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The influence of high levels of wall cooling on the stability of hypervelocity boundary
layers is investigated. Such conditions are relevant to experiments in high-enthalpy
impulse facilities, where the wall temperature is much smaller than the free-stream
temperature, as well as to some real flight scenarios. Some effects of wall cooling
are well known, for instance, the stabilization of the first mode and destabilization
of the second mode. In this paper, several new instability phenomena are investigated
that arise only for high Mach numbers and high levels of wall cooling. In particular,
certain unstable modes can travel supersonically with respect to the free stream, which
changes the nature of the dispersion curve and leads to instability over a much wider
band of frequencies. The cause of this phenomenon, the range of parameters for which
it occurs and its implications for boundary layer stability are examined. Additionally,
growth rates are systematically reported for a wide range of conditions relevant to
high-enthalpy impulse facilities, and the stability trends in terms of Mach number
and wall temperature are mapped out. Thermal non-equilibrium is included in the
analysis and its influence on the stability characteristics of flows in impulse facilities
is assessed.
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1. Introduction
Predicting the stability of hypervelocity boundary layers is a crucial aspect of

hypersonic vehicle design. Transition of the boundary layer from laminar to turbulent
can increase surface heating loads by a factor of 4–10 (Lau 2008; Lin 2008; Hollis
2012), thereby increasing the cooling requirements and the weight of the thermal
protection system. The location of the transition region is therefore a key design
consideration, yet it remains extremely challenging to predict reliably. This uncertainty
necessarily leads to a conservative aircraft design, which in turn increases the vehicle
weight and power requirements. As a result, any gains in the understanding of
boundary layer instability or advances in transition prediction translate into substantial
savings in weight and cost.

Because of the high cost of flight tests and the difficulty of making instability
measurements during actual flight, most experimental investigations of hypersonic
boundary layer stability have been conducted in ground-based facilities. Reviews of
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Stability of highly cooled hypervelocity boundary layers 587

the experimental data from such facilities are available from Morkovin (1969) and
Schneider (2001, 2004). Ground-based facilities cannot simultaneously replicate all
of the flow conditions from real flight. Most hypersonic wind tunnels operate at
low stagnation enthalpies in order to achieve long run times, reduce the difficulty of
making measurements, or reach low levels of acoustic noise in the free stream. Other
facilities, such as shock tunnels and expansion tubes, have been designed to match the
stagnation enthalpy of real flight conditions, but this comes at the expense of short
test times and high levels of free-stream noise. Past experimental campaigns (Adam
& Hornung 1997; Germain & Hornung 1997; Rasheed et al. 2002; Fujii & Hornung
2003) in such high-enthalpy facilities have focused mainly on non-equilibrium flow
effects, both thermal and chemical. However, the temperature distribution within
the boundary layer of a high-enthalpy flow is often very different from that of a
low-enthalpy flow: at high stagnation enthalpy, the wall temperature can be a small
fraction of the free-stream temperature, while for low-enthalpy conditions this is
usually not possible. This can cause high- and low-enthalpy flows to have significantly
different stability characteristics, even in the absence of thermochemical reactions. In
comparing test data from low- and high-enthalpy test facilities, understanding these
differences is important.

It is well known that the linear stability of compressible boundary layers is very
sensitive to the temperature of the wall. This conclusion was first reached by Lees
& Lin (1946), who generalized Rayleigh’s inflection point theorem (Rayleigh 1880)
to compressible flows and demonstrated that, in the inviscid limit, an extremum of
mean angular momentum (ρ̄Ū′)′ = 0 is a necessary condition for instability. Lees
& Lin observed that sufficient wall cooling can eliminate this generalized inflection
point, thereby stabilizing the boundary layer to inviscid disturbances. Subsequent
work by Lees (1947) included the effects of viscosity, which are important because
Tollmien–Schlichting waves can be more unstable at finite Reynolds number than in
the inviscid limit (Lin 1944), though this is usually only true for low Mach numbers
(Masad, Nayfeh & Al-Maaitah 1992). Lees showed that, in contrast to subsonic flows,
supersonic flows can be completely stabilized at all Reynolds numbers if the level
of wall cooling is great enough. This point was further investigated by Van Driest
(1952), who provided calculations of the critical Reynolds number as a function
of wall temperature and Mach number and concluded that the first mode can be
stabilized for all Reynolds numbers as long as the Mach number falls in the range
1<Ma< 9. The previously mentioned studies of Lees and Van Driest considered only
two-dimensional (2D) disturbances; however, oblique Tollmien–Schlichting waves are
considerably more unstable than 2D waves (Mack 1969). Nevertheless, it has been
shown that the three-dimensional (3D) first-mode waves can still be stabilized with
sufficient levels of wall cooling (Masad et al. 1992).

The investigations cited above were later found to be incomplete, since at high
Mach numbers additional instability modes collectively known as the ‘Mack modes’
exist and are highly unstable. The calculations of Mack (1969, 1975, 1984, 1987)
revealed that these modes are acoustic waves reflecting between the wall and the
relative sonic line. Although the Tollmien–Schlichting waves mentioned above can
indeed be stabilized by wall cooling, the acoustic modes are destabilized. The most
unstable acoustic mode, the ‘second mode’, has been widely studied and numerous
factors that influence its stability have been investigated. These factors include wall
cooling (Mack 1975, 1987; Malik 1989a; Masad et al. 1992; Mack 1993), pressure
gradient (Malik 1989a), chemical reactions (Malik & Anderson 1991; Stuckert & Reed
1994; Chang, Vinh & Malik 1997; Hudson, Chokani & Candler 1997; Johnson, Seipp
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588 N. P. Bitter and J. E. Shepherd

& Candler 1998; Malik 2003), thermal non-equilibrium (Bertolotti 1998), transverse
curvature (Malik & Spall 1991), porous walls (Fedorov et al. 2001, 2003; Bres et al.
2013) and many others.

Although many of the studies mentioned above have investigated the effects
of wall cooling on boundary layer stability, most of them have considered only
relatively modest levels of cooling. Many papers that analyse high-enthalpy flows
(Malik & Anderson 1991; Stuckert & Reed 1994; Hudson et al. 1997; Johnson, Alba
& Candler 2008) do not consider wall-to-edge temperature ratios Tw/Te < 1, and,
although a few papers do include such conditions (Chang et al. 1997; Johnson et al.
1998; Malik 2003), they focus on the effects of chemical reactions rather than on
the extreme wall cooling. Presumably, cases with Tw/Te < 1 are not often considered
because most experimental facilities operate at low stagnation temperatures, hence the
free-stream temperature is small (often less than 100 K), and cooling the wall below
the free-stream temperature is not practicable. In contrast, high-enthalpy test facilities
can reach free-stream temperatures of 1000–2500 K, and since the wall temperature
remains ambient during the short test duration, wall-to-edge temperature ratios of
Tw/Te= 0.1–0.3 are typical. Such high levels of wall cooling are also relevant to some
real flight scenarios; for example, Malik (2003) analysed the re-entry flight experiment
reported by Sherman & Nakamura (1970), which involved a 22◦ half-angle blunt cone
at Mach 6, and Malik computed a post-shock temperature of approximately 3300 K
as compared to a wall temperature of approximately 730 K, leading to Tw/Te = 0.22.

As will be seen, very high levels of wall cooling lead to unique features of the
disturbance spectrum that are not present for lower levels of wall cooling. In particular,
unstable supersonic modes are found that cause second-mode instability over a wider
frequency band than for subsonic modes. Unstable supersonic modes have been noted
in a few other studies of flat plates, wedges and cones (Mack 1987; Chang, Malik &
Hussaini 1990; Chang et al. 1997), and they have also been encountered and found to
be important for flows involving gas injection (Fedorov, Soudakov & Leyva 2014) and
porous surfaces (Fedorov et al. 2011; Bres et al. 2013). However, for highly cooled
boundary layers, there remains some uncertainty regarding the importance of these
modes and the range of conditions for which they exist. In this paper, spatial, locally
parallel stability calculations are used to investigate these effects. Air is chosen as the
test gas, and the geometry is a flat plate with a sharp leading edge. Flow conditions
are modelled after those found in a high-enthalpy shock tunnel. Chemical reactions
are excluded in the modelling, which limits the validity of the results to flows having
peak temperatures below approximately 2600 K. However, this restriction is not too
severe; for instance, the model is still applicable to most experimental conditions in
the T5 shock tunnel facility at Caltech (Germain & Hornung 1997; Parziale, Shepherd
& Hornung 2013).

2. Numerical methods
2.1. Governing equations

Although this study focuses on flow conditions for which chemical reactions are
negligible, the gas temperature is sufficiently high that the exchange of energy
between translational and vibrational molecular motion may not be negligible,
and the possibility of thermal non-equilibrium must be taken into account. For a
chemically inert gas mixture, the transport of mass, momentum, vibrational energy
and total energy can be described by the following equations, which incorporate the
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Stability of highly cooled hypervelocity boundary layers 589

two-temperature model of Park (1990):

∂ρ∗

∂t∗
+∇ · (ρ∗u∗)= 0, (2.1a)

ρ∗
Du∗

Dt∗
+∇p∗ =∇ · τ ∗, (2.1b)

ρ∗
De∗v
Dt∗
=−∇ · q∗v +Q∗, (2.1c)

ρ∗
Dh∗tr
Dt∗
+ ρ∗De∗v

Dt∗
− Dp∗

Dt∗
=−∇ · (q∗tr + q∗v)+ τ ∗ :∇u∗. (2.1d)

Here asterisks denote dimensional quantities, bold symbols refer to vectors and τ ∗ is
the viscous stress tensor. The velocity vector u∗ has elements u∗, v∗ and w∗ in the
streamwise, wall-normal and spanwise directions, and p∗ and ρ∗ are the pressure and
mass density. The system is closed with the equation of state:

p∗ = ρ∗R∗T∗, (2.2)

where R∗ is the gas constant of the mixture and T∗ is the translational temperature.
Although the gas is chemically inert, thermal non-equilibrium is included in the model
by dividing the flow enthalpy into a translational enthalpy h∗tr and a vibrational energy
e∗v. Likewise, the heat flux vector is split into a vibrational part q∗v and a translational
part q∗tr. The exchange of energy between translational and vibrational modes is taken
into account by the source term Q∗.

