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SUMMARY
As various robots are anticipated to coexist with humans in the near future, safe manipulation
in unknown, cluttered environments becomes an important issue. Manipulation in an unknown
environment, however, has been proven to be NP-Hard and the risk of unexpected human–robot
collision hampers the dawning of the era of human–robot coexistence. We propose a non-contact-
based sensitive skin as a means to provide safe manipulation hardware and interleaving planning
between the workspace and the configuration space as software to solve manipulation problems in
unknown, crowded environments. Novelty of the paper resides in demonstration of real time and
yet complete path planning in an uncertain and crowded environment. To that end, we introduce the
framework of the sensor-based interleaving planner (SBIP) whereby search completeness and safe
manipulation are both guaranteed in cluttered environments. We study an interleaving mechanism
between sensation in a workspace and execution in the corresponding configuration space for real-time
planning in uncertain environments, thus the name interleaving planner implies.

Applications of the proposed system include manipulators of a humanoid robot, surgical
manipulators, and robotic manipulators working in hazardous and uncertain environments such as
underwater, unexplored planets, and unstructured indoor spaces.

KEYWORDS: Sensor-based planning; point cloud; unknown environment motion planning; collision
avoidance.

1. Introduction
Imagine that you command a robot to bring a milk bottle from your refrigerator. Imagine you command
a robot to bring a hammer from your storage, yes, from a messy storage. Robots function well in a
well-defined workspace, but not in an uncertain and crowded environment. Robots, nowadays, can
climb up a stair, can avoid obstacles, move on an uneven terrain such as mountain, unpaved road, etc.
However, manipulation in a crowed environment without causing collision and yet achieving search
completeness is still an unsolved problem. Therefore, for human–robot coexistence, challenges are to
impart safe autonomy in manipulation for cluttered environments. Several recent works exemplifies
planning in cluttered environments.1–5 For the planning strategy in ref. [1], a skin type sensor may
be needed to make it feasible for whole-body reactive planning in a cluttered environment. In ref.
[2], a point robot guided by a greedy search technique in a cluttered environment successfully
demonstrated path planning capability, taking advantage of mechanical simplicity. A fast obstacle
avoidance algorithm in cluttered environments is demonstrated in ref. [3] by approximating obstacles
to convex shapes thereby no local minima exists. Other examples in this regard4,5 demonstrate
escalating interests in the area of manipulation in cluttered environments.
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Unknown environment motion planning is one of the most daunting tasks especially for a
manipulator type robot such as a humanoid or multiple arm robots. Sensor-based approaches have
been the most dominant trend in the study of unknown environment planning for decades. When it
comes to unknown environment planning, a planner calls for continuous perception and execution.
Due to the nature of planning in unknown environments, probabilistic search in configuration space
becomes the most buyable approach. Therefore, the dilemma of perception in a workspace and
execution in the corresponding configuration space has to be resolved.

SLAM (Simultaneous Localization and Mapping) is the well-known approach for mobile robot
navigation and planning in unknown environments. Since a mobile robot is treated as a point
automaton, a probabilistically complete planner is applicable directly without interleaving between a
workspace and the corresponding configuration space. However, for a manipulator, since perception
takes place in the robot’s workspace and probabilistic planning needs the corresponding configuration
space for search completeness, interleaving between the workspace and the configuration space is
inevitable.

While several AI planning techniques such as hierarchical planning and action–reaction planning
have been introduced, interleaving planning has been evidenced in offering solutions to otherwise
difficult or impossible planning problems such as planning in a dynamic environment. The concept
of interleaving planning was coined in the 1970s and is exemplified by Ambros-Ingerson and
Steel’s work.6 Nourbakhsh and Reza classified interleaving strategies into two categories: subgoaling
and simplification.7 As the concept has been further developed with advanced computational
techniques, numerous studies have leveraged the adaptive manner of interleaving planning. For
example, Kaelbling and Lozano-Perez showed hierarchical replanning and execution with geometric
reasoning.8

Furthermore, interleaving planning extended its domain to various areas over the last decade. In
ref. [9], planning in a dynamic environment is challenged via interleaving planning between sensing
and execution. Motion planning of a robot with five simultaneously moving grippers in a carousel
is tackled via interleaving planning. Planning and execution are interwoven to each other to ensure
near-optimal performance with random requests in a dynamic environment. In ref. [10], interleaving
between a symbolic planner and a geometric planner takes place to bridge the gap between higher level
abstract planning and motion planning in a real world. To develop an interwoven symbolic–geometric
domain, backtracking is used as an important interleaving mechanism. The model predictive planner
in ref. [11] exemplifies the interleaving planning in that two sequentially executed planners: a task-
space and a joint-space planner are interwoven for contact force sensing and robot execution.

