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Abstract

Logic programming has developed as a rich field, built over a logical substratum whose

main constituent is a nonclassical form of negation, sometimes coexisting with classical

negation. The field has seen the advent of a number of alternative semantics, with Kripke–

Kleene semantics, the well-founded semantics, the stable model semantics, and the answer-set

semantics standing out as the most successful. We show that all aforementioned semantics are

particular cases of a generic semantics, in a framework where classical negation is the unique

form of negation and where the literals in the bodies of the rules can be ‘marked’ to indicate

that they can be the targets of hypotheses. A particular semantics then amounts to choosing a

particular marking scheme and choosing a particular set of hypotheses. When a literal belongs

to the chosen set of hypotheses, all marked occurrences of that literal in the body of a rule are

assumed to be true, whereas the occurrences of that literal that have not been marked in the

body of the rule are to be derived in order to contribute to the firing of the rule. Hence the

notion of hypothetical reasoning that is presented in this framework is not based on making

global assumptions, but more subtly on making local, contextual assumptions, taking effect

as indicated by the chosen marking scheme on the basis of the chosen set of hypotheses.

Our approach offers a unified view on the various semantics proposed in logic programming,

classical in that only classical negation is used, and links the semantics of logic programs to

mechanisms that endow rule-based systems with the power to harness hypothetical reasoning.

KEYWORDS: Kripke–Kleene semantics, answer-set semantics, stable model semantics, well-

founded semantics, classical negation, contextual hypotheses, hypothetical reasoning

1 Motivation

In this paper, we present a small part of a general framework called parametric logic,

some of whose concepts have very practical motivations; the notion of contextual

hypothesis and the associated notion of hypothetical reasoning are two concepts of

this kind. A contextual hypothesis, according to which a condition can be assumed

to be true in some specific contexts rather than globally, is important in web search,

as the information sought by users occurs in documents and is found to be relevant,

thanks to the contextual relationships it bears to the input keywords. Hypothetical
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reasoning is relevant to the development of decision support systems. Effective

systems must give users the power to explore and experiment so that they can better

understand the domain; they must provide the degree of control that users demand,

which the type of hypothetical reasoning to be described here offers. We commence

the paper with a simple worked example that introduces the practical aspects of

the notions of contextual hypothesis and hypothetical reasoning, and motivates the

formal material that follows.

Many decision support systems encode expert knowledge as a set of rules. In

practice, knowledge bases may have to deal with thousands of rules. Keeping that

order of magnitude in mind, imagine a toy example of a knowledge base consisting

of rules all of the form if condition1 and . . . and conditionn then conclusion abstracted

as follows:

p0 ← p0 p1 ← p5 p3 ← p0 p4 ← p1 ∧ p2 ∧ p7

p5 ← p4 p6 ← p3 ∧ p4 ∧ p7 p7 ← p6 p8 ← p4

p9 ← p5 ∧ p7 ∧ p8 p10 ← p3 ∧ p6

We could consider a more general set of rules in which some conclusions would be

associated with more than one conjunction of conditions, but that would not bring

any additional insight. Some of the conditions and conclusions could also carry

out negative information, hence be of the form ¬p; this example only uses positive

information in order to simplify notation at no conceptual cost, since what will be

said of the previous set of rules would be said mutatis mutandis of a set of rules

that also encodes negative information (the fact that we treat positive and negative

information similarly is one of the hallmarks of our approach, as will be seen

throughout the paper). The above set of rules can be represented by the following

diagram, which can be read as a Boolean circuit with nothing but and gates (with a

more general set of rules, we would also have or gates, and some conditions would

be preceded by a not gate).

p0

p1

p2

p3

p4

p8

p5

p6 p7

p10

p9

An important feature of the circuit is that it models a reactive process: it

contains a number of loops, which reveal circular arguments. This does not

necessarily indicate that the representation of knowledge is flawed. For instance,

the deflationary economic model posits that a drop in prices delays consumption,

which increases inventories, which forces companies to sell their stock at a lower

price. Knowledge representation, when applied to domains where amplifiers and
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reinforcement mechanisms are at work, usually results in knowledge bases with

loops.

In order to establish a correct diagnosis or take the right course of actions, a user

will often want to query the decision support system on how a given conclusion can

be derived; logically speaking, this is a form of abductive reasoning. Getting back

to our example, let us query how p9 can be derived. The system could provide a

(possibly minimal) set X of pieces of information that, added to the set of rules,

permit p9 to be derived; the members of X would then be assumed to be true

globally. But the system can do better. It can provide a (possibly minimal) set X

of pieces of information that, supposed to be true only in some rules, at some

locations, make the resulting, stronger set of rules able to derive p9; the members

of X are then assumed to be true locally. Moreover, under this scenario, the system

can also indicate which conditions can be confirmed (inferred alongside p9). With

our running example, this can be done in many different ways. For instance, using

check marks to indicate which occurrences of conditions to select and imposing that

they be minimal, the system could return

p0 ← p0 p1 ← p5
�

p3 ← p0 p4 ← p1 ∧ p2
�
∧ p7

�

p5 ← p4 p6 ← p3
�
∧ p4 ∧ p7

�
p7 ← p6 p8 ← p4

p9 ← p5 ∧ p7 ∧ p8 p10 ← p3 ∧ p6

and indicate that making p2, p3, p5, and p7 true at the selected locations allows one

to infer p9 and confirm p5 and p7, but neither p2 nor p3. Or it could return

p0 ← p0 p1 ← p5 p3 ← p0 p4 ← p1 ∧ p2
�
∧ p7

p5 ← p4
�

p6 ← p3
�
∧ p4

�
∧ p7 p7 ← p6

�
p8 ← p4

p9 ← p5 ∧ p7 ∧ p8 p10 ← p3 ∧ p6

and indicate that making p2, p3, p4, and p6 true at the selected locations allows one to

infer p9 and confirm p4 and p6, but neither p2 nor p3. Since they are not confirmed, p2

and p3 make it possible to derive p9 by playing a ‘foundational’ role, and their marked

occurrences indicate where that role is played in the underlying derivation of p9. On

the other hand, p5 and p7 (first marked set of rules), or p4 and p6 (second marked

set of rules), being confirmed, make it possible to derive p9, thanks to relationships

of ‘interdependence’, and their marked occurrences indicate which rules use them

as hypotheses in the underlying derivation of p9 before these relationships take

effect and the hypotheses become unnecessary as they get confirmed1. An output

of this kind is of great interest to users who, given a confirmed selected condition

ϕ, can investigate further the feedbacks in which ϕ is involved, which might result

in valuable findings or prompt users to amend the knowledge base—they will be

1 The minimality constraint is essential in this discussion: if the rules were q3 ← q2 and q2 ← q1, the aim
was to derive q3, and the system returned q3 ← q2

�
and q2 ← q1

�
, then q2 would be confirmed though

q2 is not in a relationship of interdependence to itself.
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846 É. A. Martin

all the more prepared to this eventuality the number of rules is larger. Of course, a

well-designed system will assist in this task.

Other scenarios of interest are possible. Users could first select some occurrences

of conditions to indicate the contexts in which those conditions can be assumed

to be true, and then list some of those conditions. For instance, users could select,

in some rules, some occurrences of the conditions p1, p5, and p6, before listing

successively p1, then p1 and p5, then p1 and p6, then p1, p5, and p6, to ‘activate’ first

only some, and eventually all, selected occurrences of conditions, and find out what

the implications are, what can or cannot be derived as more or fewer assumptions

are made in the preselected contexts. Or users could first list conditions, say p1, p5,

and p6, and then experiment by selecting various occurrences of those conditions,

starting, for instance, with all of them (so ignoring the context), and then removing

some occurrences, hence taking the context into account to find out how that affects

the conclusions that can be derived, or the conditions that can be confirmed. Extra

constraints can be imposed on which conditions should be confirmed or not, or on

the relationships between confirmed conditions, etc.

What does all this have to do with the semantics of logic programs, which is

what this paper focuses on? Well, we will see that the notions of hypothetical

reasoning and contextual hypothesis can do more than enrich the field of logic

programming. They allow one to look at its fundamental semantics from a novel

perspective. We will see that these fundamental semantics can be all unified under the

umbrella of contextual and hypothetical reasoning. They correspond to particular,

highly constrained, ways of selecting occurrences of conditions and of choosing

hypotheses. The notion of confirmation plays a pivotal role in one semantics (the

well-founded semantics). In the previous example, conditions and conclusions were

all positive, making it impossible to derive a contradiction. When conditions and

conclusions can be negative, a notion of nonrefutation naturally enters the stage

to express that contextually hypothesising p does not allow one to infer ¬p, or

that contextually hypothesising ¬p does not allow one to infer p. The notion

of nonrefutation plays a crucial role in other semantics (the stable model and

the answer-set semantics). Revisiting the fundamental semantics of logic programs

under the light of hypothetical reasoning and contextual hypothesis is of conceptual

and theoretical interest; in particular, it supports the view that, in contrast to

the traditional work in the field, logic programming does not need nonclassical

negation, and that positive and negative information can obey a duality principle.

As importantly, we can capitalise on the fact that the traditional semantics have been

extensively studied and are very well understood, and be confident that expressing

them as particular forms of hypothetical reasoning will help understand the latter

and come up with valuable constraints and fruitful strategies to exploit it fully.

We have introduced the key idea of choosing a set X of conditions and contextually

selecting in some rules some occurrences of conditions, which will be made ‘active’ if

they belong to X. Formalising this idea precisely, omitting no detail, in a very general

setting (in particular because it is first-order rather than propositional) requires a

bit of work, but the informal description where check marks are used to capture the

notion of contextual hypothesis actually says it all and does not hide any essential
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technicality. We will use this description again. It does not only support the intuition

and illustrate the mathematical developments. It actually suggests a very practical,

concrete interface, where users click on some occurrences of conditions, activating

or deactivating them as they interact with their decision support system. But users

will need to be guided, they should not click arbitrarily, they will need and request

some constraints that will help them experiment effectively and beneficially. One

can imagine, for instance, that some occurrences of conditions are dimmed out in

real time to indicate that under the present circumstances, they are ‘unclickable’.

