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We consider a general class of parabolic equations of the type

∂u

∂t
− div(a(u, ∇u)) + div(K(u)) + H(∇u) = f − div g

with Dirichlet boundary conditions and with a right-hand side belonging to
L1 + Lp′

(W −1,p′
). Using the framework of renormalized solutions we prove

uniqueness results under appropriate growth conditions and Lipschitz-type
conditions on a(u, ∇u), K(u) and H(∇u).

1. Introduction

In this paper we investigate the uniqueness of the following class of nonlinear
parabolic problems:

∂u

∂t
− div(a(x, t, u,∇u)) + div(K(x, t, u)) + H(x, t,∇u) = f − div g in QT ,

u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

⎫⎪⎪⎬
⎪⎪⎭
(1.1)

where QT is the cylinder Ω × (0, T ), Ω is a bounded open subset of R
N , T > 0,

p > 1 and N � 2. Moreover, − div(a(x, t, u,∇u)) is a Leray–Lions operator that is
coercive and grows like |∇u|p−1 with respect to ∇u. The functions K and H are
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Carathéodory functions with suitable assumptions (see theorems 3.1–3.3). Finally,
f ∈ L1(QT ), g ∈ (Lp′

(QT ))N and u0 ∈ L1(Ω).
The difficulties connected to the existence and uniqueness of the solution to this

problem are due to the L1 data and to the presence of the two terms K and H,
which can induce a lack of coercivity.

For L1 data and p > 2−1/(N +1) the existence of a weak solution to (1.1) (which
belongs to Lm((0, T ); W 1,m

0 (Ω)), with m < (p(N + 1) − N)/(N + 1)) was proved
in [6] (see also [8]) when K ≡ H ≡ 0 and in [23] when K ≡ 0. It is well known that
this weak solution is not, in general, unique (see [27] and [24] for a counter-example
in the stationary case). In the present paper we use the framework of renormalized
solutions, which provides uniqueness and stability properties.

The notion of renormalized solutions was introduced in [14, 15] for first-order
equations and was adapted for elliptic problems with L1 data in [18, 19], and
for those with bounded measure data in [10]. This notion was also developed for
parabolic equations with L1 data in [2, 4] (see also [21] for measure data). Recall
that the equivalent notion of an entropy solution for L1 data was also developed
for elliptic equations in [1] (see also [25] in the parabolic case).

In the case where H ≡ 0 and where the function K(x, t, u) is independent of the
(x, t) variable and continuous, the existence of a renormalized solution to (1.1) is
proved in [4]. The case H ≡ 0, g ≡ 0 (and where K depends on (x, t) and u) is
investigated in [11]. In [13] the authors prove the existence of a renormalized solution
to (1.1) with the presence of both the terms div(K(x, t, u)) and H(x, t,∇u).

As far as the uniqueness of renormalized solutions to parabolic equations is con-
cerned, we refer the reader mainly to [2, 4, 9], where, in short, the function K does
not depend on the (x, t) variable, and where H ≡ 0 (see also [3] for the Stefan
problem with L1 data). In particular, when H ≡ 0 and under a local Lipschitz
assumption on a(x, t, r, ξ) and on K(r) with respect to r, Blanchard et al . prove
in [4] that the renormalized solution to (1.1) is unique. With respect to the afore-
mentioned references, the main novelty of the present paper is that it presents
uniqueness results to parabolic equations (1.1) with both the terms div(K(x, t, u))
and H(x, t,∇u). The first result (see theorem 3.1) deals with the case H ≡ 0 and
establishes the uniqueness of the renormalized solution to (1.1) under a local Lip-
schitz condition on a(x, t, r, ξ) and K(x, t, r) with respect to r. The proof uses the
techniques developed in [4], and the (x, t)-dependence of the function K leads to
additional difficulties here. Such difficulties are overcome by a technical lemma (see
lemma 4.1) that specifies the asymptotic behaviour of some terms that appear in the
uniqueness process. The second result (see theorem 3.2 for p � 2 and theorem 3.3
for 2 − 1/(N + 1) < p < 2) addresses (1.1) with the presence of both the terms
div(K(x, t, u)) and H(x, t,∇u). Under more restrictive assumptions on a and under
a global Lipschitz-type condition on K(x, t, s) with respect to s and H(x, t, ξ) with
respect to ξ, we show the uniqueness of the renormalized solution. The proof uses
two technical lemmas (lemmas 4.1 and 4.2) and the techniques developed in [13]
for the existence of a solution to (1.1) (see also [23]). We underline that we do not
make any assumptions on the smallness of the coefficients. Indeed, for the analo-
gous elliptic equation with two lower-order terms (see, for example, [12, 16]) it is
necessary to assume that one of the terms K or H is small enough in order to
obtain existence and uniqueness results.
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The paper has the following structure. In § 2, we present the assumptions on the
data and we recall the definition of a renormalized solution to (1.1). In § 3, we state
the main results of the paper. In § 4, we give the proof of the uniqueness results.

2. Assumptions and definitions

We recall the definition of a renormalized solution to nonlinear parabolic problems
with lower-order terms and L1(Ω × (0, T )) + Lp′

((0, T ); W−1,p′
(Ω)) data in this

section.
More precisely, we consider the problem

∂u

∂t
− div(a(x, t, u,∇u)) + div(K(x, t, u)) + H(x, t,∇u) = f − div g in QT ,

u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

⎫⎪⎪⎬
⎪⎪⎭
(2.1)

where QT is the cylinder Ω × (0, T ), Ω is a bounded open subset of R
N with

boundary ∂Ω, T > 0, p > 1 and N � 2.
The following assumptions hold true.

• a : QT × R × R
N → R

N is a Carathéodory function such that

a(x, t, s, ξ)ξ � α0|ξ|p, α0 > 0, (2.2)

and
(a(x, t, s, ξ) − a(x, t, s, ξ̄) · ξ − ξ̄) > 0 (2.3)

for almost everywhere (a.e.) (x, t) ∈ QT , for any s ∈ R and any ξ, ξ̄ ∈ R
N ,

with ξ �= ξ̄.

Moreover, for any k > 0 there exists βk > 0 and hk ∈ Lp′
(QT ) such that

|a(x, t, s, ξ)| � hk + βk|ξ|p−1 for every s such that |s| � k, (2.4)

for a.e. (x, t) ∈ QT and any ξ ∈ R
N .

• K : QT × R → R
N is a Carathéodory function such that

|K(x, t, s)| � c(x, t)(|s|γ + 1), (2.5)

with
γ =

N + 2
N + p

(p − 1) and c ∈ Lr(QT ) with r � N + p

p − 1
, (2.6)

for a.e. (x, t) ∈ QT , for every s ∈ R.

• H : QT × R
N → R is a Carathéodory function such that

|H(x, t, ξ)| � b(x, t)(|ξ|δ + 1), (2.7)

with

δ =
N(p − 1) + p

N + 2
and b ∈ LN+2,1(QT ) (2.8)
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for a.e. (x, t) ∈ QT , for every ξ ∈ R
N and where the Lorentz space LN+2,1(QT )

is defined later.

Moreover, we assume that

f ∈ L1(QT ), (2.9)

g ∈ (Lp′
(QT ))N , (2.10)

u0 ∈ L1(Ω). (2.11)

Under these assumptions, problem (2.1) does not admit, in general, a solution
in the sense of distribution, since we cannot expect to have the field a(x, t, u,∇u)
in L1

loc(QT ). For this reason, in the present paper we consider the framework of
renormalized solutions.

For any k > 0 we denote by Tk the truncation function at height ±k, Tk(s) =
max(−k,min(k, s)) for any s ∈ R.