One disadvantage of such interleaving planners, if performed between perception and actuation,
is that there is always a time delay between stages since perception and actuation cannot take place
simultaneously. Albeit the disadvantage due to time delay, interleaving planning is the most pragmatic
methodology for a manipulator planning problem in a cluttered environment since a probabilistically
complete planner solves a path problem if a tractable path exists. Sensing completeness has to be
guaranteed for an interleaving planner though (see Section 3). In order to apply a probabilistic
motion planner such as PRM12 or RRT13 at each step of global planning, a partial c-space has to
be revealed. Although some attempts are made in analytic c-space computation for a simple case,14

the construction of a c-space from a sensed workspace requires lengthy simulation since no analytic
functional mapping is available for a complex, clustered environment. Therefore, there are four issues
to solve a safe manipulator planning in a cluttered, completely unknown environment.

(1) Complete sensing of surrounding workspace in real time.
(2) Creating a partial workspace from sensed data.
(3) Creating a partial c-space via simulation.
(4) Probabilistic motion planning in the partially created c-space.

As mentioned earlier, between step 2 and 4, partial c-space creation takes a non-zero time period
thus the robot may have to be stationary until the simulation for c-space creation finishes. We
use probabilistic sampling based simulation to create partial c-spaces. This will lead to frequent
interruptions of the overall motion since the planner needs partially created c-spaces. Therefore,
a unique challenge of the proposed solution is to minimize motion interruptions to streamline the
overall robot motion assuring safe manipulation. Our strategy is to minimize each step cycle, or
motion resolution for minimally disrupted continuous motion. In addition, we use real-time OS to run
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Fig. 1. A framework of sensor-based interleaving planner.

four engine threads simultaneously (See Fig. 1). Data exchange between each engine is only allowed
via status flags for real-time execution. In the next section, we discuss each stage of the proposed
solution in more detail.

2. Sensor-Based Interleaving Planner (SBIP)
In this section, we discuss the framework of the proposed interleaving planner for safe manipulation
in crowded environments. Important issues in each stage will be addressed and discussed.

2.1. Safe sensing of a partial surrounding workspace in real time
For safe manipulation in an unknown, crowded environment, real-time sensing of a surrounding
workspace is the essential enabling technology. Important issues in this stage are safe sensing (none-
contact based) and sensing completeness (see Section 3 for more detail). In other words, the planner
should provide a solution as to how to reveal a partially complete workspace without collision. Partially
complete workspaces are needed for probabilistically complete planning in the corresponding c-space.
Several workspace sensing or mapping techniques have been reported. The eye-in-hand sensor system
has been developed to reduce c-space Entropy for planning and exploration.15 Natural planning
and expanding steps of c-spaces are repeated in the paper for unknown environment path planning.
However, the eye-in-hand sensor is limited in reporting collision or in surrounding workspace mapping
due to visual occlusion.

Another study includes a moving camera on the ceiling for redundant manipulator planning.16 The
collision avoidance or environment mapping ability is, to some extent, limited due to limited visibility.
Therefore, for safe and complete sensing, it is inevitable to have omnidirectional and full body sensing
capability. We believe that a sensitive skin type sensing technique is the only remedy for safe and
complete sensing. To that end, we propose a fish-eye lens equipped 3D sensor system distributed
around the entire body of the robot (see Fig. 2). Unlike other 3D depth technologies,17,18 our sensing
technology is based on real-time infrared photometry.19,20 The monocular camera-based sensing
device is tuned to be able to detect objects from 1 cm to 40 cm range. The ambient light rejection
technique enables the sensor to react only to the light source of its own. The firing mechanism
of each sensor has to be orchestrated to prevent crosstalk, but doable via frequency modulation.
The configuration of sensor installation is another important issue for complete coverage of the robot
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Fig. 2. 3D Depth sensor & sensing range.

