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Bank for International Settlements
and
CENTRUM Católica

This paper studies how monetary policy should react to oil shocks in a microfounded
model with staggered price-setting and oil as an input in a CES production function. In
particular, we extend Benigno and Woodford [Journal of the European Economic
Association 3 (6) (2005), 1–52] to obtain a second-order approximation to the expected
utility of the representative household when the steady state is distorted and the economy
is hit by oil price shocks. The main result is that oil price shocks generate an endogenous
trade-off between inflation and output stabilization when oil has low substitutability in
production. We also find, in contrast to Benigno and Woodford, that this trade-off is
reduced, but not eliminated, when we get rid of the effects of monopolistic distortions in
the steady state. Moreover, the size of the endogenous “cost-push” shock generated by
fluctuations in the oil price increases when it is more difficult to substitute other factors
for oil.
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1. INTRODUCTION

Oil is an important production factor in economic activity because every industry
uses it to some extent. Moreover, because oil cannot be easily substituted with
other production factors, economic activity is heavily dependent on its use. Fur-
thermore, the oil price is determined in a weakly competitive market; there are
few large oil producers dominating the world market, setting its price above a
perfect competition level. Also, its price fluctuates considerably due to the effects
of supply and demand shocks in this market.1
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The heavy dependence on oil and the high volatility of its price generate a
concern among policymakers on how to react to oil shocks. Oil shocks have serious
effects on the economy because they raise prices for an important production
input and for important consumer goods (gasoline and heating oil). This causes an
increase in inflation and subsequently a decrease in output, generating a dilemma
for policymaking. On one hand, if monetary policy makers focused exclusively on
the recessive effects of oil shocks and try to stabilize output, this would generate
inflation. On the other hand, if monetary policy makers focused exclusively on
neutralizing the impact of the shock on inflation through a contractive monetary
policy, some sluggishness in the response of prices to changes in output would
imply large reductions in output. In practice, when dealing with rising oil prices,
policymakers have been confronted with a trade-off between stabilizing inflation
and output. But, what exactly should be the optimal stabilization of inflation and
output? Which factors affect this trade-off? To our knowledge the formal study of
this topic is limited.2

However, the behavior of central banks in practice contrasts with the result
in the standard New Keynesian model that ensuring complete price stability is
the optimal thing to do, even when an oil shock leads to large drops in output.
To deal with this apparent contradiction and to answer the questions presented
above, we extend the literature on optimal monetary policy including oil in the
production process in a standard New Keynesian model. In doing so, we extend
Benigno and Woodford (2005) to obtain a second-order approximation to the
expected utility of the representative household when the steady state is distorted
and the economy is hit by oil price shocks. We include oil as a nonproduced input
as in Blanchard and Galı́ (2007), but differently from those authors, we use a
constant-elasticity-of-substitution (CES) production function to capture the low
substitutability characteristic of oil. Thus, a low elasticity of substitution between
labor and oil indicates a high dependence on oil.3

The analysis of optimal monetary policy in microfounded models with staggered
price setting using a quadratic welfare approximation was first introduced by
Rotemberg and Woodford (1997) and expounded by Woodford (2003) and by
Benigno and Woodford (2005). This method allows us to obtain a linear policy
rule derived from maximizing the quadratic approximation of the welfare objective
subject to the linear constraints that are first-order approximations of the structural
equations. This methodology is called linear–quadratic (LQ). The advantage of
this approach is that it makes it possible to characterize analytically how changes
in the production function and in the oil shock process affect the monetary policy
problem. Moreover, in contrast to the Ramsey policy methodology, which also
allows a correct calculation of a linear approximation of the optimal policy rule,
the LQ approach is useful not only to evaluate the optimal rules, but also to evaluate
and rank suboptimal monetary policy rules.

A property of standard New Keynesian models is that stabilizing inflation is
equivalent to stabilizing output around some desired level, unless some exogenous
cost-push shock disturbances are taken into account. Blanchard and Galı́ (2007)
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called this feature the “divine coincidence.” These authors argue that this special
feature comes from the absence of nontrivial real imperfections, such as real wage
rigidities. Similarly, Benigno and Woodford (2004, 2005) show that this trade-off
also arises when the steady state of the model is distorted and there are government
purchases in the model.

We found that, when oil is introduced as a poorly-substitutable input in a
New Keynesian model, a trade-off arises between stabilizing inflation and the gap
between output and some desired level. We call this desired level the “target level.”
In this case, because output fluctuates less at the target level than it does at the
natural level, it becomes optimal to the monetary authority to react partially to oil
shocks and, therefore, some inflation is desirable.

The intuition of this result is that when oil is considered a gross complement
to labor in production in a CES technology, the divine coincidence disappears.
This result is similar to the case of real wage rigidities explained in Blanchard
and Galı́ (2007), where stabilizing inflation is no longer equivalent to stabilizing
the welfare-relevant output gap. However, the mechanism here is different. This
trade-off is generated by the convexity of real marginal costs with respect to the
real oil price, which produces a time-varying wedge between the marginal rate
of substitution and the marginal productivity of labor that impedes replication
of the first-best equilibrium. Moreover, eliminating the distortions in steady state
reduces the trade-off, because this wedge becomes less sensitive with respect to
the oil price. However, in contrast to Benigno and Woodford (2005), making the
steady state efficient cannot eliminate this trade-off.

Also, substitutability among production factors affects both the weights on the
two stabilization objectives and the definition of the welfare-relevant output gap.
The lower the elasticity of substitution, the higher the cost-push shock generated
by oil shocks and the lower the weight on output stabilization relative to inflation
stabilization. Moreover, when the share of oil in the production function is higher,
or the steady-state oil price is higher, the size of the cost-push shock increases.

Section 2 presents our New Keynesian model with oil prices in the production
function. Section 3 includes an LQ approximation to the policy problem. Section
4 uses the LQ approximation to the problem to solve for the different rules of
monetary policy and derive some comparative statics to the parameters related to
oil. The last section concludes.

2. A NEW KEYNESIAN MODEL WITH OIL PRICES

The model economy corresponds to the standard New Keynesian model in the
line of Clarida et al. (1999). To capture oil shocks, we follow Blanchard and Galı́
(2007, 2010) by introducing a nonproduced inputM , in this case representing oil.
Q will be the real price of oil, which is assumed to be exogenous. This model is
similar to the one used by Castillo et al. (2007), except that we additionally include
taxes on sales of intermediate goods to analyze the distortions in the steady state.
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2.1. Households

We assume the following utility function on consumption and labor of the repre-
sentative consumer:

Uto = Eto

∞∑
t=to

βt−to
(
C1−σ
t

1 − σ
− L1+v

t

1 + v

)
, (1)

where σ represents the coefficient of risk aversion and v captures the inverse of
the elasticity of labor supply. The optimizing consumer makes decisions subject
to a standard budget constraint, which is given by

Ct = WtLt

Pt
+ Bt−1

Pt
− 1

Rt

Bt

Pt
+ �t

Pt
+ Tt

Pt
, (2)

where Wt is the nominal wage, Pt is the price of the consumption good, Bt is the
end of period nominal bond holdings,Rt is the riskless nominal gross interest rate,
�t is the share of the representative household in total nominal profits, and Tt is
net transfers from the government. The first-order conditions for the optimizing
consumer’s problem are

1 = βEt

[
Rt

(
Pt

Pt+1

)(
Ct+1

Ct

)−σ]
, (3)

Wt

Pt
= Cσt L

v
t = MRSt . (4)

Equation (3) is the standard Euler equation, which determines the optimal path of
consumption. At the optimum the representative consumer is indifferent between
consuming today or tomorrow, whereas equation (4) describes the optimal labor
supply decision. MRSt denotes the marginal rate of substitution between labor and
consumption. We assume that labor markets are competitive and also that indi-
viduals work in each sector z ∈ [0, 1]. Therefore, L corresponds to the aggregate
labor supply:

L =
∫ 1

0
Lt(z)dz. (5)

2.2. Firms

Final good producers. There is a continuum of final good producers of mass
one, indexed by f ∈ [0, 1], that operate in an environment of perfect competition.
They use intermediate goods as inputs, indexed by z ∈ [0, 1], to produce final
consumption goods using the technology

Y
f
t =

[∫ 1

0
Yt (z)

ε−1
ε dz

] ε
ε−1

, (6)
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where ε is the elasticity of substitution between intermediate goods. The demand
function of each type of differentiated good is obtained by aggregating the input
demand of final good producers,

Yt (z) =
[
Pt(z)

Pt

]−ε
Yt , (7)

where the price level is equal to the marginal cost of the final good producers and
is given by

Pt =
[∫ 1

0
Pt(z)

1−εdz
] 1

1−ε
, (8)

and Yt represents the aggregate level of output,

Yt =
∫ 1

0
Y
f
t df. (9)

Intermediate goods producers. There is a continuum of intermediate good
producers indexed by z ∈ [0, 1]. All of them have the CES production function

Yt (z) =
{
(1 − α) [Lt(z)]

ψ−1
ψ + α [Mt(z)]

ψ−1
ψ

} ψ

ψ−1
, (10)

whereM is oil that enters as a nonproduced input, ψ represents the intratemporal
elasticity of substitution between labor input and oil, and α denotes the quasi-
share of oil in the production function. We use this generic production function to
capture the fact that oil has few substitutes. In general, we assume that ψ is lower
than one. The real oil price, Qt , is assumed to follow an AR(1) process in logs,

logQt = (1 − ρ) logQ+ ρlogQt−1 + ξt , (11)

whereQ is the steady state level of oil price and ξt is an i.i.d. shock. From the cost
minimization problem of the firm, we obtain an expression for the real marginal
cost given by