We recall the definition of a renormalized solution (see [2, 4]) to (2.1).

Definition 2.1. A real function u defined in QT is a renormalized solution of (2.1)
if it satisfies

u ∈ L∞((0, T ); L1(Ω)), (2.12)

Tk(u) ∈ Lp((0, T ); W 1,p
0 (Ω)) for any k > 0, (2.13)

lim
n→+∞

1
n

∫
{(x,t)∈QT : |u(x,t)|�n}

a(x, t, u,∇u)∇u dxdt = 0, (2.14)

and if, for every function S ∈ W 2,∞(R) that is piecewise C1 and such that S′ has
a compact support,

∂S(u)
∂t

− div(a(x, t, u,∇u)S′(u))

+ S′′(u)a(x, t, u,∇u)∇u + div(K(x, t, u)S′(u))
− S′′(u)K(x, t, u)∇u + H(x, t,∇u)S′(u)

= fS′(u) − (div g)S′(u) in D′(QT ) (2.15)

and
S(u)(t = 0) = S(u0) in Ω. (2.16)

Remark 2.2. It is well known that (2.12) and (2.13) allow us to define ∇u almost
everywhere in QT : for any k > 0 we have that ∇Tk(u) = χ{|u|<k}∇u almost
everywhere in QT , where χ{|u|<k} denotes the characteristic function of the set
{(x, t) : |u(x, t)| < k}. We note that (2.15) can be formally obtained through point-
wise multiplication of (2.1) by S′(u), and all terms except S(u)t in (2.15) belong to
L1(QT ) + Lp′

((0, T ); W−1,p′
(Ω)) since Tk(u) ∈ Lp((0, T ); W 1,p

0 (Ω)), for any k > 0,
and S′ has a compact support. It follows that (2.15) has a meaning in D′(QT ) and
that the initial condition (2.16) makes sense (see [22, theorem 1.1]). Finally, (2.14)
gives additional information on ∇u for large values of |u|.
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We use, in the present paper, the two Lorentz spaces Lq,1(QT ) and Lq,∞(QT ) (for
information about Lorentz spaces Lq,s, see, for example, [17,20] and the references
therein). If f∗ denotes the decreasing rearrangement of a measurable function f ,

f∗(r) = inf{s � 0: meas{(x, t) ∈ QT : |f(x, t)| > s} < r},

with r ∈ [0, meas(QT )], then Lq,1(QT ) is the space of Lebesgue measurable functions
such that

‖f‖Lq,1(QT ) =
( ∫ meas(QT )

0
f∗(r)r1/q dr

r

)
< +∞,

while Lq,∞(QT ) is the space of Lebesgue measurable functions such that

‖f‖Lq,∞(QT ) = sup
r>0

r[meas{(x, t) ∈ QT : |f(x, t)| > r}]1/q < +∞.

If 1 < q < +∞, we have the generalized Hölder inequality,

∀f ∈ Lq,∞(QT ), ∀g ∈ Lq′,1(QT ),
∫

QT

|fg| � ‖f‖Lq,∞(QT )‖g‖Lq′,1(QT ). (2.17)

Under (2.2)–(2.11) the existence of a renormalized solution to (2.1) is established
in [13] and it is well known that (2.12)–(2.14) lead to

|∇u| ∈ L(N(p−1)+p)/(N+1),∞(QT ) (2.18)

and

u ∈ L(N(p−1)+p)/N,∞(QT ). (2.19)

Moreover, the growth assumptions (2.5) and (2.7) on K and H, the regularities (2.6)
and (2.8) of c and b together with (2.12) and (2.14) allow us to prove (see [13]) that
any renormalized solution to (2.1) verifies that

H(x, t,∇u) ∈ L1(QT ) (2.20)

and
lim

n→+∞

1
n

∫
{(x,t)∈QT ; |u(x,t)|<n}

|K(x, t, u)||∇u| dxdt = 0. (2.21)

Properties (2.20) and (2.21) are crucial to obtain uniqueness results.

Notation. Throughout the paper, for the sake of brevity, if u is a measurable func-
tion defined on QT , we denote by {|u| � k} (respectively, {|u| < k}) the measurable
subset {(x, t) ∈ QT ; |u(x, t)| � k} (respectively, {(x, t) ∈ QT ; |u(x, t)| < k}). More-
over, the explicit dependence in x and t of the functions a, K and H will be omitted,
so a(x, t, u,∇u) = a(u, ∇u), K(u) = K(x, t, u) and H(∇u) = H(x, t,∇u).

3. Statement of the results

3.1. First case: H ≡ 0

In order to prove the uniqueness result in the case H(x, t, ξ) = 0, we further assume
that a(x, t, s, ξ) and K(x, t, s) are locally Lipschitz continuous with respect to s: for
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any compact set C of R, there exists LC belonging to Lp′
(QT ) and γC > 0 such

that, for all s, s̄ ∈ C,

|a(x, t, s, ξ) − a(x, t, s̄, ξ)| � (LC(x, t) + γC |ξ|p−1)|s − s̄|, (3.1)
|K(x, t, s) − K(x, t, s̄)| � LC(x, t)|s − s̄| (3.2)

for a.e. (x, t) ∈ QT and for every ξ ∈ R
N .

The main result of this subsection is the following theorem.

Theorem 3.1. Under the assumptions (2.2)–(2.6), (2.9)–(2.11), (3.1) and (3.2),
the renormalized solution to (2.1) is unique.

3.2. Second case: general operator

In order to prove the uniqueness result for (2.1) with the term H(x, t,∇u), we
assume in this subsection that the function a is independent of r and is strongly
monotone (see (3.5) and (3.7)).

Moreover, the function K(x, t, s) (respectively, H(x, t, ξ)) is locally Lipschitz con-
tinuous with respect to s (respectively, ξ) with a global control of the Lipschitz
coefficient:

|K(x, t, s) − K(x, t, s̄)| � c(x, t)(1 + |s| + |s̄|)τ |s − s̄|, τ � 0, (3.3)

and

|H(x, t, ξ) − H(x, t, ξ̄)| � b(x, t)(1 + |ξ| + |ξ̄|)σ|ξ − ξ̄|, σ � 0, (3.4)

for a.e. (x, t) ∈ QT , for every s, s̄ ∈ R, for every ξ, ξ̄ ∈ R
N with c ∈ Lr,1(QT ) and

b ∈ Lλ,1(QT ), and where the parameters τ , σ, r and λ belong to suitable intervals
(see theorems 3.2 and 3.3).

We investigate the case p � 2 and the case 2−1/(N +1) < p < 2 in two different
results.

Theorem 3.2. Let p � 2. We assume that (2.2)–(2.11) hold and that the function
a is independent of r and satisfies

(a(x, t, ξ) − a(x, t, ξ̄)) · (ξ − ξ̄) � β(1 + |ξ|+|ξ̄|)p−2|ξ − ξ̄|2 (3.5)

for a.e. (x, t) ∈ QT , for every ξ, ξ̄ ∈ R
N with ξ �= ξ̄ and β > 0.

Moreover, we assume that (3.3) and (3.4) are satisfied, with

r � N + 2, 0 � τ � N(p − 1) + p

N

(
1

N + 2
− 1

r

)
,

λ � N + 2, 0 � σ � N(p − 1) + p

N + 1

(
1

N + 2
− 1

λ

)
.

⎫⎪⎪⎬
⎪⎪⎭

(3.6)

Then, the renormalized solution to (2.1) is unique.

