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In this paper we investigate the continuous, local exchange of fluid elements as
they are entrained and detrained across the turbulent/non-turbulent interface (TNTI)
in a high Reynolds number axisymmetric jet. To elucidate characteristic kinematic
features of local entrainment and detrainment processes, simultaneous high-speed
particle image velocimetry and planar laser-induced fluorescence measurements were
undertaken. Using an interface-tracking technique, we evaluate and analyse the
conditional dependence of local entrainment velocity in a frame of reference moving
with the TNTI in terms of the interface geometry and the local flow field. We find
that the local entrainment velocity is intermittent with a characteristic length scale of
the order of the Taylor micro-scale and that the contribution to the net entrainment
rate arises from the imbalance between local entrainment and detrainment rates that
occurs with a ratio of two parts of entrainment to one part detrainment. On average,
an increase in local entrainment is correlated with excursions of the TNTI towards
jet centreline into regions of higher streamwise momentum, convex surface curvature
facing the turbulent side of the jet and along the leading edges of the interface. In
contrast, detrainment is correlated with excursions of the TNTI away from the jet
centreline into regions of lower streamwise momentum, concave surface curvature
and along the trailing edge. We find that strong entrainment is characterised by a
local counterflow velocity field in the frame of reference moving with the TNTI
which enhances the transport of rotational and irrotational fluid elements. On the
other hand, detrainment is characterised by locally uniform flow fields with the local
fluid velocity on either side of the TNTI advecting in the same direction. These local
flow patterns and the strength of entrainment or detrainment rates are also observed
to be strongly influenced by the presence and relative strength of vortical structures
which are of the order of the Taylor micro-scale that populate the turbulent region
along the jet boundary.

Key words: jets, turbulent mixing

1. Introduction
Turbulent entrainment describes the transport of unmixed or irrotational fluid

across the jet boundary that separates the turbulent from the non-turbulent regions

† Email address for correspondence: dhiren.mistry@cantab.net
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of the flow. The jet boundary can be characterised by an interfacial region known
as the turbulent/non-turbulent interface, herein TNTI, whose finite thickness is of
the order of the Taylor micro-scale and characterised by a jump in vorticity. The
finite thickness of the TNTI also includes the viscous superlayer where the diffusion
of vorticity occurs. Entrainment processes have wide-ranging implications in various
scientific and engineering flow scenarios and it is therefore important to understand
the mechanisms that influence the entrainment rates along the TNTI. Here we
consider an axisymmetric turbulent jet in which the volume of the turbulent region
grows downstream. From a time-averaged perspective, the growth of the jet is
described by the classic entrainment hypothesis for which the jet entrains ambient
fluid at a constant rate relative to a local velocity scale (Morton, Taylor & Turner
1956). However, from an instantaneous and local perspective, the jet entrains fluid
elements from the non-turbulent region across the TNTI into the turbulent region
and detrains fluid elements from the turbulent region into the non-turbulent region
(Holzner & Lüthi 2011; Mistry et al. 2016). As such, the velocity scale of interest is
the local entrainment velocity, V, defined as the relative velocity between the surface
propagation velocity of the TNTI, us, and the local fluid velocity at the interface, uI ,
such that V = us − uI . In the direction normal to the interface, denoted by the unit
vector n, V = vnn, where the scalar quantity vn corresponds to the magnitude of the
entrainment velocity normal to the TNTI.

Local entrainment or detrainment is described by the sign of the local normal
entrainment velocity, vn, where vn 6 0 denotes entrainment and vn > 0 denotes
detrainment. An expression for the entrainment velocity may be derived by first
considering that the TNTI is identified by an isosurface of constant enstrophy (ω2)
where the vorticity, ω = ∇ × u and u is the fluid velocity. The TNTI propagates
according to ∂ω2/∂t + us · ∇ω2

= 0, and in the normal direction, n = ∇ω2/|∇ω2
|.

Substituting the term Dω2/Dt using the enstrophy transport equation, Holzner & Lüthi
(2011) derived an equation for the magnitude of the entrainment velocity normal to
the TNTI as:

vn =−
2ωiωjsij

|∇ω2|
−

ν
∂2ω2

∂xj∂xj

|∇ω2|
+

2ν
(
∂ωi

∂xj

)2

|∇ω2|
. (1.1)

The terms on the right-hand side of this expression represent the contributions to
vn from vortex stretching, diffusion and dissipation, respectively. In the viscous
superlayer, the inviscid production term may be neglected (van Reeuwijk & Holzner
2014), which leaves vn to be determined by the competing effects of viscous diffusion
and dissipation. In a laminar flow, the expression for vn shows that only the latter two
terms of (1.1) are present (see the Appendix in Philip et al. (2015)). An interesting
and somewhat surprising result is that vn in a turbulent jet exhibits a broad probability
density function (PDF) P(vn), see figure 4, and that the mean entrainment velocity
(vn) is an order of magnitude smaller than the instantaneous values of vn. We can
decompose vn =

∫
∞

−∞
P(vn)vn dvn =

∫ 0
−∞

P(vn)vn dvn +
∫
∞

0 P(vn)vn dvn, where the first
and second integrals correspond to entrainment and detrainment contributions to the
mean respectively. Calculations based on figure 4 show that the mean entrainment
is a result of about two parts of entrainment minus one part of detrainment. Thus,
the exchange of fluid particles along the TNTI shows a characteristic imbalance
between entrainment and detrainment reflected in a global growth rate of a turbulent
axisymmetric jet.
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In this paper we want to improve our understanding of the kinematics behind
these processes. To do this we aim to address three broad questions: (i) How do
local entrainment/detrainment rates in a high Reynolds number jet depend on the
geometry of the TNTI, such as radial distance from the jet centreline and local
curvature? (ii) Is there a characteristic turbulent structure that influences the local
entrainment/detrainment velocity along the TNTI? (iii) Why do both entrainment
and detrainment exhibit large magnitudes of vn (i.e. broad PDF of the entrainment
velocity)? This is in contrast to a scenario where less entrainment and no detrainment
might take place, and which still provides a net entrainment consistent with the
jet growth. In answering these questions we reconcile our understanding of TNTI
geometric features with the behaviour of the local entrainment velocity to achieve
a description of the kinematics of the flow that improves or hinders the local
entrainment rate.

Unravelling the structure of the TNTI has received considerable attention over
the past two decades due to advances in experimental techniques and simulations.
Beginning with Bisset, Hunt & Rogers (2002), researchers have used reference
frames aligned to the TNTI to extract an interface flow field description that cannot
be achieved in the laboratory reference frame alone (Westerweel et al. 2005, 2009;
da Silva & Pereira 2008; Taveira & da Silva 2014; Chauhan, Philip & Marusic
2014a; Chauhan et al. 2014b; Gampert et al. 2014; Watanabe et al. 2014a; Borrell
& Jiménez 2016; Mistry et al. 2016). For example, an interface reference frame is
necessary to reveal the steep jump-like profiles of vorticity and scalar concentration
across the TNTI (Westerweel et al. 2009; da Silva et al. 2014a). Generally, it is
understood that the thickness of the TNTI in mean-shear flows is characterised by
the Taylor micro-scale λ (Westerweel et al. 2005; da Silva & Taveira 2010; Chauhan
et al. 2014b), whilst the wrinkled surface area of the interface is best described using
a multi-scale fractal analysis (de Silva et al. 2013; Philip et al. 2014; Mistry et al.
2016; Mistry, Dawson & Kerstein 2018). Recent direct numerical simulations (DNS)
of a planar shear layer and homogeneous isotropic turbulence by Silva, Zecchetto
& da Silva (2018) have investigated the effect of higher Reynolds number on the
characteristic thickness of the TNTI and found that the thickness scales with η

(and is of O(10η)) as opposed to a scaling with λ, although the thickness of the
TNTI is close to O(λ). We acknowledge this may also apply to axisymmetric jets at
high Reynolds number, however the measurements presented in this paper were not
performed with the intention of resolving the inner structure of the TNTI and are
therefore insufficient to verify η-scaling.

Much of the recent work on the local entrainment velocity has focused on
entrainment from a small-scale perspective, as first advocated by Corrsin & Kistler
(1955) and represents the final stage (‘mixing’) in a multi-stage entrainment process
(Dimotakis 2005). Locally, viscous and molecular diffusion, also known as ‘nibbling’,
are the dominant mechanisms by which vorticity and scalar concentration are
transferred to non-turbulent fluid elements. For example, Holzner & Lüthi (2011),
Wolf et al. (2012, 2013b), van Reeuwijk & Holzner (2014), Watanabe et al. (2014a),
Krug et al. (2015), Krug et al. (2017) and Watanabe et al. (2017a) have demonstrated
that the diffusive (viscous) component of vn makes the greatest positive contribution
to the local spreading of vorticity at the TNTI. By contrast, the inviscid contribution
to vn is much smaller (Holzner & Lüthi 2011; Wolf et al. 2012, 2013a; Watanabe
et al. 2014a).