MCt (z) =
[
(1 − α)ψ

(
Wt

Pt

)1−ψ
+ αψ (Qt)

1−ψ
] 1

1−ψ

, (12)

where MCt (z) represents the real marginal cost and Wt nominal wages. Notice
that marginal costs are the same for all intermediate firms, because technology
has constant returns to scale and factor markets are competitive; that is, MCt (z) =
MCt . On the other hand, the first-order condition for intermediate goods producers
with respect to labor implies that the marginal product of labor, MPLt , satisfies

MPLt (z) = (1 − α)

[
Yt (z)

Lt (z)

]1/ψ

= Wt/Pt

MCt
. (13)
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Equation (13) implies the following labor demand for the individual firm:

Ldt (z) =
(

1

1 − α

Wt/Pt

MCt

)−ψ
Yt (z). (14)

Intermediate producers set prices following a staggered pricing mechanism a
la Calvo. Each firm faces an exogenous probability of changing prices given by
(1 − θ). A firm that changes its price in period t chooses its new price Pt(z) to
maximize

Et

∞∑
k=0

θkζt,t+k� [Pt(z), Pt+k,MCt+k, Yt+k] ,

where ζt,t+k = βk(Ct+k/Ct )−σPt/Pt+k is the stochastic discount factor. The func-
tion�(Pt (z), Pt ,MCt , Yt )= [(1−τ)Pt (z)−Pt MCt ][Pt(z)/Pt ]−εYt is the after-tax
nominal profits of the supplier of good z with price Pt(z), where the aggregate
demand and aggregate marginal costs are equal to Yt and MCt , respectively. τ
is the proportional tax on sale revenues, which we assume constant. The optimal
price that solves the firm’s problem is given by

[
P ∗
t (z)

Pt

]
=
µEt

( ∞∑
k=0

θkζt,t+kMCt,t+kF ε+1
t,t+kYt+k

)
Et

( ∞∑
k=0

θkζt,t+kF εt,t+kYt+k

) , (15)

whereµ ≡ ε
ε−1/(1−τ) is the price markup net of taxes, P ∗

t (z) is the optimal price

level chosen by the firm, and Ft,t+k = Pt+k
Pt

is the cumulative level of inflation. The
optimal price solves equation (15) and is determined by the average of expected
future marginal costs as[

P ∗
t (z)

Pt

]
= µEt

( ∞∑
k=0

ϕt,t+kMCt,t+k

)
, (16)

where

ϕt,t+k ≡ θkζt,t+kF ε+1
t,t+kYt+k

Et

( ∞∑
k=0

θkζt,t+kF εt,t+kYt+k

) .
Because only a fraction (1 − θ) of firms change prices every period and the

remaining one keeps its price fixed, the aggregate price level, defined as the price
of the final good that minimizes the cost of the final goods producers, is given by
the following equation:

P 1−ε
t = θP 1−ε

t−1 + (1 − θ)
[
P ∗
t (z)

]1−ε
. (17)

Following Benigno and Woodford (2005), equations (15) and (17) can be written
recursively, introducing the auxiliary variables Nt and Dt (see Appendix B for
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details on the derivation),

θ (
t)
ε−1 = 1 − (1 − θ)

(
Nt

Dt

)1−ε
, (18)

Dt = Yt (Ct )
−σ + θβEt

[
(
t+1)

ε−1Dt+1
]
, (19)

Nt = µYt (Ct )
−σ MCt + θβEt

[
(
t+1)

ε Nt+1
]
, (20)

where 
t = Pt/Pt−1 is the gross inflation rate. Equation (18) comes from the
aggregation of individual firms’ prices. The ratio Nt/Dt represents the optimal
relative price P ∗

t (z)/Pt . These last three equations summarize the recursive rep-
resentation of the nonlinear Phillips curve.

2.3. Government and Monetary Policy

In the model we assume that the government owns the oil endowment. Oil is
produced in the economy at zero cost and sold to the firms at the exogenous price
Qt. The government transfers all the revenues generated by oil to consumers,
represented by PtQtMt . There is also a proportional tax on sale revenues (τ ). We
abstract from any other role for the government and assume that it runs a balanced
budget every period. Thus, the budget constraint implies that total net transfers in
real terms are

Tt

Pt
= QtMt + τYt .

Moreover, we abstract from any monetary frictions, assuming that the central
bank can control the riskless nominal short-term interest rate Rt directly.

2.4. Market Clearing

In equilibrium, labor and intermediate and final goods markets clear. Because of
the assumption on the government transfers, the economywide resource constraint
is given by

Yt = Ct . (21)

The labor market–clearing condition is given by

Lt = Ldt , (22)

where the demand for labor comes from the aggregation of individual intermediate
producers in the same way as for the labor supply,

Ldt =
∫ 1

0
Ldt (z)dz =

(
1

1 − α

Wt/Pt

MCt

)−ψ ∫ 1

0
Yt (z)dz

=
(

1

1 − α

Wt/Pt

MCt

)−ψ
Yt�t , (23)
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where �t = ∫ 1
0 [Pt(z)/Pt ]−εdz is a measure of price dispersion. Because relative

prices differ across firms due to staggered price setting, input usage will differ as
well, implying that it is not possible to use the usual representative firm assumption.
Therefore, the price dispersion factor, �t , appears in the aggregate labor demand
equation. We can also use (17) to derive the law of motion of �t :

�t = (1 − θ)

[
1 − θ (
t)

ε−1

1 − θ

]ε/(ε−1)

+ θ�t−1 (
t)
ε . (24)

Note that inflation affects the welfare of the representative agent through the
labor market. We can see, from (24), that higher inflation increases price dispersion
and, from (23), that higher price dispersion increases the labor amount necessary
to produce a certain level of output, implying more disutility on (1).

2.5. The Steady State

Variables in the steady state are denoted overlined (i.e., X). The details of the
steady state of the variables are in Appendix A. We depart from a steady state
where gross inflation 
 = 1. Output in steady state is given by

Y = [
(1 − α)MC

] 1
σ+v
(

1 − α

1 − α

) 1+ψv
σ+v

1
1−ψ
,

where real marginal costs in steady state are

MC = 1 − τ

ε/ (ε − 1)
≤ 1, (25)

where α ≡ αψ(Q/MC)1−ψ is the share of oil in total costs in steady state. Note
that, from the definition of α, the steady state value of output depends on the
steady state ratio of the real oil price to real marginal costs. This implies that
a permanent increase in the real oil price will generate a permanent increase in
α, given ψ < 1. Also, as in standard New Keynesian models, the real marginal
costs in steady state are equal to the inverse of the mark-up. Because monopolistic
competition and taxes affect the steady state of the model, output in steady state
can be below the efficient level (the steady state is distorted). In the special case
where τ = −1/(ε − 1) < 0, distortions are eliminated and the steady state is
efficient. Let us denote the steady state distortion by

� = 1 − 1 − τ

ε/ (ε − 1)
.

We have that � = 0 when a subsidy on sales make the steady state undistorted.
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2.6. The Log Linear Economy and the Natural Equilibrium

To illustrate the effects of oil on the dynamic equilibrium of the economy, we
take a log linear approximation to equations (3), (4), (11), (12), (18), (19), (20),
and (23) around the deterministic steady state. We denote variables in their log
deviations around the steady state with lower case letters [i.e., xt = log(Xt/X)].
After the goods and labor market–clearing conditions are imposed to eliminate
real wages from the system, the dynamics of the economy is determined by the
equations

lt = yt − δ [(σ + v) yt − qt ] , (26)

mct = χ (v + σ) yt + (1 − χ) qt , (27)

πt = βEtπt+1 + κmct , (28)

yt = Etyt+1 − 1

σ
(rt − Etπt+1) , (29)

qt = ρqt−1 + ξt , (30)

where δ ≡ ψχ α
1−α , χ ≡ 1−α

1+vψα , and κ ≡ 1−θ
θ
(1 − θβ). δ and (1 − χ) account for

the effects of oil prices on labor and marginal costs, respectively. κ is the elasticity
of inflation respect to marginal costs.

Interestingly, the effects of oil prices on marginal costs, given by (1 − χ) in
equation (27), depend crucially on the quasi-share of oil in the production function,
α, and on the elasticity of substitution between oil and labor, ψ . Thus, when α is
larger, χ is smaller, making marginal costs more responsive to oil prices. Also,
whenψ is lower, the impact of oil on marginal costs is larger. It is important to note
that even though the quasi-share of oil in the production function, α, can be small,
its impact on marginal cost, α, can be magnified when oil has few substitutes
(that is, when ψ is low). Moreover, a permanent increase in the real oil price or
in the distortions in steady state (that is, an increase in Q or a decrease in MC)
would make the marginal costs of firms more sensitive to oil price shocks because
it would increase α. In the case where α = 0, the model collapses to a standard
closed economy New Keynesian model without oil.

The natural equilibrium corresponds to the case where nominal rigidities are
absent and prices are flexible. We denote variables in this equilibrium with the
supra-index “n.” Under flexible prices, real marginal costs satisfy mcnt = 0 and
the equilibrium can be expressed as(

yt − ynt
) = Et

(
yt+1 − ynt+1

)− 1

σ
(rt − Etπt+1) , (31)

πt = κy
(
yt − ynt

)+ βEtπt+1, (32)

where κy ≡ κχ(v + σ). Equations (31) and (32) are the dynamic IS and the
Phillips curve, respectively, in terms of the output gap (yt − ynt ). The natural level
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of output depends negatively on deviations of the oil price from its steady state:

ynt = −
(

1 + ψv

σ + v

)(
α

1 − α

)
qt . (33)

The natural output depends, among other parameters, on the share of oil in total
costs in steady state. The higher α, the more important the impact of oil price
shocks on the natural level. Also, note from equation (33) that the response of the
natural output to oil shocks is qualitatively similar to the reaction to productivity
shocks in the standard New Keynesian model with the opposite sign. However, as
we will see in the next section, the assumption of low substitutability of oil has
important effects on the design of optimal monetary policy.