Theorem 3.3. Let 2−1/(N+1) < p < 2. We assume that (2.2)–(2.4), (2.9)–(2.11)
hold and that the function a is independent of r and satisfies

(a(x, t, ξ) − a(x, t, ξ̄)) · (ξ − ξ̄) � β
|ξ − ξ̄|2

(|ξ| + |ξ̄|)2−p
(3.7)
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for a.e. (x, t) ∈ QT , for every ξ, ξ̄ ∈ R
N with ξ �= ξ̄ and β > 0. Moreover, we

assume that (3.3) and (3.4) are satisfied, with

r >
p(N + 1) − N

(p − 1)(N + 1) − N
,

0 � τ <
N(p − 1) + p

N

(
(p − 1)(N + 1) − N

p(N + 1) − N
− 1

r

)
,

λ >
p(N + 1) − N

(p − 1)(N + 1) − N
,

0 � σ <
N(p − 1) + p

N + 1

(
(p − 1)(N + 1) − N

p(N + 1) − N
− 1

λ

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)

Then, the renormalized solution to (2.1) is unique.

Remark 3.4. We compare assumptions (2.5) and (2.7) on the growth condition and
assumptions (3.3) and (3.4) on the locally Lipschitz continuity made on K(x, t, s)
and H(x, t, ξ), respectively. Observe that (3.3) ((3.4), respectively) implies a growth
condition on K(x, t, s) (on H(x, t, ξ), respectively) that can be more restrictive
than (2.5) ((2.7), respectively), depending on the value of τ (σ, respectively).

The model function a(x, t, ξ) that satisfies (2.4), (3.5) or (3.7) is

a(x, t, ξ) =

⎧⎪⎨
⎪⎩

a(x, t)|ξ|p−2ξ if 2 − 1
N + 1

< p < 2,

a(x, t)(1 + |ξ|2)(p−2)/2ξ if p � 2,

where a(x, t) ∈ L∞(QT ) and a(x, t) � β > 0.
Examples of functions K(x, t, s) and H(x, t, ξ) are given by

K(x, t, s) = c(x, t)(1 + |s|)γ̄ , with γ̄ = min{γ, τ + 1},

H(x, t, ξ) = b(x, t)(1 + |ξ|)δ̄, with δ̄ = min{δ, σ + 1},

where c(x, t) ∈ Lr,1(QT ) and b(x, t) ∈ Lλ,1(QT ), with

r >
p(N + 1) − N

(p − 1)(N + 1) − N
if 2 − 1

N + 1
< p < 2,

r � N + 2 if p � 2

and

λ >
p(N + 1) − N

(p − 1)(N + 1) − N
if 2 − 1

N + 1
< p < 2,

λ � N + 2 if p � 2.

4. Proof of the results

This section is devoted to proving theorems 3.1–3.3. We start with a technical
lemma, similar to [4, lemma 6], for a different parabolic equation with L1 data. It
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allows us to control the behaviour of some quantities that appear in the uniqueness
process. We stress that our proof is different to the one in [4] and uses only the fact
that two renormalized solutions of (2.1) verify (2.14) and (2.21) (note that (2.21)
is a consequence of (2.14) and the growth assumption of K). See also [5] for such a
generalization on parabolic equations of the kind

∂b(u)
∂t

− div(a(x, t, u,∇u)) = f + div g.

Lemma 4.1. Under the assumptions (2.2)–(2.11), let u and v be two renormalized
solutions to (2.1). We define, for any 0 < k < s,

Γ (u, v, s, k) =
∫

{s−k<|u|<s+k}
(a(u, ∇u)∇u + |K(u)||∇u| + |g|p′

) dxdt

+
∫

{s−k<|v|<s+k}
(a(v,∇v)∇v + |K(v)||∇v| + |g|p′

) dxdt (4.1)

and, for any 0 < r < s,

Θ(u, v, s, r) =
∫

{s−r<|u|<s}
(a(u, ∇u)∇u + |K(u)||∇u|) dxdt

+
∫

{s−r<|v|<s}
(a(v,∇v)∇v + |K(v)||∇v|) dxdt. (4.2)

Then, we have, for any r > 0, that

lim inf
s→∞

(
lim sup

k→0

1
k

Γ (u, v, s, k) + Θ(u, v, s, r)
)

= 0. (4.3)

Proof. We argue by contradiction. Let r be a positive real number. If the thesis of
lemma 4.1 is not true, let ε0 > 0 and let n0 > r be an integer such that for every
real number s � n0 we have that

lim sup
k→0

1
k

Γ (u, v, s, k) + Θ(u, v, s, r) � ε0. (4.4)

We consider the function

F (s) =
∫

{|u|<s}
(a(u, ∇u)∇u + |K(u)||∇u| + |g|p′

) dxdt

+
∫

{|v|<s}
(a(v,∇v)∇v + |K(v)||∇v| + |g|p′

) dxdt.

Due to (2.2) the function F is monotone increasing. It follows (see, for exam-
ple, [26]) that F is derivable almost everywhere, with F ′ measurable, and that we
have, for any s > η > 0, that

F (s) − F (η) �
∫ s

η

F ′(w) dw (4.5)
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and, for almost any s > 0,

F ′(s) = 1
2

lim sup
k→0

1
k

[ ∫
{s−k�|u|<s+k}

(a(u, ∇u)∇u + |K(u)||∇u| + |g|p′
) dxdt

+
∫

{s−k�|v|<s+k}
(a(v,∇v)∇v + |K(v)||∇v| + |g|p′

) dxdt

]
.

Moreover, due to (2.14) and (2.21) and since g belongs to (Lp′
(QT ))N we have that

lim
s→+∞

F (s)
s

= 0. (4.6)

Due to the definition of Γ (u, v, s, k), (4.4) leads to

F ′(w) + 1
2Θ(u, v, w, r) � 1

2ε0

for almost every w � n0. From (4.5) it follows that

1
s − n0

(
F (s) + 1

2

∫ s

n0

Θ(u, v, w, r) dw

)
� ε0

2
+

F (n0)
s − n0

for s > n0. (4.7)

Writing, for any s > n0,∫ s

n0

∫
{w−r<|u|<w}

a(u, ∇u)∇u dxdt dw

=
∫ s

n0

∫
{|u|<w}

a(u, ∇u)∇u dxdt dw −
∫ s

n0

∫
{|u|�w−r}

a(u, ∇u)∇u dxdt dw

=
∫ s

n0

∫
{|u|<w}

a(u, ∇u)∇u dxdt dw −
∫ s−r

n0−r

∫
{|u|�w}

a(u, ∇u)∇u dxdt dw

=
∫ s

s−r

∫
{|u|<w}

a(u, ∇u)∇u dxdt dw −
∫ n0

n0−r

∫
{|u|<w}

a(u, ∇u)∇u dxdt dw,

and since a(u, ∇u)∇u � 0 almost everywhere in QT , we obtain that∫ s

n0

∫
{w−r<|u|<w}

a(u, ∇u)∇u dxdt dw � r

∫
{|u|<s}

a(u, ∇u)∇u dxdt.

In view of the definition of Θ and using similar arguments we deduce that∫ s

n0

Θ(u, v, ξ, r) dξ � r

( ∫
{|u|<s}

(a(u, ∇u)∇u + |K(u)||∇u|) dxdt

+
∫

{|v|<s}
(a(v,∇v)∇v + |K(v)||∇v|) dxdt

)
.

