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Abstract

Life originated on Earth possibly as a physicochemical process; thus, geological environments
and their hypothetical characteristics on early Earth are essential for chemical evolution stud-
ies. Also, it is necessary to consider the energy sources that were available in the past and the
components that could have contributed to promote chemical reactions. It has been proposed
that the components could have been mineral surfaces. The aim of this work is to determine
the possible role of mineral surfaces on chemical evolution, and to study of the stability of
relevant molecules for metabolism, such as α-ketoglutaric acid (α-keto acid, Krebs cycle par-
ticipant), using ionizing radiation and thermal energy as energy sources and mineral surfaces
to promote chemical reactions. Preliminary results show α-ketoglutaric acid can be relatively
stable at the simulated conditions of an impact-generated hydrothermal system; thus, those
systems might have been plausible environments for chemical evolution on Earth.

Introduction

Life originated on Earth possibly as a physicochemical process; thus, geological environments
and their hypothetical characteristics on early Earth are essential for chemical evolution stud-
ies (Hazen, 2005). Chemical evolution, as Calvin defined, is the hypothetical period that starts
when the Earth was formed and lasts until the first living beings appeared. In this time span,
chemical reactions might have occurred, starting from simple compounds and transforming
into more complex ones, forming living entities (Calvin, 1955). Those reactions could happen
in one or more geologic scenarios, and for prebiotic chemistry studies, hydrothermal systems
have been considered plausible sites for the origin of life (Colín-García et al., 2016). A hydro-
thermal system forms when magma emerges on the surface and causes the heating of sur-
rounding water (Nisbet and Sleep, 2001). A hydrothermal environment consists of two
basic components: a heat source and a fluid phase. Heat fluids circulate at different tempera-
tures and pressures, and the system could survive long enough to form anomalous concentra-
tions of metallic minerals (Pirajno, 2009). Also, they constitute geochemical habitats that
harbour microbial communities (Martin et al., 2008). There are several types of hydrothermal
systems. For chemical evolution studies, they can be classified in a simplified way on submar-
ine, subaerial and impact-generated systems. Many of the prebiotic chemistry studies that
involve hydrothermal systems focus on submarine environments, due to their association
with magmas near to mid-ocean ridges, and with the origin of life on Earth (Colín-García
et al., 2016). This is due to the possibility that volcanism was more active on early Earth
than it is today, and ‘black smoker’ vents could exist in abundance. However, subaerial systems
could also exist if plate tectonics were already active. Acasta is a metamorphic heterogeneous
complex, comprises rocks as tonalites, granidorites, granites, until ultramafic rocks. This place
is an evidence that continental crust formed since 4.2 Ga (Iizuka et al., 2006). Furthermore,
they are a source of organic compounds, and those environments can harbour life without dir-
ect photosynthesis (Nisbet and Sleep, 2001; Martin et al., 2008). In most solar system bodies
that have a solid surface, impact cratering is the most important process of surface modifica-
tion (Koeberl, 2013). Although it is still in debate, it has been proposed that during the
Hadean, a heavy bombardment of asteroids and comets occurred on Earth, which means
an increment of the impact rate at 4.0–3.8 Gyr (Kring, 2002; Gomes, et al., 2005); hence,
hydrothermal systems might have generated on primitive Earth as a result of those impacts.
The record of lunar craters shows that the impact rate of size and flux decreased drastically
after this period. Moreover, its end seems to coincide with the origin of life (Farmer, 2000).
Even though impact events can produce environmental disturbances, the associated craters
could have certain characteristics that make them adequate geological sites for chemical evo-
lution, specifically those that develop the hydrothermal activity. The role of impacts on the
origin of life has not been studied in detail (Cockell, 2006). In oceanic environments, the
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problem that comes up is about the concentration of reactants
because the volume of water is great. Thus, a plausive alternative
to this problem can be impact-generated hydrothermal systems
(Chatterjee, 2016). Those systems can work as a favourable geo-
logic area for chemical evolution for three reasons: They have
an energy source (thermal) for carrying out chemical reactions;
a localized concentration of molecules can exist, and catalysis
could arise; and they are systems that can persist for long periods
(from 10 000 years to 2 Myr) (Daubar and Kring, 2001; Cockell,
2006). Mineral and clay mineral surfaces have been considered
as possible as participants in the origin of life, thanks to their
physicochemical properties, as they are capable of acting as cata-
lysts, concentrating agents and as assembling molds for prebiotic
molecules (Bernal, 1951; Goldschmidt, 1952; Cairns-Smith, 1966;
Hazen, 2012). For this reason, in prebiotic chemistry studies, it is
important to take them into account and find the role they
represent in this research area (Negrón-Mendoza, 2004; Hazen,
2005; Hazen and Sverjensky, 2010; Cleaves et al., 2012).