2.7. Calibration

As benchmark calibration, we set a quarterly discount factor, β, equal to 0.99,
which implies an annualized rate of interest of 4%. For the coefficient of the risk
aversion parameter, σ , we choose a value of 1 and the inverse of the elasticity
of labor supply, v, is calibrated to be equal to 0.5, similar to those values used
in the RBC literature. The probability of the Calvo lottery is set equal to 0.66
which implies, that firms adjust prices, on the average, every three quarters. We
choose a degree of monopolistic competition, ε, equal to 7.88, which implies a
firm mark-up of 15% over the marginal cost assuming τ = 0. We set the value
of the elasticity of substitution between oil and labor at ψ = 0.2, equal to the
average value reported by Hamilton (2009). We calibrate α = 0.02895 using
information from the National Income Product accounts for the United States.4

Finally, we assume a persistent AR(1) process for the logarithm of the real oil
price (ρ = 0.95).

3. A LINEAR–QUADRATIC APPROXIMATE PROBLEM

In this section we characterize the sources of the trade-off between stabilizing
inflation and economic activity that arise in this economy. Also, we present a
second-order approximation of the welfare function of the representative house-
hold as a function of purely quadratic terms. This representation allows us to
characterize the policy problem using only a linear approximation of the structural
equations of the model and also to rank suboptimal monetary policy rules.

Because the model has an additional production input different from labor, a
standard second-order Taylor approximation of the welfare function will include
linear terms, which would lead to an inaccurate approximation of the optimal
policy in a LQ approach. To deal with this issue, we use the methodology proposed
by Benigno and Woodford (2005), which consists of eliminating the linear terms of
the policy objective using a second-order approximation of the aggregate supply.
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3.1. Sources of the Trade-Off

The efficient equilibrium is equivalent to the social planner problem of maximizing
the utility of the representative agent, subject to the production functions for
final goods and intermediate goods, the resources constraint, and the aggregation
conditions for both production inputs. The efficiency conditions for this problem
imply that the marginal rate of substitution is equal to the marginal productivity
of labor,

MRSt = MPLt (z), (34)

and a symmetric allocation in equilibrium, Ct(z) = Ct and Lt(z) = Lt , for every
z.

In the decentralized equilibrium of the model, the ratio between the marginal
rate of substitution and the marginal productivity of labor equals the real marginal
costs,

MRSt

MPLt (z)
= MCt ≡ 1 −�t, (35)

where�t is the measure of the wedge between them. The optimality condition (34)
implies that this wedge must be constant and equal to zero, that is, �t = 0, to be
socially optimal. A second-order Taylor expansion of equation (35) in logarithms
is

�t = �− χ (σ + v)
(
yt − ynt

)− χv�̂t

− 1

2

1 − ψ

1 − α
χ2 (1 − χ) χ (σ + v)

(
yt + χ

1 − χ
ynt

)2

+ O
(‖ξt‖3), (36)

where ‖ξt‖ denotes a bound on the size of the oil price shock. If monetary policy
can be used to replicate the natural equilibrium, this wedge becomes

�
f lex
t = �− 1

2

1 − ψ

1 − α

1

σ + v
(qt )

2 + O
(‖ξt‖3) , (37)

where we have used the definition of the natural output and evaluated the price
dispersion term at zero. Note from equation (37) that when the flexible price
allocation in the decentralized equilibrium is replicated, the wedge is time-varying
and depends on the oil price. Because of this, a trade-off arises: it is not possible at
the same time to stabilize inflation and to replicate the social planner equilibrium
in the presence of oil shocks, unless ψ = 1, as in the Cobb–Douglas case.

As shown above, when oil is considered a gross complement to labor in produc-
tion in a CES technology, the divine coincidence disappears. This result is similar
to the case of real wage rigidities explained in Blanchard and Galı́ (2007), where
stabilizing inflation is no longer equivalent to stabilizing the welfare-relevant out-
put gap. However, the mechanism here is different. In this case, the flexible price
allocation cannot replicate the social planner allocation because of the second-
order effects of oil shocks in the wedge between the marginal rate of substitution
and the marginal product of labor. When oil is difficult to substitute in production,
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real marginal costs become a convex function of the real oil price, because the
participation of this input in marginal costs also increases with its price.

Interestingly, eliminating the distortions in steady state cannot eliminate the
trade-off. In this case, after making � = 0, the wedge becomes

�
f lex,ef ss
t = −1

2

1 − ψ

1 − α̃

1

σ + v
(qt )

2 + O
(‖ξt‖3) (38)

for α̃ ≡ αψ(Q)1−ψ ≤ α. In this case, eliminating the distortion in the steady
state eliminates the constant and reduces the variability of the wedge with respect
to the oil price. However, it is still not possible to replicate the social planner
equilibrium in the presence of oil shocks. The intuition for this result is that when
oil is considered a gross complement to labor in production in a CES technology,
the share of oil in total costs in the steady state depends also on the steady state
distortion. Eliminating the distortion (a more competitive economy) makes the
wedge less sensitive to increases in the real oil price. However, making the steady
state efficient cannot completely eliminate this sensitivity.

To measure this trade-off, in the next subsection we derive a quadratic loss
function from the second-order Taylor expansion of the welfare function of the
representative agent. We obtain a expression in terms of inflation and the deviations
of output from a target level (the welfare-relevant output gap). This target level
accounts for the effects of oil shocks in the wedge and maximizes the welfare of
the representative agent when inflation is zero.

3.2. A Second-Order Approximation to Utility

A second-order Taylor series approximation to the utility function, expanding
around the nonstochastic steady-state allocation, is

Uto = Yuc
∞∑
t=to

βt−to
(
�Lyt + 1

2
uyyy

2
t +uyqytqt +u��̂t

)
+ t.i.p.+ O

(‖ξt‖3
)
,

(39)

where yt ≡ log(Yt/Y ) and �̂t ≡ log�t measure deviations of aggregate output
and the price dispersion measure from their steady state levels, respectively. The
term “t.i.p.” collects terms that are independent of policy (constants and functions
of exogenous disturbances) and hence irrelevant for ranking alternative policies.
The coefficients uyy , uyq , and u� are defined in the Appendix B.�L is the wedge
between consumption and labor in the utility function in the steady state, defined
by

�L = 1 − V L

UC

dL

dY

= 1 − (1 − α) (1 −�) [1 − δ (σ + v)] . (40)
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Note that in an economy with labor as the only input in the production function,
as in Benigno and Woodford (2005), the wedge between consumption and labor
in the utility function is equal to the distortion in steady state�. In those models, a
subsidy that eliminates this distortion also eliminates the linear term in the second-
order Taylor expansion of the utility function. However, in an economy with other
inputs different from labor, we have in general that �L �= �, and eliminating the
monopolistic distortion does not eliminate the linear term in equation (39).

We substitute the second-order Taylor expansion of the price dispersion equation
for �̂t as a function of quadratic terms of inflation in our welfare approximation.
Also, we use the second-order approximation of the Phillips curve to solve for the
infinitely discounted sum of the expected level of output as a function of purely
quadratic terms. Then, as in Benigno and Woodford (2005), we replace this last
expression in (39) and rewrite it as

Uto = −�
{
Eto

∞∑
t=to

βt−to
[

1

2
λ
(
yt − y∗

t

)2 + 1

2
π2
t

]
− Tto

}
+ t.i.p.+ O

(‖ξt‖3
)
,

(41)

where � = Yucλπ and Tto = �L
κy
vto; λπ and vto are defined in Appendix B.3. λ

measures the relative weight between a welfare-relevant output gap and inflation.
y∗
t is the target output, the level of output that maximizes our measure of welfare

when inflation is zero. The values of λ and y∗
t are given by

λ = κy

ε
(1 − σψα) γ, (42)

y∗
t = −

(
1 + ψv

σ + v

)(
α∗

1 − α∗

)
qt , (43)

where α∗ accounts for the share of oil in total costs in the steady state that replicates
the target level of output, given by

α∗ = α

1 + η
. (44)

Both γ and η are functions of the deep parameters of the model; they are defined
in Appendix B.3 and characterized in the next section. Note that the target level
of output (44) is written in a way similar to the natural level of output in equation
(33), for a different share of oil in total costs in steady state.

3.3. The Linear–Quadratic Policy Problem

The policy objective Uto can be written in terms of inflation and the welfare-
relevant output gap defined by xt :

xt ≡ yt − y∗
t .
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Benigno and Woodford (2005) showed that maximization of Uto is equivalent
to minimization of the lost function

Lto ≡ Eto

∞∑
t=to

βt−to
(

1

2
λx2

t + 1

2
π2
t

)
, (45)

subject to a predetermined value of πto
5 and the Phillips curve for any date from

to onward:
πt = κyxt + βEtπt+1 + ut . (46)

Note that we have expressed (46) in terms of the welfare-relevant output gap,
xt . ut is a “cost-push” shock, which is proportional to the deviations in the real oil
price,

ut ≡ κy
(
y∗
t − ynt

)
= �qt, (47)

where

� ≡ κy

(
1 + ψv

σ + v

)(
α

1 − α
− α∗

1 − α∗

)
.