From (4.7) and the above inequality it follows that

1
s − n0

(
F (s) +

r

2

( ∫
{|u|<s}

(a(u, ∇u)∇u + |K(u)||∇u|) dxdt

+
∫

{|v|<s}
(a(v,∇v)∇v + |K(v)||∇v|) dxdt

))
� ε0

2
+

F (n0)
s − n0

for s > n0. The last inequality contradicts (2.14) and (4.6).
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Proof of theorem 3.1. The strategy is similar to that in the proof of [4, theorem 2]. It
consists of defining a smooth approximation T σ

s of the truncation Ts and considering
two renormalized solutions u and v to (2.1) for the same data f , g and u0. In step 1
we plug the test function Tk(T σ

s (u)−T σ
s (v))/k into the difference of equations (2.15)

for u and v, in which we have taken S = T σ
s . This process then leads to (4.9). In

step 2 we study the behaviour of the terms of (4.9) with respect to σ, k and s, with
the help of lemma 4.1. In step 3 we then pass to the limit when σ → 0, k → 0 and
s → +∞.

Step 1. Let u and v be two renormalized solutions to (2.1) for the same data f , g
and u0. For every real number s > 0 and σ > 0, let T σ

s be the function defined by

T σ
s (0) = 0,

(T σ
s )′(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 for |r| < s,

1
σ

(s + σ − |r|) for s � |r| � s + σ,

0 for |r| > s + σ.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.8)

We take S = T σ
s in (2.15) for u and v. Subtracting these two equations and plugging

in the test function Tk(T σ
s (u)−T σ

s (v))/k, we obtain, upon integration on (0, t), that,
for every k > 0, s > 0, σ > 0,

1
k

∫ t

0

〈
∂

∂t
[T σ

s (u) − T σ
s (v)], Tk(T σ

s (u) − T σ
s (v))

〉
dτ +

1
k

(Aσ
s,k(t) + Ãσ

s,k(t))

=
1
k

(Cσ
s,k(t) + C̃σ

s,k(t) + Fσ
s,k(t) + Gσ

s,k(t) + G̃σ
s,k(t)) (4.9)

for almost any t ∈ (0, T ), where 〈·, ·〉 denotes the duality between L1(Ω)+W−1,p′
(Ω)

and L∞(Ω) ∩ W 1,p
0 (Ω), and where

Aσ
s,k(t) =

∫ t

0

∫
Ω

[(T σ
s )′(u)a(u, ∇u) − (T σ

s )′(v)a(v,∇v)]

× ∇Tk(T σ
s (u) − T σ

s (v)) dxdτ,

Ãσ
s,k(t) =

∫ t

0

∫
Ω

(T σ
s )′′(u)a(u, ∇u)∇uTk(T σ

s (u) − T σ
s (v)) dxdτ

−
∫ t

0

∫
Ω

(T σ
s )′′(v)a(v,∇v)∇vTk(T σ

s (u) − T σ
s (v)) dxdτ,

Cσ
s,k(t) =

∫ t

0

∫
Ω

[(T σ
s )′(u)K(u) − (T σ

s )′(v)K(v)]

× ∇Tk(T σ
s (u) − T σ

s (v)) dxdτ,

C̃σ
s,k(t) =

∫ t

0

∫
Ω

[(T σ
s )

′′
(u)K(u)∇u − (T σ

s )′′(v)K(v)∇v]

× Tk(T σ
s (u) − T σ

s (v)) dxdτ,
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Fσ
s,k(t) =

∫ t

0

∫
Ω

f [(T σ
s )′(u) − (T σ

s )′(v)]Tk(T σ
s (u) − T σ

s (v)) dxdτ,

Gσ
s,k(t) =

∫ t

0

∫
Ω

g[(T σ
s )′(u) − (T σ

s )′(v)]∇Tk(T σ
s (u) − T σ

s (v)) dxdτ,

G̃σ
s,k(t) =

∫ t

0

∫
Ω

g∇[(T σ
s )′(u) − (T σ

s )′(v)]Tk(T σ
s (u) − T σ

s (v)) dxdτ.

In order to pass to the limit in (4.9) when σ → 0, k → 0 and s → +∞, we observe
that by (4.8) we have, for almost any t ∈ (0, T ), that

T σ
s (u) → Ts(u) in Lp((0, t); W 1,p

0 (Ω)) and almost everywhere in Ω × (0, t)
(4.10)

and

(T σ
s )′(u) → χ{|u|�s} in Lq(Ω × (0, t)) and almost everywhere in Ω × (0, t)

(4.11)

for every 1 < q < +∞, for fixed s > 0 when σ tends to zero.
By defining

Ψk(r) =
∫ r

0
Tk(s) ds,

an integration by parts (see [7]) gives that, for almost any t ∈ (0, T ),

1
k

∫ t

0

〈
∂

∂t
[T σ

s (u) − T σ
s (v)], Tk(T σ

s (u) − T σ
s (v))

〉
dτ

=
1
k

∫
Ω

Ψk(T σ
s (u)(t) − T σ

s (v)(t)) dx. (4.12)

We deduce from the above equality that, for almost any t ∈ (0, T ),

lim
k→0

lim
σ→0

1
k

∫ t

0

〈
∂

∂t
[T σ

s (u) − T σ
s (v)], Tk(T σ

s (u) − T σ
s (v))

〉
dτ

=
∫

Ω

|Ts(u)(t) − Ts(v)(t)| dx. (4.13)

Step 2. Reasoning as in [4] we have that

lim inf
k→0

lim
σ→0

1
k

Aσ
s,k(t) � 0 for every s > 0 (4.14)

and

lim
s→+∞

lim
k→0

lim
σ→0

1
k

Fσ
s,k(t) = 0 for almost any t ∈ (0, T ). (4.15)

We give the argument here for completeness. Due to (4.11) and (4.10) and with the
help of (2.2) we have, for almost any t ∈ (0, T ), that

lim
σ→0

1
k

Aσ
s,k(t) =

1
k

∫ t

0

∫
Ω

[a(Ts(u), DTs(u)) − a(Ts(v), DTs(v))]

× DTk(Ts(u) − Ts(v)) dxdτ,
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which can written as

lim
σ→0

1
k

Aσ
s,k(t) =

1
k

∫ t

0

∫
Ω

[a(Ts(u), DTs(u)) − a(Ts(u), DTs(v))]

× DTk(Ts(u) − Ts(v)) dxdτ

+
1
k

∫ t

0

∫
Ω

[a(Ts(u), DTs(v)) − a(Ts(v), DTs(v))]

× DTk(Ts(u) − Ts(v)) dxdτ. (4.16)

Since the operator a is monotone (see (2.3)), the first term of the right-hand side
of (4.16) is non-negative. It remains to prove that the second term goes to zero as
k goes to zero. Indeed, using the local Lipschitz condition (3.1) on a we get that

1
k

∣∣∣∣
∫ t

0

∫
Ω

[a(Ts(u), DTs(v)) − a(Ts(v), DTs(v))]DTk(Ts(u) − Ts(v)) dxdτ

∣∣∣∣
� 1

k

∫ t

0

∫
Ω

χ{|Ts(u)−Ts(v)|<k}|Ts(u) − Ts(v)|(Ls(x, t) + γs|DTs(v)|p−1)

× |DTs(u) + DTs(v)| dxdτ

�
∫

{0<|Ts(u)−Ts(v)|<k}
(Ls(x, t) + γs|DTs(v)|p−1)|DTs(u) + DTs(v)| dxdτ.

Due to the regularity of Ts(u), Ts(v) and Ls we have that

(Ls(x, t) + γs|DTs(v)|p−1)|DTs(u) + DTs(v)| ∈ L1(QT ).

Since χ{|Ts(u)−Ts(v)|<k} tends to zero almost everywhere in QT as k goes to zero,
the Lebesgue dominated convergence allows us to conclude that (4.14) holds.