It is convenient to define a vibrational temperature T∗v such that, for the ith species,

∂e∗v,i
∂T∗v
= c∗v,v,i =R∗i

(
Θ∗v,i
T∗v

)2 eΘ
∗
v,i/T

∗
v

(eΘ
∗
v,i/T

∗
v − 1)2

, (2.3)

where c∗v,v,i is the vibrational specific heat of the ith species, R∗i is its gas constant and
Θ∗v,i is its vibrational activation temperature, taken to be 3390 K for N2 and 2270 K
for O2 (Vincenti & Kruger 1967). In all cases the gas mixture is assumed to be air,
modelled as 78 % N2 and 22 % O2 by mole.

The model used in (2.3) assumes that the vibrational energy states of each molecule
satisfy a Boltzmann distribution characterized by the vibrational temperature T∗v .
Equations (2.1) and (2.3) also assume that all diatomic species share the same
vibrational temperature. This model is only accurate if vibration–vibration (V–V)
energy exchange between unlike molecules (e.g. N2 and O2) is much faster than
vibration–translation (V–T) exchange. Experimental data compiled by Taylor &
Bitterman (1969) reveal that, in the temperature range of interest in this study,
1000–3000 K, V–V transfer between N2 and O2 is several orders of magnitude
faster than V–T transfer for N2, but is slightly slower than V–T transfer for O2.
This suggests that the use of a single vibrational temperature is a reasonable first
approximation, but more accurate results would be obtained if separate vibrational
temperatures were used and the V–V exchange process were explicitly included in the
model, as was done by Bertolotti (1998). For simplicity, however, a single vibrational
temperature is assumed in the remainder of this paper.

With the assumption of a single vibrational temperature, the rate of V–T energy
exchange is computed using the Landau–Teller model (Vincenti & Kruger 1967;
Park 1990):

Q∗ = ρ∗
nsp∑
i=1

Yi
e∗v,i(T

∗)− e∗v,i(T
∗
v )

τ ∗i
. (2.4)
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590 N. P. Bitter and J. E. Shepherd

Here Yi is the species mass fraction and τ ∗i is the effective relaxation time for
species i, which accounts for collisions between molecules of type i and all other
types of molecules. For a mixture consisting of nsp species, the effective relaxation
time τ ∗i is given by (Millikan & White 1963)

τ ∗i =
[ nsp∑

j=1

Xi

τ ∗ij

]−1

, (2.5)

where Xi is the mole fraction of species i and τ ∗ij is the relaxation time for a
dilute species i in an isothermal bath of molecules j; its value is computed using the
correlations of Millikan & White (1963). With the assumption of a single vibrational
temperature, the heat flux vectors can be written in terms of the temperature gradients,

q∗v =−k∗v∇T∗v , (2.6a)
q∗tr =−k∗∇T∗, (2.6b)

where k∗ is the translational thermal conductivity and k∗v is its vibrational counterpart.
For each species, the thermal conductivity is evaluated using Euken’s relation
(Vincenti & Kruger 1967), whereby the total conductivity is split into a translational/
rotational part k∗i and a vibrational part k∗v,i:

k∗i = 5
2µ
∗
i c∗v,tr,i, (2.7a)

k∗v,i =µ∗i c∗v,v,i. (2.7b)

Here µ∗i is the dynamic viscosity of species i and c∗v,tr,i is its translational specific
heat at constant volume. The thermal conductivity of the mixture is then obtained
using Wilke’s mixing rule (Wilke 1950). At low temperatures, the vibrational thermal
conductivity vanishes and the Prandtl number reduces to a constant value of 0.737.

Separate viscosity models are needed for each species in order to apply Euken’s
relation in (2.7). In this paper, Sutherland models for N2 and O2 were deduced
by fitting Sutherland’s coefficient to the correlations of Cole & Wakeham (1985),
which are valid up to 2100 K for nitrogen and 2500 K for oxygen. The viscosity
of the mixture was then calculated using Wilke’s mixing rule. The mixture viscosity
computed in this way differs by less than 4 % from the correlations of Kadoya,
Matsunaga & Nagashima (1985) over the temperature range 85–2000 K.

Equations (2.1) are made dimensionless using the following variables:

ρ = ρ
∗

ρ∗e
, T = T∗

T∗e
, Tv = T∗v

T∗e
, u= u∗

U∗e
, p= p∗

ρ∗e U∗2e

, t= t∗U∗e
L∗

, (2.8a−f )

cv,v =
c∗v,v
c∗p,tr

, x= x∗

L∗
, k= k∗

k∗e
, k∗v =

k∗v
k∗e
, τ = τ ∗

µ∗eU∗e/L∗
, Q= Q∗ν∗e

ρ∗e c∗p,trT∗e U∗2e

.

(2.9a−f )
In these equations, subscript e refers to the edge conditions and L∗ is a reference
length. The vector x has the components x, y and z corresponding to the streamwise,
vertical and spanwise directions. The translational specific heat c∗p,tr is a constant, since
the gas composition is fixed. The vibrational source term Q is non-dimensionalized
using the volumetric energy density ρ∗e c∗p,trT

∗
e and the time scale ν∗e /U

∗2
e .
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Stability of highly cooled hypervelocity boundary layers 591

After rewriting the governing equations (2.1) in terms of these non-dimensional
parameters and subtracting the vibrational energy equation from the total energy
equation, the result is

∂ρ

∂t
+∇ · (ρu)= 0, (2.10a)

ρ
Du
Dt
+∇p= 1

ReL
∇ · τ , (2.10b)

ρcv,v
DTv
Dt
= 1

ReLσe
∇ · (kv∇Tv)+ ReLQ, (2.10c)

ρ
DT
Dt
−Ma2(γe − 1)

Dp
Dt
= 1

ReLσe
∇ · (k∇T)+ Ma2(γe − 1)

ReL
(τ :∇u)− ReLQ, (2.10d)

γeMa2p= ρReT. (2.10e)

Here Ma is the frozen Mach number in the free stream, σe= c∗p,trµ
∗
e/k
∗
e is the Prandtl

number, γe is the ratio of frozen specific heats, and ReL is the Reynolds number
based on the length scale L∗.

2.2. Base flow calculation
Since the boundary layer is in a state of thermal non-equilibrium, the velocity and
temperature profiles cannot be computed using a similarity solution, and a suitable
non-similar boundary layer solver is used instead. By applying Prandtl’s boundary
layer scaling arguments (Schlichting & Gersten 2000) to (2.10) and assuming zero
pressure gradient, one arrives at the result

∂

∂x
(ρ̄Ū)+ ∂

∂y
(ρ̄V̄)= 0, (2.11a)

ρ̄Ū
∂Ū
∂x
+ ρ̄V̄

∂Ū
∂y
= 1

ReL

∂

∂y

(
µ̄
∂Ū
∂y

)
, (2.11b)

ρ̄

(
Ū
∂T̄
∂x
+ V̄

∂T̄
∂y

)
= 1

ReLσe

∂

∂y

(
k̄
∂T̄
∂y

)
− ReLQ̄+ (γe − 1)Ma2

ReL
µ̄

(
∂Ū
∂y

)2

, (2.11c)

ρ̄c̄v,v

(
Ū
∂T̄v
∂x
+ V̄

∂T̄v
∂y

)
= 1

ReLσe

∂

∂y

(
k̄v
∂T̄v
∂y

)
+ ReLQ̄, (2.11d)

where overbars are used to indicate mean flow quantities. At the wall, the vibrational
and translational temperatures are set equal, and perfect thermal accommodation is
assumed. Unless indicated otherwise, the wall temperature is set to T∗w = 300 K,
which is selected to facilitate comparisons with experiments in impulse facilities.
Throughout this paper, the vibrational and translational temperatures are set equal
in the free stream. This is often a good approximation for flows of air over slender
bodies in high-enthalpy shock tunnels, but for some flows, especially those involving
pure nitrogen, the vibrational temperature can be much greater than the translational
temperature in the free stream. The impact of this phenomenon has been investigated
by Bertolotti (1998).

It is convenient to rewrite the boundary layer equations (2.11) in terms of the
Blasius similarity variable η:

η= y∗
√

U∗e
ν∗e x∗

. (2.12)
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592 N. P. Bitter and J. E. Shepherd

Although the flow is not self-similar, the use of similarity coordinates has the
advantages of a fixed domain size, a fixed grid and removal of the singularity at the
leading edge of the plate. By writing the continuity equation (2.11a) in terms of the
similarity variable, integrating with respect to η and using integration by parts, one
finds the relation

ρ̄V̄ =−
√
ν∗e x∗

U∗e

(
2
∂g
∂x∗
− 1

2x∗
[ρ̄Ūη− 2g]

)
, (2.13)

where, following the notation of Klunker & McLean (1953),

g≡ 1
2

∫ η

0
(ρ̄Ū) dη′. (2.14)

Using (2.13) to eliminate the vertical velocity, the momentum and energy equations
(2.11b)–(2.11d) can be written in terms of the similarity variable as follows:

ρ̄Ūx∗
∂Ū
∂x∗
− ∂

∂η

(
µ̄
∂Ū
∂η

)
− ∂Ū
∂η

(
g+ 2x∗

∂g
∂x∗

)
= 0, (2.15a)

ρ̄Ūx∗
∂T̄
∂x∗
− 1
σe

∂

∂η

(
k̄
∂T̄
∂η

)
− (γe−1)Ma2µ̄

(
∂Ū
∂η

)2

+ RexQ̄− ∂T̄
∂η

(
g+ 2x∗

∂g
∂x∗

)
= 0,

(2.15b)

ρ̄Ūc̄v,vx∗
∂T̄v
∂x∗
− 1
σe

∂

∂η

(
k̄v
∂T̄v
∂η

)
− RexQ̄− c̄v,v

∂T̄v
∂η

(
g+ 2x∗

∂g
∂x∗

)
= 0. (2.15c)

To proceed with the non-similar analysis, equations (2.15) are discretized using
fourth-order finite differences in the wall-normal direction and implicit first-order
finite differences in the streamwise direction. The mesh resolution is 300 wall-normal
points and 150 marching steps in the streamwise direction, which has been found to
produce a converged solution. At the leading edge of the plate, x∗ → 0, equations
(2.15) reduce to the self-similar equations of Klunker & McLean (1953) along with
a decoupled vibrational energy equation:

g
∂Ū
∂η
+ ∂

∂η

(
µ̄
∂Ū
∂η

)
= 0, (2.16a)

g
∂T̄
∂η
+ 1
σe

∂

∂η

(
k̄
∂T̄
∂η

)
+ (γe − 1)Ma2µ̄

(
∂Ū
∂η

)2

= 0, (2.16b)

gc̄v,v
∂T̄v
∂η
+ 1
σe

∂

∂η

(
k̄v
∂T̄v
∂η

)
= 0. (2.16c)

These self-similar equations are solved at the leading edge using the method of
successive approximations proposed by Klunker & McLean (1953), and the initial
conditions determined by this procedure are then marched downstream using (2.15).
At each marching step, Newton iteration is conducted to handle the implicit nonlinear
terms, and the iterations proceed until the root mean square residual of (2.15) falls
below 10−7.