In this model a “cost-push” shock arises endogenously because oil generates a
trade-off between stabilizing inflation and deviations of output from a target level
different from the natural level. In the next section we characterize the conditions
under which oil shocks preclude simultaneous stabilization of inflation and the
welfare-relevant output gap.

If we are interested in evaluating monetary policy from a timeless perspective,
that is, optimizing without regard to possible short-run effects and avoiding pos-
sible time inconsistency problems, the predetermined value of πto must equal π∗

to
,

the optimal value of inflation at to consistent with the policy problem. Thus, the
policy objective consists of minimizing (45) subject to the initial inflation rate

πto = π∗
to
. (48)

4. OPTIMAL MONETARY RESPONSE TO OIL SHOCKS

In this section we use the LQ policy problem defined in the previous section to
evaluate optimal and suboptimal monetary policy rules under oil shocks. This
policy problem can be summarized to maximize the following Lagrangian:

Lto ≡ −Eto
{∑∞

t=to β
t−to [ 1

2λx
2
t + 1

2π
2
t − ϕt

(
πt − κyxt − βEtπt+1 − ut

)]
+ϕto−1

(
πto − π∗

to

) }
,

(49)

where βt−toϕt is the Lagrange multiplier at period t .
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The second-order conditions for this problem are well defined for λ ≥ 0,
which is the case for plausible parameters of the model.6 Thus, as Benigno and
Woodford (2005) show, because the loss function is convex, randomization of
monetary policy is welfare-reducing and there are welfare gains when monetary
policy rules are used.

Under certain circumstances the optimal policy involves complete stabilization
of the inflation rate at zero for every period, that is, complete price stability.
These conditions are related to how oil enters into the production function and are
summarized in the following proposition:

PROPOSITION 1. When the production function is Cobb–Douglas the efficient
level of output is equivalent to the natural level of output.

In the case of a Cobb–Douglas production function, the elasticity of substitution
between labor and oil is unity (i.e., ψ = 1). In this case η = 0 and the share of
oil in the marginal costs at the efficient level is equal to the share in the distorted
steady state, equal to α (that is, α∗ = α = α). Thus, the efficient level of output is
equal to the natural level of output.

In this special case of the CES production function, fluctuations in output
caused by oil shocks at the target level equals the fluctuations in the natural level.
Then, stabilization of output around the natural level also implies stabilization
around the target level. This is a special case in which the “divine coincidence”
appears. Therefore, setting output equal to the target level also implies complete
stabilization of inflation at zero.

In this particular case there is not a trade-off between stabilizing output and
inflation. However, in a more general specification of the CES production function
this trade-off appears, as it is established in the next proposition:

PROPOSITION 2. When oil is difficult to substitute in production the efficient
output responds less to oil shocks than the natural level, which generates a trade-
off.

When oil is difficult to substitute the elasticity of substitution between inputs
is lower than one (that is, ψ < 1). In this case η > 0 and the share of oil in
total costs in the steady state that replicates the target level of output is lower
than that in the steady state (that is, α∗ < α), which causes the target output
to fluctuate less than the natural level (that is, |y∗

t | < |ynt |). Thus, in this case
it is not possible to have both inflation zero and output at the target level at all
periods. In this case a “cost-push” shock arises endogenously, which generates a
trade-off between stabilizing inflation and the welfare-relevant output gap. This
“cost-push” shock is proportional to the difference between y∗

t and ynt , as shown in
equation (47).

As mentioned in the previous section, this trade-off is generated by the con-
vexity of real marginal costs with respect to the real oil price, which produce a
time-varying wedge between the marginal rate of substitution and the marginal
productivity of labor. Moreover, eliminating the distortions in the steady state
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FIGURE 1. (a) Share of oil in total costs. (b) Natural and target level of output.

reduces the trade-off, because this wedge becomes less sensitive with respect to
the oil price. However, making the steady state efficient cannot eliminate this
trade-off.

Figure 1 shows the effects of the elasticity of substitution on α∗ and α and
on y∗ and yn. As mentioned in Proposition 1, when ψ = 1, α∗ = α = α.
Similarly, as in Proposition 2, lower ψ increases both α∗ and α, but α∗ is al-
ways lower than α. Also, in this case, the efficient output fluctuates less than
the natural level of output for a 1% increase in the real oil price. Because of
this difference between y∗ and yn, the endogenous “cost-push” shock also in-
creases when the elasticity of substitution ψ is lower. Moreover, this figure also
shows the effects when distortions in the steady state are eliminated. In this case,
both α∗ and α decrease and y∗ and yn become less sensitive to an oil price
shock.

It is also important to analyze how the production function affects λ, the relative
weight of stabilizing the welfare-relevant output gap and inflation. In the special
case of a Cobb–Douglas production function, the coefficient γ defined in the
previous section equals 1 and the relative weight of the loss function between
welfare-relevant output gap and inflation stabilization (λ) becomes κy

ε
(1 − σα).

This is similar to the coefficient found by many authors for the case of a closed
economy,7 which is the ratio of the effect of output on inflation in the Phillips curve
to the elasticity of substitution among goods, but multiplied by the additional term
(1 − σα).

The relative weight in the loss function between welfare-relevant output gap
and inflation stabilization is decreasing in the degree of price stickiness (θ ) and
the elasticity of substitution among goods (ε). When prices are more sticky (larger
θ ), κy is lower and price dispersion is higher. Similarly, a higher elasticity of
substitution among goods (ε) amplifies the welfare losses caused by any given
price dispersion. In both cases, the costs of inflation are more important and
output stabilization has a lower weight than inflation stabilization.

The term (1 − σα) captures the effects of oil shocks on inflation through costs.
When the weight of oil in the production function (α) is higher, the effects of oil
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shocks in marginal costs and inflation are more important. Thus, it becomes more
important to stabilize inflation with respect to output.

The next proposition describes the behavior of λ with respect to the elasticity
of substitution ψ .

PROPOSITION 3. The lower the elasticity of substitution between oil and
labor, the lower the weight in the loss function between welfare-relevant output
gap and inflation stabilization (λ).

When the elasticity of substitution ψ is lower, the effect of output fluctuations
on inflation becomes smaller (κy). This implies a higher relative effect on inflation
respect to output, and therefore lower λ. This also implies a higher sacrifice ratio,
because there are necessary relatively larger changes on the interest rate in order
to stabilize inflation.

Figure 2 shows the effects on λ of the elasticity of substitution for three different
values of α. λ takes its highest value when ψ = 1 and decreases exponentially
for lower ψ . Also, higher α reduces λ, which means a higher weight on inflation
relative to output fluctuations in the welfare function.

4.1. Optimal Unconstrained Response to Oil Shocks from
a Timeless Perspective

When we solve for the Lagrangian (49), we obtain the following first-order con-
ditions that characterize the solution of the optimal path of inflation and the
welfare-relevant output gap in terms of the Lagrange multipliers:

PROPOSITION 4. The optimal unconstrained response to oil shocks is given
by the conditions

πt = ϕt−1 − ϕt ,

xt = κy

λ
ϕt ,

where ϕt is the Lagrange multiplier of the optimization problem that has the law
of motion

ϕt = τϕϕt−1 − φqt ,

for φ ≡ τϕ
1−βτϕρ� , and that satisfies the initial condition

ϕto−1 = −φ
∞∑
k=0

τ kϕqt−1−k,

where τϕ = Z −
√
Z2 − 1

β
< 1 and Z = [(1 + β)+ κ2

y

λ
]/(2β).
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FIGURE 2. Relative weight between output and inflation stabilization (λ).

The proof is in Appendix C.1. From a timeless perspective the initial condition
for ϕto−1 depends on the past realizations of the oil prices and it is time-consistent
with the policy problem.

Also, we define the impulse response of a shock in the oil price in period t (ξt )
in a variable z in t + j as the unexpected change in its transition path. Thus the
impulse is calculated by

It (zt+j ) = Et(zt+j )− Et−1(zt+j ),

and the impulse responses for inflation, the price level, and the welfare-relevant
output gap for the optimal policy are

I
opt
t (πt+j ) =

(
ρj+1 − τ

j+1
ϕ

ρ − τϕ
− ρj − τ

j
ϕ

ρ − τϕ

)
φξt , (50)

I
opt
t (pt+j ) =

(
ρj+1 − τ

j+1
ϕ

ρ − τϕ

)
φξt , (51)
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FIGURE 3. Impulse response to an oil shock under optimal unconstrained monetary policy.

I
opt
t (xt+j ) = −κy

λ

(
ρj+1 − τ

j+1
ϕ

ρ − τϕ

)
φξt . (52)

See Appendix C.1 for details on the derivation.
Figure 3 shows the optimal unconstrained impulse response functions of infla-

tion, the welfare-relevant output gap, the price level, and the nominal interest rate
to an oil price shock of size one for different values of the elasticity of substitution
(ψ). Inflation and the nominal interest rate are in yearly terms. The benchmark
case is a value of ψ = 0.2. In these graphs we can see that after an oil shock the
optimal response is an increase of inflation and a reduction of the welfare-relevant
output gap. The nominal interest rate also increases to partially offset the effects
of the oil shock on inflation. Inflation after eight quarters become negative as the
optimal unconstrained plan is associated with price stability. Thus, after some
time, the price level returns to its initial level. To summarize, the optimal response
to an oil shock implies an effect on impact on inflation that dies out very rapidly
and a more persistent effect on output.

An increase in the elasticity of substitution from 0.2 to 0.4 reduces the size of
the cost push shock and diminishes α but increases λ. Thus, the impact on all the
variables is reduced, inflation initially being the more affected variable. Also, the
higher impact on the welfare-relevant output gap is after eight quarters. In contrast,
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when the elasticity of substitution is unity, because there is no such trade-off, both
inflation and welfare-relevant output gap are zero in every period.