As far as (4.15) is concerned, we have, for almost any t ∈ (0, T ), that

lim
σ→0

1
k

Fσ
s,k(t) =

1
k

∫ t

0

∫
Ω

f(χ{|u|�s} − χ{|v|�s})Tk(Ts(u) − Ts(v)) dxdτ,

so, for almost any t ∈ (0, T ),

lim
k→0

lim
σ→0

1
k

Fσ
s,k(t) =

∫ t

0

∫
Ω

f × (χ{|u|�s} − χ{|v|�s}) sgn(u − v) dxdτ,

where sgn(r) = r/|r| for any r �= 0 and sgn(0) = 0. Since u and v are finite almost
everywhere in Ω × (0, T ) and since f belongs to L1(QT ), the Lebesgue dominated
convergence theorem implies (4.15).

We now claim that, for almost any t ∈ (0, T ),

1
k

(|Ãσ
s,k(t)| + |C̃σ

s,k(t)| + |G̃σ
s,k(t)|) � M1

σ
Γ (u, v, s, σ), (4.17)

where M1 is a constant independent of s, k and σ, and where Γ is defined in
lemma 4.1.

Using the definition (4.8) of T σ
s , recalling that ∇u = 0 almost everywhere on

{(x, t); u(x, t) = r} for any r ∈ R and since a(x, t, r, ξ)ξ � 0, we obtain that, for
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any σ and any k > 0,

1
k

|Ãσ
s,k(t)| � 1

σ

[ ∫ t

0

∫
Ω

χ{s<|u|<s+σ}a(u, ∇u)∇u dxdτ

+
∫ t

0

∫
Ω

χ{s<|v|<s+σ}a(v,∇v)∇v dxdτ

]

� 1
σ

[ ∫
{s<|u|<s+σ}

a(u, ∇u)∇u dxdτ +
∫

{s<|v|<s+σ}

a(v,∇v)∇v dxdτ

]
.

(4.18)

Similarly, we have, for any σ and any k > 0, that

1
k

|C̃σ
s,k(t)| � 1

σ

[ ∫
{s<|u|<s+σ}

|K(u)||∇u| dxdτ +
∫

{s<|v|<s+σ}

|K(v)||∇v| dxdτ

]
.

(4.19)
As far as G̃s,k(t) is concerned, for any σ and any k > 0 we have that

1
k

|G̃s,k(t)| � 1
σ

[ ∫
{s<|u|<s+σ}

|g||∇u| dxdτ +
∫

{s<|v|<s+σ}

|g||∇v| dxdτ

]
.

From (2.2) together with Young’s inequality it follows that

1
k

|G̃s,k(t)| � M1

σ

( ∫
{s<|u|<s+σ}

(a(u, ∇u)∇u + |g|p′
) dxdτ

+
∫

{s<|v|<s+σ}
(a(v,∇v)∇v + |g|p′

) dxdτ

)
, (4.20)

where M1 is a generic constant depending upon p and α0. Estimates (4.18)–(4.20)
allow us to deduce that (4.17) holds.

We now prove that, for almost any t ∈ (0, T ),

lim sup
σ→0

1
k

(|Cσ
s,k(t)| + |Gσ

s,k(t)|) � M1

k
Γ (u, v, s, k) + ω(k), (4.21)

where M1 is a constant independent of s, k and σ, and where ω is a positive function
such that limk→0 ω(k) = 0.

We first write that, for almost any t ∈ (0, T ),

lim sup
σ→0

1
k

|Cσ
s,k(t)|

=
∣∣∣∣1k

∫ t

0

∫
Ω

[χ{|u|�s}K(u) − χ{|v|�s}K(v)]∇Tk(Ts(u) − Ts(v)) dxdτ

∣∣∣∣
� C1

s,k + C2
s,k + C3

s,k,

where

C1
s,k =

1
k

∫
QT

χ{|u|�s}∩{|v|>s}|K(u)||∇Tk(u − s sgn(v))| dxdτ,

C2
s,k =

1
k

∫
QT

χ{|v|�s}∩{|u|>s}|K(v)||∇Tk(v − s sgn(u))| dxdτ

https://doi.org/10.1017/S0308210511001831 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210511001831


1198 R. Di Nardo, F. Feo and O. Guibé

and

C3
s,k =

1
k

∫
QT

χ{|v|�s}∩{|u|�s}|K(u) − K(v)||∇Tk(u − v)| dxdτ.

We estimate C1
s,k and C2

s,k. By (2.5) we obtain that

C1
s,k � 1

k

∫
QT

χ{|u|�s}∩{|v|>s}χ{|u−s sgn(v)|<k}|K(u)||∇u| dxdτ

� 1
k

∫
{s−k<|u|�s}

|K(u)||∇u| dxdτ (4.22)

and, similarly,

C2
s,k � 1

k

∫
{s−k<|v|�s}

|K(v)||∇v| dxdτ. (4.23)

Finally, since the function K is locally Lipschitz continuous, we have, for some
positive Ls element of Lp′

(QT ), that

C3
s,k =

1
k

∫
QT

χ{|v|�s}∩{|u|�s}|K(u) − K(v)||∇Tk(Ts(u) − Ts(v))| dxdτ

� 1
k

∫
QT

χ{0<|Ts(v)−Ts(u)|<k}Ls(x, τ)|Ts(u) − Ts(v)|

× |∇Tk(Ts(u) − Ts(v))| dxdτ

�
∫

QT

χ{0<|Ts(v)−Ts(u)|<k}Ls(x, τ)|∇Tk(Ts(u) − Ts(v))| dxdτ

�
∫

QT

χ{0<|Ts(v)−Ts(u)|<k}Ls(x, τ)(|∇Ts(u)| + |∇Ts(v)|) dxdτ.

Since Ls belongs to Lp′
(QT ) and due to (2.13), the function Ls(x, τ)(|∇Ts(u)| +

|∇Ts(v)|) belongs to L1(QT ). Since χ{0<|Ts(v)−Ts(u)|<k} tends to 0 almost every-
where in QT as k goes to 0 and is bounded by 1, the Lebesgue dominated conver-
gence theorem leads to

lim
k→0

C3
s,k = 0 for any s > 0. (4.24)

In order to estimate Gs,k(t), we obtain, for almost any t ∈ (0, T ), that

lim sup
σ→0

1
k

|Gσ
s,k(t)| =

∣∣∣∣1k
∫ t

0

∫
Ω

[χ{|u|�s}g − χ{|v|�s}g]∇Tk(Ts(u) − Ts(v)) dxdτ

∣∣∣∣
� G1

s,k + G2
s,k,

where

G1
s,k =

1
k

∫
QT

χ{|u|�s}∩{|v|>s}|g||∇Tk(u − s sgn(v))| dxdτ

and

G2
s,k =

1
k

∫
QT

χ{|v|�s}∩{|u|>s}|g||∇Tk(v − s sgn(u))| dxdτ.
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Since we have that

G1
s,k � 1

k

∫
{s−k<|u|�s}

|g||∇u| dxdτ,

similar arguments to those used to deal with G̃s,k yield that

G1
s,k � M1

k

∫
{s−k<|u|<s}

(a(u, ∇u)∇u + |g|p′
) dxdτ, (4.25)

where M is a constant depending upon p and α0. With v in place of u in G2
s,k we

also have that

G2
s,k � M1

k

∫
{s−k<|v|<s}

(a(v,∇v)∇v + |g|p′
) dxdτ. (4.26)

Estimates (4.22)–(4.26) imply (4.21).