Fig. 3. Light intensity measure for two different light sources (a) and the intensity ratio curve (b).

body. In our experiment, we installed five sensors on the second link just for simplicity in experiments
assuming no obstacle will be first faced by the first link.

The infrared intensity ratio-based 3D depth measurement technique we invented is, in principle,
different to that of the time of flight (TOF)-based 3D depth measurement technique. First, two light
sources with different characteristics are used to produce two different regression curves between the
intensity ratio and the distance to an object. For instance, one light source with smaller half intensity
angle (HIA) with higher intensity can produce a relatively linear regression curve, while another
source with larger HIA with lower intensity produces an exponentially degrading curve as distance
increases (see Fig. 3 (a)). If the intensity pattern, D, from respective intensity characteristics, I, and
the distance to the object, d, is as below,

D1(x, y, z) = KREFT (x, y) · I1(x, y, z)

d2 (x, y)
(1)

D2(x, y, z) = KREFT (x, y) · I2(x, y, z)

d2 (x, y)
, (2)

then, by dividing two equations, the effect of local reflectibility KREFT (x, y) is cancelled, resulting in
the following relation.

D1(x, y, z)

D2(x, y, z)
= I1(x, y, z)

I2(x, y, z)
. (3)
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Fig. 4. Relationship between P i
j and PW .

Once the ratio curve is tabulated with a calibration data, the distance can be found easily with a
polynomial equation from the ratio and the distance relationship. Depending on the light sources,
there is a dead zone occurring in the sensing range. For instance, in Fig. 3, the ratio curve (b) is not
a monotonic function in terms of distance. Therefore, it is important to create a unique combination
of two different light sources to minimize the dead zone in the sensing range. Introduced sensing
mechanism successfully demonstrated 3D depth sensing for non-contact-based collision checking
with any object within the range of 45cm hemisphere range (see Fig. 4). The proof of sensing
completeness of the proposed sensor is discussed in Section 3.

2.2. Creating a partial workspace from sensed data
The proposed sensing system is capable of mapping the surroundings of the manipulator in real time
to a group of point clouds. Point cloud data sets corresponding to the sensed obstacle have to be
transformed into global coordinates by forward kinematics such as

Pw =
N⋃

i=1

pi
j · Ti, (4)

where pi
j is a point cloud data from sensor j situated at a link i, and Ti is the transformation matrix.

N is the number of links of the manipulator. Therefore, Pw manifests the workspace in point cloud
format revealed by 3D sensors.

In order to facilitate and expedite the c-space point cloud generation process, we assumed that
workspace obstacles are all in spherical shape since the datum estimation of a sphere is simple and
accurate. For instance, profile fitting for sphere surface datum for rotation is unnecessary. One easier
fitting method of a sphere to point clouds is introduced in ref. [22]. That is, from analytic geometry,
the equation of a sphere becomes

c1(x2 + y2 + z2) + c2(x) + c3(y) + c4(z) + c5 = 0. (5)

Using the following determinant equation, for instance, for four point cloud data sets, the sphere
equation is found by resolving the determinant.

∣∣∣∣∣∣∣∣∣∣∣

(
x2 + y2 + z2

)
x y z 1(

x2
1 + y2

1 + z2
1

)
x1 y1 z1 1(

x2
2 + y2

2 + z2
2

)
x2 y2 z2 1(

x2
3 + y2

3 + z2
3

)
x3 y3 z3 1(

x2
4 + y2

4 + z2
4

)
x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣
= 0. (6)
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2.3. Creating a partial c-space via simulation
For a given partial workspace point cloud set, Pw, at an instance, we create a local c-space map using
RRT (Rapid expanding Random Tree), one of probabilistic sampling algorithms, such that