4.2. Evaluation of Suboptimal Rules: The Noninertial Plan

We can use our LQ policy problem to rank alternative suboptimal policies. One
example of such policies is the optimal noninertial plan. By a noninertial policy
we mean a monetary policy rule that depends only on the current state of the
economy. In this case, if the policy results in a determinate equilibrium, then the
endogenous variables also depend on the current state.

If the current state of the economy is given by the cost-push shock, which has
the law of motion

ut = ρut−1 +�ξt ,

where ξt is the oil price shock and � is defined in the preceding section, a first-
order general description of the possible equilibrium dynamics can be written in
the form8

πt = π + fπut , (53)

xt = x + fxut , (54)

ϕt = ϕ + fϕut , (55)

where we need to determine the coefficients π, x, ϕ, fπ , fx , and fϕ . To solve
for the optimal noninertial plan, we need to replace (53), (54), and (55) in the
Lagrangian (49) and solve for the coefficients that maximize the objective function.
The results are summarized in the following proposition:

PROPOSITION 5. The optimal noninertial plan is given by πt = π + fπut
and xt = x + fxut , where

π = 0, fπ = λ (1 − ρ)

κ2
y + λ (1 − βρ) (1 − ρ)

.

x = 0, fx = κy

κ2
y + λ (1 − βρ) (1 − ρ)

.

Note that in the optimal noninertial plan the ratio of inflation/output gap is
constant and equal to λ(1−ρ)

κy
. The higher the weight in the loss function for output

fluctuations relative to inflation fluctuations, the higher the inflation rate. Also,
the more persistent the oil shocks, the lower the weight on inflation relative to the
welfare-relevant output gap.

Similarly to the optimal case, the impulse response functions for inflation and
output are defined by

I nit (πt+j ) = fπ�ρ
jξt ,

I nit (xt+j ) = fπ�ρ
jξt .
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FIGURE 4. Impulse response to an oil shock under the optimal noninertial plan.

Figure 4 shows the responses in the optimal noninertial plan to a unitary oil
price shock. As shown, the main difference with respect to the previous plan is that
in the optimal noninertial plan, inflation returns to its initial level after some time,
but in the optimal unconstrained plan the price level is the one that converges.
This implies that inflation must be negative after some quarters in the optimal
unconstrained plan. Also, the reduction in the welfare-relevant output gap is much
lower on impact in the case of the optimal unconstrained plan than in that of the
optimal noninertial plan. In the latter, the reduction in the welfare-relevant output
is proportional to the increase in inflation.

Both exercises, the optimal unconstrained plan and the optimal noninertial plan,
show that to the extent that economies are more dependent on oil, in the sense
that oil is difficult to substitute for, the impact of oil shocks on both inflation and
output is greater. Also, in this case, monetary policy should react by raising the
nominal interest rate more and allowing relatively more fluctuations in inflation
than in output.

Furthermore, figure 4 shows the responses under the optimal noninertial plan
when ψ increases from 0.2 to 0.4. As shown, the impact on all the variables is
reduced, because an increase ofψ diminishes the size of the cost-push shock. Also,
the increase of ψ makes λ larger, which makes the impact on inflation relatively
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FIGURE 5. Welfare losses under both plans.

higher with respect to the response of the welfare-relevant output gap. As in the
unconstrained case, when ψ = 1 the trade-off disappears. In that case, inflation is
zero in every period and output equals its target level.

After analyzing the optimal plans, in the Figure 5 we plot the welfare losses for
these two type of policies for different elasticities of substitution ψ . The welfare
losses are normalized with respect to the variance of oil shocks. As shown, the
welfare losses under both regimes are the same, equal to zero, when the produc-
tion function is Cobb–Douglas. Moreover, when the elasticity of substitution ψ
decreases, the difference in the welfare losses under the two policy plans increases
exponentially, which is consistent with the increase of the size of the “cost-push”
shock.

4.3. A Simple Rule That Implements the Optimal Noninertial Plan

Optimal monetary plans can be difficult to communicate and implement, because
they rely on real-time calculations of the welfare-relevant output gap and the size
of the “cost-push” shock, which are unobservable variables. Because of this, in
this section we estimate a simple interest rate rule that implements the optimal
noninertial plan that is based only on observable variables, such as inflation and
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FIGURE 6. Simple rule coefficients that implement the optimal noninertial plan.

output. This rule has the following form:

rt = φππt + φyyt . (56)

An advantage of using a specification such as (56) is that we can compare it
with feedback rule rules that have been estimated for different economies. To
estimate (56), we replace this policy rule in the dynamic IS equation (29) and use
the solution from the optimal noninertial plan for inflation (53) and output gap
(54) and the output targe level (43) to solve for the coefficients φπ and φy that
solve the equilibrium. The solution for these coefficients is exact because there is
only one shock in the economy. Also, there is not only one set, but a continuous
combination of parameters φπ and φy that implement this optimal plan.

In Figure 6 we show the combination of parameters of the simple rule that
implement the optimal noninertial plan for different values of the elasticity of
substitutionψ . A first thing to note is that there is that there is a positive relationship
between φπ and φy , which is consistent with the fact that an oil shock implies a
trade-off. That is, if the response in the feedback rule to inflation is higher, then the
response to output fluctuations must also be higher to compensate for the effects
of oil shocks on economic activity. Moreover, when the elasticity of substitution
is lower, the trade-off increases and the intercept in Figure 6 is lower. This implies
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that an economy with inflation targeting where oil is more difficult to substitute
for should have a less aggressive response to inflation than in an economy that is
less dependant to oil.

Also, consistent with a larger trade-off for lower elasticity of substitution, the
response to output fluctuations must increase more for a given increase in the
response to inflation fluctuations. That is, the slope in Figure 6 becomes flatter.
This implies that in a flexible inflation-targeting regime, due to oil shocks consid-
erations, a more aggressive response to inflation fluctuations must be accompanied
by stronger response to output fluctuations.

5. CONCLUSIONS

This paper characterizes the utility-based loss function for a closed economy in
which oil is used in the production process and there is staggered price setting and
monopolistic competition. As in Benigno and Woodford (2005), our utility-based
loss function is quadratic in inflation and the deviations of output from a target
level, which is the welfare-relevant output gap.

We found that this target level differs from the natural level of output when the
elasticity of substitution between labor and oil is different from one. This generates
a trade-off between stabilizing inflation and output in the presence of oil shocks.
Also, the cost-push shocks involved in this trade-off are proportional to oil shocks.
The lower this elasticity of substitution, the greater the size of the cost-push shock.
This trade-off is generated by the convexity of real marginal costs with respect
to the real oil price, which produces a time-varying wedge between the marginal
rate of substitution and the marginal productivity of labor. We also find that
eliminating the distortions in the steady state reduces the trade-off, because this
wedge becomes less sensitive with respect to the oil price. However, in contrast to
Benigno and Woodford (2005), making the steady state efficient cannot eliminate
this trade-off.

Furthermore, the relative weight of the welfare-relevant output gap and inflation
in the utility-based loss function depends directly on this elasticity of substitution.
On the contrary, the larger the share of oil in the production function, the smaller
the relative weight.

These results show that to the extent that economies are more dependent on
oil, in the sense that oil is difficult to substitute for in production, the impact of
oil shocks on both inflation and output is higher. Also, in this case the central
bank should allow less fluctuation in inflation relative to output due to oil shocks.
Moreover, these results shed light on how technological improvements that reduces
the dependence on oil also reduce the impact of oil shocks on the economy.

NOTES

1. For example, during the 1970s and through the 1990s, most of the oil shocks seemed to be on
the international supply side, either because of attempts to gain more oil revenue or because of supply
interruptions, such as the Iranian Revolution and the first Gulf War. In contrast, in the 2000s the high
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price of oil is more related to demand growth in the United States, China, India, and other countries.
On the other hand, Kilian (2009) found that all major real oil price increases since the mid-1970s can
be traced to increased global aggregate demand and/or increases in oil-specific demand.

2. There are a few exceptions. For instance, Natal (2009) showed that extending our work, including
oil in the consumption goods bundle in a CES form, amplifies the trade-off between stabilizing inflation
and the welfare output gap. In a different approach, Nakov and Pescaroti (2010) also find a trade-off
when modeling explicitly the oil production in the global economy, which is generated by a dynamic
distortion due to imperfect competition in the oil market.

3. In contrast, Blanchard and Galı́ (2007) use a Cobb–Douglas production function.
4. In particular, using the demand for oil in steady state, we have α ≡ µ. QM/Y is estimated as

the ratio of (Oil and other fuels used for production)/(value added), from the National Income Product
accounts (www.bea.gov). The average value ofQM/Y is 2.5% for the period 1972–2006 andµ = 1.15
in our calibration; thus α = 1.15 × 2.5% = 2.895%.

5. Maximizing equation (41) implies minimizing (45) subject to a predeterminated value of vto .
Moreover, because the objective function is purely quadratic, a linear approximation of vto suffices to
describe the initial commitments, given by vto = πto .

6. More precisely, we are interested in studying the model when 0 < ψ ≤ 1 and σ is not too high,
because λ is positive for ψ ≤ 1 and σ < (αψ)−1, which is a very high value for the threshold because
α is lower than one and small.