Parenthetically, we note that the relatively minor contribution of inviscid terms to
local vn described in the references above is not an argument to disregard the role of
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large-scale inviscid motions to net entrainment. Consider the net entrainment given by
the expression

∫
vn ds= vnS, where ds is the elemental length of the contorted surface

area of the TNTI and vn the average entrainment velocity that is Ouη, the Kolmogorov
velocity. The influence of different length scales becomes evident if we spatially filter
the field with a length scale ∆, such that as ∆ becomes large we approach the
mean field. It has been shown recently by Mistry et al. (2016) in accordance with
the original idea of Meneveau & Sreenivasan (1990) that vnS = VS = V(∆)S(∆),
where V and S are the mean radial velocity and surface area, respectively, and
V(∆), S(∆) are the filtered values at the scale ∆. Here, VS is from the inviscid
large-scale contributions (e.g. see Philip et al. 2014), which determines the overall
entrainment rate. This is somewhat akin to the turbulent cascade process, where
the rate of energy transfer is determined by the large-scale inviscid motion, and is
equal to the net kinetic energy dissipation rate at the smallest scales through viscous
motion. The analogy is further reinforced (Tritton 1988) when considering that the net
axial momentum of a jet is constant, and that the velocity decays with downstream
distance due to kinetic energy dissipation (as well as momentum distribution), which
necessitates an increase in mass flux, i.e. a net entrainment into the jet across its
boundary.

Researchers have often used the TNTI as a means to elicit features that influence
the local entrainment rate. For example, the conditional local entrainment velocity is
strongly linked to the local surface curvature (Wolf et al. 2012, 2013a; Philip et al.
2015; Jahanbakhshi & Madnia 2016; Watanabe et al. 2017b). Generally, vn is more
negative (entrainment) along points where the TNTI curvature is convex towards the
turbulent side, and vn is more positive (detrainment) along points where the curvature
is concave. Additionally, there is some dependence of vn on orientation of the TNTI
relative to the flow direction (Watanabe et al. 2014a), such as the leading or trailing
edges of turbulent structures. Interestingly, Watanabe et al. (2014b), using their DNS
of a planar jet, show that along the leading edges of the TNTI, the vorticity vector
(which is usually parallel to the TNTI) is aligned with the stretching eigenvector
direction of strain rate tensor, whereas the alignment of the vorticity vector is with
the compression direction along the trailing edges of the TNTI. Ultimately, however,
these studies are limited to comparing the local entrainment rate with another local
flow quantity. To understand what turbulent structures are influencing the local
entrainment rate we must consider the instantaneous flow field in the surrounding
vicinity of the TNTI.

In this paper we implement a conditional-averaging technique in a reference
frame aligned to the TNTI. The use of conditionally averaged profiles along
radial coordinates or local normals to the TNTI have been used in many previous
investigations (Bisset et al. 2002; Westerweel et al. 2009; da Silva & Taveira 2010;
Watanabe et al. 2014a; Chauhan et al. 2014b). In contrast to these past studies,
however, we apply conditioning of the local entrainment velocity, vn, on the geometric
and flow features of the TNTI to elucidate the characteristics of the local flow
field during entrainment and detrainment to compare them. In § 2 we introduce the
experimental methods and techniques used to identify the TNTI and measure the local
entrainment velocity along it. In § 3 we first characterise the entrainment velocity and
features of the TNTI before identifying the coupling between them. Subsequently,
in § 4 we evaluate mean profiles about the TNTI that are conditioned on the local
entrainment velocity to compare the flow field during entrainment and detrainment,
and try to identify the structure responsible for this. These findings are supported
with instantaneous snapshots of the flow to qualitatively illustrate the role of Taylor
micro-scale vortical structures in the local entrainment process. Finally, we summarise
and conclude in § 5.
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Reynolds number Re 25 300
Turbulent Reynolds number Reλ 260
Kinematic viscosity ν 1× 10−6 m2 s−1

Dissipation ε 0.0088 m2 s−3

Kolmogorov length scale η 0.10 mm
Taylor micro-scale λ 3.31 mm
Jet half-width bu,1/2 43.63 mm
Nozzle diameter d 10.00 mm
Kolmogorov velocity scale uη 9.68× 10−3 m s−1

Root-mean-square axial velocity u′2
1/2

0.0802 m s−1

Centreline velocity Uc 0.3116 m s−1

Jet exit velocity ue 2.53 m s−1

Kolmogorov time scale τη 1.07× 10−2 s
Eddy turnover time T 0.14 s

TABLE 1. Time, velocity and length scales of the turbulent jet. Quantities are measured
along the jet centreline at a distance 50d downstream of the nozzle exit. The turbulence
kinetic energy dissipation is defined as ε= 15ν(∂u/∂x)2, the eddy turnover time is defined

as T = bu,1/2/Uc and the Taylor micro-scale is defined as λ= u′2
1/2√

15ν/ε and measured
along the centreline at x= 50d.

2. Experimental methods
We measured the velocity and scalar concentration fields across the radial–

streamwise plane in the far field of an axisymmetric turbulent jet. The experiments
were performed in a 7 m× 1 m× 1 m tank using water as the test medium and an
aqueous solution of rhodamine 6G as the passive dye issued from a nozzle diameter
d = 1 cm. This provides an area ratio of the nozzle to tank of ≈0.01 %, which
is small enough to have negligible side wall effects. Furthermore, the jet was run
for short durations to ensure no back flow and avoid the recirculation of dye back
into the jet. The reproduction of classical scaling laws that we obtain in our jet as
well as the PDF of vn we obtain (e.g. Mistry et al. 2016) suggest that we have no
noticeable effect of side walls and back flow. The Schmidt number of the scalar
concentration field is Sc ≈ 8000 (Crimaldi 2008). A separate reservoir was used
to supply the turbulent jet with the dyed fluid and a series of pumps and valves
ensured that a constant flow rate was maintained. This is confirmed with pressure
measurements across an orifice plate. The Reynolds numbers of the jet are Re=25 300
(Re = ued/ν) and Reλ = 260 (Reλ = u′2

1/2
λ/ν), where these symbols are defined in

table 1. These Reynolds numbers are much higher than currently published works on
local entrainment by other investigators (Holzner & Lüthi 2011; Wolf et al. 2012;
Watanabe et al. 2015). The streamwise, radial and spanwise coordinates are denoted
by x, r and z; corresponding velocities are denoted by u, v and w, respectively. In
this paper, we make use of a coordinate that is aligned to the TNTI contour which
is denoted by s.

Here we only provide a brief overview of the experimental measurement techniques
as they are described in more detail in Mistry et al. (2016, 2018). Multi-scale particle
image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) measurements
were taken about the x/d = 50 streamwise location (40 < x/d < 60) from the
nozzle exit. This involved two high-speed PIV cameras measuring the particle fields
at different resolutions and a single high-speed PLIF camera that captured the
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FIGURE 1. (Colour online) The instantaneous scalar concentration field in logarithmic
scaling with the TNTI denoted by the black line, (a) LFOV and (b) SFOV. Instantaneous
velocity vectors are superimposed in grey with every fourth velocity vector shown for
clarity. Along the TNTI the local entrainment velocity, V, is plotted in purple. Note that
the lengths of the purple V vectors and the grey velocity vectors are scaled differently.
The dashed line box in (a) corresponds to the SFOV shown in (b).

fluorescence of the passive dye. The field of view (FOV) of the coarse-resolution PIV
and PLIF measurements is 200× 200 mm2 and the vector spacing of this large-scale
FOV (LFOV) PIV is 10η whilst the interrogation window size is 40η. An additional
PIV camera was also used to measure the flow field with higher spatial resolution
(small-scale FOV, SFOV), where the vector spacing is 3η. The scalar concentration
fields were down-sampled to match the resolution of the PIV measurements. Spatial
gradient quantities are evaluated using a least-squares differencing method (Raffel
et al. 1998). An example of the data captured with the PIV/PLIF set-up is presented
in figure 1. The resultant data from the PIV and PLIF experiments yield 32 724
vector/scalar fields. Consecutive fields are spaced 1 ms apart, which is less than
the Kolmogorov time scale, τη ≈ 11 ms, and hence capture the smallest temporal
evolutions of the flow. However, we down-sample the fields to create a sample set
of 1080 velocity/scalar fields that are spaced 30 ms (3τη) apart for the calculation of
mean statistics.

2.1. Determination of the local entrainment velocity
Evaluating the local entrainment velocity, V = vnn, where vn is the magnitude of the
entrainment velocity along the TNTI normal n, is a twofold procedure. It first requires
a robust method to identify the TNTI and second the ability to track its motion in time.
We only provide a brief description of the procedure as a detailed description can be
found in Mistry et al. (2016) and is similar to the ‘graphical’ approach of Wolf et al.
(2012). We first identify the TNTI using isocontours of the scalar concentration field
(φ) from a Sc� 1 passive scalar because planar velocity measurements cannot access
the three-dimensional (3-D) vorticity field.