Step 3. We are now in a position to prove that u = v almost everywhere in QT .
To this end, we pass to the supremum limit as σ goes to 0 and then to the

supremum limit as k goes to 0 in (4.9). Indeed, due to (4.13) we have that∫
Ω

|Ts(u)(t) − Ts(v)(t)| dx � − lim inf
σ→0

lim sup
k→0

1
k

Aσ
s,k(t)

+ lim sup
σ→0

lim sup
k→0

1
k

(|Ãσ
s,k(t)| + |C̃σ

s,k(t)| + |G̃σ
s,k(t)|)

+ lim sup
σ→0

lim sup
k→0

1
k

(|Cσ
s,k(t)| + |Gσ

s,k(t)|)

+ lim sup
σ→0

lim sup
k→0

1
k

Fσ
s,k(t)

for any s > 0 and for almost any t ∈ (0, T ).
In view of (4.14), (4.15), (4.17) and (4.21) we deduce that
∫

Ω

|Ts(u)(t) − Ts(v)(t)| dx � M1 lim sup
k→0

1
k

Γ (u, v, s, k)

+ M1 lim sup
σ→0

1
σ

Γ (u, v, s, σ) + ω(s) (4.27)

for any s > 0, for almost any t ∈ (0, T ) and where ω(s) → 0 as s → ∞.
Recalling that u (respectively, v) is finite almost everywhere in QT , Ts(u)(t)

(respectively, Ts(v)(t)) converges almost everywhere to u(t) (respectively, v(t)) as
s goes to infinity for almost any t ∈ (0, T ). By Fatou’s lemma we can pass to the
infimum limit as s goes to +∞ in (4.27) and we obtain, for almost any t ∈ (0, T ),
that ∫

Ω

|u(t) − v(t)| dx � 2M1 lim inf
s→+∞

lim sup
k→0

1
k

Γ (u, v, s, k). (4.28)

Lemma 4.1 allows us to conclude that∫
Ω

|u(t) − v(t)| dx = 0

for almost any t ∈ (0, T ), so u = v almost everywhere in QT .
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In the case of the complete operator we need the following lemma, which concerns
Boccardo–Gallouët-type estimates in Lorentz spaces.

Lemma 4.2. Assume that QT = Ω × (0, T ), with Ω an open subset of R
N of

finite measure and p > 1. Let u be a measurable function satisfying Tk(u) ∈
L∞((0, T ); L2(Ω)) ∩ Lp((0, T ); W 1,p

0 (Ω)) for every k > 0, and such that, for α >
2(N + 1)/(N + 2),

sup
t∈(0,T )

∫
Ω

|Tk(u(t))|2 � kM and
∫ T

0

∫
Ω

|∇Tk(u)|α � C0k
α/2Mα/2, (4.29)

where M and C0 are positive constants. Then,

‖u‖Lα(N+2)/2N,∞(QT ) � CM (4.30)

and

|‖∇u|‖Lα(N+2)/2(N+1),∞(QT ) � CM, (4.31)

where C is a constant depending only on N and C0.

Such a result being standard, we omit the proof of lemma 4.2 (see, for example,
the proof of [13, lemma A.1] with a few modifications).

Proof of theorem 3.2. The proof is divided into four steps. As in the previous the-
orem we consider two renormalized solutions u and v of (2.1) for the same data f ,
g and u0. In step 1, we plug the test function Tk(T σ

s (u)−T σ
s (v)) into the difference

of equations (2.15) for u and v with S = T σ
s (defined in (4.8)) and we obtain (4.32).

Step 2 is devoted to estimating the terms of (4.32). In step 3 we pass to the limit as
σ → 0 and s → +∞, k being fixed. Finally, in step 4, using lemma 4.2, we give an
estimate of ∇u − ∇v in some suitable Lorentz spaces, which allows us to conclude
that u = v.

Step 1. Let u and v be two renormalized solutions to (2.1) for the same data f , g
and u0. For every real number s > 0 and σ > 0 we take S = T σ

s in (2.15) for u and
v. By plugging in the test function Tk(T σ

s (u) − T σ
s (v)) into the difference of these

two equations, we obtain, upon integration on (0, t), that

∫ t

0

〈
∂

∂t
[T σ

s (u) − T σ
s (v)], Tk(T σ

s (u) − T σ
s (v))

〉
dτ + Aσ

s,k(t) + Ãσ
s,k(t)

= Bσ
s,k(t) + Cσ

s,k(t) + C̃σ
s,k(t) + Fσ

s,k(t) + Gσ
s,k(t) + G̃σ

s,k(t) (4.32)

for every k > 0, s > 0, σ > 0 and for almost any t ∈ (0, T ), where

Bσ
s,k(t) = −

∫ t

0

∫
Ω

[(T σ
s )′(u)H(∇u) − (T σ

s )′(v)H(∇u)]Tk(T σ
s (u) − T σ

s (v)) dxdτ

and the remainder terms are defined in the proof of theorem 3.1. We now pass to
the limit in (4.32) as σ goes to zero and then as s goes to +∞.
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Step 2. We recall that, for almost any t ∈ (0, T ),

∫ t

0

〈
∂

∂t
[T σ

s (u) − T σ
s (v)], Tk(T σ

s (u) − T σ
s (v))

〉
dτ =

∫
Ω

Ψk(T σ
s (u)(t) − T σ

s (v)(t)) dx.

Due to the definition of T σ
s we obtain that

lim
σ→0

∫ t

0

〈
∂

∂t
[T σ

s (u)−T σ
s (v)], Tk(T σ

s (u)−T σ
s (v))

〉
dτ =

∫
Ω

Ψk(Ts(u)(t)−Ts(v)(t)) dx

and, since u and v are finite almost everywhere in QT , from Fatou’s lemma it follows
that

lim inf
s→+∞

lim
σ→0

∫ t

0

〈
∂

∂t
[T σ

s (u) − T σ
s (v)], Tk(T σ

s (u) − T σ
s (v))

〉
dτ

�
∫

Ω

Ψk(u(t) − v(t)) dx. (4.33)

Since H(∇u) and H(∇v) belong to L1(QT ) and since u and v are finite almost
everywhere in QT , the Lebesgue theorem yields that

lim
s→+∞

lim
σ→0

Bσ
s,k(t) = −

∫ t

0

∫
Ω

[H(∇u) − H(∇v)]Tk(u − v) dxdτ.

Using the Lipschitz condition (3.4) on H and (3.6) we obtain that

∫ t

0

∫
Ω

|[H(∇u) − H(∇v)]Tk(u − v)| dxdτ

� k‖b‖Lλ,1(Qt)‖1 + |∇u| + |∇v|‖σ
Lq,∞(Qt)|‖∇u − ∇v|‖Lθ,∞(Qt),

with

1
λ

+
σ

q
+

1
θ

= 1, 1 � q � N(p − 1) + p

N + 1
, θ =

N + 2
N + 1

and λ � N + 2.

It follows that, for almost any t ∈ (0, T ),

lim
s→+∞

lim
σ→0

|Bσ
s,k(t)| � k‖b‖Lλ,1(Qt)‖1 + |∇u| + |∇v|‖σ

Lq,∞(Qt)|‖∇u − ∇v|‖Lθ,∞(Qt).