7. See for example Woodford (2003) and Benigno and Woodford (2005).
8. Note that in this section we focus on the simplest case of the noninertial plan, in which all

endogenous variables depend only the current state of the economy. In contrast, Benigno and Woodford
(2005) work with a different noninertial plan, in which the Lagrange multipliers satisfy the first-order
conditions of the unconstrained problem.
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APPENDIX A: THE DETERMINISTIC
STEADY STATE

The nonstochastic steady state of the endogenous variables for 
 = 1 is given by
Table A.1, where α ≡ αψ(Q/MC)1−ψ is the share of oil in total costs in the steady
state. Notice that the steady state values of real wages, output, and labor depend on the
steady state ratio of oil prices to the marginal cost. This implies that permanent changes
in oil prices would generate changes in the steady state of these variables. Also, as in the
standard New Keynesian models, the marginal cost in the steady state is equal to the inverse
of the mark-up.

Because monopolistic competition affects the steady state of the model, output in the
steady state is below the efficient level. We call this feature a distorted steady state and
� ≡ 1 −MC accounts for effects of the monopolistic distortions in steady state.

Because the technology has constant returns to scale, we have that

V L

UC

L

Y
=
(
W/P

MC

L

Y

)
MC

= (1 − α) (1 −�).

The ratio of the marginal rate of substitution multiplied by the ratio labor/output is a
proportion (1 − α) of the marginal costs. This expression helps us to obtain the wedge
between the consumption and labor in the utility function in the steady state:

V L

UC

dL

dY
=
(
V L

UC

L

Y

)(
dL/L

dY/Y

)
= (1 − α) (1 −�) [1 − δ (σ + v)]

≡ 1 −�L.

TABLE A.1. The deterministic steady state

Interest rate R = β−1.

Marginal costs MC = (
ε−1
ε

)
(1 − τ).

Real wages W/P = 1−α
MC

(
1−α
1−α
) 1

1−ψ .

Output Y =
(

1−α
MC

) 1
σ+ν ( 1−α

1−α
) 1+ψν
σ+ν

1
1−ψ .

Labor L =
(

1−α
MC

) 1
σ+ν ( 1−α

1−α
) 1−σψ
σ+ν

1
1−ψ .
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APPENDIX B: THE SECOND-ORDER
SOLUTION OF THE MODEL

B.1. THE RECURSIVE AS EQUATION

We divide the equation for the aggregate price level (17) by P 1−ε
t and make Pt/Pt−1 = 
t :

1 = θ (
t)
−(1−ε) + (1 − θ)

[
P ∗
t (z)

Pt

]1−ε
. (B.1)

Aggregate inflation is a function of the optimal price level of firm z. Also, from equation
(15) the optimal price of a typical firm can be written as

P ∗
t (z)

Pt
= Nt

Dt

,

where after using the definition for the stochastic discount factor, ζt,t+k = βk(
Ct+k
Ct
)−σ Pt

Pt+k ,
we define Nt and Dt as follows:

Nt = Et

[ ∞∑
k=0

µ (θβ)k F ε
t,t+kYt+kC

−σ
t+kMCt+k

]
, (B.2)

Dt = Et

[ ∞∑
k=0

(θβ)k F ε−1
t,t+kYt+kC

−σ
t+k

]
. (B.3)

Nt and Dt can be expanded as

Nt = µYtC
−σ
t MCt + Et

[

ε
t+1

∞∑
k=0

µ (θβ)k+1 Fε
t+1,t+1+kYt+1+kC−σ

t+1+kMCt+1+k

]
, (B.4)

Dt = YtC
−σ
t + Et

[

ε−1
t+1

∞∑
k=0

(θβ)k+1 Fε−1
t+1,t+1+kC

−σ
t+1+kYt+1+k

]
, (B.5)

where we have used the definition for Ft,t+k = Pt+k/Pt .
The Phillips curve with oil prices is given by the three equations

θ (
t)
ε−1 = 1 − (1 − θ)

[
P ∗
t (z)

Pt

]1−ε
, (B.6)

Nt = µY 1−σ
t MCt + θβEt (
t+1)

ε Nt+1, (B.7)

Dt = Y 1−σ
t + θβEt (
t+1)

ε−1 Dt+1, (B.8)

where we have reordered equation (B.1) and we have used equations (B.2) and (B.3),
evaluated one period forward, to replace Nt+1 and Dt+1 in equations (B.4) and (B.5), and
used the law of iterated expectations.
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B.2. THE SECOND-ORDER APPROXIMATION OF THE MODEL

In this section we present a log-quadratic (Taylor series) approximation of the fundamental
equations of the model around the steady state. A detailed derivation is provided in the
next section of this Appendix. The second-order Taylor series expansion serves to compute
the equilibrium fluctuations of the endogenous variables of the model up to a residual of
order O(‖ξ‖2), where ‖ξt‖ is a bound on the size of the oil price shock. Up to second order,
equations (26) to (29) are replaced by the set of log-quadratic equations Table A.2.

Equations (B.i) and (B.ii) are obtained by taking a second-order Taylor series expansion
of the aggregate labour and the real marginal cost equation, after using the labor market
equilibrium to eliminate real wages. �̂t is the log-deviation of the price dispersion measure
�t , which is a second-order function of inflation, and its dynamic is represented with
equation (B.iii).

The marginal cost equation and the labor market equilibrium. The real marginal cost
(12) and the labor market equations (4 and 23) have the second-order expansion

mct = (1 − α)wt + αqt + 1

2
α (1 − α) (1 − ψ) (wt − qt )

2 + O
(‖ξt‖3

)
, (B.9)

wt = vlt + σyt , (B.10)

lt = yt − ψ (wt −mct )+ �̂t , (B.11)

where wt and �̂t are, respectively, the log of the deviation of the real wage and the price
dispersion measure from their respective steady state. Notice that equations (B.10) and
(B.11) are not approximations, but exact expressions. Solving equations (B.10) and (B.11)
for the equilibrium real wage gives

wt = 1

1 + vψ

[
(v + σ) yt + vψmct + v�̂t

]
. (B.12)

Plugging the real wage in equation (B.9) and simplifying,

mct = χ (σ + v) yt + (1 − χ) (qt )+ χv�̂t

+ 1

2

1 − ψ

1 − α
χ 2 (1 − χ) [(σ + v) yt − qt ]

2 + O
(‖ξt‖3

)
, (B.13)

where χ ≡ (1 − α)/(1 + vψα). This is the equation (B.ii) in the previous section. This
expression is the second-order expansion of the real marginal cost as a function of output
and the oil prices. Similarly, we can express labor in equilibrium as a function of output
and oil prices,

lt = yt − δ [(v + σ) yt − qt ] + χ

1 − α
�̂t + 1

2

1 − ψ

1 − α
δχ 2 [(v + σ) yt − qt ]

2 + O
(‖ξt‖3

)
,

(B.14)

for

δ ≡ ψχ
α

1 − α
,

where δ measures the effects of oil shocks on labor.

https://doi.org/10.1017/S1365100510000106 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100510000106


268
C

A
R

LO
S

M
O

N
TO
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TABLE A.2. Second-order Taylor expansion of the equations of the model

Labor market

lt = yt − δ [(v + σ) yt − qt ] + χ

1−α �̂t + 1
2

1−ψ
1−α δχ

2 [(v + σ) yt − qt ]
2 + O

(‖ξ‖3
)
. B.i

Aggregate supply

Marginal Costs

mct = χ (v + σ) yt + (1 − χ) qt + 1
2

1−ψ
1−α (1 − χ) χ 2 [(v + σ) yt − qt ]

2 + χv�̂t + O
(‖ξ‖3

)
. B.ii

Price dispersion

�̂t = θ�̂t + 1
2ε

θ

1−θ π
2
t + O

(‖ξ‖3
)
. B.iii

Phillips Curve

vt = κmct + 1
2κmct [2 (1 − σ) yt +mct ] + 1

2επ
2
t + βEtvt+1 + O

(‖ξ‖3
)
, B.iv

where we have defined the auxiliary variables:

vt ≡ πt +
(
ε−1
1−θ + ε

)
π 2
t + 1

2 (1 − θβ) πtzt . B.v

zt ≡ 2 (1 − σ) yt +mct + θβEt

(
2ε−1
1−θβ πt+1 + zt+1

)
+ O

(‖ξt‖2
)
. B.vi

Aggregate demand

yt = Etyt+1 − 1
σ
(rt − Etπt+1)− 1

2σEt
[
(yt − yt+1)− 1

σ
(rt − πt+1)

]2 + O
(‖ξ‖3

)
. B.vii
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The price dispersion equation. The price dispersion measure is given by

�t =
∫ 1

0

[
Pt(z)

Pt

]−ε
dz.

Because a proportion 1 − θ of intermediate firms set prices optimally, whereas the other
θ set the price last period, this price dispersion measure can be written as

�t = (1 − θ)

[
P ∗
t (z)

Pt

]−ε
+ θ

∫ 1

0

[
Pt−1(z)

Pt

]−ε
dz.

Dividing and multiplying by (Pt−1)
−ε the last term of the RHS,

�t = (1 − θ)

[
P ∗
t (z)

Pt

]−ε
+ θ

∫ 1

0

[
Pt−1(z)

Pt−1

]−ε (
Pt−1

Pt

)−ε
dz.