Following the approach of Prasad & Sreenivasan (1989) and Westerweel et al.
(2002) we empirically identify a robust threshold value for scalar concentration
that represents the TNTI. This is done by evaluating the conditional mean values
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FIGURE 2. (Colour online) (a) Instantaneous out-of-plane vorticity field ωz normalised
by the jet half-width bu,1/2 and the mean centreline velocity Uc. An example of the
interface-normal coordinate xn is denoted by the black vector. (b) Mean conditionally
averaged profile of scalar concentration along xn. The turbulent region is defined as xn> 0
and the non-turbulent region is defined as xn < 0. The filled grey region represents the
span across which the jump in scalar concentration occurs. (c) As for (b) but with the
approximated enstrophy field ω2

z .

of scalar concentration (φ), spanwise vorticity magnitude (|ωz|), turbulence kinetic
energy (k) and axial velocity (u) as a function of scalar concentration threshold,
φt. For a given φt we extract all points that exceed the threshold value across all
fields, φ > φt. Ensemble averages are evaluated and the procedure repeated for a
range of φt to construct profiles conditioned on the aforementioned variables. The
inflection point of conditioned profiles coincides with the boundary of the turbulent
field (Prasad & Sreenivasan 1989) which, in the current experiments, was determined
to be φ/φc = 0.18, where φc is the local mean centreline scalar concentration. The
TNTI is then identified by selecting the longest continuous isocontour of φ/φc= 0.18,
an example of which is shown in figure 1 (thick black lines).

Conditionally averaged profiles are assembled in a frame of reference aligned with
the TNTI in figure 2. This is done using an interface-normal vector n= (∇φ/|∇φ|)I
to generate an interface-normal coordinate xn (see figure 2a), where subscript I
represents points along the TNTI. Note that the definition of n from now onwards is
based on the isosurface of concentration rather than enstrophy that was used to obtain
(1.1). We interpolate flow quantities onto xn using a bilinear interpolation scheme
then ensemble average the data at the same normalised distance xn/bu,1/2 from each
point along the instantaneous TNTI. Averaged quantities along xn are denoted by 〈∼〉.
In some instances, the interface-normal coordinate may cross another point along
the TNTI; this results in another transition from turbulent to non-turbulent fluid or
vice versa. These points are discarded and only the points from the origin of xn up
to the first crossing of the TNTI are considered. We do not consider the tangential
coordinates because gradients along the interface are significantly smaller than the
normal gradients (Philip et al. 2014). The smallest data spacing is selected to match
the vector spacing in the LFOV PIV measurements and spans xn = 0 ± bu,1/2 from
the TNTI. The use of the local jet half-width, bu,1/2, ensures that the corresponding
points along the xn-coordinate collapse across all measured TNTI positions.

Figure 2(b,c) illustrates the jump profiles for 〈φ〉 and 〈ω2
z 〉 across the TNTI. These

profiles, in addition to various other studies, establish that the observed jump in
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Turbulent

}

}Non-turbulent
Entrainment

us uI

V

Advection

t = t0 t = t0 + dt

(a) (b)

FIGURE 3. (Colour online) Schematic depicting the motion of the TNTI (red) between
two points in time. The total motion of the TNTI between times t0 (a) and t0 + dt, us,
comprises the advection (uI) from the local fluid motion and the motion due to the local
entrainment (V = vnn).

concentration in a Sc � 1 passive scalar field is well correlated with the jump in
vorticity and enstrophy across the TNTI (Westerweel et al. 2009; Watanabe et al.
2015; Mistry et al. 2016). We emphasise that the TNTI is composite in nature with
a finite characteristic thickness of the order of the Taylor micro-scale which contains
the viscous superlayer and whose outer boundary is identified by low values of
vorticity and concentration that are challenging to resolve experimentally.

To evaluate vn, the motion of the TNTI needs to be decomposed into components of
advection and entrainment, which is demonstrated in figure 3. Consider the motion of
the TNTI over a short time interval from t0 to time t0+dt. The TNTI will have moved
due to (i) advection by the local fluid velocity, uI and (ii) the growth of the turbulent
region due to entrainment V = vnn. The local entrainment velocity at the TNTI is
V=us−uI . Simultaneous time-resolved measurements of the velocity and scalar fields
enable us to carry out this procedure. This is done by displacing the interface at
t0 + dt by distance −uI dt, where uI is the local fluid velocity interpolated along the
interface using a bilinear interpolation scheme. The local entrainment velocity, vn, is
obtained by considering the local normal distance (d`n) from the interface at t0 to the
advection-subtracted interface, vn = d`/dt. The interface normals along the TNTI are
pointing into the turbulent region, and therefore entrainment leads to the growth of
the turbulent region and corresponds to a negative value, vn 6 0, whereas detrainment
corresponds to a shrinking of the turbulent region and a positive vn.

Previously (Mistry et al. 2016) we applied this interface tracking technique and
showed that the integral of the local entrainment velocities along the TNTI equals
the global time-averaged entrainment rate demonstrating that the interface-tracking
technique does not require spatial resolution down to the Kolmogorov or Bachelor
length scale (η) to recover the correct entrainment rate. Since we do not resolve
the Kolmogorov and Batchelor scales we cannot assess whether the correlation
between the jump in vorticity and scalar concentration will hold. However, additional
support for the current approach is provided by Watanabe et al. (2015) who recently
investigated the Schmidt number dependence between the scalar concentration field
and the local turbulent mixing across the viscous superlayer and the so-called turbulent
sublayer. They show that the jump in scalar concentration occurs within the finite
region of the TNTI for all Schmidt numbers, Sc, evaluated (see their figure 7a)
and when Sc� 1, the jump in scalar concentration occurs in the turbulent sublayer
providing a robust marker for the boundary between regions of high and low vorticity.
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FIGURE 4. (Colour online) A sample instantaneous entrainment velocity profile measured
along the TNTI for the LFOV (a) and SFOV (b). The coordinate s is measured along
the length of the TNTI. The grey region in the LFOV profile represents the equivalent
region of the TNTI captured by the SFOV camera. (c) PDFs of the entrainment velocity
for the LFOV (blue + symbols) and SFOV data (orange × symbols). The thick black line
indicates a Gaussian fit to P(vn) for the LFOV data. Negative vn is defined as entrainment
(green hatched region) and positive vn is defined as detrainment (red hatched region).

3. Statistical features of the entrainment velocity and the TNTI
3.1. Characteristics of the entrainment velocity

In this section we investigate the statistical characteristics of vn before considering
conditional statistics of vn as a function of the local geometry of the TNTI. In
figure 4(a,b) we present examples of instantaneous entrainment velocity profiles
along the TNTI. The instantaneous vn signals along the TNTI are non-Gaussian, as
evidenced by the intermittency of the profiles. The entrainment velocity is of the
order of the mean Kolmogorov velocity, uη, measured along the jet centreline at
x = 50d. There are locations along the TNTI in which vn is typically around zero
(see 40 < s/λ < 60 for LFOV), and other more compact sections where there is
greater entrainment vn < −uη (noting the convention that negative vn corresponds to
positive entrainment); for example see 0 < s/λ < 20 for LFOV. Similar behaviour is
also observed in the SFOV shown in figure 4(b) which corresponds to the greyed
region in (a).

The PDFs of vn for both the LFOV and SFOV are presented in figure 4(c). The
distribution of vn is non-Gaussian, as made evident by the wide tails of the PDF
compared to the Gaussian fit (black line), and is also qualitatively similar to the
PDFs of vn for a range of turbulent flows (Holzner & Lüthi 2011; Wolf et al.
2012; Watanabe et al. 2014a; Krug et al. 2015). The mean value of the entrainment
velocity along the TNTI measured from the LFOV data is −vn = 0.68uη, which is
comparable to the results of Wolf et al. (2012), who report that −vn ≈ 0.7uη for
an axisymmetric jet at Re = 5000, and also van Reeuwijk & Holzner (2014), who
report that 0<−vn < uη for DNS of a temporal jet. However, it has been previously
demonstrated in Mistry et al. (2016) that vn is dependent on the measurement
resolution and follows a power-law scaling −vn ∼ ∆0.31, where ∆ is the spatial
resolution (or the filter size in a multi-scale analysis). In the limit of ∆ becoming
large (of the order of the jet width), the mean entrainment velocity approaches the
bulk entrainment velocity obtained from the entrainment hypothesis (Turner 1986).
Nevertheless, this resolution dependence of vn does not change the general conclusion
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FIGURE 5. (Colour online) (a) The auto-correlation functions of the entrainment velocity
(Rv′nv′n , solid line), interface-normal velocity (Ru′nu′n , dash-dot line) and the radial position
of the TNTI (Rr′I r′I , dashed line) in logarithmic scaling. The vertical grey bars denote
the Kolmogorov length scale (η), Taylor micro-scale (λ) and the jet half-width (bu,1/2)
from left-to-right, respectively. (b) Joint PDF of the entrainment velocity, vn, and the
local Kolmogorov velocity, uη = (νεloc)