Along with thermal energy, ionizing radiation could play an
important role in chemical evolution because, on the early
Earth, the levels of radiation were significantly higher than they
are today. Radiation dose from geologic emitters has changed
because of the evolution of the continental crust and the relative
abundances of radionuclides (Karam and Leslie, 1999). Also, the
intensity of ionizing radiation coming from the exterior of the pla-
net was higher. Chemical changes produced by this type of energy
could be the cause of modification of prebiotic molecules that led
to the subsequent emergence of life, absorbing energy either dir-
ectly or indirectly through the presence of other radiolytic pro-
ducts on the medium (Zagórski and Kornacka, 2012).
Production of radiolytic molecules relevant for life has been con-
sidered in primordial aqueous environments due to 40K decay
(Draganić, 2005).

α-keto acids are compounds that have a carbonyl group adja-
cent to a carboxylic group. Keto acids are formed as intermediates
during metabolic interconversions of sugars, carboxylic acids and
amino acids. Those analogous to natural amino acids have great
importance in intermediary metabolism. Other metabolic pro-
cesses in which α-keto acids play an important role are the
Krebs cycle and glycolysis. As the precursor to citric acid,

Acetyl-CoA is exposed to chemical conversions in which keto
acids such as α-ketoglutaric and oxaloacetic acid are involved
(Nelson and Cox, 2012). α-ketoglutaric acid (AKG) is a small
molecule (C5H6O5) that possibly played a role in the period of
chemical evolution; for this reason, the aim of this work is to
study the behaviour of this molecule under radiation and thermic
energy conditions, simulating chemical reactions that might have
occurred in a primitive environment such as impact-generated
hydrothermal system.

Materials and methods

Analytical techniques

For the analysis of the α-ketoglutaric acid, a derivatization
method is needed. In this work, ο-phenylenediamine (OPDA)
was used as a derivatizing agent, according to Montenegro et al.
(2011). The chromatographic analysis was carried out on a
UHPLC UltiMate 3000 chromatographic system (Thermo
Scientific®, USA), with a UV-Vis Dionex UltiMate 3000 VWD

Table 1. Changes on pH of the systems

System pHi pHf

Zeolite-AKG 3.5 6.5

Pyrite-AKG 3.5 6.5

Montmorillonite-AKG 5.8 3.5

Montmorillonite-AKG 5.8 6.5

Table 2. Stability of AKG at different pH values

Decomposition (%)

Time Initial Week 1 Week 2 Week 3

Standard pH 3 0 2.2 1.2 1.8

pH 6 2.7 1.8 1.3 1.6

pH 8 2.7 2.0 2.7 2.5
Fig. 1. AKG sorption onto different minerals.

Fig. 2. Differences in sorption capacity of minerals when pH is modified.
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(Thermo Scientific®) detector and a Halo® C8 column (50 ×
4.6 µm) for the separations. The mobile phase was prepared
with 90% ammonium acetate (8 mM, pH 4.5) and 10% methanol
at 0.3 ml min−1 a 25°C. A fixed sample volume injection of 20 ml
was used. The samples were detected at 340 nm. In addition, gas
chromatography was used for the analysis of AKG and radiolytic
products. The instrument was a gas chromatograph HP-5890A
with a capillary column filled with methyl silicon. The samples
were derivatized to their corresponding methyl ester, according
to Negrón-Mendoza and Ponnamperuma (1976).