Examples of temperature and velocity profiles calculated using this method are
shown in figure 1. For validation, these results are compared with Navier–Stokes
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FIGURE 1. (Colour online) Comparison of boundary layer profiles at Rex = 2.25 × 106

from STABL Navier–Stokes solver (symbols) and boundary layer code (solid lines).
Profiles are velocity (C), translational/rotational temperature (@) and vibrational
temperature (♦). (a) Low enthalpy, P∗e = 5 kPa, Ma= 5, T∗w = 300 K, T∗e = T∗v,e = 300 K,
x = 0.42 m. (b) High enthalpy, P∗e = 20 kPa, Ma = 5, T∗w = 300 K, T∗e = T∗v,e = 1500 K,
x∗ = 0.70 m.

simulations, which were conducted using the STABL stability software package
developed at the University of Minnesota (Johnson et al. 1998; Wright, Candler &
Bose 1998; Johnson 2000); this software package includes a shock-capturing finite
volume solver that models non-equilibrium chemically reacting flows. Navier–Stokes
simulations shown here and throughout this paper were conducted using a grid
of 450× 450 points, with exponential clustering of points at the wall and near the
leading edge of the plate. Convergence was checked on a finer grid of 600 streamwise
× 650 wall-normal points, which led to no significant differences in the flow profiles
or stability calculations based on them.

Figure 1(a) is a fairly low-enthalpy flow that is representative of a slender body in
free flight at Mach 5, with T∗e = T∗v,e = 300 K. At Rex = 2.25 × 106, the vibrational
temperature remains close to its initial value and the translational temperature
distribution is that of a self-similar frozen flow. Figure 1(b) is a much higher-enthalpy
case that is representative of a shock tunnel, with T∗e = T∗v,e = 1500 K. In this case
the rate of vibrational energy transfer is more significant, so that by Rex= 2.25× 106

the vibrational temperature is fairly close to the equilibrium temperature distribution.
As Rex increases further, the vibrational and translational temperature profiles both
approach a single equilibrium temperature profile. For both cases shown in figure 1,
good agreement between the boundary layer solver and the Navier–Stokes solver is
seen, and similar agreement has been found at other Reynolds numbers.

2.3. Stability calculations

The stability calculations presented in this paper are based on the locally parallel
linearized Navier–Stokes equations in which gradients of the mean flow in the
streamwise direction and the mean vertical velocity are neglected. According to this
scheme, the three velocities (u, v,w), the pressure p and the two temperatures T and
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Tv are divided into mean and fluctuating components as follows:
u
v

w
p
T
Tv

=


Ū(y)
0

W̄(y)

P̄
T̄(y)
T̄v(y)

+Re




û(y)
v̂(y)
ŵ(y)
p̂(y)
θ̂(y)
θ̂v(y)

 ei(αx+βz−ωt)


. (2.17)

In this system of equations the overbars signify mean flow variables, hats designate
the complex amplitude coefficients of the fluctuations, and Re signifies the real
part of a complex variable. In all cases a spatial analysis is performed with real
frequency ω, real spanwise wavenumber β and complex streamwise wavenumber α.
The wavenumbers are non-dimensionalized using the local Blasius boundary layer
thickness δ = √ν∗e x∗/U∗e and the frequency is non-dimensionalized using the time
scale δ/U∗e . The fluctuations (2.17) are substituted into the Navier–Stokes equations
(2.10) and linearized, and the result is expressed as a system of 10 first-order
differential equations of the form:

dq̂
dy
= Aq̂, (2.18)

where A is a 10× 10 matrix whose coefficients are given in appendix A, and q̂ is the
vector of disturbance variables,

q̂=
(

û,
dû
dy
, v̂, p̂, θ̂ ,

dθ̂
dy
, ŵ,

dŵ
dy
, θ̂v,

dθ̂v
dy

)T

. (2.19)

The boundary conditions at the wall are taken to be

û= v̂ = ŵ= θ̂ = θ̂v = 0, y= 0. (2.20a,b)

At the wall the fluctuations in streamwise, vertical and spanwise velocities û, v̂
and ŵ are set to zero in accordance with the no-slip condition, and the fluctuations
in translational and vibrational temperatures θ̂ and θ̂v are set to zero under the
assumption that the thermal inertia of the wall is high at the frequencies of interest.
Ma & Zhong (2003) compared isothermal and adiabatic boundary conditions for the
disturbances, and they found that the spatial growth rates differed only slightly, with
adiabatic disturbances being less stable. Along with the boundary conditions (2.20),
the normalization condition p̂(0)= 1 is used.

In the free stream the disturbances are required to remain bounded:

û, v̂, ŵ, p̂, θ̂ , θ̂v <∞, y→∞. (2.21a,b)

These boundary conditions are enforced using the method of Mack (1965) in which
the asymptotic behaviour of the 10 fundamental solutions of (2.18) is determined
in the free stream and the five exponentially increasing solutions are rejected. The
remaining solutions are integrated towards the wall using a fourth-order Runge–Kutta
method, and a linear combination of these fundamental solutions is taken to satisfy
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the normalization condition p̂(0) = 1 and all of the boundary conditions except
θ̂ (0) = 0. The remaining boundary condition on the temperature perturbation is
satisfied by a complex eigenvalue search, which is carried out using the secant method.
During the Runge–Kutta integration from the free stream to the wall, Gram–Schmidt
orthonormalization is employed intermittently in order to control the parasitic growth
of numerical errors (Conte 1966; Garg 1980; Davey 1983). Orthonormalization is
applied whenever the norm of one of the fundamental solutions exceeds 106.

The use of the asymptotic boundary condition (2.21) provides a significant
advantage over the Dirichlet approximation that is often used. If Dirichlet boundary
conditions are used, then the domain must be much larger than the boundary
layer thickness in order to capture the asymptotic behaviour of the eigenfunctions.
Because of this large domain, a highly stretched grid is needed to achieve sufficient
resolution of the instability within the boundary layer and near the wall. In contrast,
if the asymptotic boundary condition is used, then the domain needs only to be
slightly larger than the boundary layer thickness and hence the grid points are
used more efficiently. As will be seen, this feature is especially useful when
simulating hypersonic boundary layers with very cold walls; at these conditions
the unstable disturbances can travel supersonically relative to the mean flow and
their eigenfunctions are nearly non-decaying in the free stream. This non-decaying
behaviour can be captured only by using the asymptotic boundary conditions or a very
large domain, and the eigenvalues can be affected if Dirichlet boundary conditions
are used with too small a domain.

For all simulations the number of grid points in the boundary layer is 1000. This
number has been found to produce grid-independent results for Reynolds numbers up
to approximately Re = 6000, where Re = U∗e δ/ν

∗
e =
√

Rex is the Reynolds number
based on boundary layer thickness. The size of the domain used depends on the Mach
number, and is selected to be a factor of 1.5–5 larger than δ99, which is the boundary
thickness at which the mean streamwise velocity reaches 99 % of the edge velocity.
The results obtained are unchanged if the domain is made larger than this, even when
the eigenfunctions are slowly decaying outside of the boundary layer.

3. Results
3.1. Model verification

For verification of the stability analysis, the results of the present method are
compared with those of Fedorov & Tumin (2011) for a perfect gas. Figure 2 overlays
the present results (symbols) against figure 10 from that paper (solid lines). The flow
is a perfect gas with constant specific heats with Ma= 4.2, Prandtl number of 0.72,
Sutherland constant of 110.4 K and an adiabatic wall. Excellent agreement is seen for
both growth rates (a) and phase speeds (b), where cr is the real part of the complex
phase speed c=ω/α.

As a second validation case, a higher-enthalpy flow is selected in which the
variation of specific heats is significant and the base flow is not in equilibrium.
Figure 3 compares our spatial growth rates with those from the PSE-Chem portion of
the STABL software package (Johnson et al. 1998; Wright et al. 1998; Johnson 2000).
The PSE-Chem computations were conducted using 300 points in the wall-normal
direction, and convergence was checked by doubling the number of points, which
affected the growth rates by at most 1 %. In performing the PSE-Chem analysis, the
options for PSE marching and non-parallel effects were turned off so as to make as
direct a comparison as possible with our results. However, chemical and vibrational
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FIGURE 2. (Colour online) Comparison of present stability analysis (symbols) with the
results of Fedorov & Tumin (2011) (solid lines). Flow is a perfect gas with Ma = 4.2,
T∗o = 300 K, Re = 2000, adiabatic wall. Waves are 2D with β = 0; (a) growth rates;
(b) phase speeds.
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FIGURE 3. (Colour online) Comparison of spatial growth rates from STABL PSE-Chem
(symbols) and present LST analysis (solid lines). (a) Low enthalpy, P∗e = 5 kPa, Ma= 5,
T∗w = 300 K, T∗e = T∗v,e = 300 K. (b) High enthalpy, P∗e = 20 kPa, Ma = 5, T∗w = 300 K,
T∗e = T∗v,e = 1500 K. Only 2D waves of β = 0 are included.

non-equilibria were retained in the PSE-Chem calculation, with the chemistry model
consisting of five species: N2, O2, NO, N and O. The free-stream concentrations of
these species were set to 78 % N2 and 22 % O2 by mole, which matches the present
linear stability calculation.