Brobot,W −→RRT
Pc := {pm ∈ Ck |m = 1, . . . , M }, (7)

where C is the c-space for the robot, k is the degree of freedom of the c-space, and M is the number
of point cloud data produced by the mapping process. Brobot is the kinematic model of the robot and
W is the workspace revealed up to the current cycle. In order to collect c-space point clouds, RRT
takes Brobot and W as inputs and expands RRT tree to collect ‘q (c-space configuration)’ that causes
collision with obstacles. The robot has to stop its motion during partial c-space creation by the RRT
technique with the partially created virtual workspace. In order to expedite the mapping process and
to minimize abrupt discontinuities in motion due to lengthy online simulation, we use a simplified
two linkage model of the robot for collision check. In Section 5, an experiment using a six-DOF
robot with only the first three-DOF enabled is introduced. Algorithm 1 below represents a method
as to how to map a partial c-space by the RRT technique. First, for an empty point cloud set, �n,
RRT grows a tree collecting ‘q’ of all collision free configurations. During the pocess, ‘q’ that causes
collision is explicitly collected as a c-space point cloud. Pc, the c-space point cloud set, grows as
such ‘q’ is added into the set. We check the Gaussian density distribution of the c-space point clouds
to terminate the mapping process at each stage by Eq. (8). qmean in Eq. (8) is the mean value of all
configurations.

σd =
√

1

N

∑N

i=1
‖qi − qmean‖2. (8)

Algorithm 1 Partial c-space mapping
q: c-space configuration
�n: collection of c-space point clouds
TRRT : RRT Tree
BROBOT (q): workspace robot model for given configuraiton by q
W: Partial workspace
PW : workspace point clouds
PC : c-space point clouds
δ�: threshold value of the Gaussian density distribution
�n ={};

do while σd(�n) > δ�

q ← Grow TRRT/∗ by RRT (qn, qgoal)−P lanning∗/
�n = �n

⋃
q/∗P lanning∗/

W ← PW /∗ by base-level posture estimation ∗/
if BROBOT (q) ∩ w �= 0/∗ if robot collides with PW – c-space creation ∗/
PC= PC

⋃
q/∗ then collect c−space point cloud−c−space creation∗/

end if
end do
return (TRRT , PC)

2.4. Probabilistic motion planning in a partial c-space
We use biased greedy search as motion planning strategy. SBIP is related to online replanning
algorithms such as Dynamic A∗ Lite by Koening and Likhachev where an incremental heuristic
search algorithm is presented.23

Algorithm 1 in the previous section shows the mapping algorithm, while Algorithm 2 represents the
motion planning strategy. The function d(,) returns n-dimensional Euclidian distance. The planning
strategy in Algorithm 2 is a simple greedy search algorithm biased toward the goal. If the goal
configuration is still far in distance, then the planner requests newly collected workspace point
clouds. After updating the workspace point clouds, the planer calls for mapping of a partial c-space
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Algorithm 2 SBIP path planning
qi : initial c-space configuration
qgoal: final c-space configuration
qrandom: random c-space configuration

TRRT = {}; /∗Initialize RRT T ree∗/
PW ={}; /∗Initialize workspace point cloud∗/
PC={}; /∗Initialize conf iguration space point cloud∗/
qi = Ø;
do while d(qi,qgoal) > ε

Collect P i
s /∗using sensitive skin − workspace creation∗/

PW = PW ∪ ∑N
i=1

(
P i

s · Ti

)
/∗update workspace point cloud−workspace creation∗/

Call Algorithm 1(TRRT , PW , PC, qi, qgoal)/∗ update RRT Tree and PC
∗/

Pick qi :d(q, qgoal) > d(qi, qgoal), q ∈ PC/∗greedy global search planning∗/
If (local minima)
Pick qi :qi = qrandom ∈ TRRT/∗planning∗/
end if
end do

by collecting c-space point clouds with RRT expansion. The function ‘Local minima’ returns positive
if the same q is multiply selected. A random configuration will be picked up from the current tree to
avoid local minima.

Rusu et al. proposed a 3D perception-based replanning architecture using a voxel-based collision
map constructed from a laser range-finder.24 For the replanning, they showed an offline replanning
method using a sampling based planner. In contrast, SBIP combines an online replanning method
with a probabilistic search-based planner to enable real-time planning in unknown environments.

3. Search Completeness of SBIP
Now we discuss the probabilistic completeness of the SBIP planner, specifically to show that SBIP is
guaranteed to eventually find a path from an initial configuration to a final configuration, if a tractable
path exists.

Definition:
q: a random configuration or a node in the expanded tree.
WT otal: a 3D occupancy grid for the workspace with discretization at resolution r. Therefore, an
element voxel of the grid is occupied when a random configuration, q, belongs to the element.

