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Given a graph F , let st(F) be the number of subdivisions of F , each with a different vertex

set, which one can guarantee in a graph G in which every edge lies in at least t copies of

F . In 1990, Tuza asked for which graphs F and large t, one has that st(F) is exponential in

a power of t. We show that, somewhat surprisingly, the only such F are complete graphs,

and for every F which is not complete, st(F) is polynomial in t. Further, for a natural

strengthening of the local condition above, we also characterize those F for which st(F) is

exponential in a power of t.

2010 Mathematics subject classification: Primary 05C10

Secondary 05C35, 05C83

1. Introduction and results

A subdivision or topological minor of a graph F , denoted by TF , is a graph obtained

by replacing the edges of F with internally vertex-disjoint paths between endpoints. A

classical result of Mader [6] from 1972 states that there is some function f(d) of d

such that any graph with average degree f(d) contains a copy of TKd. Mader, and

independently Erdős and Hajnal [2], conjectured that the correct order of magnitude for

f(d) is d2. This was verified by Bollobás and Thomason [1] and independently by Komlós

and Szemerédi [4]. The current best bound is due to Kühn and Osthus [5].

Theorem 1.1 ([5]). Let G be a graph with average degree at least (1 + o(1))(10/23)d2.

Then G ⊇ TKd.

This result is tight up to the constant factor; as Jung [3] observed, the complete bipartite

graph Kr,r with r = �d2/8� does not contain a copy of TKd+1.
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We say that two subgraphs H,H ′ of a graph G are distinguishable if V (H) �= V (H ′).

In 1981, Komlós (see [7]) conjectured that every graph with minimum degree d contains

at least as many distinguishable cycles as Kd+1, that is, 2d+1 −
(
d+1
2

)
− d − 2. A weaker

conjecture, asking whether minimum degree d forces exponential in d many distinguishable

cycles, was verified by Tuza [7] who obtained a lower bound 2�(d+4)/2� − O(d2) for graphs

with average degree d. If instead one imposes a different local condition on G, namely that

every edge lies in at least t triangles, it is shown in [7] that G contains as least as many

distinguishable cycles as Kt+2. In other words, G contains at least as many distinguishable

subdivisions of the triangle as Kt+2.

Our aim in this paper, answering a question of Tuza [7, 8, 9], is to generalize this from

triangles to arbitrary fixed graphs F and establish for which F locally many copies of

F guarantee exponentially many distinguishable subdivisions of F globally. To formulate

this more precisely, let us say that a graph G is (F, t)-locally dense if every edge e of

G lies in at least t copies of F . Write s(F,G) for the size of the largest collection of

distinguishable subdivisions of F in G. Define

st(F) = min{s(F,G) : G is (F, t)-locally dense}.

Tuza’s question [7] was for which graphs F one can find c, c′ > 0 such that whenever

t is a sufficiently large integer compared to |F |, we have st(F) � ct
c′
. Our main result

answers this question completely, showing that the only such F are complete graphs. For

every F that is not complete, we construct graphs that are locally dense in F , with only

polynomially many distinguishable subdivisions of F .

Theorem 1.2. Let � � 3 be an integer. Whenever t is sufficiently large, the following hold.

(i) st(K�) � 2t
c′
, where c′ := c′(�) � 1/(2(� − 2)).

(ii) For all graphs F on � vertices which are not complete,

st(F) � 2�(t + 2)e(F)+2�.

(iii) Whenever � � 4, we have

st(K
−
� ) � t(1−o(1))(e(K−

� )−2�+5),

where K−
� is the graph obtained from K� by removing an edge.1

For part (i), our bound on c′(�) is best possible up to the constant factor 1/2. As noted

by Tuza [8], c′(�) � 1/(� − 2). This is attained by the graph G = Kr , where r satisfies(
r−2
�−2

)
= t. Indeed, every edge of G lies in exactly t copies of K�, and every set X ⊆ V (G)

of size at least � is such that there is a copy of TK� with vertex set X. Therefore,

st(K�,G) =

r∑
i=�

(
r

i

)
� 2r � 2t

1/(�−2)

.

Nonetheless, we do not believe our bound on c′(�) is optimal and so we make no serious

attempt to optimize absolute constants.

1 Here o(1) denotes a function which tends to 0 as t → ∞.
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Part (ii) shows that for all non-complete F , the minimum number of distinguishable

subdivisions of F among all (F, t)-locally dense graphs is at most a polynomial in t. Our

upper bound on st(F) in (ii) is close to being optimal, as shown by part (iii).

The rest of the paper is organized as follows. In Section 2 we give the proof of

Theorem 1.2. In Section 3 we study how a natural strengthening of the locally dense

condition would change the outcome. Some concluding remarks are given in Section 4.