Figure 3(a) is a relatively low-enthalpy flow that is representative of the free flight
of a slender body. At the edge of the boundary layer both translational and vibrational
temperatures are 300 K. Figure 3(b) is a higher-enthalpy flow that is representative
of a shock tunnel, with T∗e = T∗v,e= 1500 K. The base flows corresponding to figure 3
are given in figure 1 for Re= 1500. Very close agreement between the two methods
is seen, though slightly higher growth rates are predicted by the present model based
on conventional linear stability theory (LST). The small differences are greater near
the leading edge of the plate and may be caused by the weak shock that develops
through the viscous–inviscid interaction: this effect is included in the PSE-Chem
analysis, but is excluded from the present LST model. This explanation is consistent
with the findings of Chang et al. (1990), who showed that, when the shock is close

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

35
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.358


Stability of highly cooled hypervelocity boundary layers 597

2 4 6 80

1000

2000

3000

4000

5000

6000

0

500

1000

1500

2000

2500

3000

3500

4000

200 400 600 800 1000
0

5

10

15

20

25

30
STABL
LST

F (kHz)

(a) (b)

y (mm)

DPLR: U
DPLR: T

BL: U
BL: T

FIGURE 4. (Colour online) High-enthalpy comparison between current method and STABL
software: P∗e = 20 kPa, Ma = 5, T∗w = 300 K, T∗e = T∗v,e = 2500 K. (a) Comparison
of boundary layer profiles at Re = 1500 (x∗ = 1.2 m) from STABL Navier–Stokes
solver (symbols) and boundary layer code (solid lines). Profiles are velocity (C),
translational/rotational temperature (@) and vibrational temperature (♦). (b) Comparison of
spatial growth rates from STABL PSE-Chem (symbols) and present LST analysis (solid
lines). Only 2D waves of β = 0 are included.

to the boundary layer edge, there is a slight stabilization of both the first and second
modes. Differences in transport properties also contribute to the discrepancies in
growth rates.

This chemically frozen stability analysis might be expected to perform poorly
for the very high-enthalpy conditions that are achievable in reflected shock tunnel
facilities. For instance, in a uniform volume of air at 20 kPa, the enthalpy of chemical
equilibrium air first exceeds that of chemically frozen air by 10 % at approximately
2600 K. This temperature can be significantly exceeded in shock tunnel facilities.
However, we have found that, for slender bodies in air, the stability characteristics at
such high temperatures can still be predicted reasonably well under the assumption
of a chemically inert gas.

Figure 4 shows mean boundary layer profiles and stability calculations for a
high-enthalpy boundary layer with an edge temperature of 2500 K and Mach
number of Ma = 5. This corresponds to a stagnation enthalpy of approximately
15 MJ kg−1, which is close to the maximum stagnation enthalpy achievable in
reflected shock tunnel facilities like the T5 facility at Caltech. For this case, the
peak temperature within the boundary layer exceeds 3500 K, which is well above the
limit at which dissociation of O2 becomes significant. For instance, the chemically
reacting Navier–Stokes simulations reveal that at Re = 1500 the mass fraction of
atomic oxygen reaches a peak value of 0.72 % in the interior of the boundary layer.
The mean boundary layer profiles (figure 4a) are in reasonable agreement with the
Navier–Stokes simulations from STABL, although the boundary layer code produces
noticeably greater temperatures by neglecting chemistry. The difference in peak
temperature is large at the high Reynolds number shown, but is much smaller at
lower Reynolds numbers, where the chemical reactions have not progressed as far
towards equilibrium.

In figure 4(b), the chemically frozen stability predictions from the present method
are compared with the chemically reacting results from STABL. The agreement is
reasonably good, especially considering that we have neglected chemical reactions
and are using different transport property models. These results suggest that, despite
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FIGURE 5. (Colour online) Spatial growth rates (a) and phase speeds (b) for low-enthalpy
flow with Ma=4.5, Re=2000, T∗e =65.15 K, P∗e =728 Pa, adiabatic wall. Flow conditions
modelled after Ma & Zhong (2003). Only 2D waves with β = 0 are shown.

the high temperatures in the interior of the boundary layer, the present chemically
frozen analysis can be used to study the stability of flows of air over slender bodies
in high-enthalpy shock tunnels without incurring serious errors. This finding can be
explained in part by the analysis of Fujii & Hornung (2003), which showed that, in
air at 1000–3000 K, the absorption of sound waves caused by thermochemical non-
equilibrium occurs at frequencies much lower than those of second-mode disturbances
in hypervelocity boundary layers. For blunt geometries, however, the extremely high
temperatures and low flow velocities that occur behind the bow shock may lead to
more significant chemical effects and the frozen analysis may no longer be adequate.

3.2. Mode characteristics and terminology
To demonstrate the mode characteristics and introduce some terminology, figure 5
shows the disturbance spectrum for a high-Mach-number, low-enthalpy flow. Spatial
growth rates (a) and phase speeds (b) are shown for Ma= 4.5 and Re=√U∗e x∗/ν∗e =
2000 with a cold free stream (T∗e = 65.15 K) and an adiabatic wall. This same case
was computed by Ma & Zhong (2003), and our results are identical to theirs to within
plotting accuracy.

The disturbance spectrum features an infinite sequence of modes that ‘cut in’ as
the frequency increases. By ‘cut in’, it is meant that these modes transition from the
continuous spectrum to the discrete spectrum. Each mode cuts in with a dimensionless
phase speed of 1+ 1/Ma, which is the speed of fast acoustic waves in the free stream,
hence these modes are termed ‘fast modes’ and designated F1, F2, etc. in order of
increasing cut-in frequency. Each additional mode that cuts in is characterized by an
additional zero in the real part of the pressure eigenfunction, with mode Fn having
n − 1 zeros. There is also one mode that has a phase speed of 1 − 1/Ma at ω = 0;
this mode is termed the ‘slow mode’ and labelled S1.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

35
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.358


Stability of highly cooled hypervelocity boundary layers 599

–15

–10

–5

0

5

10

0 0.2 0.4 0.6 0.8 1.0
0.4

0.6

0.8

1.0

1.2

Second
mode

cr

(a)

(b)

FIGURE 6. (Colour online) Spatial growth rates (a) and phase speeds (b) for high-enthalpy
flow with Ma= 4.5, Re= 2000, T∗e = 1500 K, T∗w = 300 K, P∗e = 10 kPa. Only 2D waves
with β = 0 are shown.

At the locations where the phase speeds of the fast and slow modes cross, there is a
possibility of synchronization, which may lead to increased growth rate and instability.
At these crossing points, the phase speeds of the slow and fast modes are equal
and their eigenfunctions are nearly identical. This synchronism has been analysed by
Fedorov & Khokhlov (2001), who proposed a reduced-order model of the dispersion
relation in the vicinity of the synchronism region, which captures the topology of the
spectrum that is found there. These synchronous interactions between fast and slow
modes are frequently called the ‘Mack modes’ and are labelled Mack’s second mode,
third mode, etc. in order of increasing frequency. As discussed by Fedorov & Tumin
(2011), the Mack modes are not ‘modes’ in the mathematical sense as are modes Fn
and S1, but since this terminology is in common use it will be used throughout in this
paper.

Lastly, we point out that the lowest-frequency unstable region in figure 5, which
was labelled the ‘first mode’ by Mack, does not involve a synchronism between
fast and slow acoustic modes. This instability is the compressible counterpart to
the Tollmien–Schlichting waves that are found in incompressible flows, and its
instability characteristics depend differently on Mach number, Reynolds number and
wall temperature compared to the acoustic instabilities.

For comparison with the low-enthalpy adiabatic case given in figure 5, the stability
diagram for a high-enthalpy flow with a cold wall is shown in figure 6. Here the
Mach number is again 4.5 and the Reynolds number is Re= 2000, but the free-stream
temperature is now 1500 K and the wall temperature is 300 K. These conditions are
representative of a moderate-enthalpy flow in a reflected shock tunnel. By comparing
figures 5 and 6, it is seen that the maximum growth rate is more than a factor of 2
greater for the cold-wall case, which is consistent with the well-known fact that the
second-mode instability is destabilized by wall cooling. Also the first-mode instability
is absent in the case with a cold wall, which again is well-known behaviour for
hypersonic flows. An additional difference is that in figure 5 the mode S1 is unstable
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FIGURE 7. (Colour online) Effect of wall cooling on the spatial growth rate (a) and phase
speed (b). For all cases, Ma= 5, Re= 2000, T∗w= 300 K, P∗e = 10 kPa. Lines with symbols
designate an additional mode that appears when T∗w� T∗e . Only 2D waves with β = 0 are
shown.

while in figure 6 the mode F1 is unstable. This behaviour has also been observed
by Fedorov & Khokhlov (2001), who demonstrated that the acoustic instabilities are
associated with a pair of branch points in the complex plane whose location depends
on the Reynolds number, Mach number, frequency, wall temperature and other
parameters. As the frequency is increased, either F1 or S1 can be unstable depending
on whether the dispersion curve passes above or below these branch points. Further
discussion regarding this behaviour is available from Fedorov & Tumin (2011).