WCurrent := {W1, W2, . . . , Wi−1, Wi, }.

We also define,

QT = RRT(WT otal,qinit , qgoal),

where RRT is a probabilistic planner with proven completeness, where QT is a c-space trajectory
that, when followed, takes the robot from qinit to qgoal without collision for a given WT otal .

Suppose Wi is a subset of WT otal . At each iteration of SBIP, the robot uses its current map to plan
a trajectory as follows:

Qi = RRT(Wi, qi, qgoal),

where qi is a node closest to the goal by global greedy search algorithm picked up at each sequence.
Let us also define

Q0 = RRT(W0, q0, qgoal),

where q0 = qinit and W0 = Ø, whose cardinality is equal to zero, or |W0| = 0. W0, however, becomes
Wi as the workspace is partially created by the sensed point clouds.
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Fig. 5. Mapping between configuration space and workspace. Configuration space Workspace.

Assumption:
Wi is the subset of WT otal , therefore the maximum cardinality of WCurrent is equal to that of WT otal .

Each Wi is connected.

Lemma 1. SBIP is a complete planner.

Proof. RRT is guaranteed to return a trajectory, Qi , from the robot’s current configuration, qi , to
the goal, qgoal, if a tractable path exists, otherwise, halts if the point cloud density by Eq. (9) for a
given Wi exceeds a limit. Since Wi is the element of WTotal, and each Wi is connected, the robot can
retune to qinit anytime necessary. In addition, even if the planner halts at a boundary of WCurrent, it
adds new voxels from the sensed point clouds, thus the cardinality of WCurrent increases after each
iteration and maximum cardinality of WCurrent becomes |WTotal|. Then following is true.

If |WCurrent| = |WTotal| , then ∃Q |Q = RRT(WCurrent, qinit , qgoal).

Therefore, SBIP is guaranteed to reach qgoal . Since the proof did not use the fixed resolution, it
holds for any resolution for which a solution trajectory exists. �

One more assumption necessary to ensure the SBIP a complete planner is that the robot perfectly
senses and reveals the complete partial workspace at each step. That is, Wi , the workspace constructed
at each step of the search operation, should be a complete model matching the current environment,
otherwise the condition ‘|WCurrent | = |WT otal|’ cannot be met and RRT may not be able to connect
qinit and qgoal although there is a tractable path exists. Therefore, sensing completeness at each
stepwise motion has to be guaranteed for probabilistically complete manipulation in a cluttered,
unknown environment.

Let us consider a mapping between a workspace and a configuration space for a two bar linkage
robot. The planner RRT grows a tree by selecting an existing node and grows a branch in random
direction by

−→
�L, a non-zero stepwise movement, in c-space, while

−→
L is the location vector of the

current node in the tree.
As shown in Fig. 5, a step motion in c-space causes the robot to sweep a non-zero area (� A) in

workspace, where PB is an arbitrary point on the boundary or

SB = {PB |PB ∈ ∂�A }.

Therefore, if qi is a collision free configuration in c-space, then the robot creates non-zero swept
area by the robot in workspace. That is,

−→
�L = 0 ↔ obstacle is on the path and �A = 0,

−→
�L �= 0 ↔ path is free of obstacle and �A �= 0.

In reverse mapping, if � A �= 0, then the planner can create a corresponding vector, �
−→
L in c-space,

thus RRT can expand the tree. The reverse mapping is the primary mechanism for RRT expansion by
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collision checking in workspace. However, if � A = 0, then following is true.

�A = 0 ↔ ∃PB |PB ∈ !WF ,

where WF is collision free workspace. Now we define PR , a set of points on the surface of the robot
body, R, such that,

PR ∈ ∂R(θ1, θ2) or PR ∈ ∂R( �L).

And assume

S(PR) returns ‘0’ if PR ∈ WF , otherwise ‘1′.

That is,

S(PR) = ‘0’ if PR ∈ WF , S(PR) = 1 if PR ∈!WF .

Then, following lemma is true.

Lemma 2. ∃−→�L|−→�L �= 0 iff {S(PR)|PR ∈ ∂R(
−→
L + −→

�L)} = Ø.