(4.34)
Since f belongs to L1(QT ) while u and v are finite almost everywhere in QT we
have that

lim
s→+∞

lim
σ→0

Fσ
s,k(t) = lim

s→+∞

∫ t

0

∫
Ω

f [χ{|u|�s} − χ{|v|�s}]Tk(Ts(u) − Ts(v)) dxdτ

= 0. (4.35)
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We now deal with Aσ
s,k, Cσ

s,k and Gσ
s,k. From the definition of T σ

s and (3.5) we get
that

lim
σ→0

Aσ
s,k(t)

=
∫ t

0

∫
Ω

[χ{|u|�s}a(∇u) − χ{|v|�s}a(∇v)]∇Tk(Ts(u) − Ts(v)) dxdτ

=
∫ t

0

∫
Ω

χ{Ts(u)−Ts(v)|<k}[a(∇Ts(u)) − a(∇Ts(v))](∇Ts(u) − ∇Ts(v)) dxdτ

� β

∫ t

0

∫
Ω

χ{Ts(u)−Ts(v)|<k}(1 + |∇Ts(u)| + |∇Ts(v)|)p−2

× |∇Ts(u) − ∇Ts(v)|2 dxdτ.
(4.36)

Since u and v are finite almost everywhere, Fatou’s lemma then implies that

lim inf
s→+∞

lim
σ→0

Aσ
s,k

� β

∫ t

0

∫
Ω

χ{|u−v|<k}(1 + |∇u| + |∇(v)|)p−2|∇u − ∇v|2 dxdτ. (4.37)

Using assumption (3.3) we have that

lim
σ→0

|Cσ
s,k(t)| �

∫ t

0

∫
Ω

|χ{|u|�s}K(u) − χ{|v|�s}K(v)|

× |∇Tk(Ts(u) − Ts(v))| dxdτ

�
∫ t

0

∫
Ω

χ{|u|�s}∩{|v|�s}c(x, τ)(1 + |u| + |v|)τ

× |u − v||∇Tk(u − v)| dxdτ

+
∫ t

0

∫
Ω

χ{s−k<|v|�s}|K(v)||∇v| dxdτ

+
∫ t

0

∫
Ω

χ{s−k<|u|�s}|K(u)||∇u| dxdτ. (4.38)

From Hölder’s inequality and (3.6) we obtain that

∫ t

0

∫
Ω

c(x, τ)(1 + |u| + |v|)τ |∇u − ∇v| dxdτ

� ‖c‖Lr,1(Qt)‖1 + |u| + |v|‖τ
Lq̄,∞(Qt)|‖∇u − ∇v|‖Lθ,∞(Qt), (4.39)

with

1
r

+
τ

q̄
+

1
θ

= 1, 1 � q̄ � N(p − 1) + p

N
, θ =

N + 2
N + 1

and r >
N + p

p − 1
.

From the regularities of c, u, v, ∇u and ∇v it follows that c(x, τ)(1+|u|+|v|)τ |∇u−
∇v| belongs to L1(Qt) for any t ∈ (0, T ). Recalling the definition (4.2) of Θ in
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lemma 4.1 leads to

lim
σ→0

|Cσ
s,k(t)| � k‖c‖Lr,1(Qt)‖1 + |u| + |v|‖τ

Lq̄,∞(Qt)

× |‖∇u − ∇v|‖Lθ,∞(Qt) + Θ(u, v, s, k) (4.40)

for any k > 0.
We now study Gσ

s,k(t). We first have that

lim
σ→0

Gσ
s,k(t) =

∫ t

0

∫
Ω

g[χ{|u|<s} − χ{|v|<s}]∇Tk(Ts(u) − Ts(v)) dxdt.

It follows that

lim
σ→0

|Gσ
s,k(t)| �

∫ t

0

∫
Ω

χ{s−k<|u|<s}|g||∇u| dxdτ

+
∫ t

0

∫
Ω

χ{s−k<|v|<s}|g||∇v| dxdτ.

With Young’s inequality and integrating on QT in place of Ω×(0, t) we obtain that

lim
σ→0

|Gσ
s,k(t)| � 1

p′

∫
QT

(χ{s−k<|u|<s} + χ{s−k<|v|<s})|g|p′
dxdτ

+
1
p

∫
{s−k<|u|<s}

|∇u|p dxdτ +
1
p

∫
{s−k<|v|<s}

|∇v|p dxdτ.

Since u and v are finite almost everywhere in QT the function (χ{s−k<|u|<s} +
χ{s−k<|v|<s})|g|p′

converges to zero as s goes to +∞ in L1(QT ). Since the operator
a is elliptic (see assumption (2.2)) and recalling the definition of Θ in lemma 4.1,
we then obtain that

lim
σ→0

|Gσ
s,k(t)| � 1

α0
Θ(u, v, s, k) + ω(s), (4.41)

where ω(s) is a generic function that converges to 0 as s goes to infinity.
We recall (see (4.17) in the proof of theorem 3.1) that, for almost any t ∈ (0, T ),

|Ãσ
s,k(t)| + |C̃σ

s,k(t)| + |G̃σ
s,k(t)| � M1k

σ
Γ (u, v, s, σ). (4.42)

From estimates (4.40)–(4.42) it follows that

lim sup
σ→0

(|Cσ
s,k(t)| + |Ãσ

s,k(t)| + |Gσ
s,k(t)| + |C̃σ

s,k(t)| + |G̃σ
s,k(t)|)

� k‖c‖Lr,1(Qt)‖1 + |u| + |v|‖τ
Lq̄,∞(Qt)|‖∇u − ∇v|‖Lθ,∞(Qt)

+ Θ(u, v, s, k) +
1
α0

Θ(u, v, s, k) + ω(s)

+ M1k lim sup
σ→0

1
σ

Γ (u, v, s, σ).
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By the above inequality and lemma 4.1 we can conclude that, for almost any t ∈
(0, T ),

lim inf
s→+∞

lim sup
σ→0

(|Cσ
s,k(t)| + |Ãσ

s,k(t)| + |Gσ
s,k(t)| + |C̃σ

s,k(t)| + |G̃σ
s,k(t)|)

� k‖c‖Lr,1(Qt)‖1 + |u| + |v|‖τ
Lq̄,∞(Qt)|‖∇u − ∇v|‖Lθ,∞(Qt). (4.43)

Step 3. We are now able to pass to the limit in (4.32). Indeed, gathering (4.33)–
(4.35), (4.37) and (4.43), we get that∫

Ω

Ψk(u(t) − v(t)) dx

+
β

2

∫ t

0

∫
Ω

χ{|u−v|<k}(1 + |∇u| + |∇(v)|)p−2|∇u − ∇v|2 dxdτ

� k‖c‖Lr,1(Qt)‖1 + |u| + |v|‖τ
Lq̄,∞(Qt)|‖∇u − ∇v|‖Lθ,∞(Qt)

+ k‖b‖Lλ,1(Qt)‖1 + |∇u| + |∇v|‖σ
Lq,∞(Qt)|‖∇u − ∇v|‖Lθ,∞(Qt)

for almost any t ∈ (0, T ). It is worth noting that the above inequality implies that

χ{|u−v|<k}(1 + |∇u| + |∇(v)|)p−2|∇u − ∇v|2 ∈ L1(QT ).

Since (1 + |ξ| + |ξ′|)p−2|ξ − ξ′|2 � |ξ − ξ′|2 for any ξ, ξ′ in R
N , we obtain that

Tk(u − v) belongs to L2((0, T ); H1
0 (Ω)).

Due to the definition of Ψk, taking the supremum for t ∈ (0, t1), where t1 ∈ (0, T )
will be chosen later, leads to

1
2

sup
t∈(0,t1)

∫
Ω

|Tk(u − v)|2 dx +
β

2

∫ t1

0

∫
Ω

|∇Tk(u − v)|2 dxdτ � kM, (4.44)

where

M = ‖b‖Lλ,1(Qt1 )‖1 + |∇u| + |∇v|‖σ
Lq,∞(Qt1 )|‖∇u − ∇v|‖Lθ,∞(Qt1 )

+ ‖c‖Lr,1(Qt1 )‖1 + |u| + |v|‖τ
Lq̄,∞(Qt1 )|‖∇u − ∇v|‖Lθ,∞(Qt1 ). (4.45)

By (4.44) and lemma 4.2 we get that

‖∇u − ∇v‖Lθ,∞(Qt1 ) � CM (4.46)

for some constant C > 0 independent of u and v and θ = (N + 2)/(N + 1).