Materials and glassware

Three different minerals were used for the experiments: SWy-2
Na-montmorillonite (Source of Clay Minerals Repository,
Wyoming, USA), pyrite (from Spain) and zeolite (stilbite and
heulandite, from Pune, India). AKG was from Sigma Aldrich®.
To avoid organic contamination on irradiation experiments,
glass material was treated according to radiation chemistry proce-
dures (Draganić, 2005).

pH stability analysis

To learn about the behaviour of AKG in basic pH, stability experi-
ments were carried out. The pH of AKG standard solution was 3,
and generally, in impact-generated hydrothermal systems, the
reported pH range was slightly alkaline or near neutral
(Osinski, 2005; Osinski, et al., 2005). Three samples were ana-
lysed: The first one was the standard solution without any pH
modification. For the second, a pH modification to 6.5 was
done using NaOH 0.01 M. For the last sample, the pH was
increased to 8. The stability was evaluated immediately after the
pH modification, as well as 1, 2 and 3 weeks later.

Sorption studies

Before the assays, mineral samples were treated to remove organic
contamination, using a 3% KOH solution (10 ml g−1 mineral),
stirring for 30 min, rinsing with distilled water, stirring again
for 30 min with a 3% HNO3 solution (10 ml g−1 mineral), rinsing
and letting dry.

Fig. 3. Decomposition of AKG by γ radiation (Left: irradiation of 0.1 M solution. Right: irradiation of 1 × 10−3 M solution).

Fig. 4. Mass spectrum of succinic acid (methyl ester) formed by irradiation of AKG at 30 kGy.
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Sorption assays were performed using 2.5 ml of aqueous stand-
ard solution of α-ketoglutaric acid 0.001 M and 50 mg of mineral
(mineral-AKG systems). Samples were stirred at different times
(1, 2, 4, 6 and 24 h) in centrifuge polyallomer tubes 16 ×
76 mm (Beckman Coulter®). Then, the tubes were centrifuged at
26 000 rpm (Beckman Coulter Allegra 64R® centrifuge) for
25 min for the separation of phases. The volume needed for the
derivatization was taken from the liquid phase. The sorption per-
centage was calculated considering the change in the peak area in
relation to the standard peak. Sorption studies were done in
triplicate.

Sorption studies at different pH

When zeolite or pyrite interacts with the aqueous solution of
AKG, the pH of the system is 3.5 (pHi). On the other hand,
the montmorillonite-AKG system pH is 5.8. A sorption test
with fixed pH (pHf) was conducted to observe if there is a differ-
ence in sorption capacity in these systems at 24 h fixed time
(Table 1).

Radiolysis

Aqueous solution
Aside from the thermal energy effect, ionizing radiation was
selected as another energy source on early Earth. Samples of tri-
distilled aqueous solutions of AKG 1 × 10−3 M were irradiated
with γ rays from a 60Co source located at the Gammabeam
651-PT of the Instituto de Ciencias Nucleares, UNAM.
Radiation doses were from 5 to 50 kGy, and the dose intensity
was 167 Gy min−1. Radiolysis experiments were done in duplicate
and with oxygen-free solutions. Additionally, GC-MS analysis was
performed for the identification of radiolytic products (carboxylic
acids) through their methyl esters.

Mineral-AKG systems
To study the effect of the presence of minerals when AKG is
exposed to γ radiation, samples of each mineral and AKG were
prepared as in section ‘Materials and glassware’ at a fixed time
of contact of 24 h. Once the contact time was reached, samples

were irradiated at 5, 30 and 50 kGy, then centrifuged, and the
supernatant was collected.