1/4, along the TNTI. Note that εloc represents
the approximation to the local dissipation rate εloc = 15ν(∂u/∂x)2, whereas the mean
dissipation along the jet centreline is denoted as ε. The colour bar shows the logarithm
of the joint PDF.

that the local entrainment velocity along the TNTI is non-Gaussian and has a non-zero,
albeit small mean value (−vn∼ uη), as first hypothesised by Corrsin & Kistler (1955).
At this point it is worth reiterating that the mean vn =

∫
∞

−∞
P(vn)vn dvn = −0.68uη

has a contribution from both entrainment (
∫ 0
−∞

P(vn)vn dvn = −1.19uη) as well as
from detrainment (

∫
∞

0 P(vn)vn dvn = 0.51uη). This ratio of approximately two parts
of entrainment for one part of detrainment is in good agreement with the viscous
superlayer model derived by van Reeuwijk & Holzner (2014), as well as the laminar
calculations of Philip et al. (2015) where the 2 : 1 ratio of entrainment : detrainment
can be obtained analytically. It is therefore necessary to investigate both entrainment
and detrainment rates for a fuller understanding of the overall entrainment rate.

Given the presence of both entrainment and detrainment along the TNTI, we now
evaluate the characteristic length scale of these features. Westerweel et al. (2005)
and Chauhan et al. (2014b) determine the characteristic length scale of the TNTI
by evaluating the auto-correlation function of axial velocity (u′) and interface-normal
velocity fluctuations (u′n), respectively. Here we have access to the local entrainment
rate along the TNTI and can therefore directly measure the auto-correlation function
of vn to identify the characteristic length scale of the local entrainment process.
In figure 5(a) we present the auto-correlation function of the entrainment velocity,
Rv′nv′n(s) for the SFOV dataset. Here v′n is the fluctuating entrainment velocity defined
as v′n = vn − vn. We integrate Rv′nv′n(s) to determine the characteristic entrainment
length scale and for simplicity we only integrate up to the zero crossing of the
correlation function. This gives a characteristic entrainment length scale of 0.48λ,
which is O(λ), and emphasises the role of λ-sized structures in the local entrainment
process. This is also comparable to the thickness of the of the TNTI in free-shear
flows which is of O(λ) (Westerweel et al. 2005; da Silva & Taveira 2010; Chauhan
et al. 2014a). Interestingly, we observe that the correlation function becomes negative
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at distance of s = 2.9λ (see red line), which indicates that the local entrainment
alternates between high and low entrainment rates at length scales of the order of the
Taylor micro-scale. For comparison, we also evaluate the auto-correlation function of
the interface-normal velocity fluctuations (u′n, see figure 5a, dash-dot line) to compare
with Westerweel et al. (2005) and Chauhan et al. (2014b). The interface-normal
velocity is determined by the dot product of the local fluid velocity along the TNTI
and the local interface-normal unit vector, un = uI · n, and the fluctuating component
is u′n= un− un. The characteristic length scale of u′n is determined to be 0.86λ, which
is comparable to the entrainment velocity, O(λ), and consistent with Westerweel et al.
(2005) and Chauhan et al. (2014b).

The auto-correlation function of the radial distance from the jet centreline to the
TNTI, Rr′I r′I (s), is also plotted figure 5(a). A comparison with Rv′nu′v and Ru′nu′n , shows
that the radial position of the TNTI remains correlated over longer distances that are
of the order of the jet half-width, 0.77bu,1/2 or equivalently 10.1λ. A length scale
LrI = O(bu,1/2) is also in agreement with observations in a turbulent boundary layer
(Chauhan et al. 2014b) where the TNTI remains correlated over distances of the order
of the boundary layer thickness, O(δ) (i.e. the largest characteristic length scale). The
correlation of Rr′I r′I (s) is a footprint of large-scale undulations of the TNTI which,
in combination with the small-scale wrinkling of the TNTI observed in figure 1,
demonstrates the multi-scale modulation of the TNTI surface area (Sreenivasan,
Ramshankar & Meneveau 1989; de Silva et al. 2013; Chauhan et al. 2014b; Mistry
et al. 2016).

An earlier study in a shear-free flow by Holzner & Lüthi (2011) showed that along
the TNTI vn is independent of uη, and therefore the local dissipation field (see their
figure 4). The implication is that the local mass flux across the TNTI is not strongly
influenced by the local small-scale turbulence. We present evidence that this is also
the case for a free-shear flow at high Reynolds number in figure 5(b). Here we show
the joint PDF (J-PDF) of the local entrainment velocity and the local Kolmogorov
velocity, uη = (νεloc)

1/4, where the local dissipation rate is approximated by εloc =

15ν(∂u/∂x)2 at each point along the TNTI. Superimposed on this plot in red is the
conditional mean entrainment velocity for a given value of uη, vn|uη . (We will have
further comments on this in § 3.3.) No discernible variation of vn|uη with changing
uη is observed, which suggests that locally, there is no strong correlation between the
turbulent dissipation and diffusion of vorticity.

3.2. Geometric characteristics of the TNTI
In this section we provide statistical characterisation of the TNTI geometry, and
although some of these results are known from the TNTI analysis of other flows
they are included here because, (i) such properties are not known for a high-Re
jet, and (ii) more importantly, they are employed in the next section to investigate
conditional statistics of vn. In particular, we focus on the radial distance from the
centreline to the TNTI, rI , the interface curvature, κ , and the interface orientation, θ .
The radial position of the interface, rI , is the distance along the radial axis from the
jet centreline to the local position of the TNTI, as shown in figure 6(a). The interface
curvature κ represents the rate of change of the interface direction, and is evaluated
in two dimensions using the following parametric expression:

κ =

dx
ds

d2r
ds2
−

dr
ds

d2x
ds2[(

dx
ds

)2

+

(
dr
ds

)2
]3/2 . (3.1)
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FIGURE 6. (Colour online) Schematic of the geometric features of the TNTI: (a) the
interface-normal unit vectors, n = (∇φ/|∇φ|)I , the interface radial position, rI , and the
coordinate along the TNTI, s; (b) the interface curvature, κ; and (c) the interface angle
(measured to the local normal shown in blue), θ . The filled contours represents the
instantaneous scalar concentration field, φ, and the thick black line represents the TNTI.
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FIGURE 7. (Colour online) The PDFs of (a) interface radial position rI , (b) interface
curvature κ and (c) orientation of the interface normal from the centreline θ . Gaussian
fits to the PDFs are shown in red. The mean radial position, rI = 1.79bu,1/2, is denoted
by the black dash-dot line in (a). The inset plots depict the geometric features of the
interface, where the dark (blue) line is the TNTI, and the pink fill denotes the turbulent
region. Similar insets are presented in figure 8 for convenience.

Figure 6(b) illustrates the definition of convex (κ > 0) and concave (κ < 0) curvatures
of the TNTI. The orientation of the TNTI, θ , is measured as the angle between the
streamwise axis, x, and the local interface-normal unit vector along the TNTI, n. The
angular range 90◦ 6 θ 6 180◦ represents the ‘leading edge’ of the interface, and 0◦ 6
θ < 90◦ represents the ‘trailing edge’. Examples of the TNTI leading edge and trailing
edge are highlighted in figure 6(c) by the purple and green circles, respectively. We
evaluate the aforementioned features at each point along the TNTI and for each of
the 1080 realisations of the flow.

Figure 7 presents the PDFs of the geometric characteristics of TNTI; Gaussian
profiles fitted to the distributions are shown in red. The PDF of the TNTI radial
position is presented in figure 7(a) where rI is normalised by the local mean
half-width of the jet, bu,1/2. Normalising rI in this manner yields a PDF distribution
that collapses across a range of streamwise distances in an axisymmetric jet
(Westerweel et al. 2009; Mistry et al. 2016). The distribution of rI is approximately
Gaussian in agreement with the early predictions of Corrsin & Kistler (1955) and
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FIGURE 8. (Colour online) (a) J-PDF of the entrainment velocity as a function of
radial position rI with the conditional mean entrainment velocity vn|rI denoted by the
red line. (b–d) Conditional mean entrainment velocity weighted by the local probability
of the independent variables presented in figure 7 (vn|f P( f ), thick solid lines): (b) radial
position rI , (c) interface curvature κ and (d) interface orientation θ . The product of the
(unconditioned) mean entrainment velocity, vn, and the probability of the independent
variables is denoted by the dashed lines, vnP( f ).

with more recent results in a range of turbulent shear flows (Bisset et al. 2002;
Westerweel et al. 2005; Chauhan et al. 2014b). We note a slight asymmetry in the
PDF distribution, which could be due to the jet flapping and/or convergence, and
reasons are not completely clear.