Because P ∗
t (z)/Pt = Nt/Dt and Pt/Pt−1 = 
t , using equation (18) in the text and the

definition for the dispersion measure lagged on period, this can be expressed as

�t = (1 − θ)

[
1 − θ (
t)

ε−1

1 − θ

]ε/(ε−1)

+ θ�t−1 (
t )
ε , (B.15)

which is a recursive representation of �t as a function of �t−1 and 
t .
Benigno and Woodford (2005) showed that a second-order approximation of the price

dispersion depends solely on second-order terms on inflation. Thus, the second-order
approximation of equation (B.15) is

�̂t = θ�̂t−1 + 1

2
ε

θ

1 − θ
π 2
t + O

(‖ξt‖3
)
, (B.16)

which is equation (B.iii) in the previous section. Moreover, we can use equation (B.16) to
write the infinite sum

∞∑
t=to

βt−to �̂t = θ

∞∑
t=to

βt−to �̂t−1 + 1

2
ε

θ

1 − θ

∞∑
t=to

βt−toπ 2
t + O

(‖ξt‖3
)
,

(1 − βθ)

∞∑
t=to

βt−to �̂t = θ�̂to−1 + 1

2
ε

θ

1 − θ

∞∑
t=to

βt−toπ 2
t + O

(‖ξt‖3
)
.

Dividing by (1 − βθ) and using the definition of κ ,

∞∑
t=to

βt−to �̂t = θ

1 − βθ
�̂to−1 + 1

2

ε

κ

∞∑
t=to

βt−toπ 2
t + O

(‖ξt‖3
)
. (B.17)

The discounted infinite sum of �̂t is equal to the sum of two terms, the initial price
dispersion and the discounted infinite sum of π 2

t .

The Philips Curve. The second-order expansions for equations (B.6), (B.7), and (B.8)
are

πt = (1 − θ)

θ
(nt − dt )− 1

2

(ε − 1)

1 − θ
(πt )

2 + O
(‖ξt‖3

)
, (B.18)
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nt = (1 − θβ)

(
at + 1

2
a2
t

)
+ θβ

(
Etbt+1 + 1

2
Etb

2
t+1

)
− 1

2
n2
t + O

(‖ξt‖3
)
, (B.19)

dt = (1 − θβ)

(
ct + 1

2
c2
t

)
+ θβ

(
Etet+1 + 1

2
Ete

2
t+1

)
− 1

2
d2
t + O

(‖ξt‖3
)
, (B.20)

where we have defined the auxiliary variables at , bt+1, ct and et+1 as

at ≡ (1 − σ) yt +mct , bt+1 ≡ επt+1 + nt+1,

ct ≡ (1 − σ) yt , et+1 ≡ (ε − 1) πt+1 + dt+1.

Subtract equations (B.19) and (B.20), and using the fact that X2 − Y 2 = (X− Y )(X+ Y ),
for any two variables X and Y ,

nt − dt = (1 − θβ) (at − ct )+ 1

2
(1 − θβ) (at − ct ) (at + ct )

+ θβEt (bt+1 − et+1)+ 1

2
θβEt (bt+1 − et+1) (bt+1 + et+1)

− 1

2
(nt − dt ) (nt + dt )+ O

(‖ξt‖3
)
. (B.21)

Plugging in the values of at , bt+1, ct , and et+1 into equation (B.21), we obtain (B.22)

nt − dt = (1 − θβ)mct + 1

2
(1 − θβ)mct [2 (1 − σ) yt +mct ]

+ θβEt (πt+1 + nt+1 − dt+1)

+ 1

2
θβEt (πt+1 + nt+1 − dt+1) [(2ε − 1) πt+1 + nt+1 + dt+1]

− 1

2
(nt − dt ) (nt + dt )+ O

(‖ξt‖3
)
. (B.22)

Taking equation (B.18) forward one period, we can solve for nt+1 − dt+1:

nt+1 − dt+1 = θ

1 − θ
πt+1 + 1

2

θ

1 − θ

(ε − 1)

1 − θ
(πt+1)

2 + O
(‖ξt‖3

)
. (B.23)

Replace equation (B.23) in (B.22) and make use of the auxiliary variable zt = (nt +
dt )/(1 − θβ) :

nt − dt = (1 − θβ)mct + 1

2
(1 − θβ)mct [2 (1 − σ) yt +mct ]

+ θ

1 − θ
β

[
Etπt+1 +

(
ε − 1

1 − θ
+ ε

)
Etπ

2
t+1 + (1 − θβ)Etπt+1zt+1

]
− 1

2

θ

1 − θ
(1 − θβ) πtzt + O

(‖ξt‖3
)
. (B.24)

Notice that we use only the linear part of equation (B.23) when we replace nt+1 − dt+1

in the quadratic terms because we are interested in capturing terms only up to the second
order of accuracy. Similarly, we make use of the linear part of equation (B.18) to replace
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(nt − dt ) = θ

1−θ πt on the right-hand side of equation (B.24). Replace equation (B.22) in
(B.18),

πt = κmct + 1

2
κmct (2 (1 − σ) yt +mct )

+β
[
Etπt+1 +

(
ε − 1

1 − θ
+ ε

)
Etπ

2
t+1 + (1 − θβ)Etπt+1zt+1

]
− 1

2
(1 − θβ) πtzt − 1

2

(ε − 1)

1 − θ
(πt )

2 + O
(‖ξt‖3

)
, (B.25)

for

κ ≡ (1 − θ)

θ
(1 − θβ) ,

where zt has the following linear expansion:

zt = 2 (1 − σ) yt +mct + θβEt

(
2ε − 1

1 − θβ
πt+1 + zt+1

)
+ O

(‖ξt‖3
)
. (B.26)

Define the following auxiliary variable:

vt = πt + 1

2

(
ε − 1

1 − θ
+ ε

)
π 2
t + 1

2
(1 − θβ) πtzt . (B.27)

Using the definition for vt , equation (B.25) can be expressed as

vt = κmct + 1

2
κmct [2 (1 − σ) yt +mct ] + 1

2
επ 2

t + βEtvt+1 + O
(‖ξt‖3

)
, (B.28)

which is equation (B − iv).
Moreover, the linear part of equation (B.28) is

πt = κmct + βEt (πt+1)+ O
(‖ξt‖2

)
,

which is the standard New Keynesian Phillips curve, in which inflation depends linearly on
the real marginal costs and expected inflation.

Replace the equation for the marginal costs (B.13) in the second-order expansion of the
Phillips curve (B.28),

vt = κyyt + κqqt + κχv�̂t + 1

2
επ 2

t

+ 1

2
κ
(
cyyy

2
t + 2cyqytqt + cqqq

2
t

)+ βEtvt+1 + O
(‖ξt‖3

)
, (B.29)

where the coefficients of the linear part are given by

κy ≡ κχ (σ + v) ,

κq ≡ κ (1 − χ) ,

and those of the quadratic part are

cyy = χ (σ + v) [2 (1 − σ)+ χ (σ + v)] + (1 − ψ)
χ 2 (1 − χ) (σ + v)2

1 − α
,
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cyq = (1 − χ) [2 (1 − σ)+ χ (σ + v)] − (1 − ψ)
χ 2 (1 − χ) (σ + v)

1 − α
,

cqq = (1 − χ)2 + (1 − ψ)
χ 2 (1 − χ)

1 − α
.

Equation (B.29) is a recursive second-order representation of the Phillips curve. However,
we need to express the price dispersion in terms of inflation in order to have the Phillips
curve as a function only of output, inflation, and the oil shock. Equation (B.29) can also be
expressed as the discounted infinite sum

vto =
∞∑
t=to

βt−to
[
κyyt + κqqt + κχv�̂t + 1

2
επ 2

t

+ 1

2
κ
(
cyyy

2
t + 2cyqytqt + cqqq

2
t

)]+ (‖ξt‖3
);

after making use of equation (B.17), the discounted infinite sum of �̂t , vto , becomes

vto =
∞∑
t=to

βt−to
[
κyyt + κqqt + 1

2
ε (1 + χv) π 2

t + 1

2
κ
(
cyyy

2
t + 2cyqytqt + cqqq

2
t

)]

+ χvθ

1 − βθ
�̂to−1 + (‖ξt‖3

)
. (B.30)

This is the Phillips curve expressed as a infinite sum of output, inflation, and oil shock.

B.3. A SECOND-ORDER APPROXIMATION TO UTILITY

The expected discounted value of the utility of the representative household is

Uto = Eto

∞∑
t=to

βt−to [u (Ct )− v (Lt )] . (B.31)

The first term can be approximated as

u (Ct ) = Cuc

[
ct + 1

2
(1 − σ) c2

t

]
+ t.i.p.+ O

(‖ξt‖3
)
. (B.32)

Similarly, the second term can be approximated as

v (Lt ) = LvL

[
lt + 1

2
(1 + v) l2t

]
+ t.i.p.+ O

(‖ξt‖3
)
. (B.33)

Replace the equation for labor in equilibrium in (B.33),

v (Lt ) = LvL

(
vyyt + 1

2
vyyy

2
t + vyqytqt + v��̂t

)
+ t.i.p.+ O

(‖ξt‖3
)
, (B.34)

where
vy ≡ 1 − δ (v + σ) ,
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vyy ≡ (1 + v) [1 − δ (v + σ)]2 + 1

2

1 − ψ

1 − α
χ 2δ (σ + v)2 ,

vyq ≡ (1 + v) δ [1 − δ (v + σ)] − 1 − ψ

1 − α
χ 2δ (σ + v) ,

v� ≡ χ

1 − α
.