Thermolysis

Thermolysis assays were carried out with oxygen-free 1 × 10−3 M
aqueous solution of AKG. Two different systems were used for
this purpose. The first one consisted of a heating static system
composed of a flask assembled to a condensation column for
the recirculation of organic solvents. The organic solvent was con-
tained inside the flask while it was heated to its boiling point at
582 mm Hg. The flask had four orifices to insert tube samples;
these tubes did not come in direct contact with the solvent.
Three different solvents were used to reach different temperatures:
toluene, dimethylformamide and nitrobenzene (100, 135 and
180°C, respectively). The second system was a temperature-
controlled (± 2°C) stove (Venticell 22 Eco line MMM Group®).
Sealed glass ampules were used as sample containers for this sys-
tem. The temperature used in the stove was 180°C.

Results

pH stability analysis

The measurements concerning the stability of AKG 10−3 M at dif-
ferent pH ranges indicate that the molecule is stable after 3 weeks
of the preparation of the standard solution (pH 3) and the fixed
pH solutions (Table 2).

Sorption assays

All three minerals showed sorption of AKG; pyrite and montmor-
illonite have more sorption capacity (35%) than zeolite (15%).
Poor sorption was observed at 1 h of contact. However, the sorp-
tion increases at 6 h and the maximum is reached at 24 h, where
sorption capacity seems to remain constant (Fig. 1).

Sorption at different pH

Figure 2 shows that sorption capacity slightly increases when pH
is higher (pHf from Table 1), especially with zeolite (∼5%), these
results suggest that if the environment has pH gradients between
3.5 and 6.5, sorption capacity has no major alterations.

Radiolysis

Aqueous solutions
Decomposition of AKG was followed at different radiation doses.
AKG shows to be labile when it is exposed to γ radiation (Fig. 3).
A 0.1 M solution was made for a better tracking of decompos-
ition, but the effect of radiation in both irradiated concentrations
(0.1 and 1 × 10−3 M) was the same.

GC-MS analysis showed that the main radiolytic product is
succinic acid (Fig. 4). Malonic and glutaric acids were also
detected.

Mineral-AKG systems
The results of the irradiation of mineral-AKG systems demon-
strate that all minerals have a protective effect versus radiation,
preventing AKG decomposition at 5 and 30 kGy doses. It was
observed (Fig. 5) that pyrite has a high protective effect, followed

Fig. 5. Comparison of the radiolysis of aqueous AKG and mineral-AKG systems.
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by zeolite and montmorillonite, respectively. At doses of 50 kGy,
the systems exhibit total decomposition of AKG.

Thermolysis

Several experiments were conducted at different times and tem-
peratures for thermolysis of AKG. Table 3 shows the obtained
results. Some problems were encountered in managing samples
in the static system at temperatures above 100°C; thus, a
temperature-controlled stove was used. AKG seems to be stable
in high-temperature conditions. Further analysis is needed to
track the stability of the compound.

Discussion

Considering AKG as a possible precursor for the production of
different molecules relevant for chemical evolution and through
the study of the stability of this compound, we can suggest
clues about its possible availability on early Earth. AKG is stable
in alkaline and high-temperature conditions, notwithstanding it is
labile under high radiation doses. Minerals such as montmoril-
lonite, pyrite and zeolite can act as concentrators and protectors

of α-ketoglutaric acid. Minerals and physicochemical variables
for this study were selected based on a review of the literature,
shown in Table 4. Preliminary results show that one of the
main radiolytic products in aqueous solution is succinic acid,
which suggests a dehydroxylation and decarboxylation reactions.
Analysis of the radiolytic products of all three mineral-AKG sys-
tems is needed to understand the nature of the reactions. It has
been reported that in the radiolysis of AKG sorpted onto mont-
morillonite, the number of radiolytic products decreases, and
the main decomposition pathway is decarboxylation, producing
succinic acid and CO2 (Negron-Mendoza and Ramos-Bernal,
1998).