This paper will not dwell into these considerations; the first task is to provide the

theoretical foundations to practical problems of this kind.

2 Background

Since its inception, the field of logic programming has embraced an increasingly

complex diaspora of rules, that is, pairs of formulas referred to as ‘body’ and ‘head’,

with the intention that if the body is true then the head is true. The bodies of the rules

have eventually been allowed to contain both classical negation and nonclassical

negation—classical negation being used to assert falsity, and nonclassical negation,

a form of nonprovability. Classical negation and disjunction have made their ways

into the heads of the rules (see Minker and Seipel 2002 for a survey). It has even been

advocated to use more than two kinds of negation (Alferes et al. 1996; Alferes et al.

1998). Also, a large number of constraints on the rules that make up a logic program

have been proposed, based on syntactic constraints or definability properties (e.g.,

Jäger and Stärk 1993) or on proof-theoretic criteria (e.g., Pedreschi et al. 2002). All

these developments took place as part of the advances in the field of nonmonotonic

reasoning (Minker 1993).

Starting with the simplest case of sets of rules whose heads are atomic formulas

and whose bodies result from the application of conjunction and disjunction to

atomic formulas only, a recurring question has been: what is the intended meaning

of a set of rules, which translates into: what are the intended interpretations of a

set of rules? Some approaches seek a unique intended interpretation, while other

approaches accommodate many. In a first-order setting, the intended interpretations

have been selected from the class of all structures or from the more restricted

class of all Herbrand structures, which give every individual a unique name.

Alongside the various model-theoretic semantics, proof-theoretic techniques and

fixed-point constructions have been developed (see Apt and Bol 1994 for a survey).

As the number of approaches increased, a natural line of research has been to

exhibit possible relationships between the various frameworks and seek unifications,

with (Loyer et al. 2003) and (Hitzler 2005) as examples of work conducted in the

last decade. This study belongs to that category of papers, but differs from previous

work in many essential ways:

• It offers a model of hypothetical reasoning for knowledge-based systems where

a hypothesis is not conceived of globally as a new fact, but as a statement

meant to be assumed locally and contextually (at some locations in the bodies

https://doi.org/10.1017/S1471068411000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000378
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of some rules), which can be subjected to confirmation (if that statement is

eventually derived), or subjected to not being refuted (if no rule ever produces

its negation), or subjected to other constraints, possibly involving the whole

set of chosen hypotheses, or some particular subset.

• Rather than seeking relationships between various semantics of logic programs,

it proposes a natural base semantics, and complements it with a generic notion

of transformation of a logic program. So rather than proposing, for a given

logic program P, a picture of the form

Semantics 1 of P

Semantics 2 of P Semantics 3 of P

it proposes a picture of the form

Base semantics of P

Base semantics

of P +Ω1 E1

Base semantics

of P +Ω2 E2

Base semantics

of P +Ω3 E3

where P+ΩE represents the transformation of P into a new logic program the

bodies of whose rules are possibly weaker than the bodies of the corresponding

rules of P, thanks to a construction that uses a set E of literals conceived of

as potential hypotheses and a set Ω of occurrences of literals in the bodies

of P’s rules conceived of as possible targets of the hypotheses (these notions

and others used in the semi-formal presentation of Section 2 will be precisely

defined from Section 3 onward). Semantics 1, 2, and 3 of P then correspond

to particular choices of E and Ω, and intuitively receive the interpretation: in

the bodies of P’s rules, make use of the hypotheses in E locally and contextually

as indicated by Ω, and apply the base semantics.

• It attains a high degree of unification between the semantics of logic programs

considered in this paper, namely, Kripke–Kleene semantics (Fitting 1985),

the well-founded semantics (Gelder et al. 1991), the stable model seman-

tics (Gelfond and Lifschitz 1988), and the answer-set semantics (Gelfond

and Lifschitz 1991). Kripke–Kleene semantics is closely related to our base

semantics, while each of the other three is obtained by instantiating general

principles (constraints on Ω and E) that determine families of semantics.

Other families would be determined by other principles. Some members of

those families, different to the particular members of the particular families

considered here, might be worth investigating and have practical use.

• It is classical, in the sense that it uses a unique form of negation, interpreted

classically, and is based on interpretations that assign one of the classical truth

values of true or false to every formula. This is in contrast to many approaches,

for instance, frameworks based on Belnap’s four-valued logic (see Fitting 1999),
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or on the extension of the logic of here-and-there, N5, with its five truth values

(see Pearce 2006).

• Using classical negation as unique form of negation, it remains outside the

realm of nonmonotonic reasoning. It is monotone in both Ω and E: increasing

the targets of hypotheses or the set of potential hypotheses results in stronger

programs, which generate more literals.

• It is symmetric, in the sense that it treats negated atoms and atoms on a par,

and emphasises that the stable model and well-founded semantics, dedicated

to interpreting a nonclassical form of negation, give rise to semantics that are

fully biased toward negated atoms, while the general principle underlying these

semantics is consistent with being totally biased toward nonnegated atoms, or

with being committed to achieving a balance between negated and nonnegated

atoms.

• It applies to general sets of rules, whose heads can be negated atoms and whose

bodies can (but do not have to) be arbitrary infinitary first-order formulas.

• It does not require that intended interpretations be restricted to the class of

Herbrand interpretations.

2.1 Two key principles

Our framework relies on two key principles.

The first principle is that a set of positive rules, that is, rules whose heads are

atomic formulas, can be thought of as a set of rules that are both positive and

negative, that is, rules whose heads are atomic formulas or negations of atomic

formulas, where the negative rules are left implicit because they are fully determined

by the positive rules, thanks to a duality principle. This idea is far from novel; it

is nothing more than a variation on the notion of Clark’s completion of a logic

program (Clark 1987). Clark’s completion does not transform a set of positive rules

into a set of positive and negative rules, but rather into a set of logical equivalences

augmented with unique name axioms. Our formalisation is a streamlined version

of Clark’s completion. With positive rules only, one can only infer some negative

information by failing to generate some positive information—the process known

as negation as finite failure that certainly compels us to adopt the view that

negation in logic programming is essentially nonclassical. But given both positive

and negative rules, one can generate both positive and negative information, and

conceive of negation as finite failure as an ingenious proof technique to generate

negative information from the positive rules only, as an alternative to generating

negative information using both the positive and the negative rules. This paper will

demonstrate that this view is perfectly tenable; classical negation is all one needs,

and negation as finite failure can be understood as part of a more general inference

mechanism that generates nothing but logical consequences. Not surprisingly, this

will result in a semantics which, in case the class of intended interpretations is the

class of Herbrand interpretations, is fundamentally equivalent to Kripke–Kleene

semantics (Fitting 1985). We will not make any restriction on the class of intended

interpretations, and present our semantics in the most general setting.

https://doi.org/10.1017/S1471068411000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000378
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The second principle will allow us to stick to our semantics as ‘the base semantics’,

while still accounting for the well-founded semantics, the stable model semantics,

and the answer-set semantics. This second principle is based on the idea that any

of those semantics ‘force’ some assumptions to be made in some parts of some

rules, resulting in a new logic program whose base semantics is precisely the desired

semantics of the original program. To force some assumptions to be made in some

parts of some rules, we use a particular kind of transformation of a logical formula,

which we introduce now. Consider two formulas, ϕ, of the form

∃x
(
p(x) ∧ q(x)

)
∨ ∃x

(
p(x) ∧ r(x)

)
,

and ψ, of the form

∃x
(
p(x) ∧ q(x)

)
∨ ∃x

(
(p(x) ∨ x .

= a ∨ x .
= b) ∧ r(x)

)
,

where
.
= represents identity (denotation by the same closed term of two individuals).

Then we can read ψ as ‘ϕ, where the second occurrence of p(x) is assumed to be

true in case x is either a or b’. Or to put it another way, if in ϕ, we hypothesise

that p(a) and p(b) are true in the context given by the second occurrence of p(x)

in ϕ, then we get (a logical representation equivalent to) ψ. More generally, we

will formalise the notion of ‘transforming a formula into another by making some

contextual hypotheses in the former’, similar to the way ϕ can be transformed

into ψ by making the hypotheses p(a) and p(b) in the context given by the second

occurrence of p(x) in ϕ.

Having this notion of ‘contextual hypothesis’ and associated formula transforma-

tion in hand, our ‘classical’ approach to logic programming will replace the question

of ‘what should be acknowledged to fail to be derived from a logic program?’—the

question at the heart of the well-known semantics in the ‘nonclassical’ approaches

to logic programming—by the question of ‘what contextual hypotheses should be

made in the bodies of the rules of a logic program?’ This will allow us to revisit the

main semantics that have been proposed and view them as particular members of

families of semantics, and more particularly, as those members that are ‘maximally

biased’ toward negative information. For an illustration, consider a vocabulary with

a constant 0, a unary function symbol s and a unary predicate symbol p, and the

logic program P consisting of the following rule:

p(X)← p(s(s(X))).

Given a natural number n, write n for the term obtained from 0 by n applications

of s. Applied to P, the well-founded semantics makes all of p(n), n ∈ �, false in its

intended model of P, based on the principle that when a logic program presents an

infinite descending chain of atoms, all members of that chain should be set to false.

It turns out that this is a particular case of a more general principle, which will be

formalised in the body of the paper, consistent with a large number of models of

P, including in particular

• structures in which p(n) is false for all ns;

• structures in which p(n) is true for all ns;
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• structures in which p(n) is false for all even ns, but true for all odd ns;

• structures in which p(n) is true for all even ns, but false for all odd ns.