2. Proof of Theorem 1.2

Let us briefly sketch the ideas in the proof. For part (i), first note that a (K�, t)-locally

dense graph G has minimum degree which is polynomial in t. Then Theorem 1.1 furnishes

us with a subdivision T of Kd in G such that d is polynomial in t. Every subset of the

branch vertices of T which has order at least � gives rise to a subdivision of K�, and all

of these are distinguishable. For part (ii), for each non-complete F we construct a graph

G which is (F, t)-locally dense but has a very small dominating set A (so each copy of F

has very large overlap). The size of A limits the number of vertices in any subdivision

which lie outside A. The proof of (iii) combines ideas from the previous parts together

with an averaging argument.

We call those vertices of TF which correspond to those of F the branch vertices.2

Proposition 2.1. Let k, � ∈ N with � � k and suppose that T is a subdivision of Kk . Then

T contains a subdivision of K� which contains all branch vertices of T .

Proof. Let x1, . . . , xk be the branch vertices of Kk in T . Now T is the union of a set{
P (i, j) : ij ∈

(
[k]

2

)}

of internally vertex-disjoint paths where P (i, j) has endpoints xi, xj . Then we can find a

copy of TK� with branch vertices x1, . . . , x� by taking the paths P (i, j) for all {i, j} ∈
(
[�]
2

)
\

{1, �}, and taking the concatenation of the paths P (�, � + 1), P (� + 1, � + 2), . . . , P (k −
1, k), P (1, k) to obtain a path between x1 and x� which contains every other branch vertex

in V (T ).

Fix � ∈ N. We will first prove (i). We may assume that � � 4 since the statement is

known for � = 3 (see [7]). Let G be (K�, t)-locally dense, that is, every edge xy ∈ E(G) lies

in at least t copies if K�. Then

t �
(

|N(x) ∩ N(y)|
� − 2

)
�

(
d(x)

� − 2

)
<

(
d(x) · e
� − 2

)�−2

(2.1)

2 We use standard graph-theoretic notation. For natural numbers k � �, write [�] := {1, . . . , �} and write
([�]
k

)
for the set of k-subsets of [�].
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and so d(x) > e−1(� − 2)t1/(�−2) for all x ∈ V (G) which are not isolated. Now Theorem 1.1

implies that G contains a copy of TKd, where

d = (1 − o(1))

√
23(� − 2)

10e
· t1/(2(�−2)). (2.2)

Let X := {x1, . . . , xd} be the set of branch vertices of this copy of TKd and let P (i, j),

ij ∈
(
[d]
2

)
, be the internally vertex-disjoint path between xi and xj .

Do the following for each I ⊆ [d] with |I | � �. Let XI := {xi : i ∈ I}. Let TI be the

subdivision of K|I | whose set of branch vertices is precisely XI and which consists of

paths P (i, j) with ij ∈
(
I
2

)
. So V (TI ) ∩ X = XI . Proposition 2.1 implies that TI contains

a subgraph SI which is a subdivision of K� such that V (SI ) ∩ X = XI . Thus obtain a

collection {SI : I ⊆ [d], |I | � �} of subdivisions of K� in G. This collection is distinguishable

because V (SI ) ∩ X �= V (SI ′ ) ∩ X for distinct I, I ′ ⊆ [d]. So, when t is sufficiently large,

s(F,G) � 2d −
�−1∑
i=0

(
d

i

)
� 2d − (d + 1)�−1 � 2t

1/(2(�−2))

,

where we used the fact that � � 4 in (2.2). This completes the proof of part (i) of

Theorem 1.2.

We now turn to the proof of (ii), which will follow from the next lemma.

Lemma 2.2. Let G be a graph with vertex partition A ∪ B, where B is an independent set.

Let F be a graph on � � |A| vertices. Then s(F,G) � 2�(|B| + 1)e(F)+2�.

Proof. Write V (F) = [�]. Let T be a subdivision of F in G, and let x1, . . . , x� be its

branch vertices. So T consists of pairwise internally vertex-disjoint paths P (i, j) for all

ij ∈ E(F), where P (i, j) has endpoints xi, xj . Let P denote the union of the P (i, j). Let

P(A,A) be the set of P (i, j) such that xi, xj ∈ A, and define P(A,B) = P(B,A) and P(B,B)

analogously. Given P = P (i, j), let aP be the number of internal vertices of P which lie

in A, that is, aP := |A ∩ (V (P ) \ {xi, xj})|, and define bP analogously for B. Since B is an

independent set, the following relationships are easy to see:

bP � aP + 1 for all P ∈ P(A,A),

bP � aP for all P ∈ P(A,B),

bP � aP − 1 for all P ∈ P(B,B).