We make use of the relation

LvL = (1 −�) (1 − α) Yuc, (B.35)

where� = 1− 1−τ
ε/(ε−1) is the steady state distortion from monopolistic competition. Replace

the previous relation, equation (B.32), and equation (B.34) in (B.31), and make use of the
clearing market condition Ct = Yt :

Uto = Yuc

∞∑
t=to

βt−to
(
uyyt + 1

2
uyyy

2
t + uyqytqt + u��̂t

)
+ t.i.p.+ O

(‖ξt‖3
)
, (B.36)

where

uy ≡ 1 − (1 −�) (1 − α) vy = �L,

uyy ≡ 1 − σ − (1 −�) (1 − α) vyy = 1 − σ − (1 −�L) vyy/ [1 − δ (v + σ)] ,

uyq ≡ − (1 −�) (1 − α) vyq = − (1 −�L) vyq/ [1 − δ (v + σ)] ,

u� ≡ − (1 −�) (1 − α) v� = − (1 −�)χ,

where we make use of the change of variable

�L ≡ 1 − (1 −�) (1 − α) [1 − δ (v + σ)], (B.37)

where�L is the wedge between consumption and labor in the utility function in the steady
state.

Replace the present discounted value of the price distortion (B.17) in (B.36),

Uto = YucEto

∞∑
t=to

βt−to
(
uyyt + 1

2
uyyy

2
t + uyqytqt + 1

2
uππ

2
t

)
+ t.i.p.+ O

(‖qt‖3
)
,

(B.38)
where

uπ ≡ ε

κ
u� = − (1 −�)χ

ε

κ
.

Use equation (B.30), the second-order approximation of the Phillips curve, to solve for the
expected level of output:

∞∑
t=to

βt−to yt = − 1

κy

∞∑
t=to

βt−to
[
κqqt + 1

2
ε (1 + χv) π 2

t

+ 1

2
κ
(
cyyy

2
t + 2cyqytqt + cqqq

2
t

)]
+ 1

κy

[
vto − χv

θ

1 − βθ
�̂to−1

]
+ (‖ξt‖3

)
. (B.39)
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Replace equation (B.39) in (B.38) to express it as a function of only second-order terms,

Uto = −�
{
Eto

∞∑
t=to

βt−to
[

1

2
λy
(
yt − y∗

t

)2 + 1

2
λππ

2
t

]
− Tto

}
+t.i.p.+O

(‖qt‖3
)
, (B.40)

where

λy ≡ �L

κ

κy
cyy − uyy,

λπ ≡ �L

ε (1 + χv)

κy
− uπ ,

y∗
t ≡ −

�L
κ

κy
cyq − uyq

�L
κ

κy
cyy − uyy

qt ;

additionally we have that � ≡ Yuc and Tto ≡ �L
κy
vto .

Make use of the auxiliary variables

ω1 ≡ (1 − σ)�L + χ (σ + v) ,

ω2 ≡ χ (σ + v)

[
1 − χ

1 − α
+ (1 −�L)

σψα

1 − σψα

]
,

ω3 ≡ �Lσα;

then λy , λπ , and y∗
t can be written as functions of ω1, ω2, and ω3:

λy ≡ ω1 + (1 − ψ)ω2,

λπ ≡ ε

κy (1 − σψα)
[ω1 + (1 − ψ)ω3] ,

y∗
t ≡ − 1 − χ

χ (σ + v)

[
ω1 − (1 − ψ)

χ

1−χ ω2

ω1 + (1 − ψ)ω2

]
qt .

Using the definitions for χ , y∗
t can be expressed as

y∗
t ≡ −

(
1 + ψv

σ + v

)(
α

1 − α + η

)
, (B.41)

where

η ≡ (1 − ψ) (1 − α)ω2

(1 − χ)ω1 − (1 − ψ)χω2
.

Denote α∗ as

α∗ ≡ α

1 + η
,

then y∗
t is

y∗
t = −

(
1 + ψv

σ + v

)(
α∗

1 − α∗

)
qt . (B.42)
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Note from the definition of η that when ψ = 1, then η = 0, α∗ = α = α, and y∗
t = ynt . For

a Cobb–Douglas production function, the efficient level of output equals the natural level.
Also, when ψ < 1, then η > 0, α∗ < α, and |y∗

t | < |ynt |. For elasticity of substitution
between inputs lower than one, the efficient level fluctuates less to oil shocks than the
natural level. Also note that even when �L is equal to zero, which summarizes the effect
of monopolistic distortions on the wedge between the marginal rate of substitution and
the marginal product of labor, η is still different from zero for ψ �= 1. This indicates that
the efficient level of output still diverges from the natural level even when we eliminate the
effects of monopolistic distortions.

In the same way, the natural rate of output can be expressed as

ynt = −
(

1 + ψv

σ + v

)(
α

1 − α

)
qt . (B.43)

Similarly, we can simplify λ ≡ λy/λπ as

λ ≡ λy

λπ
= κy (1 − σψα)

ε
γ,

where we use the auxiliary variable

γ ≡
[
ω1 + (1 − ψ)ω2

ω1 + (1 − ψ)ω3

]
.

Note that when ψ = 1, then γ = 1, and when ψ < 1, then γ = 1 because ω2 > ω3.

APPENDIX C: OPTIMAL MONETARY POLICY
C.1. OPTIMAL RESPONSE TO OIL SHOCKS

The policy problem consists in choosing xt and πt to maximize the Lagrangian

L = −Eto
{ ∞∑
t=to

βt−to
[

1

2
λx2

t + 1

2
π 2
t − ϕt

(
πt − κyŷt − βEtπt+1 − ut

)]

+ϕto−1

(
πto − π∗

to

) }
,

where βt−toϕt is the Lagrange multiplier associated with the constraint at time t .
The first-order conditions with respect to πt and yt are respectively

πt = ϕt−1 − ϕt , (C.1)

λxt = κyϕt , (C.2)

and the initial condition is

πto = π∗
to
,
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where π∗
to

is the initial value of inflation, which is consistent with the policy problem in a
timeless perspective.

Replace conditions (C.1) and (C.2) in the Phillips curve:

βEtϕt+1 − [
(1 + β) λ+ κ2

y

]
ϕt + λϕt−1 = λut . (C.3)

This difference equation has the solution [see Woodford (2003, pp. 488–490) for details
on the derivation]

ϕt = τϕϕt−1 − τϕ
∑∞

j=0
βj τ jϕEtut+j , (C.4)

where τϕ is the characteristic root, lower than one, of (C.3), and it is equal to

τϕ = Z −
√
Z2 − 1

β
,

for Z = ((1 + β)+ κ2
y

λ
)/(2β). Because the oil price follows an AR(1) process of the form

qt = ρqt−1 + ξt ,

and the mark-up shock is ut = �qt , ut follows the following process:

ut = ρut−1 +�ξt . (C.5)

Taking into account (C.5), equation (C.4) can be expressed as

ϕt = τϕϕt−1 − φqt , (C.6)

where
φ = τϕ

1 − βτϕρ
�.

Iterate backward equation (C.6) and evaluate it at to − 1. This is the timeless solution to the
initial condition ϕto−1,

ϕto−1 = −φ�∞
k=0

(
τϕ
)k
qto−1−k, (C.7)

which is a weighted sum of all the past realizations of oil prices.
Equations (C.1), (C.2), (C.6), and (C.7) are the conditions for the optimal unconstrained

plan presented in Proposition 4.
An innovation of ξt to the real oil price affects the current level and the expected future

path of the Lagrange multiplier by an amount

Etϕt+j − Et−1ϕt+j = −ρ
j+1 − (

τϕ
)j+1

ρ − τϕ
φξt ,

for each j ≥ 0. Given this impulse response for the multiplier, (C.1) and (C.2) can be used
to derive the corresponding impulse responses for inflation and output gap,

Etπt+j − Et−1πt+j =
[
ρj+1 − (

τϕ
)j+1

ρ − τϕ
− ρj − (

τϕ
)j

ρ − τϕ

]
φξt ,

Etxt+j − Et−1xt+j = −κy
λ

ρj+1 − (
τϕ
)j+1

ρ − τϕ
φξt ,

which are expressions that appear in the main text.
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C.2. THE OPTIMAL NONINERTIAL PLAN

We want to find a solution for the paths of inflation and output gap such that the behavior
of endogenous variables is a function only of the current state. That is,

πt = π + fπut , (C.8)

xt = x + fxut , (C.9)

ϕt = ϕ + fϕut , (C.10)

where the coefficients π, y, ϕ, fπ , fx , and fϕ are to be determined.
Replace (C.8), (C.9), and (C.10) in the Lagrangian and take the unconditional expected

value,

−E (Lto) ≡ E

⎧⎪⎪⎨⎪⎪⎩Eto
∞∑
t=to

βt−to

⎡⎢⎢⎣
1
2λ (x + fxut )

2 + 1
2 (π + fπut )

2

− (ϕ + fϕut
) ( (1 − β) π − κyx

+ (1 − βρ) fπut − ut − κyfxut

)
⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

+E [(ϕ + fϕuto−1

) (
π + fπuto

)]
. (C.11)

Suppressing the terms that are independent of policy and using the law of motion for ut ,
this can be simplified as

−E (Lto) ≡ 1

2 (1 − β)

(
λx2 + π 2

)− 1

2 (1 − β)
ϕ
[
(1 − β) π − κyx

]
+ 1

2

σ 2
u

1 − β

(
λfx

2 + fπ
2
)− 1

2

σ 2
u

1 − β
fϕ
[
(1 − βρ) fπ − 1 − κyfx

]
+ ρσ 2

u fϕfπ .

The problem becomes to findπ, y, ϕ, fπ , fx , and fϕ that maximize the previous expression.
Those coefficients are

π = x = ϕ = 0,

fπ = λ(1 − ρ)

λ (1 − βρ) (1 − ρ)+ κ2
y

,

fx = − κy

λ (1 − βρ) (1 − ρ)+ κ2
y

,

fϕ = λ

λ (1 − βρ) (1 − ρ)+ κ2
y

,

which is the solution to the optimal noninertial plan given in Proposition 5.
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