The above-mentioned differences between figures 5 and 6 are well known, but we
also observe two new features in figure 6 that have not been widely reported in the
literature. The first is an abrupt change in slope of the second-mode unstable region
at approximately ω = 0.5, which leads to a wider range of unstable frequencies for
the cold-wall case. This behaviour is also visible in a few of the stability calculations
reported by Klentzman & Tumin (2013), which involved high-enthalpy flows of
oxygen. The second new feature is that the mode labelled F1 ceases to exist for
frequencies greater than approximately ω = 0.62, but a new related mode (dashed
line) appears at ω = 0.54. These two modes have nearly the same phase speed over
the frequency range 0.54 < ω < 0.62 for which they both exist. Note that a similar
phenomenon involving the disappearance of one mode and the appearance of another
occurs for F1 at ω = 0.32, but the effect is hardly visible at the scale shown in the
figure.

3.3. Shape of dispersion curve
We first investigate the sharp change in slope of the dispersion curve observed in
figure 6. Figure 7 shows the growth rates and phase speeds for flow at Ma= 5 and
Re = 2000. Three cases are shown with free-stream temperatures of 300, 1000 and
1500 K and with the wall temperature fixed at 300 K in all cases. As the ratio T∗w/T
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FIGURE 8. (Colour online) Eigenfunctions corresponding to two points along the
dispersion curve in figure 7, for Re= 2000, T∗e = 1500 K, T∗w = 300 K, Ma= 5: (a) ω=
0.35, subsonic mode; (b) ω= 0.45, supersonic mode.

decreases, a kink appears in the high-frequency end of the growth rate curve and
the width of the unstable region increases. For each case, the frequency at which the
kink occurs is marked by a vertical dashed line. From the intersection between these
vertical lines and the phase speed diagram below, one can see that the change in slope
of the growth rate curve occurs precisely when the dimensionless phase speed falls
below 1− 1/Ma. That is, the change in shape of the dispersion curve occurs when the
unstable modes travel supersonically relative to the free stream. Supersonic modes can
exist for all wall temperature conditions, but they only become unstable when the wall
is highly cooled, usually (but not necessarily) below the free-stream temperature. This
behaviour was also encountered by Chang et al. (1997) in their study of chemically
reacting, high-enthalpy flow over a wedge, and the existence of supersonic unstable
modes was also briefly mentioned by Mack (1969, 1987) for the inviscid case.

The eigenfunctions corresponding to two values of ω from figure 7 are shown in
figure 8 with T∗e = 1500 K. In each case, the locations of the critical layer cr= Ū and
the sonic lines cr = Ū± ā are indicated by horizontal dashed lines. For ω= 0.35 (just
before the kink in the dispersion curve), the phase speed is above cr > 1− 1/Ma and
only one sonic line exists, but for ω = 0.45 (just after the kink) there are two sonic
lines because cr < 1 − 1/Ma. Between these two lines the disturbance is travelling
subsonically relative to the fluid, but outside of these lines the disturbance travels
supersonically.

From figure 8 one can see that for ω= 0.45 the eigenfunctions decay very slowly
in the free stream. This is highlighted by the contours of the temperature disturbance
given in figure 9. In the interior of the boundary layer, the structure is similar for
ω= 0.35 and 0.45, and a large peak in temperature is visible at the critical layer. For
ω=0.35, the waves decay rapidly in the free stream, but for ω=0.45 the second sonic
line acts as a turning point, leading to oscillatory waves that are radiated into the free
stream. The eigenfunction behaviour in the free stream is similar for the pressure and
velocity fluctuations.

This behaviour can be anticipated from the compressible Rayleigh equation for the
pressure (see Lees & Lin 1946; Lees & Reshotko 1962; Mack 1969)

d2p̂
dy2
−
(

2Ū′

Ū − c
− T̄ ′

T̄

)
dp̂
dy
− α2

(
1− Ma2(Ū − c)2

T̄

)
p̂= 0. (3.1)
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FIGURE 9. (Colour online) Contours of temperature fluctuations at two points along the
dispersion curve in figure 7 for Re= 2000, T∗e = 1500 K, T∗w = 300 K, Ma= 5: (a) ω =
0.35, subsonic mode; (b) ω= 0.45, supersonic mode.

In the free stream this equation reduces to

d2p̂
dy2
− α2[1−Ma2(1− c)2]p̂= 0, (3.2)

which has the solution

p̂= exp(α
√

1−Ma2(1− c)2y). (3.3)

Here the branch of the square root is chosen such that the real part of the
exponential’s argument is negative, so the pressure is bounded. Since |ci| � |cr|
and |αi| � |αr|, the pressure is mainly exponentially decaying if cr > 1 − 1/Ma
with slight oscillations arising from the imaginary parts of α and c. Conversely, for
cr < 1− 1/Ma the solution is mainly oscillatory, with slight damping caused by the
imaginary parts of α and c. Therefore, slowly decaying eigenfunctions can always be
expected for supersonic modes at high Reynolds numbers.

Figure 7 showed that cases which develop a supersonic unstable mode also
experience a discontinuity in the dispersion curve. As the frequency increases, the fast
mode (labelled F+1 in the figure) disappears and a new mode (labelled F−1 ) appears.
To further investigate this effect, the real and imaginary parts of the complex phase
velocity are plotted for mode F1 in figure 10. The data are exactly the same as in
figure 7, except that now the real and imaginary parts of the phase speed are plotted
with ω as a parameter along the curves. Also shown in the figure are three thick
black lines which mark the branch cuts corresponding to the continuous spectra; the
two nearly horizontal branches are the acoustic branch cuts, while the vertical branch
near cr = 1 (which is actually two overlapping branches) corresponds to vorticity
and entropy waves. Further discussion about the location of these branch cuts and
methods for their computation are available from Balakumar & Malik (1992). It
should be noted that the continuous spectrum is a (weak) function of ω, and the
spectra plotted in figure 10 are evaluated at a single value of ω= 0.4.

At ω= 0, the mode F+1 is a neutral wave with phase speed cr = 1+ 1/Ma, which
originates at the branch point of the fast acoustic branch cut. As indicated by the
arrow in figure 10, as the frequency increases, the mode’s phase speed reduces
and it becomes damped. As the mode crosses the branch cut at cr ∼ 1, the growth
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FIGURE 10. (Colour online) Map of real and imaginary parts of phase speed in the
complex plane, for Ma= 5 and Re= 2000. Solid black lines correspond to the continuous
spectra evaluated at ω=0.4. Lines with symbols designate an additional mode that appears
when T∗w� T∗e .

rate suffers a small jump while the real part of α remains nearly continuous. This
phenomenon is discussed further by Fedorov & Khokhlov (2001), who showed
that the synchronism between the eigenvalue and the vorticity/entropy waves of
the continuous spectrum causes the mode F1 to be especially receptive to entropy
spots and vortical free-stream disturbances at this condition. Additional analysis of
the receptivity to entropy disturbances is available from Fedorov & Tumin (2003),
who solved the initial value problem of a temperature spot located at the edge of a
boundary layer.

As the frequency is increased further, the mode becomes unstable. For the case
with T∗e = 300 K, the mode becomes stable again before the phase speed falls below
1−1/Ma, so the mode passes below the slow acoustic branch point in the complex
plane. This is typical of boundary layers that are adiabatic or have wall temperatures
greater than the free-stream temperature. In contrast, for the cases with T∗e = 1000 and
1500 K, the mode remains unstable for cr < 1− 1/Ma and therefore passes above the
branch point of the slow acoustic waves.

Because the mode with T∗e = 1000 or 1500 K passes above the branch point, it must
eventually cross the slow acoustic branch cut. When this happens, the mode coalesces
with the branch cut and ceases to be a discrete mode; however, a new mode emerges
from the other side of the branch cut. This new mode emerges from the branch cut
at a slightly lower frequency than the one at which the coalescing mode disappears.
The modes on the top and bottom of the branch cut are distinguished by the labels F+1
and F−1 , similar to the notation used by Fedorov & Tumin (2011) to describe modes
crossing the branch cut at cr ∼ 1.

This crossing of the branch cut results in a synchronism between the instability
mode and acoustic disturbances in the free stream. This is similar to the synchronism
with vorticity/entropy waves that occurs when the branch cut at cr = 1 is crossed
(Fedorov & Khokhlov 2001; Fedorov et al. 2013), which has been found to produce
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FIGURE 11. (Colour online) (a) Effect of Reynolds number on the shape of the dispersion
curve for a cold-wall case: Ma = 5, T∗e = 1500 K, T∗w = 300 K, P∗e = 20 kPa. (b) The
N factor curve corresponding to (a). The heavy black line is the complete N factor curve.
The dot-dashed red line includes only values of ω< 0.4. Only 2D waves with β = 0 are
included.

increased receptivity to vorticity and entropy spottiness. The synchronism identified
here is expected to cause a similar effect, but with enhanced receptivity to acoustic
disturbances in the free stream rather than vorticity/entropy disturbances. However,
unlike the vorticity/entropy synchronism, which occurs upstream of the lower neutral
branch, the synchronism with free-stream acoustic waves takes place downstream of
the upper neutral branch. As a result, modes excited in this manner by free-stream
acoustic waves are unlikely to experience amplification. Nevertheless, the synchronism
can still affect the downstream development of amplified waves, which may be
important during the nonlinear stages of transition.

3.4. Effect of Reynolds and Mach numbers
In figure 7, it was shown that the supersonic unstable modes only appear when the
wall is sufficiently cold. In this section we investigate also how the Reynolds and
Mach numbers influence these supersonic modes. Figure 11(a) compares the spatial
growth rates for a high-enthalpy boundary layer at several different Reynolds numbers.
For low enough Reynolds numbers, the mode remains subsonic throughout the entire
unstable region, but for higher Re the ‘tail’ on the dispersion curve appears and grows
considerably larger as the Reynolds number is further increased.