The radial position of the TNTI spans several half-widths, which indicates that there
are large-scale spatial fluctuations of the TNTI position. This is contrasted by the PDF
of curvature in figure 7(b), which exhibits wide tails because of the presence of small-
scale wrinkling along the interface. Evidence of these sharp contortions is also shown
in the instantaneous TNTI example in figure 1.

The PDF of the interface orientation is presented in figure 7(c). For clarity the
plot is annotated with illustrations of particular surface orientations; note that the
pink fill denotes the turbulent region. The TNTI is most commonly oriented at an
angle of 120◦, with a secondary peak at 60◦. These angles respectively fall within the
leading (90◦ 6 θ 6 180◦) and trailing (0◦ 6 θ < 90◦) edge regions of the TNTI. The
local minima near 90◦ (i.e. parallel to streamwise axis, x) suggests that the interface
does not preferentially align with the jet axes. It is for this reason that in § 4 we
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consider the flow field in a frame of reference that is aligned to the TNTI rather than
a laboratory frame of reference aligned to the jet coordinates.

3.3. Local entrainment and the TNTI
Given the TNTI geometric features identified in the previous section, we now evaluate
the dependence of the local entrainment velocity on these geometric features. This is
first illustrated in figure 8(a) by presenting the J-PDF between the local entrainment
velocity vn and radial position rI of the TNTI. Given some value of rI , we also
evaluate the conditional mean entrainment velocity,

vn|rI =
1

P(rI)

∫
P(vn, rI)vn dvn =

∫
P(vn|rI)vn dvn, (3.2)

which is the mean entrainment velocity for a given rI . This is illustrated by the solid
(red) line in figure 8(a). From the J-PDF it is apparent that the local entrainment takes
a wide range of values for any given radial position; however, the tilt in the vn|rI line
in figure 8(a) suggests that entrainment is common at smaller radial distances whereas
there is a preference for detrainment further away from the centreline.

To quantify the contributions of different rI locations to the mean entrainment
velocity, we now use the statistical features of vn|rI . Here values of vn|rI are weighted
by the local probability P(rI) of the conditioning variable. In general, we use vn|f P( f ),
where f is the conditioning variable, which could be rI , θ , κ , or any other variable.
These are denoted by the thick solid black lines plotted in figure 8(b–d). It is
understood that the area under the curve,

∫
vn|f P( f ) df = vn, is equal to the mean

entrainment. For comparison, we include the product of the unconditioned mean
entrainment velocity and the local probability of the independent variable, vnP( f ),
as dashed lines. If vn is independent of the variable f then the profiles of vn|f P( f )
and vnP( f ) would collapse. This approach enables us to determine when vn|f is
smaller or larger than vn, and therefore elicit the influence on entrainment from
a specific geometric feature of the TNTI. For ease of interpretation we plot filled
colours between the vn|f P( f ) solid lines and vnP( f ) dashed lines in figure 8(b–d).
The green filled area corresponds to the condition vn|f < vn (more negative), which
means that there is greater entrainment for a given f . Recall that negative vn denotes
positive entrainment. Similarly, the red filled area corresponds to the condition where
vn|f >vn, which means that the conditional entrainment velocity is more positive (less
entrainment) for the given conditioning variable f .

First consider the dependence of the entrainment velocity on the TNTI radial
position in figure 8(b). The green area shows that greater entrainment occurs when
the TNTI is closer to the centreline of the jet where there is greater streamwise
momentum. Entrainment increases for radial positions less than the mean TNTI
position rI = 1.79bu,1/2 whereas beyond rI ≈ 2.5bu,1/2 the conditional mean entrainment
velocity becomes positive. This indicates that at radial positions much greater than
the mean the turbulent region detrains and the flow goes to a non-turbulent state.
The radial dependence of vn highlights the importance of large-scale motions on
entrainment because rI spans several jet half-widths (figure 7).

Figure 8(c) shows the dependence of entrainment velocity with local interface
curvature. Entrainment is enhanced (green region) when the curvature is positive,
convex to the turbulent region, and reduced (red region) when the TNTI curvature
is negative, concave to the turbulent region. Along concave curvatures in the region
−3 < κλ < −1, vn becomes positive, which means that the turbulent region is
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detraining on average. The dotted lines denote the limits −λ 6 κ 6 λ, which
encapsulates 87 % of all points along the TNTI; κ <−λ and κ > λ account for 6 %
and 7 % of points, respectively. This demonstrates that the bulk of local entrainment
occurs alongside structures of O(λ) or larger. These findings are in agreement with
previous studies conducted at lower Reynolds numbers (Dopazo, Martin & Hierro
2007; Wolf et al. 2012, 2013a). It is important to note that planar measurements are
limited to the principal curvature k1 (Dopazo et al. 2007) rather than the full 3-D
surface curvature. Nonetheless, the component of curvature that we do capture is
most likely to be shaped by the dominant streamwise shear (Bisset et al. 2002).

The dependence of vn conditioned on the TNTI surface orientation is depicted in
figure 8(d). We apply additional conditioning of these profiles based on the local
curvature. The entrainment velocity conditioned on TNTI orientation with negative
curvature (concave) is denoted by the solid blue line for vn|θ |κ<0P(θ |κ<0), and the
light-blue dash-dot line for vn|κ<0P(θ |κ<0). The entrainment velocity conditioned on
TNTI orientation with positive curvature (convex) is denoted by the solid black line
for vn|θ |κ>0P(θ |κ>0), and the grey dashed line for vn|κ>0P(θ |κ>0). This conditioning
is more clearly illustrated by the inset schematics in figure 8(d). First consider the
positive curvature profiles (black and grey lines): the conditional entrainment velocity
is approximately 15 % more negative than the mean entrainment velocity in the range
70◦ < θ < 135◦. Outside this region the conditional entrainment velocity is either
equal to or less than the mean entrainment velocity. Thus, for convex curvatures the
local entrainment velocity is only weakly dependent on the surface orientation. In
contrast, there is much greater dependence on surface orientation for the concave
(negative) curvature profiles (dark and light blue lines): at θ ≈ 120◦ the conditional
entrainment velocity is 130 % more negative than the mean entrainment velocity for
κ < 0. Generally, for negative curvatures (concave) there is greater entrainment along
leading edges and less entrainment along the trailing edges. The entrainment velocity
also becomes positive (i.e. flow detrains) along concave curvatures where θ < 0◦.
These results support the work of Watanabe et al. (2014a) who also report that vn
is largest along the leading edges of the TNTI and smallest along the trailing edges,
but they do not evaluate the dependence on the local curvature. We show that the
entrainment in regions of positive curvature (convex) is less dependent on the TNTI
surface orientation, although overall more entrainment occurs in regions of convex
curvature compared to concave curvature.

We may summarise the findings of figure 8 as follows: there is greater entrainment
along the TNTI when the interface is nearer to the jet centreline. Entrainment
is also enhanced by local curvature that is convex to the turbulent region. The
entrainment velocity along convex surface curvatures is only weakly dependent on
the local surface orientation of the TNTI. Along concave surface curvatures there
is more positive entrainment along the leading edges of the TNTI, but also more
detrainment elsewhere. These local entrainment findings are sketched in the inset
plots of figure 8. It is also interesting that the conditional entrainment velocity is
predominantly negative given that the PDF of vn in figure 4(c) shows only a slight
skewness towards entrainment compared to detrainment. To better understand this
conditional behaviour of vn we must now consider the kinematics of the flow about
the TNTI, which ultimately generate these geometric features.

3.4. The conditional flow field along the TNTI
In this section we evaluate the conditional mean entrainment velocity, vn, as a function
of the local fluid velocity along the TNTI with the aim of elucidating the kinematic
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FIGURE 9. (Colour online) (a) Schematic of cos(ψ), the alignment between the local
interface-normal unit vector n (dark grey) and the local fluid velocity at the interface uI
(red). (b) PDF of cos(ψ) measured along the TNTI. (c) Conditional mean entrainment
velocity based on fluid vector alignment and weighted by the local probability of cos(ψ):
vn|cos(ψ)P[cos(ψ)], solid line. The unconditioned mean entrainment velocity is denoted by
the dashed line, vnP[cos(ψ)]. Green fill indicates the values of cos(ψ) for which the
conditional mean entrainment velocity is greater than the mean entrainment velocity; red
fill indicates values for which there is a reduction in entrainment.

features of local entrainment. We first consider the alignment between the local fluid
velocity vector, uI , and the local normal unit vector, n, defined by the cosine of the
angle between them, cos(ψ), along the TNTI. This is illustrated in figure 9(a) which
shows the unit vectors locally normal to the TNTI, n, (dark grey arrows) and the local
fluid velocity uI (red arrows).