Proof. If we define,

SR = {PR| PR ∈ ∂R}

then

∃PR: PR = PB if θ1, θ2, ..., θn = ε, where ε is non-zero, infinitesimally small value.

and

SB ↔ SR for small changes in θ1,θ2,...,θn

That is, SB and SR are in bijective functional relationship for a small motion. Since,

∃PB |PB ∈ !WF → �A = 0 .

Therefore,

∃PR |S(PR) = 1 → �A = 0 .

Furthermore, since

�A �= 0 → � �L �= 0.

Therefore,

For ∀PR

∣∣∣PR ∈ ∂R( �L + −→
�L) , if ∃PR |S(PR) = 1 → −→

�L = 0.

This proves Lemma 2. �
In conclusion, for the SBIP to be able to expand a tree in certain direction in an unknown

environment, entire body of the robot has to be free of collision at the configuration designated by−→
L + −→

�L, in c-space. This implies that every point on ∂R has to be sensitive.

Definition: A sensor has sensing completeness if,

For ∀PR

∣∣∣PR ∈ ∂R( �L + −→
�L) , S(PR) = 0 if PR ∈ WF , S(PR) = 1 if PR ∈!WF .
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Fig. 6. SBIP for three-DOF Manipulator (RRR) planning.

Fig. 7. Corresponding 3D C-space with planning trajectory.

Above definition implies that the robot should be able to estimate collision with any obstacle
throughout the entire body, otherwise tree expansion for online c-space creation is conclusively
impossible. There are only a few sensor types that are possibly claimed to have sensing completeness.
One is a sensitive skin type sensor25,26 and another is a haptic skin sensor introduced in.11,27 As for
the haptic skin sensor though, the nature of contact-based sensing may be used with reservation in
certain applications. Other single sensor-based approaches such as eye-in-hand, ceiling cameras, or a
laser depth sensor cause visual occlusion, resulting in loss of spatial information of the workspace. As
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Fig. 8. Performance indices.

Fig. 9. 3D sensor installation on a three-DOF robotic linkage.

a result, for search completeness of SBIP, sensing completeness has to be guaranteed. This justifies
the use of sensitive skin type non-contact sensors for manipulators operating in a complex, clustered
environment.

4. Simulation Results
In order to test the proposed algorithm, we setup a three-DOF revolutionary joint robot as a testbed
for simulation (see Fig. 6). The robot needs to avoid collision with all floating obstacles and reach
the goal under a table with a hole, through which is the only way to access the goal. For simplicity
in simulation, we applied non-zero thickness on the robot’s links to mimic depth sensing to detect
collision. Figure 7 shows the result of the path search in joint space by the SBIP.

For comparison, a sensor-based RRT planner and a model-based RRT planner13 are put into
simulation with the same environment. For 30 runs of each simulation, some statistics are shared in
Fig. 8. Total search time is the time in seconds from the beginning to the end of the search operation.
Number of Pc stands for the total number of c-space point clouds. The number of collision free nodes
is dramatically reduced for SBIP while not much of gain on the total collision nodes is reported. This
is primarily due to the nature of greedy global planning strategy. Crowded but relatively smaller size
of obstacles in the workspace would be another reason. As far as the number of collision free nodes
is concerned, balance between random search and goal-oriented greedy search should be considered
in case of complex environments with multiple local minima.
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Fig. 10. Robot configuration, virtual workspace, and c-space generation at 0.1 s elapsed.

The sensor-based RRT has a tendency of following the surface of obstacles by calculating the
density gradient of k-nearest neighborhood (See ref. [28] for more detail). Therefore, the number
of collision nodes exceeds that of model-based RRT. Another result noticeable is the significant
performance gain of the SBIP in search time compared to that of both sensor-based RRT and model-
based RRT. Again, the greedy global planning strategy and convex shape of obstacles in conjunction
with successful local minima avoidance nature of probabilistic planning are the main reasons.