As can be noted from figure 11(a), at higher Reynolds numbers the supersonic
modes contribute significantly to the area under the dispersion curve, which is related
to the N factor distribution. This brings into question whether the supersonic modes
significantly influence the N factors. Figure 11(b) shows the N factor envelope curves
for a cold-wall case with Ma= 5 and T∗e = 1500 K. Two envelope curves are included
in this figure: the dashed red line excludes growth rates having frequencies above
ω= 0.4, while the solid black line is the full N factor curve. The difference between
the two curves then indicates the contribution of supersonic modes. Clearly, the
supersonic modes do not contribute much to the N factor until the Reynolds number
exceeds approximately 1500. However, at this point the N factor is already fairly high,
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FIGURE 12. (Colour online) Dispersion curves for cold-wall flows (T∗w/T
∗
e = 0.2) for

various Mach numbers: (a) Re= 1000; (b) Re= 2000.

reaching the level of 5–10 at which transition is typically observed experimentally.
This suggests that the supersonic modes do not significantly increase the level of
amplification, despite their influence on the shape and behaviour of the dispersion
curve.

Lastly, the effect of the Mach number on the stability of highly cooled flows is
considered. Figure 12 shows dispersion curves for several Mach numbers with T∗e =
1500 K and T∗w= 300 K. The left panel is for a lower Reynolds number of Re= 1000,
while the right one is for Re= 2000. These plots reveal that the supersonic unstable
modes first appear and experience the largest growth rate at approximately Ma= 5.

3.5. Vibrational non-equilibrium effects
In this section, the influence of thermal non-equilibrium on the growth of disturbances
is examined. Vibrational non-equilibrium primarily enters the stability analysis in two
ways. First, the mean profiles of temperature, density and (to a smaller extent)
velocity are influenced by the exchange of energy between the translational and
vibrational modes. This indirectly affects the disturbances through changes to the
mean flow profile. The second effect of vibrational non-equilibrium is the attenuation
of sound waves caused by the phase lag between the kinetic energy of molecules and
their internal energy modes (Lighthill 1956; Clarke & McChesney 1964; Vincenti &
Kruger 1967; Fujii & Hornung 2003).

The first effect of vibrational non-equilibrium, changes to the base flow, can be
assessed by conducting a stability analysis for three different base flows: a frozen
flow with vibrational energy neglected, a non-equilibrium flow with finite rates of
vibrational energy transfer, and an equilibrium flow in which vibrational energy is
assumed to be exchanged at an infinite rate. In computing the stability of these three
base flows, fully non-equilibrium disturbances are modelled. The resulting stability
diagram is shown in figure 13(a). As could be expected, the non-equilibrium solution
agrees best with the frozen solution for small Reynolds numbers, and tends to the
equilibrium solution for large Re. The corresponding N factors shown in figure 13(b)
reveal that the equilibrium model lies closest to the non-equilibrium one, but there is
a noticeable discrepancy between them.
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FIGURE 13. (Colour online) (a) Stability diagrams for Ma = 5, T∗e = T∗v,e = 1500 K
and P∗e = 20 kPa. Three different models of the mean flow: frozen, non-equilibrium and
equilibrium. Disturbances are non-equilibrium. (b) The N factor diagram corresponding
to (a). Only 2D waves with β = 0 are included.
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FIGURE 14. (Colour online) (a) Stability diagrams for Ma= 5, T∗e = T∗v,e = 1500 K and
P∗e = 20 kPa. (a) Three different models of the disturbances: frozen, non-equilibrium and
equilibrium. Mean flow is non-equilibrium. (b) The N factor diagram corresponding to (a).
Only 2D waves with β = 0 are included.

The influence of acoustic absorption on the disturbance growth rates can be
investigated in a similar manner. Three different disturbance models are now applied
to a single fully non-equilibrium base flow. The three disturbance models are frozen,
thermal equilibrium and full thermal non-equilibrium. The growth rates are compared
in figure 14(a) and the N factors in figure 14(b). In this case, the frozen disturbance
model is nearly indistinguishable from the non-equilibrium one. This is consistent with
the findings of Fujii & Hornung (2003), who showed that, for air at temperatures
below approximately 3000 K, the frequency of maximum acoustic absorption is
several orders of magnitude lower than the frequency (∼MHz) of second-mode
disturbances in hypervelocity boundary layers.

Similar calculations to figures 13 and 14 have been carried out for a wide range of
Mach numbers and wall temperature conditions relevant to shock tunnel experiments.
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In some cases it was found that a non-equilibrium base flow was needed to fully
capture the stability characteristics, but the frozen disturbance model never differed
from the non-equilibrium one in any significant way. This finding is independent of
the mean pressure of the flow, and results given in terms of the Reynolds number,
dimensionless wavenumber and dimensionless frequency apply for any pressure. This
is because both the viscous time scale and the time scale of vibrational relaxation
are inversely proportional to the pressure, meaning that the effects of vibrational
non-equilibrium are always the same at a given Reynolds number. The pressure
independence of the results can also be deduced from the dimensionless governing
equations (2.10), in which none of the parameters depend on the mean pressure.

3.6. Stability trends
This section summarizes the effects of wall temperature and Mach number on
the stability characteristics. Although other researchers have conducted similar
investigations, these results are included because they provide a complete picture
of the instability behaviour over a much wider range of conditions than is considered
in other references. Also, previous work (Mack 1969, 1984; Malik 1989b; Masad
et al. 1992) has targeted low-enthalpy conditions, whereas these results are relevant
to high-enthalpy flows. The results given here are for a flat plate, but the growth
rates and frequencies can be related to those for a sharp cone through the Mangler
transform (Malik & Spall 1991), by which it is found that the boundary layer is a
factor of

√
3 thinner for a cone than for a flat plate. Therefore, the results presented

here can be related to those for a sharp cone by the transformations Re→ Re
√

3,
α→ α

√
3 and ω→ω

√
3.

A sequence of simulations was conducted in which the wall temperature was
fixed at 300 K while the free-stream temperature was incrementally raised from 70
to 2000 K. Although wall temperature effects are often spoken of in terms of ‘wall
cooling’, we choose here to keep the wall temperature fixed and adjust the free-stream
temperature so that comparisons with experiments in both high- and low-enthalpy
impulse facilities can be made more easily. However, it should be recognized that,
in terms of the stability behaviour, raising the free-stream temperature is nearly
equivalent to cooling the wall, with differences being caused only by the temperature
dependence of transport properties and specific heats, as well as non-equilibrium
effects. Accordingly, we refer to cooling of the wall and heating of the free stream
interchangeably. These results are also presented in terms of T∗w/T

∗
e rather than

the customary T∗w/T
∗
ad because the adiabatic wall temperature depends on one’s

assumptions about specific heats, chemistry and transport models, and must in general
be simulated. Thus it can be difficult to reproduce results that are reported in terms
of T∗ad.

Figure 15(a) shows the maximum spatial growth rate as a function of Mach number
for several values of the ratio T∗w/T

∗
e . Two sets of curves are shown: the dashed lines

correspond to the first-mode instability and the solid lines to the second mode. For
each curve, the spatial growth rate has been maximized over all frequencies ω and
all spanwise wavenumbers β. These curves are very similar to those of Mack (1984)
and Masad et al. (1992), except that we consider a wider range of wall temperature
conditions and hold T∗w/T

∗
e fixed along each curve rather than T∗w/T

∗
ad. Note that, in this

figure and the ones that follow, the neglect of chemistry may not be valid for some
of the high-Mach-number cases, but these results are still included for completeness.

For the first mode, no instability was found for some of the cases having T∗w/T
∗
e < 1,

so these lines are not included on the figure. For the second mode, a monotonic
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FIGURE 15. (Colour online) Effect of wall cooling on the maximum spatial growth rates
of the first (dashed lines) and second (solid lines) modes for Re = 1500, T∗w = 300 K,
T∗e = 70–2000 K, P∗e = 10 kPa. (a) Maximum growth rates for first and second modes.
(b) Maximum growth rate of second mode normalized by δ99.

increase in growth rate is observed as the wall is cooled. Additionally, the second
mode becomes unstable at lower Mach numbers as the wall is cooled, with instability
occurring at Mach numbers as low as 2.5. Although it is commonly stated that the
second mode becomes dominant above approximately Ma= 4, this statement is true
only when the wall is nearly adiabatic. This result is consistent with that of Mack
(1993), who also observed second-mode instability at Ma= 3.

The destabilizing influence of wall cooling appears to be caused mainly by thinning
of the boundary layer. This is illustrated in figure 15(b) in which the spatial growth
rate of the second mode is normalized by δ99, the boundary layer thickness at
which the streamwise velocity reaches 99 % of the free-stream velocity, rather than
the Blasius thickness δ = √

ν∗e x∗/U∗e . The maximum second-mode growth rates
normalized in this way experience much less variation with both Mach number
and wall temperature than in figure 15(a), indicating that the spatial growth rate is
nearly inversely proportional to δ99. Although it is well known that the frequency and
wavenumber of the second mode scale inversely with the boundary layer thickness
(Demetriades 1977; Stetson et al. 1983), the correlation of growth rate with boundary
layer thickness has been less widely recognized.

The relationship between the frequency of second-mode disturbances and the
boundary layer thickness was first examined experimentally by Demetriades (1977)
and Stetson et al. (1983), who both made hot-wire measurements of disturbance
fluctuations in the same Mach 8 wind tunnel. Their results showed that the
non-dimensional frequency 2f ∗δ99/U∗e is nearly constant, decreasing only slightly
with Reynolds number and with increased wall cooling. In this relation f ∗ is the
dimensional frequency in hertz. Figure 16 shows the variation of dimensionless
frequency with Mach number and wall temperature ratio at Re = 1000. For
figure 16(a), the plotted frequency is the most amplified one, i.e. the frequency
for which the N factor is largest; this is the frequency that is measured most often in
experiments. Figure 16(b) shows the most unstable frequency, that is, the frequency
that has the largest spatial growth rate −αi. For flows with a cold wall, the most
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FIGURE 16. (Colour online) Variation of second-mode frequencies with Mach number and
wall temperature at Re= 1000. For T∗w = T∗ad, the edge temperature is T∗e = 70 K; for all
other cases, T∗w= 300 K. (a) Most amplified frequency (max N factor). (b) Most unstable
frequency (max −αi).

unstable and most amplified frequencies follow similar trends, and the most unstable
frequency is slightly smaller. This is consistent with the results of Marineau et al.
(2014), who measured both the most unstable and the most amplified frequencies for
flow over a sharp cone. However, for an adiabatic wall, the most unstable and most
amplified frequencies exhibit very different variations with Mach number.