So this more general principle isolates a number of Herbrand models one of which

is maximally biased toward negative information, which happens to be the intended

model advocated by the well-founded semantics; but this more general principle can

be instantiated to ‘cousin semantics’ of the well-founded semantics, some of which

could be of interest. One could be maximally biased toward positive information—a

form of dual well-founded semantics—or one could try and keep a balance between

positive and negative information.

2.2 A mechanistic view on rules

The rules that make up a logic program are expressions of the form

head← body

that are read in many possible ways. One can view ← as a link between cause

and effect and conceive of body as a statement that if activated, allows the rule

to fire and head to be generated ; when formally defined, this amounts to a kind

of operational semantics. Or one can view ← as a link between antecedent and

consequent and conceive of body as a statement that if true, allows the rule to

be logically applicable and head to be established as true; when formally defined,

this amounts to a denotational semantics. A legitimate aim is to propose both an

operational and a denotational semantics, and make sure that they match. In this

paper, we propose an operational semantics as it is the shortest path to casting

Kripke–Kleene semantics, the well-founded semantics, the stable model semantics,

and the answer-set semantics into our framework. We also have a denotational

semantics but will make it the subject of another paper.

Let us specify a bit more the syntactic structure of rules and the process by which

they fire. Recall that a formula is in negation normal form if negation is applied to

atomic formulas only; so formulas in negation normal form are built from literals

(atomic formulas and their negations) using disjunction, conjunction, existential

quantification, and universal quantification. Assume that every rule head ← body

of a logic program is such that head is a literal and body is a formula in negation

normal form. Firing rules causes literals—the heads of the rules that fire—to be

generated. Literals can be combined into formulas in negation normal form some

of which can, thanks to the generated literals, be inferred. We impose that inferring

formulas in negation normal form be a constructive process; so p∨¬p can be inferred

provided that p or ¬p has been generated, and ∃x p(x) can be inferred provided that

p(t) has been generated for at least one closed term t.

Having literals as heads of the rules of a logic program is natural in relation to the

answer-set semantics. We will see that it is also natural in relation to Kripke–Kleene,

the well-founded and the stable model semantics, thanks to the notions of duality

of a formula and of symmetry of a logic program, which we introduce now. Given a

formula ϕ in negation normal form, define the dual of ϕ as the formula ∼ϕ obtained

from ϕ by changing disjunction into conjunction, conjunction into disjunction,
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852 É. A. Martin

existential quantification into universal quantification, universal quantification into

existential quantification, by negating nonnegated atomic formulas and deleting all

negation signs (before atomic formulas). For instance, if ϕ is

(p(X) ∨ ¬q(X)) ∧ (¬p(X) ∨ r(X)),

then the dual ∼ϕ of ϕ is

(¬p(X) ∧ q(X)) ∨ (p(X) ∧ ¬r(X)).

Now say that a logic program P is symmetric if the bodies of all rules are formulas in

negation normal form and if for all n ∈ � and n-ary predicate symbols ℘, P contains

exactly two rules of respective form ℘(v1, . . . , vn)← ϕ+
℘ and ¬℘(v1, . . . , vn)← ϕ−℘ that

are dual of each other in the sense that ϕ−℘ and ϕ+
℘ are dual of each other. With

these notions in hand, we will be able to view Kripke–Kleene semantics, the well-

founded semantics and the stable model semantics as applied to symmetric logic

programs. The working hypothesis is that all three semantics do deal with symmetric

logic programs even though traditionally, many rules can have a head built from

a given predicate symbol and only the positive rules are explicitly given, with the

negative rules being implicit. This is legitimate as, first, negation normal form is not

restrictive; second, a straightforward syntactic transformation allows one to merge

all rules whose heads are built from a given predicate symbol; and third, every

negative rule is perfectly determined by its dual positive rule.

It seems natural to allow rules to fire finitely often only, as this immediately

suggests obvious implementations. But we can think theoretically and assume that

rules are allowed to fire transfinitely many times—and all fixed point semantics

happily go for it (Emden and Kowalski 1976; Denecker et al. 2001). So after all

rules have fired any finite number of times, they could fire for the ωth time, and then

for the (ω+1)st time, and then for the (ω+2)nd time. . . and then for the (ω×2)nd

time, etc. For instance, if every literal of the form p(n), n ∈ �, has been generated

at stage 5n, and if all individuals in the domains of all possible interpretations are

denoted by a term of the form n, then ∀x p(x) can be inferred at stage ω, a point

from which any rule whose body is ∀x p(x) can fire. Formalising the process by

which rules fire transfinitely often determines the set of literals [P ] generated by

a set P of (positive and negative) rules. It is an operational semantics, previously

referred to as the base semantics of P. No other semantics will be proposed: what

is presented as an alternative semantics of P will be viewed as the base semantics

of a program obtained from P in a particular way, which captures the essence of

the alternative semantics and is an instance of a generic class of transformations.

2.3 Making contextual hypotheses

Let us describe a bit more precisely the relationships between the base semantics

and the well-founded semantics, the stable model semantics and the answer-set

semantics. Consider a set E of literals. Also consider a function Ω, defined on the

set of bodies of the rules in P, which returns, for the body ϕ of each rule in P, a

selected set of occurrences of literals in ϕ. We can represent this function graphically
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by using check marks, writing, for instance,(
p(X) ∨ q(X)

�

)
∧

(
p(X)

�
∨ r(X)

)
to indicate that the selected occurrences of literals in the formula ϕ defined as(

p(X) ∨ q(X)
)
∧

(
p(X) ∨ r(X)

)
are the unique occurrence of q(X) and the second occurrence of p(X). Now with

E and Ω in hand, we define from P a new set of rules, denoted P +Ω E, which

formalises the intuitive request: ‘in the bodies of the rules of P, use E as a set of

hypotheses in the contexts indicated by Ω’. For instance, if P contains the rule R

defined as

p(X)←
(
p(X) ∨ q(X)

)
∧

(
p(X) ∨ r(X)

)
,

if E is defined as {p(2n) | n ∈ �} ∪ {b(n) | n ∈ �}, and if Ω selects the unique

occurrence of q(X) and the second occurrence of p(X) in the body of R then P+ΩE

will contain a rule that is logically equivalent to

p(X)←
(
p(X) ∨ q(X)

)
∧

(
p(X) ∨

∨
n∈�

X
.
= 2n ∨ r(X)

)
,

where
.
= denotes syntactic identity. We will see that in case P is symmetric, we

can choose Ω and E in such a way that [P +Ω E ] captures the well-founded

semantics applied to the positive rules of P; moreover, this choice of Ω and E is a

particular case of choices made according to a simple principle, which happens to

be maximally biased toward negative information. Still in case P is symmetric, we

can also choose Ω and E in ways such that [P+Ω E ] are the stable models of the

positive rules of P; similarly, these choices of Ω and E are particular cases of choices

made according to a simple principle, which happen to be maximally biased toward

negative information. Importantly, these correspondences are between a framework

where negation is classical and frameworks where negation is meant not to be

classical. The answer-set semantics seems to offer a greater challenge as its syntax

accommodates two kinds of negation: ¬, meant to be classical, and not , meant to

be nonclassical. But the correspondence turns out to be easy to establish if one

conceives of not as a syntactic variant to Ω. More precisely, conceive of not literal

as a request to select ∼literal . Given a set of rules P in the bodies of which both

¬ and not might occur, with not applied only to atoms and classical negations of

atoms, consider the set of rules P′ obtained from P by replacing all occurrences

of not literal with ∼literal (so only classical negation occurs in P′). Then set Ω to

select precisely the occurrences of literals in the bodies of the rules of P′ that have

replaced an occurrence of an expression of the form not literal in the bodies of the

corresponding rules of P. For instance, if P contains the rule

p(X)←
(
not p(X) ∨ q(X)

)
∧

(
¬p(X) ∨ not ¬r(X)

)
,

then P′ will contain the rule

p(X)←
(
¬p(X) ∨ q(X)

)
∧

(
¬p(X) ∨ r(X)

)
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that Ω will mark as

p(X)←
(
¬p(X)

�
∨ q(X)

)
∧

(
¬p(X) ∨ r(X)

�

)
.

It is then easy to choose E in ways such that [P′ +Ω E ] are the answer-sets for P
(one answer-set for each choice of E).

3 Logical background

� denotes the set of natural numbers and Ord the class of ordinals.

3.1 Syntax

Definition 1

A vocabulary is a nonempty set of (possibly nullary) function symbols and (possibly

nullary) predicate symbols none of which is the distinguished binary predicate

symbol
.
= (identity), such that if V contains at least one nonnullary predicate or

function symbol then V contains at least one nullary function symbol.

As usual, a constant refers to a nullary function symbol2. We will discuss later

the distinction between
.
= and equality (=), which note can be one of the predicate

symbols in a vocabulary. Accepting nullary predicate symbols in vocabularies will

allow us to formalise all notions in a setting that can be either purely propositional,

or purely first-order, or hybrid.

Notation 1

When a vocabulary contains the constant 0 and the unary function symbol s, we

use n to refer to the term obtained from 0 by n applications of s.

Notation 2

We denote by V a vocabulary.

Notation 3

We fix a countably infinite set of (first-order) variables together with a repetition-free

enumeration (vi)i∈� of this set.

By term we mean term over V, built from the function symbols in V and the

members of (vi)i∈�. We say that a term is closed if it contains no variable.

Definition 2

The set Lω1ω(V) of (infinitary) formulas (over V) is inductively defined as the smallest

set that satisfies the following conditions.