5. Experiments
The target system for experiments is shown in Fig. 9 with five 3D sensors covering the second joint
for collision shield formation. The robot used for experiments is a six-DOF Adept viper manipulator
which is chosen primarily because of high-speed motion capability by low-inertia harmonic drives
and a lightweight arm to achieve maximum acceleration in each step motion. 8 kHz servo update rate
via its integrated 10/100 Base-T Ethernet for improved path following and control is another reason.
Multiple 3D sensors used to form sensitive skin around the body of manipulator are from DYNAST.
Cyclops II 3D sensors offer better ambient light noise control in short range for both indoor and
outdoor, so it provides reliability in indoor experiments. Each sensor describes point clouds in its own
local coordinate. Therefore, all of the point clouds have to be transformed to the global coordinate
to describe a partially revealed workspace. Transformation from the local coordinates to the global
coordinate for each point cloud is performed by Eq. (1).
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Fig. 11. Robot configuration, virtual workspace, and c-space generation at 15 s elapsed.

In this experiment, we assumed that the shape of the obstacles is known to be sphere in the
workspace just for the sake of convenience in experiments. This may seem defeating the purpose of
the paper on the first hand. However, since the only purpose of assumed shape and size of obstacles
is to accelerate workspace creation, collision check and faster visualization, the assumption does not
disqualify the proof of usefulness of the proposed planer.

Figures 10, 11, and 12 are snapshots of the search operations by SBIP algorithm. The same
robot is created in the virtual workspace for online c-space mapping by the RRT algorithm. In each
snapshot, there are five pictures at the bottom to represent the workspace point clouds for the detected
obstacles by five 3D cameras. During the c-space mapping stage, the robot becomes stationary since
non-zero time is required to grow a RRT for c-space point cloud collection. Each c-space point cloud
is collected whenever the virtual robot collides a work space obstacle as the RRT grows in c-space.
The black dots in each c-space represent the result of motion planning by the greedy global search
strategy.

Time analysis of each thread that constitutes the overall SBIP is performed. Ten to twelve steps
are observed during the multiple planning experiments. The frequency of each cycle may be adjusted
by spatial density distribution in Algorithm 2. As shown in Fig. 13, the total planning time for each
cycle is below 4 s at early stages, but it exponentially grows as the robot faces more obstacles and
accumulates more point clouds in c-space.
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Fig. 12. Robot configuration, virtual workspace, and c-space generation at 28 s elapsed.

Fig. 13. Time analysis of four threads.
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Since the bottleneck of the overall SBIP approach proposed in the paper is the real-time simulation
for c-space point cloud collection at each stepwise local motion, high end computation capability
will further streamline the global motion of the robot. If then, more complex planning problems such
as dual arm path planning or humanoid locomotion planning with dynamic constraints in unknown
environments could be tackled with the proposed planner and system setup.

One possible improvement to reduce the total search time other than the use of high power
computing is to minimize the number of point clouds in workspace creation. At the moment, since
we keep adding all of the sensed point clouds to create the workspace, the number of workspace point
clouds increases linearly although the sensed number of objects remains the same. For instance, if
we only register the point cloud whose closest neighborhood is at certain distance, we can keep the
minimum number of point clouds for the workspace without diminishing the spatial resolution, thus
the c-space creation cycle time will be minimized. However, calculation for identifying the closest
neighborhood for each point cloud may not be trivial.

6. Conclusion
In this paper, we introduced a framework of SBIP for safe manipulation in cluttered, unknown
environments. The goal of the study was to move a multi-degree of freedom robot safely in a
cluttered and uncertain environment such as domestic or unstructured industrial workspaces. The
focus of study was on the question as to how to guarantee both search completeness and safe
manipulation. We propose a non-contact-based sensitive skin as a means to provide safe manipulation
hardware and an interleaving planner between a workspace and a configuration space as software.
We found that real-time simulation for c-space point cloud collection is the bottleneck of the total
planning performance. In addition, as it is shown in the proof of the probabilistic completeness
of the SBIP, search completeness in an unknown environment cannot be achieved without sensing
completeness in each partial workspace. To that end, we proposed a sensitive skin type 3D depth
sensor that encompasses the entire body of the robot. Sequential interleaving takes place to gradually
but eventually reveal the entire configuration space by means of complete sensing at each cycle thus
it is probabilistically complete planner.

Unlike the SLAM, localization is not a critical issue in manipulation planning, but gradual and
complete mapping at each step is needed to guarantee search completeness. Interleaving between a
workspace and a configuration space is the main idea for mapping and convergence. The proposed
algorithm will enable a smart move of a manipulator such as dual arms or a humanoid in uncertain
or crowded environments.
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