The purpose of choosing AKG is because in previous studies
(Negrón-Mendoza and Ponnamperuma, 1976; Cruz-Castañeda
et al., 2014; Negrón-Mendoza and Ramos-Bernal, 2015;
Negrón-Mendoza et al., 2018), starting from the irradiation of a
member molecule of Krebs cycle (i.e. acetic, citric, succinic
acids), various compounds (also Krebs cycle members) are pro-
duced, although AKG is not found. To get an insight for the
lack of its detection, we compare the results of this work with
the radiolysis of some carboxylic acids, and from these data, we
calculate according to Criquet and Karpel Vel Leitner (2011,

Table 3. Thermolysis of AKG 1 × 10−3 M at different conditions

System Temperature (°C) Time (h) Decomposition (%)

Static-toluene 100 6 –

24 –

44 –

92 –

Static-dimethylformamide 135 6 –

Static-nitrobenzene 180 3 –

Stove 180 6 27

180 8 27

Table 4. Impact-generated hydrothermal system and their main characteristics

Crater Location Diameter Minerals
Age of

formation Physicochemical Characteristics References

Haughton Devon
Island,
Canada

23 km Calcite, marcasite, selenite,
fluorite, pyrite, goethite

39 My T early stage ∼500°C, main stage
∼200–100°C.
pH: variable, slightly alkaline to
neutral.
Acidic on main stage (suggested by
marcasite deposit)
Estimated lifetime: 10 000 years

Osinski
et al. (2005)

Ries Bavaria,
Germany

∼24 km Montmorillonite, illite,
saponite, zeolites, calcite,
albite, chlorite, K-feldspar,
hematite, goethite

14.3–
14.5 My

T main stage ∼200–100°C.
pH slightly alkaline

Osinski
(2005).

Popigai Siberia,
Russia

100 km Calcite, zeolites, pyrite,
quartz, chlorite, saponite,
smectites

36 Ma Zeolite, calcite and pyrite indicate
hydrothermal alteration at low
temperatures. Neutral to slightly
alkaline pH with variable zones
(lower pH)

Naumov
(2002).

Sudbury Ontario,
Canada

∼250 km Chlorite, actinolite, sulphides,
sulphates, smectites,
Zn-Pb-Cu deposits

1.85 Ga Hydrothermal system with T < 260°C.
Temperature gradients 100°C km−1

Ames et al.
(2006).
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2012), parameters of degradation versus radiation dose. These
results are presented in Fig. 6, where C0 is the initial concentration
of the acid, C is the concentration at dose D in kGy, and k is the
dose constant (linearly, the slope is k). It is important to remark
that this equation is only descriptive and is not a model of the
physicochemical processes of the radiolysis, but it gives a simple
approximation about the reactivity towards the degradation of
the compounds. These calculations show that citric and isocitric
acids are the most stable acids under high radiation doses, while
pyruvic and α-ketoglutaric acids (both keto acids) are the most
reactive and the decomposition occurs at lower radiation doses
with a high k (1.19 × 10−2) compared, for example, with isocitric
acid (3 × 10−5). This lability under high radiation conditions may
explain why it is not easy to detect AKG in prebiotic experiments.
Nevertheless, AKG is converted into products with higher stabil-
ity (i.e. succinic acid), as seen in Fig. 4. Table 5 shows the k values
obtained.

Conclusions

Studies about impact-induced hydrothermal systems and their
role in prebiotic chemistry are scarce. AKG is capable of existing

on environments such as impact-induced hydrothermal systems,
which are complex geological systems that present different char-
acteristics, such as pH and temperature gradients, and might also
have existed on primitive Earth. AKG is easily degraded under a
high radiation field, despite this fact, minerals present in those
environments could support the persistence of AKG by concen-
trating molecules for further reactions and protecting them
through inherent and external factors like heat and ionizing radi-
ation, respectively. Other metabolism-relevant carboxylic acids
can be produced by AKG decomposition, such as succinic acid.
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