For flows with highly cooled walls, figures 15(b) and 16 reveal that the effect of
the wall temperature can be nearly scaled out of the problem by normalizing both the
frequency and the growth rate by δ99. This length scale is preferable to the Blasius
boundary layer thickness δ=√ν∗e x∗/U∗e , which takes into account only the free-stream
conditions, whereas the δ99 length scale includes the physical structure of the boundary
layer and encapsulates the change in thickness that occurs when the wall is cooled.
These results suggest that by scaling the growth rate and frequency with δ99 one can
generate a single dispersion curve that, to a good approximation, describes a range
of wall temperature conditions. An example of such a dispersion curve is given in
figure 17. In the left panel the growth rate and frequency are scaled by the usual
Blasius boundary layer thickness δ, whereas in the right one they are scaled by δ99.
The latter scaling nearly collapses the dispersion curves onto one another, though for
the case with large Tw/Te the collapse is not as good. For the cases with smaller
Tw/Te, however, the collapse is excellent, especially along the lower neutral branch,
which contributes most significantly to the N factor.

The collapse of the scaled dispersion curves in figure 17(b) suggests that one might
be able to collapse the N factors in a similar fashion. To achieve this, it is assumed
that for a given Mach number the dispersion curves for all wall temperatures are well
approximated by a two-parameter function F of the form

−α∗i δ99 =F

(
Re,

ω∗δ99

U∗e

)
. (3.4)

This functional dependence follows from the collapsed dispersion curves in figure 17(b)
and the fact that the dispersion curve is also a function of the Reynolds number. One
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FIGURE 17. (Colour online) Spatial growth rates for several different wall temperature
conditions: Ma= 4.5, T∗w = 300 K, Re= 1500, P∗e = 10 kPa. Only 2D waves (β = 0) are
included. (a) Normalized using Blasius thickness δ=√ν∗e x∗/U∗e . (b) Normalized using δ99
boundary layer thickness.

can show that the following definitions of the N factor are equivalent:

N(F)=
∫ x∗

x∗o
−α∗i (F, x∗) dx∗ =

∫ Re

Reo

−2αi(F, Re) dRe. (3.5)

Here Reo=
√

U∗e x∗o/ν∗e is the Reynolds number at which the frequency F first becomes
unstable, α∗i is the dimensional spatial growth rate and αi is the non-dimensional
growth rate normalized by the Blasius thickness δ. In (3.5), F is the frequency
parameter defined by

F= ω
∗ν∗e

U∗2e

. (3.6)

Making use of these definitions, one can rewrite the dispersion relation (3.4) in the
form

αi
δ99

δ
=F

(
Re, F

δ99

δ

)
. (3.7)

By substituting this result into (3.5), one arrives at the functional dependence:

Nδ99/δ =F (Re, Fδ99/δ). (3.8)

The ratio δ99/δ is constant for a given Mach number and usually falls between
approximately 3 and 20, increasing with both Mach number and wall temperature.
The functional form of (3.8) suggests that, if one makes measurements of maximum
N factors N1 and N2 for two different wall temperatures, then the maximum N factors
and the corresponding most amplified frequencies F1 and F2 are related by

N2 =N1
δ99,1/δ1

δ99,2/δ2
, F2 = F1

δ99,1/δ1

δ99,2/δ2
. (3.9a,b)

The effectiveness of this scaling is demonstrated by several examples given in
figure 18. Figure 18(a) shows the maximum N factors for several different wall

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

35
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.358


Stability of highly cooled hypervelocity boundary layers 611

500 1000 15000

1

2

3

4

5

6

Re

N
 f

ac
to

r

 

500 1000 15000

5

10

15

20

25

30

35

Re

 

(a) (b)

FIGURE 18. (Colour online) Maximum N factors for several different wall temperature
conditions: Ma = 4.5, T∗w = 300 K, Re = 1500, P∗e = 10 kPa. Only 2D waves (β = 0)
are included. (a) Maximum N factors and individual N factor curves for F = 4 × 10−4.
(b) Maximum N factors scaled by δ99/δ and individual N factor curves corresponding to
F(δ99/δ)= 2× 10−3.

temperature conditions, as well as individual N factor curves for the frequency
F = 4× 10−4. The N factor at Re= 1500 is approximately 2.6 times greater for the
cold wall than for Tw/Te= 3, and the frequency F= 4× 10−4 is amplified at different
locations for each wall temperature condition.

Figure 18(b) shows the same N factor curves, but scaled by the ratio δ99/δ, which
significantly reduces the spread between the curves. Also shown in figure 18(b) are
the N factors for the frequencies satisfying F(δ99/δ)= 2× 10−3. All of the frequencies
scaled in this way are amplified at nearly the same Reynolds number. For both the
frequencies and the N factors, the collapse is poorer for large Tw/Te. The poorer
collapse for large Tw/Te may in part be associated with the much smaller free-stream
temperatures used in these cases, since the viscosity varies more rapidly at low
temperatures.

This manner of collapsing the N factors has been applied over a wide range of
wall temperatures and Mach numbers. The result is shown in figure 19. Figure 19(a)
reports the maximum N factors at Re= 1500 without using the scaling of (3.8). This
plot includes results only for 2D waves (β = 0) since these are most amplified for the
second mode, but it should be noted that 3D first-mode waves can produce larger N
factors for some of the cases with lower Mach numbers and large values of Tw/Te.
The maximum N factors shown in the figure exhibit the same trends as the growth
rates from figure 15, namely, maximum amplification at approximately Ma = 5, a
systematic increase in growth as the wall is cooled and reduction in the most amplified
Mach number as the wall is cooled. This indicates that, although the influences of
Mach number and wall temperature have historically been characterized mainly using
the maximum spatial growth rates, the N factors behave similarly.

Figure 19(b) attempts to collapse the maximum N factors for different wall
temperatures by scaling the N factor by δ99/δ. This scaling is quite successful for the
cases with 0.2 6 Tw/Te 6 1.5, but performs poorly for the cases with large Tw/Te. In
spite of the imperfect collapse of the data, the scaling arguments demonstrated here
may be useful for estimating how a change in the wall temperature or stagnation
temperature might affect the stability characteristics and transition location in an
experiment.
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FIGURE 19. (Colour online) Effect of Mach number and wall cooling on the maximum
N factors for the second mode. Only 2D waves (β = 0) are considered. In all cases, Re=
1500, T∗w = 300 K and P∗e = 10 kPa. (a) Maximum N factors. (b) Maximum N factors
scaled by δ99/δ.

The frequency scaling presented in figure 16 and its variation with wall temperature
and Mach number are compared with experimental measurements in table 1. For
both experiments and computations, the frequency given is the most amplified one;
in the computations only 2D waves with β = 0 are included since the measured
frequencies are believed to be second-mode waves. Measurements in the AEDC
Tunnel 9 were made by Marineau et al. (2014) using PCB pressure transducer arrays.
Measurements in Caltech’s T5 reflected shock tunnel were made by Parziale (2013)
using focused laser differential interferometry (FLDI). The FLDI technique was
also used in the Hypersonic Ludwieg tube at Braunschweig (HLB) (D. Heitmann,
unpublished observations). Further details regarding the operation of this facility are
given by Estorf, Wolf & Radespiel (2004) and Heitmann, Radespiel & Knauss (2011).
Measurements in the High Enthalpy shock tunnel at Göttingen (HEG) were made
by Laurence et al. (2014) using schlieren deflectometry and full-field pulsed-laser
schlieren photography. Measurements in AEDC Tunnel B were made using hot wires
by Stetson et al. (1983); these data were more recently re-plotted and analysed by
Schneider (2006).

All of the measured frequencies agree reasonably well with the simulated ones,
although the agreement is slightly poorer for the reflected shock tunnels T5 and
HEG, where the free-stream conditions are known with less certainty. The agreement
between experiment and computation is also generally better at low Reynolds numbers,
where the measured disturbances remain in the linear regime. In all cases except
HEG, the cones are nominally sharp, and the reported nose radii (which can be
determined from table 1) are small enough that the measurement stations are far
downstream of the entropy swallowing length. For the HEG data, the cone is slightly
blunted with a nose radius of Rn = 2.5 mm. According to the swallowing length
correlations reported by Stetson (1980), the measurement station is at about twice the
swallowing length, but the local boundary layer thickness may still be influenced by
the nose bluntness (Stetson et al. 1984). This may in part explain why the measured
frequencies are slightly larger than the sharp-cone predictions. This may also be a
factor in the T5 data, where the ratio of the streamwise distance s to the nose radius
Rn is approximately s/Rn = 1260 and the measured frequencies are again somewhat
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Tunnel Shot ID Ma Tw/Te s Re s/Rn δ99 fexpt fsim 2fsimδ99/U∗e
(m) (mm) (kHz) (kHz)

AEDC T9 3745 7.76 3.86 0.40 1090 2 670 3.5 122.8 122.9 0.62
AEDC T9 3745 7.76 3.86 0.65 1390 4 330 4.5 97.8 96.9 0.63
HEG ‘A’ 6.41 0.85 0.73 1660 292 2.1 300.9 345.2 0.61
HEG ‘B’ 6.41 0.86 0.63 1900 252 1.6 397 456.6 0.61
HEG ‘D’ 5.42 0.18 0.83 1350 332 2.1 615 688 0.67
T5 2789 4.55 0.14 0.63 1730 1 260 1.2 1200 1507 0.82
HLB 5.28 4.2 0.34 1270 NA 2.2 158.7 165 0.81
HLB 5.28 4.2 0.34 1530 NA 1.8 192.9 204 0.81
AEDC TB Run 32 6.8 9.0 0.54 1670 13 500 4.4 127.4 123.9 0.95
AEDC TB Run 30 6.8 9.0 0.59 1732 14 750 4.6 119.0 119.8 0.96

TABLE 1. Comparison of most amplified frequencies from 2D computation (β = 0) and
experiment. Here Ma is the post-shock Mach number; and Re is the Reynolds number for
flow over a cone, equal to

√
3 times the value for a plate. The streamwise distance is s

and the nose radius is Rn. For AEDC Tunnel B, the wall temperature is nearly adiabatic.
For all other cases, the wall temperature is ambient.

greater than the sharp-cone prediction. The experiments tabulated here employ an
array of different measurement techniques and span a wide range of flow conditions,
from low-enthalpy adiabatic flow (AEDC Tunnel B) to high-enthalpy reflected shock
tunnels (HEG and T5). Although the Reynolds numbers of the measurements are
slightly different from the value Re = 1000 used in figure 16, the measured data
confirm the major features of the trends shown in the figure.

