry, we conclude that α ∈ R(A,A′) and β ∈ R(A,A′) for any α, β ∈ Φ− such
that α + β ∈ R(A,A′). he proof is similar when α, β ∈ Φ+.
Conversely, consider R ∈ P(Φ) such that α + β ∈ R⇒ α ∈ R and β ∈ R for all α,

β ∈ Φ+ and all α, β ∈ Φ−. Deûne A ∶= − (R ∩ −∆) and A′ ∶=Φ ∖ (R ∩ ∆). We claim
that R = R(A,A′), i.e., that R− = R(A)− andR+ = R(A′)+. Weprove the latter; the for-
mer is similar. Observe ûrst that ∆ ∖ A′ ⊆ R, so that R(A′)+ =Φ ∩ N(∆ ∖ A′) ⊆ R,
since R is closed. Conversely, we prove by induction on ∣γ∣ that any γ ∈ R+ belongs to
R(A′)+. Consider γ ∈ R+, and let X be the multiset of simple roots such that γ = ΣX.
Byheorem 2.4, there exists α ∈ X such that β = Σ(X∖{α}) ∈ Φ. Since α+ β = γ ∈ R,
we get that α ∈ R and β ∈ R. We have α ∈ ∆ ∩ R = Φ∖A′ ⊆ R(A′)+ and β ∈ R(A′)+ (by
induction hypothesis). Since R(A′)+ is closed, this shows that γ = α + β ∈ R(A′)+. ∎

We are now in position to provide the proof of Proposition 4.43 that we postponed
in Section 4.3.1.

Proof of Proposition 4.43 Observe ûrst that for A ⊆ ∆, the boolean order element
poset R(A) satisûes (i) by Proposition 4.49, and (ii) since α ∈ R(A) if α ∈ ∆ ∖ A and
−α ∈ R(A) if α ∈ A.
Conversely, consider a Φ-poset R satisfying (i) and (ii). he proof of Proposi-

tion 4.49 ensures that R = R(A,A′)whereA ∶=−(R ∩ −∆) andA′ ∶=Φ∖(R ∩ ∆). Con-
dition (ii) ensures that A = A′ so that we obtain R = R(A,A) = R(A) ∈ BOEP(Φ). ∎

he following statement characterizes the weak order induced by BOIP(Φ).

Proposition 4.50 For two boolean intervals A ⊆ A′ and B ⊆ B′, we have that
R(A,A′) ≼ R(B, B′) in the weak order on BOIP(Φ) if and only if A ⊆ B and A′ ⊆ B′
in boolean order.

Proof Using Remark 4.45, we obtain that

R (A,A′) ≼ R(B, B′)
⇐⇒ R(A,A′)+ ⊇ R(B, B′)+ and R(A,A′)− ⊆ R(B, B′)−
⇐⇒ R(A′)+ ⊇ R(B′)+ and R(A)− ⊆ R(B)−
⇐⇒ ∆ ∖ A′ ⊇ ∆ ∖ B′ and A ⊆ B
⇐⇒ A′ ⊆ B′ and A ⊆ B. ∎

Corollary 4.51 he weak order on BOIP(Φ) is a lattice with meet and join

R (A,A′) ∧BOIP R(B, B′) = R(A ∩ B,A′ ∩ B′)
and R (A,A′) ∨BOIP R(B, B′) = R(A ∪ B,A′ ∪ B′).

We conclude with a connection between the lattice structure of the weak orders on
BOIP(Φ) with that on P(Φ),WOIP(Φ), and COIP(c).
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Proposition 4.52 he set BOIP(Φ) induces a sublattice of the weak order on P(Φ),
on WOIP(Φ) and on COIP(c) for every Coxeter element c.

Proof Let R = R(A,A′) and S = R(B, B′) be two boolean order interval posets, and
consider M = R ∧SC S. Observe that

M− = R− ∩ S− = −Acl ∩ − Bcl = −(A ∩ B)cl

and M+ = (R+ ∪ S+)cl = ((∆ ∖ A′)cl ∪ (∆ ∖ B′)cl)cl = (∆ ∖ (A′ ∩ B′))cl .

In other words, we obtain that M = R ∧BOIP S is already in BOIP(Φ), and conse-
quently,

R ∧C S = Mncd = M = R ∧BOIP S ∈ BOIP(Φ).
As BOIP(Φ) ⊆ COIP(c) ⊆WOIP(Φ) ⊆ P(Φ), we have

R ∧BOIP S ≼ R ∧COIP(c) S ≼ R ∧WOIP S ≼ R ∧BOIP S

so that all these meets coincide. he proof is similar for the join. ∎
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