2 Vocabularies that would contain at least one nonnullary predicate or function symbol but no constant
would be degenerate in this setting, and are better ruled out, though they would be perfectly legitimate
in the usual treatment of first-order logic. But see the discussion at the beginning of Section 4.1 on
how full generality is obtained despite the restrictions imposed on vocabularies.
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• All literals—atoms and negated atoms—(over V), namely, all expressions of the

form ℘(t1, . . . , tn) or ¬℘(t1, . . . , tn) where n ∈ �, ℘ is an n-ary predicate symbol

in V, and t1, . . . , tn are terms over V, belong to Lω1ω(V).

• If V contains at least one constant then all identities and distinctions (over V),

namely, all expressions of the form t
.
= t′ or ¬t .= t′, the latter being usually

written t � .= t′, where t and t′ are terms over V, belong to Lω1ω(V).

• All expressions of the form
∨
X or

∧
X with X a countable set of formulas

over V, belong to Lω1ω(V).

• All expressions of the form ∃xϕ or ∀xϕ where x is a variable and ϕ is a

formula over V that has x as a free variable, belong to Lω1ω(V).

A few observations about the definition of Lω1ω(V) are in order.

• First, negation is assumed to be applicable to atoms only, which amounts to

imposing a negation normal form, at no loss of generality. This is technically

convenient, and often used in logic programming.

• Second, the application of quantifiers is restricted to formulas that have the

quantified variables as free variables, and identities and distinctions are ruled

out in case V contains no constant, again at no loss of generality. This is to

embed the propositional framework neatly in a first-order setting: if V consists

of (nullary) predicate symbols only then Lω1ω(V) is the infinitary propositional

language built on V.

• Third, if we wanted to sometimes restrict some concepts to finite formulas,

then we would still be happy with disjunction and conjunction defined as

unary operators on finite sets of formulas. This treatment of disjunction and

conjunction, which contrasts with the traditional view of binary operators on

pairs of formulas, does more than let Lω1ω(V) naturally extend the set of

finite first-order formulas over V. It also simplifies the formal developments.

In particular, there is no need to introduce two extra symbols true and false,

as is usually done in logic programming, since
∧

� is valid and can play the

role of true, and
∨

� is invalid and can play the role of false.
• Fourth, we distinguish between identity and equality. Identity is treated as

a logical symbol, and its interpretation built into the logic, whereas equality

is treated as a nonlogical symbol (a possible member of V), whose intended

interpretation needs to be explicitly provided. This will be discussed at greater

length in Section 4.1.

Let us emphasise that our framework does not need the power of infinitary languages.

Readers interested only in finite logic programs can ignore the qualifier ‘infinitary’

and replace Lω1ω(V) by Lωω(V). But Lω1ω(V) offers an elegant way to work with

logic programs consisting of infinitely many rules built from a vocabulary with a

finite number of predicate symbols, possibly obtained by grounding a finite logic

program expressed in a first-order language whose set of closed terms is infinite,

without making any of the formal notions and proofs more complicated than their

finitary counterparts.

Let a formula ϕ be given. We let fv(ϕ) denote the set of free variables of ϕ. If

fv(ϕ) = � then ϕ is said to be closed. Let e be a formula or a term. Given n ∈ �,
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distinct variables x1, . . . , xn and closed terms t1, . . . , tn, we write e[t1/x1, . . . , tn/xn]

for the result of substituting simultaneously in e all free occurrences of x1, . . . , xn
by t1, . . . , tn, respectively. Let e and e′ be two formulas or terms. We say that e′ is

a closed instance of e iff there exists n ∈ �, distinct variables x1, . . . , xn and closed

terms t1, . . . , tn such that x1, . . . , xn are the variables that occur free in e and e′

is e[t1/x1, . . . , tn/xn]; if e′ is known to be closed then we say ‘instance of e’ rather

than ‘closed instance of e’. Given n ∈ � and terms t1, t
′
1, . . . , tn, t

′
n, we say that

(t′1, . . . , t
′
n) is a closed instance of (t1, . . . , tn) iff for all members i of {1, . . . , n}, t′i is a

closed instance of ti; when t′1, . . . , t′n are known to be closed then we say ‘instance

of (t1, . . . , tn)’ rather than ‘closed instance of (t1, . . . , tn)’.

Though negation can be applied only to atoms and identities, we need to be able

to semantically negate a formula in a syntactically friendly manner which is achieved

in the following usual way: given a formula ϕ, ∼ϕ denotes

• ¬ϕ if ϕ is an atom;

• ψ if ϕ is of the form ¬ψ;

• t � .= t′ if ϕ is of the form t
.
= t′;

• t .= t′ if ϕ is of the form t � .= t′;

•
∧
{∼ψ | ψ ∈ X} if ϕ is of the form

∨
X;

•
∨
{∼ψ | ψ ∈ X} if ϕ is of the form

∧
X;

• ∀x∼ψ if ϕ is of the form ∃xψ;

• ∃x∼ψ if ϕ is of the form ∀xψ.

Given a set X of formulas, we let ∼X denote {∼ϕ | ϕ ∈ X}. A set X of literals

is said to be consistent just in case there is no closed atom ϕ that is an instance of

both a member of X and a member of ∼X. A set of literals is said to be inconsistent

iff it is not consistent. A set X of literals is said to be saturated just in case every

closed atom is an instance of a member of at least one of the sets X and ∼X. A set

of literals is said to be complete just in case it is saturated and consistent.

Given n ∈ � and formulas ϕ1, . . . , ϕn, we use ϕ1 ∨ · · · ∨ ϕn and ϕ1 ∧ · · · ∧ ϕn as

abbreviations for
∨
{ϕi | 1 � i � n} and

∧
{ϕi | 1 � i � n}, respectively. Also, given

two formulas ϕ1 and ϕ2, ϕ1 → ϕ2 is an abbreviation for ∼ϕ1 ∨ ϕ2 and ϕ1 ↔ ϕ2 is

an abbreviation for (ϕ1 → ϕ2)∧ (ϕ2 → ϕ1). Note that→ is a logical symbol whereas

← is not: ← has been used before and will be used later to represent rules in the

traditional way, separating the head of a rule from its body. In the operational

semantics that is the subject of this paper, ← is not meant to be interpreted as

logical implication.

The subformulas of a formula ϕ of the form
∨
X or

∧
X are ϕ and the subformulas

of the members of X. The subformulas of a formula ϕ of the form ∃xψ or ∀xψ are

ϕ and the subformulas of ψ. The subformulas of a formula of the form ¬ψ are ¬ψ
and ψ. An atom or identity is its unique subformula.

Let a formula ϕ be given. Let T be the parse tree of ϕ where the nodes are

labeled with one of
∨

,
∧

, ∃x for some variable x, or ∀x for some variable x, so that

the leaves of T are all (intuitive) occurrences of literals, identities and distinctions

in ϕ. Then a (formal) occurrence of a literal in ϕ can be defined as the set of all
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formulas that appear on the branch of T whose leaf is that (intuitive) occurrence

of literal.

Definition 3

Given a formula ϕ and a literal ψ, an occurrence of ψ in ϕ is defined as a set O of

formulas that contains both ϕ and ψ and such that

• all members of O are subformulas of ϕ;

• ψ is a subformula of all members of O;

• for all members ψ1 and ψ2 of O, either ψ1 is a subformula of ψ2 or ψ2 is a

subformula of ψ1;

• for all members of O of the form
∨
X or

∧
X, O contains a member of X;

• for all members of O of the form ∃x ξ or ∀x ξ, O contains ξ.

Example 1

Suppose that V contains three nullary predicate symbols p, q and r. Let ϕ denote∧
{¬p,

∨
{q, r, ¬p}}. The occurrences of literals in ϕ are

• {ϕ, ¬p}—an occurrence of ¬p in ϕ;

• {ϕ,
∨
{q, r, ¬p}, q}—an occurrence of q in ϕ;

• {ϕ,
∨
{q, r, ¬p}, r}—an occurrence of r in ϕ;

• {ϕ,
∨
{q, r, ¬p}, ¬p}—an occurrence of ¬p in ϕ.

3.2 Semantics

Definition 4

Let a set S of literals be given.

For all formulas ϕ, we inductively define the notion S forces ϕ, denoted S �ϕ, as

follows. If S is inconsistent then S forces all formulas. Assume that S is consistent,

then

• for all formulas ϕ, S � ϕ iff S forces all closed instances of ϕ;

• for all closed terms t1 and t2, S � t1
.
= t2 in case t1 and t2 are identical, and

S � t1 �
.
= t2 in case t1 and t2 are distinct;

• for all closed literals ϕ, S � ϕ iff ϕ is an instance of a member of S;

• for all countable sets X of closed formulas, S �
∨
X iff S forces some member

of X, and S �
∧
X iff S forces all members of X;

• for all formulas ϕ and variables x with fv(ϕ) = {x}, S � ∃xϕ iff S �ϕ[t/x] for

some closed term t, and S � ∀xϕ iff S � ϕ[t/x] for all closed terms t.

Given a set T of formulas, we say that S forces T , denoted S � T , just in case S

forces all members of T .

Definition 5

A standard structure (over V) is a set of closed atoms.

Note the following particular cases:

• if V contains no nullary predicate symbol then a standard structure over V is

basically a Herbrand interpretation;
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• if V contains (nullary) predicate symbols only then a standard structure is

basically a propositional interpretation.

The following is the usual notion of truth of a formula in a structure, concisely

expressed in terms of the notion introduced in Definition 4, which of course is meant

to serve other purposes.

Definition 6

Let a standard structure M be given. Let X be the complete set of closed literals

such that for all closed atoms ϕ, ϕ ∈ X iff ϕ ∈M. For all formulas ϕ, we say that

ϕ is true in M, or that M is a model of ϕ, iff X � ϕ.