A final illustration of the effects of Mach number and wall temperature on the
stability behaviour is given in figure 20. This plot contains the same data from
figure 15, but is organized in contour form to better portray the stability boundaries.
The contour levels indicate the spatial growth rate, which is optimized over all
values of the frequency ω and spanwise wavenumber β. For reference, a line
(symbols) corresponding to the adiabatic wall condition is also included. Most
practical conditions would fall below this line, as the points above it correspond to a
heated wall. There is a clear region at low Mach numbers and small values of T∗w/T

∗
e

for which no modal instabilities are found. Although this region shrinks slightly as
the Reynolds number is increased, it is still present even at rather high Reynolds
numbers, Re > 4000. Since no modal instabilities are found at these conditions, one
might conclude that large-amplitude (nonlinear) disturbances are needed to cause
transition when the Mach number is low and the wall is cold. However, recent
transient growth calculations have reported elevated levels of non-modal amplification
at these conditions (Bitter & Shepherd 2014), which offers an alternative transition
mechanism for infinitesimal disturbances.

4. Conclusions

The influence of very high levels of wall cooling, T∗w/T
∗
e � 1, on the stability of

hypervelocity boundary layers is studied using the locally parallel, linear stability
framework. The appearance of supersonic unstable modes at very high levels of
wall cooling is investigated. The supersonic unstable modes are most prominent at
approximately Ma = 5 and are enhanced at high Reynolds numbers. These modes
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FIGURE 20. (Colour online) Map of unstable regions for first and second modes:
Re= 1500, T∗w = 300 K, T∗e = 70–2000 K, P∗e = 10 kPa. Contour levels are spatial growth
rates maximized over all values of ω and β for the first mode (dashed) and second mode
(solid).

cause the flow to be unstable over a much wider band of frequencies, especially
as the Reynolds number is increased. Although the supersonic unstable modes
significantly alter the behaviour of the dispersion curve, they do not influence the
integrated N factors until the Reynolds number is quite high. A synchronism between
free-stream acoustic waves and the supersonic modes was identified, which has also
been observed in boundary layers with gas injection (Fedorov et al. 2014). Since
this synchronism is located downstream of the upper neutral branch, it is unlikely to
affect the amplification of waves, but it may still influence the nonlinear stages of
their downstream development.

The importance of modelling vibrational non-equilibrium for flows of air over
slender bodies is briefly examined for flow conditions relevant to impulse facilities.
It is found that the temperature profiles of the base flow are significantly influenced
by vibrational energy transfer, which indirectly affects the stability characteristics,
and therefore a non-equilibrium base flow calculation is generally needed. In
contrast, a vibrationally frozen stability analysis is nearly indistinguishable from
a non-equilibrium one, since for air the frequency of second-mode disturbances is
too high for significant vibrational energy transfer to take place.

The effects of wall temperature and Mach number on the boundary layer stability
characteristics are summarized over a wide range of conditions. Unlike previous
investigations of this sort, the current results focus on high-enthalpy flows and
conditions that are relevant to impulse facilities. For highly cooled walls, the second
mode is found to be unstable for Mach numbers as low as 2.5. The tuning of
second-mode frequencies to the boundary layer thickness and its dependence on wall
temperature and Mach number are explored and compared with experimental data.
Spatial growth rates are also found to scale with the boundary layer thickness δ99,
and this scaling is extended to show that the N factor and most amplified frequency
follow a simple scaling with δ99 as well.
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Appendix A

In this appendix the non-zero elements of the 10× 10 matrix A from (2.18)
are given. The notation of Malik (1990) is followed as closely as possible. For
convenience, the following three parameters from that paper are used:

ξ ≡ αŪ + βW̄ +ω, χ ≡
[

Re
µ̄
+ iγeMa2ξ(2+ r)

]−1

, r≡ λ
µ
, (A 1a−c)

where λ is the second coefficient of viscosity, which is taken to be λ = −2µ/3 in
accordance with Stokes’ hypothesis of zero bulk viscosity. It should be noted, however,
that some of the effects of non-zero bulk viscosity are included through the explicit
modelling of vibrational non-equilibrium. With the above definitions in place, the non-
zero coefficients of the matrix A are the following:

A12 = 1, (A 2)

A21 = iξ
Re
µ̄T̄
+ α2 + β2, (A 3)

A22 =− 1
µ̄

∂µ

∂T
T̄ ′, (A 4)

A23 =−iα
1
µ̄

∂µ

∂T
T̄ ′ + Re

µ̄T̄
Ū′ − iα(1+ r)

T̄ ′

T̄
, (A 5)

A24 = iα
Re
µ̄
− αξ(1+ r)γeMa2, (A 6)

A25 =− 1
µ̄

∂µ

∂T
Ū′′ − 1

µ̄

∂2µ

∂T2
Ū′T̄ ′ + (1+ r)

αξ

T̄
, (A 7)

A26 =− 1
µ̄

∂µ

∂T
Ū′, (A 8)

A31 =−iα, (A 9)

A33 = T̄ ′

T̄
, (A 10)

A34 =−iξγeMa2, (A 11)

A35 = iξ
T̄
, (A 12)

A37 =−iβ, (A 13)

A41 =−iαχ
[
(2+ r)

T̄ ′

T̄
+ 2
µ̄

∂µ

∂T
T̄ ′
]
, (A 14)

A42 =−iαχ, (A 15)
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A43 =−χ
[
α2 + β2 + iξ

Re
µ̄T̄
− (2+ r)

(
T̄ ′′

T̄
+ T̄ ′2

T̄
1
µ̄

∂µ

∂T

)]
, (A 16)

A44 =−iχ(2+ r)γeMa2

[
(αŪ′ + βW̄ ′)+ ξ

(
T̄ ′

T̄
+ 1
µ̄

∂µ

∂T
T̄ ′
)]

, (A 17)

A45 = iχ
[
(αŪ′ + βW̄ ′)

(
1
µ̄

∂µ

∂T
+ 2+ r

T̄

)
+ ξ

T̄
(2+ r)

1
µ̄

∂µ

∂T
T̄ ′
]
, (A 18)

A46 = iξχ(2+ r)
T̄

, (A 19)

A47 =−iβχ
[
(2+ r)

T̄ ′

T̄
+ 2
µ̄

∂µ

∂T
T̄ ′
]
, (A 20)

A48 =−iβχ, (A 21)

A56 = 1, (A 22)

A62 =−Ma2(γe − 1)µ̄σe

k̄
2Ū′, (A 23)

A63 =−2i
Ma2(γe − 1)µ̄σe

k̄
(αŪ′ + βW̄ ′)+ Reσe

T̄ k̄
T̄ ′, (A 24)

A64 =−iξ(γe − 1)Ma2 Reσe

k̄
+ Re2σe

k̄
∂Q
∂p
, (A 25)

A65 = α2 + β2 − k̄′′

k̄
− Ma2(γe − 1)σe

k̄
∂µ

∂T
(Ū′2 + W̄ ′2)+ iξ

Reσe

k̄T̄
+ Re2σe

k̄
∂Q
∂T
, (A 26)

A66 =−2
k̄′

k̄
, (A 27)

A68 =−Ma2(γe − 1)µ̄σe

k̄
2W̄ ′, (A 28)

A69 = Re2σe

k̄
∂Q
∂Tv

, (A 29)

A78 = 1, (A 30)

A83 = ReW̄ ′

µ̄T̄
− iβ

1
µ̄

∂µ

∂T
T̄ ′ − iβ(1+ r)

T̄ ′

T̄
, (A 31)

A84 = iβ
Re
µ̄
− (1+ r)βξγeMa2, (A 32)

A85 = βξ(1+ r)
T̄

− 1
µ̄

∂µ

∂T
W̄ ′′ − 1

µ̄

∂2µ

∂T2
T̄ ′W̄ ′, (A 33)

A86 =− 1
µ̄

∂µ

∂T
W̄ ′, (A 34)

A87 = iξ
Re
µ̄T̄
+ α2 + β2, (A 35)

A88 =− 1
µ̄

∂µ

∂T
T̄ ′, (A 36)

A9,10 = 1, (A 37)
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A10,3 = Reσe

k̄vT̄
c̄v,vT̄ ′v, (A 38)

A10,4 =−Re2σe

k̄v

∂Q
∂p
, (A 39)

A10,5 =−Re2σe

k̄v

∂Q
∂T
− T̄ ′′v

k̄v

∂kv
∂T
− T̄ ′v

k̄v

(
∂kv
∂T

)′
, (A 40)

A10,6 =− T̄ ′v
k̄v

∂kv
∂T
, (A 41)

A10,9 = α2 + β2 + iξ
Reσe

k̄vT̄
c̄v,v − Re2σe

k̄v

∂Q
∂Tv
− T̄ ′′v

k̄v

∂kv
∂Tv
− T̄ ′v

k̄v

(
∂kv
∂Tv

)′
, (A 42)

A10,10 =− T̄ ′v
k̄v

∂kv
∂Tv
− k′v

k̄v
. (A 43)

In these equations, primes denote differentiation with respect to the wall-normal
direction. Underlined terms are those corresponding to vibrational relaxation and are
the only differences between these results and those of Malik (1990).
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