The PDF of cos(ψ) in figure 9(b) shows that uI is preferentially aligned with n
(cos(ψ) = ±1). The left and right vertical dotted lines denote velocity vectors that
make a ±π/4 angle with n, respectively. When cos(ψ) → 1, uI becomes aligned
with n and the local flow is advecting towards the turbulent region, whereas when
cos(ψ)→ −1 the local flow is advecting away from the turbulent region into the
non-turbulent region. In between, velocity vectors in the range −0.707 6 cos(ψ) 6
0.707 preferentially align tangentially to the TNTI. The PDF of P[cos(ψ)] highlights
the importance of the alignment of the interface-normal velocity in the kinematics of
local entrainment.

Figure 9(c) plots vn conditioned on cos(ψ). The filled green area shows that the
conditional entrainment velocity is enhanced when cos(ψ) > 0.5 and maximised
as cos(ψ) → 1, i.e. when local fluid vectors form an impinging flow pattern. At
cos(ψ) = 1, vn|cos(ψ)=1 is 45 % greater than vn. The filled red area shows that
alignments of cos(ψ) < 0.5 act to suppress local entrainment as the local flow
field is either moving tangentially to the interface (cos(ψ)≈ 0) or advecting normally
towards the non-turbulent region (cos(ψ)→−1).

The observation that local advection of the TNTI towards the turbulent region
corresponds with greater local entrainment rates along the interface is consistent
with the TNTI geometry dependence of entrainment presented in figure 8. One
can expect that a flow pattern that advects the TNTI towards the turbulent region
(i.e. cos(ψ)≈ 1) may be associated with large-scale motions that transport the TNTI
nearer to the centreline of the jet (rI < rI) and also smaller-scale motions that produce
convex curvatures (see figure 6). Both scenarios correspond with an increase in the
local entrainment rate.

We now consider the relationship between the local fluid velocity magnitude and
the local entrainment rate. For this we decompose uI into the local normal velocity
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FIGURE 10. (Colour online) (a) Schematic of the interface-normal velocity (un, red
arrows) and tangent velocity (ut, blue arrows) along the TNTI. The local interface-normal
unit vector (n) is depicted with the grey arrows. (b) PDF of un (red) and ut (blue)
measured along the TNTI. A Gaussian distribution is shown by the dashed black
line. (c) Conditionally mean entrainment velocity based on the interface-normal velocity
vn|un P(un), solid line. The unconditioned mean entrainment velocity is denoted by the
dashed line for vnP(un). Green fill indicates the values of un,t for which the conditional
mean entrainment velocity is greater than the mean entrainment velocity; red fill indicates
values for which there is a reduction in entrainment. (d) As for (c) but for the
interface-tangent velocity ut.

un and the tangent velocity ut, as shown in figure 10. The normal and tangential
velocity components are determined by the dot product of the local fluid velocity and
the interface unit vectors,

un = u · n, (3.3a)
ut = u · t. (3.3b)

Locally normal (red) and tangential velocity (blue) components along the TNTI are
graphically depicted in figure 10(a). The PDFs of un and ut along the TNTI are
illustrated in figure 10(b) and exhibit approximate Gaussian behaviour as expected
(Batchelor 1953). This is in contrast to the non-Gaussian behaviour observed for the
entrainment velocity in figure 4(c). The distributions P(un) and P(ut) have positive
mean values, which indicates that the mean flow is advecting the TNTI towards the
turbulent region of the jet and generally along the positive streamwise direction.

The relationship between the entrainment velocity and component velocities of uI ,
un and ut, are presented in figure 10(c,d). Generally, greater entrainment occurs when
un > 3uη and ut > 1uη (i.e. large and positive). The largest reduction in entrainment
occurs when the local fluid momentum approaches zero (un ≈ 0 and ut ≈ 0). This
emphasises the beneficial role local kinematics play in enhancing local entrainment
because in the absence of momentum the entrainment rate is diffusion limited. The
interface-normal velocity (figure 10c) shows greater influence on the conditional mean
entrainment velocity compared to the interface-tangent velocity (figure 10d), which is
similar to the conditional entrainment velocity behaviour observed in figure 9(c).

We may summarise the findings in this section as follows: the entrainment velocity
has a characteristic length scale of the order of the Taylor micro-scale, which is
comparable to the dominant length scale of velocity fluctuations along the TNTI.
Whilst the radial position of the TNTI exhibits large-scale motions of the order
of the jet half-width, the interface also exhibits very small contortions that are
characterised by surface curvature. These geometric features of the TNTI influence
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FIGURE 11. (Colour online) (a) Conditionally averaged profile of scalar concentration
along xn. The turbulent region is defined as xn > 0 and the non-turbulent region is defined
as xn < 0. Entrainment is denoted by green squares and detrainment is denoted by red
triangles. (b) As for (a) but with the enstrophy field ω2

z .

the local entrainment velocity. Entrainment is enhanced when the TNTI is nearer
to the jet centreline and in regions where the curvature is convex to the turbulent
region. In addition, the local entrainment is either enhanced or suppressed depending
on the alignment between the local flow and the interface normal. In particular, local
entrainment is enhanced when the local fluid velocity is oriented normal to the TNTI
and pointing towards the turbulent region (positive interface-normal fluid velocity, un).
Conditional averages presented in this section only consider the local geometric and
flow features in the immediate vicinity of the TNTI. To gain further insight into the
role of the flow kinematics on the local entrainment rate we must consider the flow
fields adjacent to both sides of the TNTI; this is presented in the following section.

4. Conditional flow structures about the TNTI
4.1. Conditioning along coordinates normal to the TNTI

We now expand the analysis of the previous section and consider the local flow on
either side of the TNTI to understand the kinematics associated with entrainment
and detrainment rates. To do this we evaluate profiles along the interface-normal
coordinate xn, as described in § 2.1. The xn-profiles presented in this section are also
conditioned on the local entrainment velocity along the TNTI, which is divided into
the two regimes illustrated in figure 4(c). Entrainment is defined as vn 6 0 and is
represented by green square markers and detrainment is defined as vn > 0 and is
represented by red triangle markers. The decomposition of the xn-profiles based on
these two regimes offers insight into the features of the flow that either enhance or
hinder entrainment.

Figure 11(a,b) shows the jump profiles for 〈φ〉 and 〈ω2
z 〉 across the TNTI (as

shown in § 2.1) but with additional conditioning on the local entrainment velocity
(coloured markers). Inside the turbulent region (xn > 0) the scalar concentration
and vorticity magnitudes are greater during entrainment (green squares) compared
to detrainment (red triangles). Notably, the jump in enstrophy that accompanies
entrainment extends xn = 2.6λ into the turbulent region and is approximately 45 %
larger than the enstrophy magnitude during detrainment. This increase in enstrophy
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FIGURE 12. (Colour online) (a) Graphical description of the flow quantities measured
along the interface-normal coordinate, xn. Mean conditionally averaged profiles locally
normal to the TNTI (black lines) for (b) un and (c) ut. Further conditioning on the local
entrainment velocity is shown by the coloured markers, as defined in figure 4(c). Positive
entrainment is denoted by green squares and detrainment is denoted by red triangles. The
turbulent region is defined as xn> 0 and the non-turbulent region is defined as xn< 0. The
entrainment-conditioned mean (d) interface-normal and the (e) interface-tangent velocities
at the interface (xn = 0).

that accompanies entrainment may be explained by previous observations of Taylor
micro-scale vortical structures of O(λ) in size that populate the inner edges of the
TNTI (da Silva & Taveira 2010). We conjecture that these high intensity vortex
structures along the TNTI are correlated with the local entrainment process across
the interface.

4.2. Conditional flow field about the TNTI
We now consider the flow field about the TNTI by decomposing the fluid velocity
(u) along xn into the normal un and tangential ut components relative to the TNTI.
Figure 12(a) illustrates the component velocities along the coordinate xn. Both un
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and ut are calculated at each point along xn (see (3.3)), normalised by Uc and
ensemble averaged across the TNTI and over all the realisations of the flow. The
mean profiles of 〈un〉 and 〈ut〉 correspond to the thick black lines presented in
figures 12(b) and 12(c), respectively. The profiles denoted by the coloured markers
will be discussed later. The filled grey region in the background spans xn =±λ and
represents the region over which the jump in 〈φ〉 and 〈ω2

z 〉 occurs (see figure 11).
Figure 12(b,c) shows the profiles of 〈un〉− 〈un(0)〉 and 〈ut〉− 〈ut(0)〉, normalised by

Uc, along xn. Component velocities along xn are subtracted by a reference component
velocity of uI at the TNTI (xn= 0) resulting in a transformation that depicts the flow
field in a frame of reference moving with the local fluid velocity uI at the TNTI.
The profile of 〈un〉 − 〈un(0)〉 in figure 12(b) shows (in black solid line) that relative
to the TNTI un is positive in the non-turbulent region and transports irrotational fluid
towards the TNTI. In the turbulent region, relative to the TNTI fluid velocity, un is
negative corresponding to the transport of rotational fluid towards the TNTI. Similar
profiles have been observed across a number of numerical an experimental studies in
wakes and jets (Bisset et al. 2002; Westerweel et al. 2009; Watanabe et al. 2014a;
da Silva, Taveira & Borrell 2014b), however, the physical relationship between these
conditionally averaged counterflow profiles, the entrainment velocity and the local
kinematics about the TNTI have not been investigated. The tangential velocity profile
(black line) in figure 12(c) shows the flow is reasonably quiescent in non-turbulent
region and increases with xn into the turbulent region of the jet. This behaviour is
qualitatively similar to observations by Westerweel et al. (2009) (see their figure 13).