Notation 4

Let a standard structure M be given. Given a formula ϕ, we write M � ϕ if M is a

model of ϕ, and M �� ϕ otherwise. Given a set T of formulas, we write M � T if

M is a model of all members of T , and M �� T otherwise.

Notation 5

We denote by W the set of all standard structures (over V).

Given a set T of formulas and a formula ϕ, we write T �W ϕ if every standard

model of T is a model of ϕ; if T �W ϕ then we say that T logically implies ϕ in W

or that ϕ is a logical consequence of T in W. The same notation and terminology

also applies to sets of formulas. Two formulas ϕ and ψ are said to be logically

equivalent in W iff they have the same models in W.

4 Formal logic programs and their denotational semantics

4.1 Formal logic programs

The concepts introduced in the previous section might suggest that we are con-

sidering a notion of logical consequence, namely, �W, which, because of its focus

on standard structures, is stronger than the classical notion of logical consequence.

To make sure that this is not necessarily the case and achieve full generality,

we distinguish between two kinds of vocabularies, namely, a vocabulary meant to

describe a structure and a vocabulary meant to talk about a structure. The vocabulary

V introduced in Notation 2 is of the first kind; it is meant to express what a structure

is ‘made of’, but it might not be the vocabulary used to talk about a structure, to

express properties of a structure. We assume that the vocabulary used to talk about

a structure is no more expressive, and is possibly less expressive, than the vocabulary

used to describe a structure.

Notation 6

We denote by V� a (possibly finite) countable subset of V.

V� is the vocabulary to be used when we talk about a structure by writing

down theories, axioms, theorems: all must consist of formulas over V�. Suppose

that infinitely many closed terms are not terms over V�, either because V contains

infinitely many constants not in V�, or because V contains at least one function
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symbol of arity one or more that is not in V�. Then for all sets T of formulas over

V� and for all formulas ϕ over V�, T �W ϕ iff T � ϕ. In other words, if countably

many closed terms are ‘unspeakable of’ then �W, with sets of formulas that can be

‘spoken out’ on the left-hand side and with formulas that can be ‘spoken out’ on the

right-hand side, is equivalent to the classical notion of logical consequence (Martin

2006). This means that by choosing V to be countable and by setting V� to V, one

opts for a semantics based on Herbrand structures, but by setting V� to a strict

subset of V that makes countably many closed terms ‘unspeakable of’, then one opts

for a semantics equivalent to the classical notion of logical consequence defined on

the basis of all structures.

The availability of both V and V� therefore provides a uniform and simple way

to express that a result holds for the classical notion of logical consequence as well

as for the more restricted notion of logical consequence that rules out nonstandard

structures—by not imposing any condition on V� in the statement of that result—or

to force a result to hold for one notion of logical consequence only—by imposing the

right condition on the relationship between V and V�. Restricting in different ways

a given vocabulary offers some advantages over the more traditional approach of

expanding in different ways a given vocabulary, as done in the Henkin proof of the

completeness of first-order logic or in so-called Herbrand semantics of first-order

logic (see, for instance, Kaminski and Rey 2002).

Most of the work done in logic programming is developed on the basis of the

class of Herbrand structures. But there are exceptions, for instance, the semantics

of definite logic programs and queries can be based on either Herbrand structures

or all structures: given a definite logic program T and a definite query Q, Prolog

returns a computed answer substitution θ iff the universal closures of Qθ are true

in all Herbrand models of T , or equivalently, are true in the minimal Herbrand

model of T , or equivalently, are true in all models of T (Lloyd 1987). So it is

sometimes desirable not to be tied to a semantics based on Herbrand structures.

Moreover, we will see that such a restriction is not conceptually necessary in the

sense that all notions defined in this paper will not require any prior assumption on

the relationship between V� and V; but we will sometimes have to suppose that V�

is equal to V in the statements of some results. So we are going to define a notion

of logic program as a set of rules built from V�, not from V.

Notation 7

We denote by Prd(V�) the set of predicate symbols in V�. For all n ∈ �, we denote

by Prd(V�, n) the set of members of Prd(V�) of arity n.

We want to consider sets of rules whose heads are literals and whose bodies are

arbitrary. Since formulas can be infinitary and can contain occurrences of
.
=, and

since
∨

� is a formula that can be used as the body of a rule such as q ←
∨

� to

express that q is neither a fact nor the head of a rule that can be activated, it is

enough to provide, for every n ∈ � and ℘ ∈ Prd(V�, n), two rules: one whose head is

℘(v1, . . . , vn) (which is nothing but ℘ if n = 0), and one whose head is ¬℘(v1, . . . , vn)

(which is nothing but ¬℘ if n = 0). For instance, {p1(2n)← p2(2n+ 1) | n ∈ �} can

be represented as p1(v1)←
∨
{p2(s(v1)) ∧ v1

.
= 2n | n ∈ �}.
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860 É. A. Martin

For the purpose of providing, for every ℘ ∈ Prd(V�), the positive and negative

rules associated with ℘, and for the purpose of making some definitions more

compact, we introduce the following notation (in which + and − could be replaced

by 1 and 0, but using + and − will be easier to read).

Notation 8

We let �(V�) denote Prd(V�)× {+,−}.
Given n ∈ �, ℘ ∈ Prd(V�, n) and terms t1, . . . , tn, we also write ℘(t1, . . . , tn) as

℘+(t1, . . . , tn) and ¬℘(t1, . . . , tn) as ℘−(t1, . . . , tn).

Definition 7

We define a formal logic program (over V�) as an �(V�)-family of formulas over

V�, say (ϕε℘)(℘,ε)∈�(V�), such that for all n ∈ �, ℘ ∈ Prd(V�, n) and ε ∈ {+,−},
fv(ϕε℘) ⊆ {v1, . . . , vn}.

Since there is no restriction on the use of quantifiers in the body of a rule, the

condition on variables is at no loss of generality and is imposed so as to simplify

subsequent notation, and is also often used in the literature; it just states that a

variable that occurs free in the body of a rule occurs in the head of that rule. Note

that if the set of predicate symbols in V� is finite then finite sets of finite rules over

V� are naturally translated into finite formal logic programs.

Example 2

Suppose that V� consists of a constant 0, a unary function symbol s, five nullary

predicate symbols q1, . . . , q5, and four unary predicate symbols p1, . . . , p4. The

following formulas provide an example of a formal logic program:

ϕ+
p1
≡ v1

.
= 0 ∨ ∃v0

(
v1

.
= s(s(v0)) ∧ p1(v0)

)
,

ϕ−p1
≡ v1 �

.
= 0 ∧ ∀v0

(
v1 �

.
= s(s(v0)) ∨ ¬p1(v0)

)
,

ϕ+
p2
≡ v1

.
= 0 ∨ ∃v0

(
v1

.
= s(s(v0)) ∧ p2(v0)

)
,

ϕ−p2
≡ v1

.
= s(0) ∨ ∃v0

(
v1

.
= s(s(v0)) ∧ ¬p2(v0)

)
,

ϕ+
p3
≡ v1

.
= 0 ∨ ∃v0

(
v1

.
= s(v0) ∧ ¬p3(v0)

)
,

ϕ−p3
≡ ∃v1

(
v1

.
= s(v0) ∧ p3(v0)

)
,

ϕ+
p4
≡ p4(s(s(v1))), ϕ+

q1
≡

∧
�, ϕ+

q2
≡ q3,

ϕ−p4
≡ ¬p4(s(s(v1))), ϕ−q1

≡
∨

�, ϕ−q2
≡ ¬q3,

ϕ+
q3
≡ q2, ϕ+

q4
≡ q4, ϕ+

q5
≡ ¬q5,

ϕ−q3
≡ ¬q2, ϕ−q4

≡
∨

�, ϕ−q5
≡

∨
�.

As V� contains both nullary and nonnullary predicate symbols, Example 2

describes a ‘hybrid’ formal logic program, but of a simple kind as it consists of

a purely first-order part and a purely propositional part. Let us take advantage of

this example to illustrate how Definition 7 is put to use to represent rules. Recall

that
∧

� is valid and
∨

� is invalid. For the propositional rules,
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• ϕ+
q1

and ϕ−q1
represent the fact q1,

• ϕ+
q2

and ϕ−q2
represent the rules q2 ← q3 and ¬q2 ← ¬q3,

• ϕ+
q3

and ϕ−q3
represent the rules q3 ← q2 and ¬q3 ← ¬q2,

• ϕ+
q4

and ϕ−q4
represent the rule q4 ← q4, and

• ϕ+
q5

and ϕ−q5
represent the rule q5 ← ¬q5.

Now to the first-order rules.

• The formulas ϕ+
pi
, i ∈ {1, 2}, represent the rule

pi(v1)← v1
.
= 0 ∨ ∃v0

(
v1

.
= s(s(v0)) ∧ pi(v0)

)
,

which could be rewritten as the following fact and rule:

pi(0),

pi(s(s(v1)))← pi(v1).

So for i ∈ {1, 2}, ϕ+
pi

allows one to generate all literals of the form pi(2n),

n ∈ �. It is easily verified that for i ∈ {1, 2}, ϕ−pi allows one to generate all

literals of the form ¬pi(2n+ 1), n ∈ �. More precisely, the rule represented by

ϕ−p1
, namely,

¬p1(v1)← v1 �
.
= 0 ∧ ∀v0

(
v1 �

.
= s(s(v0)) ∨ ¬p1(v0)

)
could be naturally implemented from {p1(0), p1(s(s(v1)))← p1(v1)} using nega-

tion as finite failure, and its syntax is naturally related to Cark’s completion

of the set {p1(0), p1(s(s(v1)))← p1(v1)}.
• The rule ¬p2(v1)← ϕ−p2

, namely,

¬p2(v1)← v1
.
= s(0) ∨ ∃v0

(
v1

.
= s(s(v0)) ∧ ¬p2(v0)

)
is very similar to the rule p2(v1)← ϕ+

p2
, and could be rewritten as

¬p2(s(0)),

¬p2(s(s(v1)))← ¬p2(v1)

to generate {¬p2(2n+ 1) | n ∈ �} similarly to the way {p2(2n) | n ∈ �} would

be generated using p2(v1)← ϕ+
p2

.