Then, since |P | = e(F),

� � |A| �
∑
P∈P

aP �
∑
P∈P

(bP − 1) =
∑
P∈P

bP − |P | ⇒
∑
P∈P

bP � � + |P | = � + e(F).

Let b∗ denote the number of branch vertices of T which lie in B. Clearly, b∗ � �, hence,

|V (T ) ∩ B| = b∗ +
∑
P∈P

bP � 2� + e(F).
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Therefore an upper bound for s(F,G) can be obtained by counting the number of

subsets of V (G) containing at most 2� + e(F) vertices in B. Thus

s(F,G) � 2|A| ·
2�+e(F)∑

i=0

(
|B|
i

)
� 2�(|B| + 1)e(F)+2�,

proving the lemma.

We will construct a graph G for which s(F,G) � 2�(t + 2)e(F)+2�, via Lemma 2.2. Let

A,B be disjoint sets of vertices with |A| = � − 2 and |B| = t + 1, and let V (G) = A ∪ B.

Add every edge to G with at least one endpoint in A. For any graph F on � vertices

which is not complete, we claim that G is (F, t)-locally dense. It suffices to show that G is

(K−
� , t)-locally dense. Let e be the non-adjacent pair in K−

� and let xy ∈ E(G). If x, y ∈ A,

then for any of the
(
t+1
2

)
> t pairs {w, z} of vertices in B, we have that G[A ∪ {w, z}] is

isomorphic to K−
� with wz playing the role of e. Without loss of generality, the only other

case is x ∈ A, y ∈ B. Then similarly we can choose any of the t vertices w ∈ B \ {y} so that

wy plays the role of the missing edge e. Therefore every edge xy ∈ E(G) lies in at least t

copies of K−
� , and hence F . Now Lemma 2.2 implies that st(F) � s(F,G) � 2�(t + 2)e(F)+2�,

as required.

Finally, we prove (iii). Let ε > 0 and let t be sufficiently large compared to ε. Let G

be (K−
� , t)-locally dense. We will show that s(K−

� , G) � t(1−2ε)(e(K−
� )−2�+5). For each edge

e ∈ E(G), let g(e) be the number of copies of K�−1 in G which contain e. Suppose first that

g(e) � tε for all e ∈ E(G). Then G is (K�−1, t
ε)-locally dense. So, by (2.2) and Theorem 1.1,

G contains a copy of Kd, where d = (
√
�/3)tε/(2(�−3)). The same argument as (i) shows that

s(K−
� , G) � s(K�,G) � 2d − (d + 1)�−1 � 2

1
2 t

ε/(2(�−3))

> t�
2

whenever t is sufficiently large compared to ε and � (and recall that � � 4).

So we may assume that there is some e ∈ E(G) with g(e) < tε.

Claim 2.3. There is a subgraph H of G with vertex partition A ∪ B where |A| = � − 1 and

|B| � 2t1−ε/(� − 1), such that H[A] is complete and there is z ∈ A such that H[A \ {z}, B]

is a complete bipartite graph.

Proof. Let J be the set of copies of K�−1 containing e and let K be the set of copies of

K−
� containing e. So |J | = g(e) and |K| � t. Now, every copy of K−

� containing e contains

exactly two distinct J ∈ J as subgraphs. So, by averaging, there is some J ∈ J such that

there is K′ ⊆ K with the property that J ⊆ K for all K ∈ K′ and

|K′| � 2|K|
g(e)

� 2t1−ε. (2.3)

Every K ∈ K′ has exactly one non-adjacent pair, and exactly one member of this pair lies

in V (J). Averaging once again we see that there is some z ∈ V (J) and K′′ ⊆ K′ such that
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for all K ∈ K′′ every y ∈ V (K) is incident with every x ∈ V (J) \ {z}, and

|K′′| � |K′|
� − 1

(2.3)

� 2t1−ε

� − 1
.

Now, let A := V (J) and let B :=
⋃

K∈K′′ V (K) \ V (J). Every K ∈ K′′ contains precisely

one vertex xK outside V (J) and the only non-adjacent pair in K is xKz. Therefore the

vertices xK are distinct for distinct K . So |B| = |K′′|, as required. The remaining properties

are clear.

It will suffice to give a lower bound for s(K−
� , H). We will count the number of

subdivisions T of K−
� in H with specific properties. Label the vertices of K−

� by 1, . . . , �,

where E(K−
� ) =

(
[�]
2

)
\ {� − 1, �}. Write A = {x1, . . . , x�−1 := z}. Let x� and xij for all

ij ∈
(
[�−2]

2

)
be arbitrary distinct vertices in B and let X be the set consisting of these

vertices. Using these we can find a subdivision T (X) of K−
� in H with vertex set A ∪ X,

branch vertices x1, . . . , x� and paths P (i, j) for all ij ∈ E(K−
� ), as follows.