Similar to the analysis performed in figure 11, we decompose the interface-normal
〈un〉 and interface-tangent 〈ut〉 velocity profiles based on the local entrainment velocity
vn measured at the TNTI (xn = 0). The velocity profiles in figure 12(b,c) are further
conditioned on entrainment and detrainment as illustrated in figure 4(c), as denoted
by the coloured lines and markers. Conditioning the interface-normal velocity profile
on vn, as shown in figure 12(b), reveals substantial differences in the profiles. The
entrainment and detrainment profiles rapidly diverge in the turbulent region (xn > 0).
Entrainment (green squares) shows a significant increase in −〈un〉 in the turbulent
region, which significantly enhances the transport of turbulent fluid towards the TNTI
compared to the mean profile (black line). Therefore high levels of entrainment at
the interface are accompanied by the greater transport of momentum, scalar and
vorticity from the turbulent region towards the TNTI of the jet. This is in contrast
to the detrainment profile (red triangles), which shows that 〈un〉 becomes positive
in the turbulent region, after xn/λ = 5, as it transports fluid away from the TNTI.
This is consistent with the shedding of turbulent fluid into the non-turbulent region.
In addition to not exhibiting a counterflow profile about the TNTI that extends
very far into the turbulent region, several other differences between the entrainment
and detrainment profiles are observed. The velocity difference across the TNTI
is noticeably larger for the entrainment profile and the interface-normal velocity
gradient is also steeper, and extends through the turbulent region, for entrainment.
This suggests that the velocity gradient in the vicinity of the TNTI may play an
important role in determining the local kinematics of entrainment/detrainment across
the TNTI. The characteristic flow patterns for positive entrainment and detrainment
are shown in figure 12(b) and support the observations from the previous sections
that show that entrainment and detrainment strongly depend on the alignment of the
local velocity and the TNTI normal n.

The component values of uI , the interface-normal 〈un(0)〉 and interface-tangent
〈ut(0)〉 at the TNTI are plotted in figures 12(d) and 12(e), respectively. Figure 12(d)
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shows that there is greater inflow of non-turbulent fluid (un > 0) towards the turbulent
region during entrainment compared to detrainment. The positive values signify
that the fluid velocity is aligned with the interface-normal n in the direction of
the turbulent region. The interface-tangent velocity 〈ut(0)〉 is also larger during
positive entrainment compared to detrainment. The entrainment-conditioned profiles
in figure 12(c) are qualitatively similar, which suggests that the tangential shear across
the TNTI is not very different during entrainment and detrainment.

Based on the conditional profiles in figures 11 and 12 we may summarise some
key physical features that influence the local entrainment process as follows: (i)
the larger jump in enstrophy that is correlated with entrainment compared with
detrainment (figure 11b) points to the role of intense Taylor micro-scale vortical
structures in the vicinity of the TNTI (to be discussed in the next section) previously
observed by da Silva & Taveira (2010), (ii) the transport of turbulent fluid towards
the TNTI is enhanced during entrainment whereas turbulent fluid is advected away
from the TNTI during detrainment (figure 12b) and (iii) transport of non-turbulent
fluid towards the TNTI is enhanced during entrainment compared with detrainment
(figure 12d). Features (ii) and (iii) show that increased local entrainment is associated
with a distinct counterflow velocity profile about the TNTI that extends well into the
turbulent region. Thus, we may now address part of the second research question
posed in the introduction: is there a characteristic turbulent structure that influences
the local entrainment along the TNTI?

4.3. Instantaneous entrainment
Here, we build upon previous observations that along and adjacent to the TNTI
the turbulent region is populated by intense vortical structures of O(λ) (da Silva
& Taveira 2010). These structures potentially offer an explanation for (i) the jump
in enstrophy observed in figure 11(b) and (ii) the generation of the characteristic
counterflow profile about the TNTI, both of which are correlated with increased
local entrainment. Furthermore, the correlation Rv′nv′n in figure 5(a) showed us that
fluctuations of the entrainment velocity along the TNTI occur with spacing between
them that is O(λ).

In figures 13 and 14 we present instantaneous snapshots of the flow in the region
about the TNTI that depict these intense λ-scale vortical structures and the scalar fields
in different reference frames to elucidate the local kinematic features of entrainment.
These snapshots are extracted from the high-resolution SFOV data for which the
vector spacing is 3η. In the first column we show instantaneous scalar concentration
fields normalised by the local mean centreline concentration, φ/φc, with the velocity
vectors overlaid in grey in a laboratory reference frame. The TNTI is indicated by
the black line and the entrainment velocity denoted by the green vectors for positive
entrainment (vn 6 0) and red vectors for detrainment (vn > 0). In the second column
the velocity field is plotted in a reference frame moving with the TNTI local fluid
velocity at a point denoted by the red circle (uI). In the third column, also in the
TNTI fluid reference frame (flow velocity vectors in the middle column), the φ-field
is replaced with the spanwise vorticity field, ωz.

Figure 13 shows three examples of high entrainment rates. It is difficult to discern a
characteristic flow pattern associated with entrainment in a laboratory reference frame,
figure 13(a,d,g). By considering a frame of reference moving with the interface fluid
in the second column (b,e,h), we observe a counterflow about the TNTI in which
both turbulent and non-turbulent fluids converge onto the TNTI. This is consistent
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FIGURE 13. (Colour online) (a,d,g) Instantaneous scalar concentration field (background
contours) superimposed with the TNTI (black line), local fluid vectors in a laboratory
reference frame (grey vectors) and the entrainment velocity vectors along the TNTI. The
entrainment velocity vectors are colour coded as per figure 4(c): green vectors denote
entrainment and red vectors denote detrainment. (b,e,h) Same data as (a,d,g) but with the
fluid vectors shown in a frame of reference moving with the TNTI fluid velocity at the
point denoted by the red circle. (c, f,i) Same data as (b,e,h) but with the vorticity field
shown in the background contours.

with the counterflow un profiles conditioned for entrainment (green squares) shown in
figure 12(b). Furthermore, these counterflow fields also coincide with vortex structures
on the turbulent side of the TNTI, as shown in figure 13(c, f,i), which are located in
the vicinity of the entrainment (i.e. negative vn). It is reasonable to conjecture that
these vortex structures, which are O(λ), result in the enstrophy jump observed in the
conditionally averaged xn profiles of 〈ω2

z 〉 in figure 11(b).
The conditional statistics and instantaneous flow fields are evidence that these

Taylor micro-scale vortex structures along the TNTI play an important role in the
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FIGURE 14. (Colour online) See caption in figure 13.

local entrainment process. The diameter of the vortices, which are O(λ), are illustrated
in figure 13(c, f,i) and, to be later discussed, in figure 14(c, f,i). Although, we focus on
the role of these vortex structures in the kinematics of entrainment, previous studies
have shown that the thickness of the TNTI scales with their size (da Silva & Taveira
2010). In addition, Taveira, da Silva & Pereira (2011) demonstrate that these vortex
cores generate a local pressure minimum and a peak in the pressure variance located
xn = 2λ − 4λ into the turbulent region from the TNTI, which agrees very well with
the local enstrophy peak that we measure in figure 11(b) that occurs at xn = 2.6λ,
and in accordance with the Rv′nv′n results in figure 5(a).

Combining these observations suggests that the pressure gradient field generated
by these vortex structures acts to induce greater inflow of non-turbulent fluid towards
the TNTI and generates a counterflow velocity field. The conditional profiles shown
in figures 11(b) and 12(c) demonstrate that this particular kinematic description is
associated with a local increase in entrainment. The work of Watanabe et al. (2014b)
offers an explanation as to why a counterflow velocity profile is associated with
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greater entrainment. Watanabe et al. (2014b) found that the flow conditions about
the TNTI that would yield alignment of the compressive strain eigenvector (γ ) with
the interface-normal unit vector (n), would also yield alignment of the extensive
strain eigenvector (α) parallel to the TNTI and also parallel to the vorticity vector
(ω, Gampert et al. 2014). Alignment of the extensive strain with the vorticity vector
occurs in region of positive enstrophy production (Buxton & Ganapathisubramani
2010). Equation (1.1), supported by van Reeuwijk & Holzner (2014) and Philip et al.
(2015), tells us that viscous dissipation is the primary source of detrainment. Thus, a
strain field that intensifies the vorticity of the λ-scale structures along the TNTI will
counter the effects of viscous dissipation and promote greater local entrainment.