• The formulas ϕ+
p3

and ϕ−p3
offer a third way of generating the set of even

numbers and its complement, with both the positive rule p3(v1)← ϕ+
p3

and the

negative rule ¬p3(v1)← ϕ−p3
being used alternatively, starting with the positive

rule.

• Finally, ϕ+
p4

and ϕ−p4
represent the rules

p4(v1)← p4(s(s(v1))),

¬p4(v1)← ¬p4(s(s(v1))),

and would not generate any literal.

The second item in Definition 4 captures the unique name axioms that come with

the definition of Clark’s completion of a logic program. Making
.
= a logical symbol
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amounts to building into the logic a notion of identity stronger than the usual, less

restrictive notion of equality, which in our framework is nonlogical and has to be

axiomatised if needed: = is then put into V� and its intended interpretation captured

by any formal logic program (ϕε℘)(℘,ε)∈�(V�) such that ϕ+
= is of the form

∨
X where

X is a superset of{
v1

.
= v2, v2 = v1, ∃v0(v1 = v0 ∧ v0 = v2)

}
∪{

∃v3 . . . ∃v3+2n−1

(
v3 = v3+n ∧ · · · ∧ v3+n−1 = v3+2n−1 ∧

v1
.
= f(v3, . . . , v3+n−1) ∧ v2

.
= f(v3+n, . . . , v3+2n−1)

) ∣∣∣
n ∈ �, f is an n-ary function symbol in V�

}
,

ϕ−= is of the form
∨
X where X contains

∃v0
(
(v0 = v1 ∧ v0 �= v2) ∨ (v0 �= v1 ∧ v0 = v2)

)
and for all n ∈ �, ℘ ∈ Prd(V�, n) and ε ∈ {+,−}, ϕε℘ is of the form

∨
X where X

contains

∃vn+1 . . . ∃v2n
(
v1 = vn+1 ∧ · · · ∧ vn = v2n ∧℘ε(vn+1, . . . , v2n)

)
.

Identity is a key notion in logic programming as it is at the heart of the unification

algorithm, and the usual approach is to treat identity and equality as equivalent,

with the restriction to the class of Herbrand interpretations as a justification for the

identification of both notions. Our approach consists in logically defining identity

from V, the vocabulary used to describe a structure, and in axiomatising equality

from V�, the vocabulary used to talk about a structure. As a consequence, equality

and Herbrand structures are not interdependent: if infinitely many closed terms are

‘unspeakable of’ then equality as axiomatised above behaves equivalently to the way

it behaves w.r.t. the classical notion of logical consequence.

Definition 8

Given a formal logic program P = (ϕε℘)(℘,ε)∈�(V�), the classical logical form of P is

defined as

{ϕε℘ → ℘ε(v1, . . . , vn) | n ∈ �, ℘ ∈ Prd(V�, n), ε ∈ {+,−}}.

Of course, �W applied to the classical logical form of a formal logic program

P does not adequately capture the logical meaning of P. An appropriate logical

reading of a formal logic program, which amounts to an appropriate denotational

semantics, requires more than reading the arrow that links the left-hand side and

right-hand side of a rule as a logical implication: it requires the explicit use of a

modal operator of necessity to capture the notion of derivability, or provability, in

the style of epistemic logic (Moore 1985; Marek and Truszczyński 1991). We will

complete this task in another paper.

Notation 9

Given a formal logic program P, we let Clf(P) denote the classical logical form of

P.
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The general logic programs that are the object of Kripke–Kleene semantics, the

well-founded semantics and the stable model semantics can be seen as a particular

case of formal logic programs where the negative rules are fully determined by the

positive rules and can be left implicit; they are in one-to-one correspondence with

the formal logic programs defined next.

Definition 9

Let a formal logic program P = (ϕε℘)(℘,ε)∈�(V�) be given. We say that P is symmetric

iff for all ℘ ∈ Prd(V�), ϕ−℘ is identical to ∼ϕ+
℘ .

The next definition introduces a notion that is a key property of symmetric formal

logic programs.

Definition 10

We say that a formal logic program (ϕε℘)(℘,ε)∈�(V�) is locally consistent iff for all

℘ ∈ Prd(V�), no closed instance of ϕ+
℘ ∧ ϕ−℘ has a model in W.

Property 1

A symmetric formal logic program is locally consistent.

4.2 Generated literals

The mechanistic view on (the rules of) a formal logic program P presented in

Section 2.2 allows one to talk about the literals over V� generated by P; these

literals make up a set that we denote by [P ]. More precisely, a literal ψ over V� is

generated by P and put into [P ] if it is possible to successively fire rules, starting

with rules whose body can be unconditionally activated (such as
∧

�), till enough

literals have been generated and put into [P ] so that there exists a rule in P of the

form χ ← ξ and a substitution θ such that ψ is χθ and for all closed substitutions

θ′, ξ(θθ′) can be activated, thanks to the literals in [P ]; the notation that follows

will allow us to easily refer to a formula (determined by ψ and P) of the form ξθ′′

where θ′′ is θ with some of the variables in its range being possibly renamed so that

none of the variables that occurs in ψ (that is, in χθ) is captured when applying the

substitution θ′′ to ξ.

Notation 10

Let a formal logic program P be given. For all n ∈ �, ℘ ∈ Prd(V�, n), terms

t1, . . . , tn and ε ∈ {+,−}, we let P[℘ε(t1, . . . , tn)] denote a formula of the form

ϕε℘[t′1/v1, . . . , t
′
n/vn] whose closed instances are precisely the formulas of the form

ϕε℘[t′′1/v1, . . . , t
′′
n/vn] with (t′′1 , . . . , t

′′
n) any closed instance of (t1, . . . , tn).

In the context of Notation 10, observe that if none of the variables occurring in

one of t1, . . . , tn is captured by quantifiers in ϕε℘ when simultaneously substituting

v1, . . . , vn in ϕε℘ by t1, . . . , tn, respectively, then a natural choice for P[℘ε(t1, . . . , tn)]

is ϕε℘[t1/v1, . . . , tn/vn] itself. Using Notation 10, one can then concisely define the set

of literals over V� generated by a formal logic program as a fixed point.
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Notation 11

Given a formal logic program P, we denote by [P ] the (unique) ⊆-minimal set of

literals over V� that forces P[ψ] for all ψ ∈ [P ].

Of course, we could alternatively define [P ] in terms of a transfinite construction

and collect at some round, indexed by an ordinal, the set of literals over V� that

can be generated from P by activating some instances of the bodies of some of

P’s rules, thanks to the literals generated at previous rounds. This construction is

defined in Notation 12, and the fact that it is an alternative definition to [P ] is

stated as Property 2.

Notation 12

Let a formal logic program P be given. Inductively, define a sequence ([P ]α)α∈Ord

of sets of literals over V� as follows. Let an ordinal α be given and assume that for

all β < α, [P ]β has been defined. Then denote by [P ]α the set of all literals ψ over

V� with
⋃
β<α[P ]β �P[ψ].

Property 2

For all formal logic programs P, [P ] =
⋃
α∈Ord[P ]α.

Example 3

If P is the formal logic program of Example 2 then

[P ] = {pi(2n), ¬pi(2n+ 1) | i ∈ {1, 2, 3}, n ∈ �} ∪ {q1}.

It is easy to verify that the set of literals over V� generated by a formal logic

program is closed under forcing.

Property 3

For all formal logic programs P and literals ψ over V�, [P ] � ψ iff ψ ∈ [P ].

Local consistency as introduced in Definition 10 will play a pivotal role in the

statements of some propositions, but the more general notion of plain consistency

given next is a better counterpart to the classical concept of a consistent theory.

Definition 11

A formal logic program P is said to be consistent just in case [P ] is consistent.

Property 4

Every locally consistent formal logic program is consistent.

Let a formal logic program P = (ϕε℘)(℘,ε)∈�(V�) be given. When V� = V, the

definition of [P ] can involve closed literals only—a consequence of Property 3 and

the next property. In the general case, [P ] is a set of possibly nonclosed literals,

and some rules might fire because their bodies are activated, thanks to such literals.

For instance, assume that V� contains a unary predicate symbol p and a nullary

predicate symbol q, ϕ+
p =

∧
�, and ϕ+

q = ∀v0 p(v0). Then [P ] contains p(v0), hence

it contains q. Also, [P ] contains p(t) for all terms t over V�, hence in particular

for all closed terms t over V�. Still, if at least one of V’s constants does not belong

to V�, then the set of all closed members of [P ] of the form p(t) (with t a closed

term over V�) does not force ∀v0 p(v0), which shows that the next property would

not hold if the assumption V� = V was dropped.
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Property 5

Let a formal logic program P be given. If V� = V then the set of closed members

of [P ] is the (unique) ⊆-minimal set X of closed literals with X � {P[ψ] | ψ ∈ X}.

The classical logical form of a formal logic program P, formalised in Definition 8,

does not capture in a satisfactory way the logical meaning of P, but it is still well

behaved, as expressed by the property and the corollary that follow.

Property 6

For all formal logic programs P, Clf(P) �W [P ].

Corollary 1

For all formal logic programs P, if [P ] is complete then the set of closed instances

of atoms in [P ] is a model of Clf(P).

4.3 Characterisation of Kripke–Kleene semantics

The characterisation is based on the following definition.

Definition 12

A partial interpretation (over V) is a consistent set of closed literals.

Kripke–Kleene semantics is usually presented in a three-valued logical setting.