• For all i ∈ [� − 1], the vertex xi ∈ A corresponds to i ∈ V (K−
� ), and the vertex x� ∈ B

corresponds to � ∈ V (K−
� ).

• For all ij ∈
(
[�−2]

2

)
, each P (i, j) has precisely one internal vertex xij , which lies in B.

For all i ∈ [� − 2] and j ∈ {� − 1, �}, P (i, j) is the edge xixj .

Note that T (X) exists because H[A] is complete and H[A \ {x�−1}, B] is complete bipartite.

Different choices of X give rise to distinguishable T (X) since V (T (X)) = A ∪ X. Each X

has order
(
�−2
2

)
+ 1, so

s(K−
� , G) � s(K−

� , H) �
( |B|(

�−2
2

)
+ 1

)
�

(
2t1−ε

(� − 1)
((

�−2
2

)
+ 1

)
)(�−2

2 )+1

� t(1−2ε)
(
(�−2

2 )+1
)

= t(1−2ε)(e(K−
� )−2�+5),

completing the proof of (iii). This concludes the proof of Theorem 1.2.

3. A spectrum of local conditions

We now investigate a spectrum of progressively stronger conditions for host graphs G,

and characterize those graphs F such that every graph G satisfying the condition contains

exponentially many copies of TF . Given a graph F on � vertices, for each 3 � k � �, we

make the following definition. We say that a graph G is (F, k, t)-locally dense if every edge

of G lies in at least t copies of F ′ for all subgraphs F ′ ⊆ F with |F ′| � k. Let st(F, k) be

the minimum of s(F,G) over all (F, k, t)-locally dense graphs G.

The next theorem generalizes Theorem 1.2 by describing the set of all graphs F on �

vertices for which one can find c, c′ > 0 such that whenever t is a sufficiently large integer

compared to �, we have st(F, k) � ct
c′
. Note that (F, �, t)-locally dense is the same as (F, t)-

locally dense. So this notion seems to be the most natural strengthening of (F, t)-locally

dense. As expected, the family of those F of order � giving rise to exponentially many

subdivisions when the host graph is (F, k, t)-locally dense gets strictly larger as k decreases.

In fact F lies in this family if and only if F ⊇ Kk .
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Theorem 3.1. Let �, k ∈ N and 3 � k � �. Then, whenever t is sufficiently large, the follow-

ing hold.

(i) For all graphs F containing a copy of Kk , we have that st(F, k) � 2t
c′(k)

, where c′(k) �
1/(2(k − 2)).

(ii) For all Kk-free graphs F , we have that st(F, k) � 2�(t + 2)e(F)+2�.

Proof. For (i), let F be a graph on � vertices containing a copy of Kk . Let G be

a (F, k, t)-locally dense graph. Then G is certainly (Kk, t)-locally dense. The conclusion

follows immediately from Theorem 1.2(i).

For (ii), note that F is Kk-free if and only if every subgraph F ′ ⊆ F with |F ′| � k is such

that F ′ contains a pair of non-adjacent vertices. Therefore the graph G we constructed in

the proof of Theorem 1.2(ii) is in fact (F, k, t)-dense. (To see this, one can use the same

argument, as there is always a non-adjacent pair in F ′ which we can embed into B in at

least t different ways.) The conclusion follows from Lemma 2.2.

4. Concluding remarks

We have shown that among all graphs G which are (F, t)-locally dense, for large t the

minimum number of distinguishable subdivisions of F in G is exponential in a power

of t if and only if F is a complete graph. Whenever F contains a non-adjacent pair of

vertices, there is a simple construction of an (F, t)-locally dense graph G of order O(t)

with a very small dominating set A of order less than |F |. This property means that any

subdivision of F in G cannot contain many vertices outside A, which in turn implies

s(F,G) is polynomial in t.

When one strengthens the local condition on G (in order to increase the family of

graphs F which give rise to exponentially many subdivisions) in the most natural way,

it is easy to characterize this family using our earlier results. Therefore it would be of

interest to restate the question of Tuza with an entirely different local condition. To be

interesting, such a condition on the host graph G cannot imply for all F that G has

minimum degree at least some polynomial in t; otherwise Theorem 1.1 and the argument

in Theorem 1.2(i) imply the desired conclusion.

We remark that our proof of Theorem 1.2 also works when ‘edge’ is replaced by ‘vertex’

in our local condition: that is, we consider host graphs G in which every vertex lies in at

least t copies of F .
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