Step 4. Using (4.45) and (4.46) we obtain that

|‖∇u − ∇v|‖Lθ,∞(Qt1 )

� C[‖b‖Lλ,1(Qt1 )‖1 + |∇u| + |∇v|‖σ
Lq,∞(Qt1 )

+ ‖c‖Lr,1(Qt1 )‖1 + |u| + |v|‖τ
Lq̄,∞(Qt1 )]|‖∇u − ∇v|‖Lθ,∞(Qt1 ). (4.47)

Since c belongs to Lr,1(QT ) and since b belongs to Lλ,1(QT ), if we choose t1 small
enough such that

1−C(‖b‖Lλ,1(Qt1 )‖1+|∇u|+|∇v|‖σ
Lq,∞(Qt1 )+‖c‖Lr,1(Qt1 )‖1+|u|+|v|‖τ

Lq̄,∞(Qt1 )) > 0,

(4.48)
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then (4.47) gives that

|‖∇u − ∇v|‖Lθ,∞(Qt1 ) � 0, (4.49)

with θ = (N + 2)/(N + 1).
Now, we use the same technique as in [23] (see also [13]). We consider a partition of

the entire interval [0, T ] into a finite number of intervals [0, t1], [t1, t2], . . . , [tn−1,T ]
such that for each interval [ti−1, ti] a similar condition to (4.48) holds. In this way,
in each cylinder Qti

= Ω × [ti−1, ti] we obtain estimates of type (4.49). We can then
deduce that

|‖∇u − ∇v|‖Lθ,∞(QT ) � 0 for some θ � 1,

which implies that u = v almost everywhere in QT .

Proof of theorem 3.3. The strategy of the proof is the same as in theorem 3.2 and
relies on passing to the limit in (4.32). The main differences are in dealing with the
terms Aσ

s,k(t), Bσ
s,k and Cσ

s,k(t) and the estimate on ∇Tk(u − v). We recall (4.32):

∫ t

0

〈
∂

∂t
[T σ

s (u) − T σ
s (v)], Tk(T σ

s (u) − T σ
s (v))

〉
dτ + Aσ

s,k(t) + Ãσ
s,k(t)

= Bσ
s,k(t) + Cσ

s,k(t) + C̃σ
s,k(t) + Fσ

s,k(t) + Gσ
s,k(t) + G̃σ

s,k(t)

for any s > 0, any k > 0 and any σ > 0 and for almost any t ∈ (0, T ). Reasoning
as in theorem 3.2, by assumption (3.7) we obtain that

lim inf
s→+∞

lim
σ→0

Aσ
s,k(t) � β

∫ t

0

∫
Ω

χ{|u−v|<k}
|∇u − ∇v|2

(|∇u| + |∇v|)2−p
dxdτ. (4.50)

As far as Bσ
s,k(t) is concerned, a few computations, estimates (2.18) and (2.19),

condition (3.8) and Hölder’s inequality lead to

∫ t

0

∫
Ω

|[H(∇u) − H(∇v)]Tk(u − v)| dxdτ

� k‖b‖Lλ,1(Qt)‖1 + |∇u| + |∇v|‖σ
Lq,∞(Qt)|‖∇u − ∇v|‖Lθ,∞(Qt),

with

1
λ

+
σ

q
+

1
θ

= 1, 1 � q � N(p − 1) + p

N + 1
,

θ =
α(N + 2)
2(N + 1)

, λ � N + 2 and α <
2p(N + 1) − 2N

N + 2
.

Similarly, we obtain

lim inf
s→+∞

lim
σ→0

|Cσ
s,k(t)| � k‖c‖Lr,1(Qt)‖1 + |u| + |v|‖τ

Lq̄,∞(Qt)|‖∇u − ∇v|‖Lθ,∞(Qt),

(4.51)
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with

1
r

+
τ

q̄
+

1
θ

= 1, 1 � q̄ � N(p − 1) + p

N
,

θ =
α(N + 2)
2(N + 1)

, r >
N + p

p − 1
and α <

2p(N + 1) − 2N

N + 2
.

Then, the analogous expression to (4.44) is

1
2

sup
t∈(0,t1)

∫
Ω

|Tk(u − v)|2 dx + β

∫ t1

0

∫
Ω

|∇Tk(u − v)|2
(|∇u| + |∇v|)2−p

dxdt � kM, (4.52)

where t1 will be chosen later and where M is defined in the proof of theorem 3.2
(see (4.45)). We then obtain that

β

∫ t1

0

∫
Ω

|∇Tk(u − v)|2
(|∇u| + |∇v|)2−p

dxdt � Mk, (4.53)

1
2

sup
t∈(0,t1)

∫
Ω

|Tk(u − v)|2 � Mk. (4.54)

If 1 � α < p, by Hölder’s inequality and (4.53) we have that

∫ t1

0

∫
Ω

|∇Tk(u − v)|α dxdt

=
∫ t1

0

∫
Ω

|∇Tk(u − v)|α (|∇u| + |∇v|)(2−p)α/2

(|∇u| + |∇v|)(2−p)α/2 dxdt

�
( ∫ t1

0

∫
Ω

|∇Tk(u − v)|2
(|∇u| + |∇v|)2−p

dxdt

)α/2

×
( ∫ t1

0

∫
Ω

(|∇u| + |∇v|)(2−p)α/(2−α) dxdt

)(2−α)/2

� (Mk)α/2
( ∫ t1

0

∫
Ω

(|∇u| + |∇v|)(2−p)α/(2−α) dxdt

)(2−α)/2

. (4.55)

By (2.18), the last integral in (4.55) is finite if

α <
2p(N + 1) − 2N

N + 2
. (4.56)

We observe that (4.56) and the condition on α in lemma 4.2 are compatible only if
p > 2 − 1/(N + 1). Then, by (4.55), (4.56) and by Hölder’s inequality we have that

∫ t1

0

∫
Ω

|∇Tk(u − v)|α dxdt � C(Mk)α/2, (4.57)

where C is a constant independent of t1.

https://doi.org/10.1017/S0308210511001831 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210511001831


Renormalized solutions to nonlinear parabolic problems 1207

By (4.54), (4.57) and the definition of M , for θ = α(N + 2)/2(N + 1), lemma 4.2
yields

|‖∇u − ∇v|‖Lθ,∞(Qt1 ) � C[‖b‖Lλ,1(Qt1 )‖1 + |∇u| + |∇v|‖σ
Lq,∞(Qt1 )

+ ‖c‖Lr,1(Qt1 )‖1 + |u| + |v|‖τ
Lq̄,∞(Qt1 )]

× |‖∇u − ∇v|‖Lθ,∞(Qt1 ). (4.58)

Under hypotheses (3.8) we can choose t1 small enough such that (4.48) holds. Then,
by (4.58) and (4.48) it follows that, for θ = α(N + 2)/2(N + 1),

|‖∇u − ∇v|‖Lθ,∞(Qt1 ) � 0.

Arguing as in theorem 3.2, we conclude that u = v almost everywhere in QT .
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16 O. Guibé and A. Mercaldo. Uniqueness results for non-coercive nonlinear elliptic equations
with two lower-order terms. Commun. Pure Appl. Analysis 7 (2008), 163–192.

17 G. G. Lorentz. Some new functional spaces. Annals Math. 51 (1950), 37–55.
18 F. Murat. Soluciones renormalizadas de EDP elipticas non lineales. Laboratoire d’Analyse

Numérique, Paris VI, Technical Report R93023 (1993).
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