The relationship between Definition 12 and a three-valued logical setting is the

following. Let M be a partial interpretation, and let a closed atom ϕ be given. Then

the truth value of ϕ in M can be set to true if ϕ ∈M, to false if ¬ϕ ∈M, and to

a third value or to ‘undefined’ otherwise. Definition 13 then generalises the notion

of a partial model of a general logic program—that as we have pointed out, can

be seen as a symmetric formal logic program whose negative rules have not been

explicitly written.

Definition 13

Let a formal logic program P = (ϕε℘)(℘,ε)∈�(V�) be given. A partial model of P is a

partial interpretation M such that for all n ∈ �, ℘ ∈ Prd(V�, n), closed terms t1, . . . ,

tn and ε ∈ {+,−}, M contains ℘ε(t1, . . . , tn) iff M forces ϕε℘[t1/v1, . . . , tn/vn].

Given a formal logic program P, a ⊆-minimal partial model of P is referred to

more simply as a minimal partial model of P. Proposition 1 expresses that the

generalisation of Kripke–Kleene semantics given in Definition 13 is equivalent to

our base semantics of a consistent formal logic program, provided that V� is equal

to V, which is the underlying assumption of all frameworks where that semantics is

considered. Note that Proposition 1 still applies to more general frameworks as it

deals with formal logic programs that might not be symmetric.

Proposition 1

Assume that V� = V. Let a consistent formal logic program P be given. Then P has

a unique minimal partial model, which is nothing but the set of closed instances of

members of [P ].
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Proof

Let X denote the set of partial models of P. It is immediately verified that

• the set of closed instances of members of [P ] is included in
⋂
X;

• the set of closed instances of members of [P ] belongs to X.

Hence
⋂
X, being equal to the set of closed instances of members of [P ], is a

partial model of P. �

5 Extensors, and relationships to particular semantics

5.1 Extensors

We now formalise the operation, discussed in Section 2.3, of transforming a formal

logic program P into another formal logic program P+Ω E, where Ω selects some

occurrences of literals in the bodies of P’s rules and E is a set of literals, the

intended meaning of P+Ω E being: ‘in P, assume E in the contexts indicated by Ω.

Definition 14 defines the kind of formal object denoted by Ω. Notation 13 specifies

three particular cases the first two of which will play a special role in relation to the

stable model and the well-founded semantics. Recall Definition 3 for the notion of

an occurrence of a literal in a formula.

Definition 14

Let a formal logic program P = (ϕε℘)(℘,ε)∈�(V�) be given. A literal marker for P is a

sequence of the form (Oε℘)(℘,ε)∈�(V�) where for all ℘ ∈ Prd(V�) and ε ∈ {+,−}, Oε℘ is

a set of occurrences of literals in ϕε℘.

Notation 13

Let a formal logic program P and a literal marker Ω for P be given. Write P as

(ϕε℘)(℘,ε)∈�(V�) and Ω as (Oε℘)(℘,ε)∈�(V�).

• If for all ℘ ∈ Prd(V�), O+
℘ is empty and O−℘ is the set of all occurrences of

negated atoms in ϕ−℘ , then we denote Ω by 〈·,−〉P.

• If for all ℘ ∈ Prd(V�) and ε ∈ {+,−}, Oε℘ is the set of all occurrences of

negated atoms in ϕε℘, then we denote Ω by 〈−,−〉P.

• If for all ℘ ∈ Prd(V�) and ε ∈ {+,−}, Oε℘ is the set of all occurrences of literals

in ϕε℘, then we denote Ω by 〈±,±〉P.

In Section 2.3, we gave the following introductory example. Assume that V�

contains the constant 0, the unary function symbol s and three unary predicate

symbols p, q, and r. Let P be a formal logic program, say (ϕε℘)(℘,ε)∈�(V�), such that

ϕ+
p is equal to (

p(v1) ∨ q(v1)
)
∧

(
p(v1) ∨ r(v1)

)
.

Let Ω = (Oε℘)(℘,ε)∈�(V�) be the literal marker for P such that O+
p is equal to

{{ϕ+
p , p(v1) ∨ q(v1), q(v1)}, {ϕ+

p , p(v1) ∨ r(v1), p(v1)}},

which corresponds to marking ϕ+
p as(

p(v1) ∨ q(v1)
�

)
∧

(
p(v1)

�
∨ r(v1)

)
.
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Let E be defined as {p(2n) | n ∈ �}. Then P +Ω E is a formal logic program,

say (ψε℘)(℘,ε)∈�(V�), such that ψ+
p will be defined in such a way that it is logically

equivalent in W to

(p(v1) ∨ q(v1)) ∧
(
p(v1) ∨

∨
n∈�

v1
.
= 2n ∨ r(v1)

)
.

If we modify the example and assume that E is rather set to {p(s(s(v0)))}, then ψ+
p

will be defined in such a way that it is logically equivalent in W to

(p(v1) ∨ q(v1)) ∧ (p(v1) ∨ ∃v0
(
v1

.
= s(s(v0))

)
∨ r(v1)).

The eventual definition of P +Ω E for arbitrary choices of P, Ω and E, will be a

straightforward generalisation of those examples. One should keep in mind that E

will eventually be chosen as a set of literals over V� (as opposed to a set of literals

over V), with V and V� being possibly different, which implies that again, we cannot

assume in full generality that E can be restricted to consist of closed literals only.

The notation that follows should be thought of as recording the set of all possible

substitutions, thanks to which a given formula ϕ can be shown to subsume some

member of a set E of formulas.

Notation 14

Given a formula ϕ, n ∈ �, distinct variables x1, . . . , xn with fv(ϕ) = {x1, . . . , xn},
and a set E of formulas, we let Unif(ϕ,E) denote the set of all formulas of the form

∃y1 . . . ∃ym(x1
.
= t1 ∧ . . . ∧ xn

.
= tn),

where t1, . . . , tn are terms over V�, m is a member of �, y1, . . . , ym are distinct

variables, all distinct from x1, . . . , xn, {y1, . . . , ym} is the set of variables that occur

in at least one of t1, . . . , tn and for all closed terms t′1, . . . , t′n, if (t′1, . . . , t
′
n) is an

instance of (t1, . . . , tn) then ϕ[t′1/x1, . . . , t
′
n/xn] is an instance of a member of E.

In the propositional case, n = 0 and Notation 14 simplifies the definition of

Unif(ϕ,E) to {
∧

�} if ϕ ∈ E, and to � otherwise. The next notation will describe

the operations of strengthening or weakening some occurrences of literals in a

formula: given a formula ϕ, a set O of occurrences of literals in ϕ and a set E of

literals,

• �OEϕ will be a formula obtained from ϕ by assuming that every occurrence of

a literal in ϕ that belongs to O is false unless it subsumes some member of E;

• �O
Eϕ will be a formula obtained from ϕ by assuming that every occurrence of

a literal in ϕ that belongs to O is true if it subsumes some member of E.

Note that �OEϕ and �O
Eϕ do not denote two notions that differ only in that one

refers to ‘false’ when the other refers to ‘true’. This may be more easily observed,

thanks to the following alternative, but less precise, informal description of �OEϕ
and �O

Eϕ: an occurrence of a literal in ϕ that belongs to O is true in �OEϕ iff it

subsumes some member of E, whereas an occurrence of a literal in ϕ that belongs

to O is true in �O
Eϕ iff it subsumes a member of E or if it can be shown to be true.
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The first operation prepares the technical definition of a formal logic program

obtained from P and E, and denoted P |Ω E, which will be useful for formalising

in our setting the answer-set and the stable model semantics. The second operation

prepares the definition of P +Ω E. Hence to develop our framework, only the

notation �O
Eϕ is needed: the notation �OEϕ is used only to reformulate the usual

definitions of the answer-set and the stable model semantics in a way that will make

it easier to establish their relationship to our setting. To relate our framework to the

stable model semantics, Ω will be set to 〈−,−〉P, and to relate it to the well-founded

semantics, Ω will be set to either 〈−,−〉P or 〈·,−〉P (both options are equally suitable),

which prompts for a special notation, that of Notation 16. Both P |Ω E and P+Ω E

are formally defined in Notation 17.

Notation 15

Let E be a set of literals. We inductively define for all formulas ϕ and sets O of

occurrences of literals in ϕ two formulas �OEϕ and �O
Eϕ. Let ϕ ∈ Lω1ω(V) and a set

O of occurrences of literals in ϕ be given.

• Suppose that ϕ is an identity, a distinction, or a literal.

— If O = � then both �OEϕ and �O
Eϕ are ϕ.

— If O = {{ϕ}} then �OEϕ is
∨

Unif(ϕ,E) and �O
Eϕ is

∨
{ϕ} ∪Unif(ϕ,E).

• Suppose that ϕ is of the form
∨
X or

∧
X. For all ψ ∈ X, let Oψ be the

(unique) set of occurrences of literals in ψ, say o, with o ∪ {ϕ} ∈ O.

— If ϕ is the formula
∨
X then �OEϕ is

∨
{�OψE ψ | ψ ∈ X} and �O

Eϕ is∨
{�Oψ

E ψ | ψ ∈ X}.
— If ϕ is the formula

∧
X then �OEϕ is

∧
{�OψE ψ | ψ ∈ X} and �O

Eϕ is∧
{�Oψ

E ψ | ψ ∈ X}.
• Suppose that ϕ is of the form ∃xψ or ∀xψ. Let Oψ be the (unique) set of

occurrences of literals in ψ, say o, with o ∪ {ϕ} ∈ O.

— If ϕ is the formula ∃xψ then �OEϕ and �O
Eϕ are the existential closure of

�OψE ψ and ∃x�
Oψ
E ψ, respectively3.

— If ϕ is the formula ∀xψ then �OEϕ and �O
Eϕ are the universal closure of

�OψE ψ and ∀x�
Oψ
E ψ, respectively4.