Following from the arguments above, it is reasonable to expect that misalignment
of γ with n, or simply a weaker compressive strain rate, would correspond with
the destruction of enstrophy. In the absence of enstrophy production, a vortex
will decay via viscous dissipation which results in detrainment. In other words,
a fluid particle that once contained vorticity greater than the threshold defining
the TNTI, will dissipate vorticity, which then falls below the TNTI threshold and
therefore crosses from the turbulent region to the non-turbulent region. Thus λ-scale
vortices along the TNTI are conjectured to play a key role in local entrainment
and detrainment processes in turbulent shear flows, in support of past research on
the TNTI (Westerweel et al. 2005, 2009; da Silva & Taveira 2010; Chauhan et al.
2014b). In the next section, we present a series of instantaneous fields to illustrate
this conjecture by considering how the entrainment kinematics can be observationally
linked to the presence of adjacent vortical structures.

4.4. Instantaneous detrainment
Figure 14 illustrates three instantaneous flow snapshots of detrainment along the TNTI.
In figure 14(c) we see the TNTI forms a perimeter around a vortex-pair structure. In
the region about the origin of xn (red circle) in (b) the local flow is impinging onto the
TNTI resulting in positive entrainment. To the left of the panels in (a,b,c) red vectors
indicating detrainment occur due to the flow moving tangential to the TNTI. Again, in
figure 14(e, f ), we observe a local flow field where flow is advected across the TNTI
resulting in detrainment. Entrainment are also observed in regions where a counterflow
field is established. Finally, figure 14(g,h,i) depicts large detrainment which occupies
most of the FOV. It is difficult to discern any notable flow pattern based on the
laboratory reference frame flow field (grey vectors) in panel (g). However, from a
frame of reference moving with the TNTI fluid at the point denoted by the red circle
we observe a sweeping flow pattern on the right side of panels (h,i) in which the
fluid is moving in the same direction on either side of the TNTI. This advection flow
pattern results in a large detrainment rate and distinctly contrasts the clear impinging
flow pattern observed in the previous entrainment cases.

Thus, the interface-normal velocity profiles presented in figure 12(b) are evidenced
in instantaneous flow patterns about the TNTI. We have shown in this section that
(i) the vortical structures adjacent to the TNTI exhibit greater enstrophy during
entrainment compared to detrainment, (ii) there is large-scale advection of turbulent
fluid towards the TNTI during entrainment and (iii) there is greater inflow of
non-turbulent fluid towards the TNTI during entrainment. These flow features are
manifested as a counterflow velocity profile about the TNTI in a frame of reference
moving with the TNTI fluid particle. We postulate that the strain fields that correspond
with these flow patterns, and the resultant balance between enstrophy production and
dissipation, is strongly coupled with the resultant local entrainment at the interface.
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FIGURE 15. (Colour online) Distribution of the local entrainment velocity vn as a function
of spatial filter size ∆. With larger filter sizes there is a reduction in detrainment (vn > 0)
whilst the entrainment remains relatively unchanged.

4.5. Remarks on the fluctuating nature of the entrainment velocity and size of
entrainment/detrainment structures

It is clear from the two point correlation of the fluctuating vn along the TNTI (Rv′nv′n)
in figure 5(a) that the local entrainment undergoes a periodic fluctuation with a
wavelength that is of O(λ). The physical reason for these fluctuations is the numerous
λ-sized eddies located around along the TNTI. These eddies are observed vividly in
the last columns of figures 13 and 14. To be specific, if we pick figure 14(c), we see
that along the TNTI a λ-sized eddy promotes entrainment (green arrows) on one side
and at the same time gives rise to detrainment (red arrows). The fluid particles are
drawn into the turbulent region on one side and almost in tandem there is a tendency
of the fluid particles to be pushed out of the turbulent region. This action of eddies
at the TNTI may be the main reason for the varying entrainment and detrainment
rates that occur along the TNTI.

Even though entrainment and detrainment rates are driven by eddies at the TNTI,
these are heavily dependent on the local TNTI surface features (as detailed in § 3.3).
In fact, there is also a length-scale dependence of entrainment and detrainment rates.
Evidence of this length-scale dependence may be obtained by filtering the original
velocity/scalar fields, as explained in detail in Mistry et al. (2016). In short, the
fields are box filtered with different filter sizes (∆), and entrainment velocities are
recalculated using the same procedure as for the unfiltered case. The PDF of vn for
different filter widths (normalised by λ) is shown in figure 15. With increasing filter
width the smaller features are eliminated from the flow, and as evidenced in figure 15,
the detrainment velocities are the most affected by the filtering. In fact, the large
detrainment rates are ones to be eliminated in the filtering procedure, which implies
that they are associated with smaller scales. The fact that entrainment is largely
unaffected by this filtering process suggests a large-scale influence on entrainment,
likely resulting from the global constraints of a constant mean axial momentum flux
and energy dissipation (cf. § 1).

5. Summary and conclusions

In this paper we investigate the kinematics of local entrainment with respect
to the turbulent/non-turbulent interface in the far field of an axisymmetric jet at
high Reynolds number. We performed high-speed, simultaneous multi-scale PIV and
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Entrainment

¯un˘ - ¯un(0)˘
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FIGURE 16. (Colour online) Summary of the entrainment and detrainment relative to
the TNTI geometric features. We recall that negative vn (pointing away from the TNTI)
implies entrainment and an opposite sign for detrainment: (a) vn in the laboratory
reference frame; (b) fluid velocity conditioned on the interface (〈un〉) relative to the TNTI
location, 〈un〉 − 〈un(0)〉.

PLIF measurements that allowed for the identification of the TNTI using a passive
scalar and measurement of the local entrainment velocity along it. In agreement
with other studies of the entrainment velocity (Holzner & Lüthi 2011; Wolf et al.
2012; Watanabe et al. 2014a; Krug et al. 2015), we show that the PDF of vn
is non-Gaussian and that vn is intermittent along the TNTI. We observe that the
net entrainment of non-turbulent fluid into the turbulent region is balanced by
approximately two parts of entraining flow and one part of detraining flow. The
integral length scale of the entrainment velocity is of O(λ), which supports the role
of Taylor micro-scale eddies in the entrainment/detrainment process.

We characterise three features of the TNTI geometry: the radial position, the
interface curvature and the surface orientation, the PDFs of which all agree well with
comparable studies (Dopazo et al. 2007; Wolf et al. 2013b; Watanabe et al. 2014a).
To understand the effect of these TNTI geometric properties on entrainment velocity,
we also evaluate the conditional entrainment velocity as a function of these three
variables. Generally, there is greater local entrainment along the TNTI while the
interface radial position is nearer to the jet centreline, while the surface curvature is
convex and along the leading edges of the interface. On the other hand, detrainment
is more likely to happen when the radial location is away from the jet centreline,
the TNTI surface is concave and the location is along the jet’s trailing edge. This
is summarised in figure 16(a). Furthermore, there is greater entrainment when the
local fluid velocity vector uI is aligned with the local interface-normal unit vector
n. This entrainment dependence on velocity, specifically the interface-normal velocity,
goes towards explaining why there is a higher entrainment near the jet centreline and
along convex curvatures.

Using velocity profiles in an interface reference frame along an interface-normal
coordinate xn, we determine that the velocity tangential to the TNTI does not
significantly influence the local entrainment velocity. Rather, it is the interface-normal
velocity that correlates well with the local entrainment. Entrainment rates correspond
with a counterflow velocity profile that results in both turbulent fluid and non-turbulent
fluid being simultaneously transported towards TNTI. We present evidence using
instantaneous snapshots and mean profiles of enstrophy about the TNTI to demonstrate
that intense λ-scale structures along the TNTI are responsible for the generation of a
compressive strain field normal to the TNTI, which is manifested as the counterflow
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velocity profile that we observe. We interpret the flow kinematics by considering the
local strain field and the resultant enstrophy amplification or destruction. A strong
counterflow, and compressive strain, is likely to be associated with a similarly large
extensive strain eigenvector that will intensify the vorticity at a rate that is faster
than viscous dissipation of enstrophy. In the absence of enstrophy production, the
dissipation dominates leading to the conversion of turbulent fluid to non-turbulent one,
and hence local detrainment. This picture of the local entrainment/detrainment process
is illustrated in the schematic in figure 16(b). Furthermore, the instantaneous flow
fields clearly show the role of O(λ)-eddies in varying the entrainment along the TNTI.
In fact, it is not uncommon to see the entrainment and detrainment accompanied by
each other along the TNTI wrapped around the O(λ)-eddies. This also provides some
kinematic explanation of the large entrainment and detrainment rates on a jet TNTI.
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