Notation 16

Given ϕ ∈ Lω1ω(V) and a set E of literals, and letting O be the set of occurrences

of negated atoms in ϕ, we write �−Eϕ for �OEϕ and �−Eϕ for �O
Eϕ.

Example 4

Suppose that P is the formal logic program of Example 2 and

E = {p3(2), p3(3), ¬p3(1), ¬p3(2), p4(2), ¬p4(1), ¬q5}.

3 We cannot write ∃x�OψE ψ as x might not occur free in �OψE ψ.
4 Similarly, we cannot write ∀x�OψE ψ as x might not occur free in �OψE ψ.
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• As Unif(¬p3(v0), E) is {v0
.
= 1, v0

.
= 2}, �−Eϕ+

p3
and �−Eϕ

+
p3

are

v1
.
= 0 ∨ ∃v0

(
v1

.
= s(v0) ∧ (v0

.
= 1 ∨ v0

.
= 2)

)
and

v1
.
= 0 ∨ ∃v0

(
v1

.
= s(v0) ∧ (¬p3(v0) ∨ v0

.
= 1 ∨ v0

.
= 2)

)
,

which are logically equivalent in W to

v1
.
= 0 ∨ v1

.
= 2 ∨ v1

.
= 3

and

v1
.
= 0 ∨ v1

.
= 2 ∨ v1

.
= 3 ∨ ∃v0

(
v1

.
= s(v0) ∧ ¬p3(v0)

)
,

respectively.

• As ϕ+
p4

does not contain any occurrence of a negated atom, �−Eϕ+
p4

and �−Eϕ
+
p4

are both identical to ϕ+
p4

.

• As ¬p4(s(s(v1))) does not unify with ¬p4(1) and ¬q3 does not belong to E,

�−Eϕ−p4
and �−Eϕ−q2

are both identical to
∨

�, while �−Eϕ
−
p4

and �−Eϕ
−
q2

are

logically equivalent in W to ϕ−p4
and ϕ−q2

, respectively.

• As ¬q5 belongs to E, Unif(¬q5, E) is {
∧

�}, and �−Eϕ+
q5

and �−Eϕ
+
q5

are both

logically equivalent in W to
∧

�.

Notation 17

Let a formal logic program P and a literal marker Ω for P be given. Write P as

(ϕε℘)(℘,ε)∈�(V�) and Ω as (Oε℘)(℘,ε)∈�(V�). Let a set E of literals be given.

• We let P |Ω E denote (�O
ε
℘

E ϕε℘)(℘,ε)∈�(V�).

• We let P+Ω E denote (�
Oε℘
E ϕε℘)(℘,ε)∈�(V�).

Property 7

For all formal logic programs P, literal markers Ω for P and sets E of literals,

[P ] ⊆ [P+Ω E ].

The next property will be applied in the particular case where one of E and F

denotes a set of literals over V�, and the other the set of its closed instances.

Property 8

Let a formal logic program P, a literal marker Ω for P, and two sets E and F of

literals be such that E and F have the same closed instances. Then [P|Ω E ] is equal

to [P |Ω F ] and [P+Ω E ] is equal to [P+Ω F ].

The next lemma will play a crucial role in relating our framework to the answer-set

and the stable model semantics.

Lemma 1

Let a formal logic program P, a literal marker Ω for P, and a set E of literals

be given. Then [P |Ω E ] ⊆ [P +Ω E ]. Also, if all closed instances of members of

[P |Ω E ] are instances of members of E then [P+Ω E ] = [P |Ω E ].
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Proof

Write Ω = (Oε℘)(℘,ε)∈�(V�).

To verify the first part of the lemma, it suffices by Property 2 to show that for

all ordinals α, [P |Ω E ]α ⊆ [P +Ω E ]α. Proof is by induction. Let α ∈ Ord be

given, and assume that for all β < α, [P |Ω E ]β ⊆ [P +Ω E ]β . Let n ∈ �, ℘ ∈
Prd(V�, n), terms t1, . . . , tn over V� and ε ∈ {+,−} be such that ℘ε(t1, . . . , tn) ∈ [P|Ω
E ]α. Then

⋃
β<α[P |Ω E ]β ��O

ε
℘

E P
[
℘ε[t1/v1, . . . , tn/vn]

]
. Moreover, it is immediately

verified that {�O
ε
℘

E P
[
℘ε[t1/v1, . . . , tn/vn]

]
} logically implies �

Oε℘
E P

[
℘ε[t1/v1, . . . , tn/vn]

]
in W. This together with the inductive hypothesis implies that

⋃
β<α[P +Ω E ]β

forces �
Oε℘
E P

[
℘ε[t1/v1, . . . , tn/vn]

]
; hence ℘ε(t1, . . . , tn) ∈ [P +Ω E ]α, completing the

verification that [P |Ω E ] ⊆ [P+Ω E ].

Assume that all closed instances of members of [P|ΩE ] are instances of members

of E. Suppose for a contradiction that [P +Ω E ] � [P |Ω E ]. By Property 2,

let ordinal α be least with [P +Ω E ]α � [P |Ω E ]. Let n ∈ �, ℘ ∈ Prd(V�, n),

terms t1, . . . , tn over V� and ε ∈ {+,−} be such that ℘ε(t1, . . . , tn) belongs to

[P +Ω E ]α \ [P |Ω E ]. Then
⋃
β<α[P +Ω E ]β � �

Oε℘
E P

[
℘ε[t1/v1, . . . , tn/vn]

]
; so by

the choice of α, [P |Ω E ] � �
Oε℘
E P

[
℘ε[t1/v1, . . . , tn/vn]

]
, which together with the

assumption on E, easily implies that [P |Ω E ] forces �O
ε
℘

E P
[
℘ε[t1/v1, . . . , tn/vn]

]
.

Hence ℘ε(t1, . . . , tn) belongs to [P |Ω E ]; contradiction. �

The transformation of a formal logic program P into a formal logic program of

the form P+Ω E will be of interest only in case Ω and E are chosen in such a way

that the condition in the definition that follows holds.

Definition 15

Let a formal logic program P and a literal marker Ω for P be given. We call an

extensor for (P, Ω) any set E of literals over V� such that E∪ [P+ΩE ] is consistent.

Before we end this section, we need one more technical notation. In relation

to the well-founded semantics, it will be convenient to introduce an intermediate

construction involving a family of extensors: a formal logic program P will be

extended to a formal logic program of the form P+Ω E0, and then to a formal logic

program of the form (P +Ω E0) +Ω1
E1, and then to a formal logic program of the

form (P+Ω E0 ∪E1) +Ω2
E2, etc. Now Ω1, Ω2, etc., will not be arbitrary: they will all

select occurrences of literals in P+Ω E0, P+Ω E0 ∪ E1, etc., determined by Ω, even

though these occurrences of literals are taken from different formal logic programs

as P is being successively transformed. For instance, in Example 4, the occurrence

of ¬p3(v0) in ϕ+
p3

can be ‘tracked down’ in �−Eϕ
+
p3

, though the (unique) occurrence of

¬p3(v0) in ϕ+
p3

is of course different to the (unique) occurrence of ¬p3(v0) in �−Eϕ
+
p3

.

The following notation will allow us to formally express Ω1, Ω2, etc., from Ω and

E0, E1, etc., and write Ω + E0 for Ω1, Ω + E0 ∪ E1 for Ω2, etc.

Notation 18

For all formulas ϕ, sets O of occurrences of literals in ϕ and nonsingleton members

o of O, let ρ(O, o) be the set of occurrences o′ of literals in the formula in which
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o \ {ϕ} is an occurrence of a literal, and such that o′ ∪ {ϕ} ∈ O. Given a formula ϕ,

a set O of occurrences of literals in ϕ, a set E of literals and a member o of O, set

�O
Eo =

{
{�O

Eϕ} ∪�ρ(O, o)
E o \{ϕ} if ϕ is not a literal,

{�O
Eϕ, ϕ} otherwise.

Notation 19

Let a formal logic program P, a literal marker Ω for P and a set E of literals be

given. Write Ω = (Oε℘)(℘,ε)∈�(V�). We let Ω + E denote(
{�Oε℘

E o | o ∈ Oε℘}
)
(℘,ε)∈�(V�)

.

The property that follows justifies why the construction described before Nota-

tion 18 refers to a formal logic program of the form (P +Ω E0 ∪ E1) +Ω2
E2 rather

than to a formal logic program of the form
(
(P+Ω E0) +Ω1

E1

)
+Ω2

E2.

Property 9

Let a formal logic program P, a literal marker Ω for P, and two sets E and F of

literals be given. Then [P+Ω E ∪ F ] = [ (P+Ω E) +Ω+E F ].

5.2 Special extensors

The task of casting the well-founded, the stable model, and the answer-set semantics

into our framework boils down to defining appropriate literal markers and extensors.

At a fundamental level, the question ‘what are legitimate contextual assumptions?’

replaces the question ‘how does negation behave?’ We now define the key properties

that literal markers and extensors can enjoy and allow one to complete that task.

Definition 16

Let a formal logic program P, a literal marker Ω for P, and an extensor E for

(P, Ω) be given.

• We say that E is imperative iff for all closed literals ϕ,

ϕ is not an instance of a member of E iff [P+Ω E ] �∼ϕ.

• We say that E is implicative iff E ⊆ [P+Ω E ].

• We say that E is supporting iff for all ψ ∈ E, [P ] � (P+Ω E)[ψ].

• Given an ordinal α, we say that E is α-foundational iff there exists a sequence

(Eβ)β<α of sets of literals such that E =
⋃
β<α Eβ and for all ordinals β < α,

Eβ is a supporting extensor for (P+Ω

⋃
γ<β Eγ, Ω +

⋃
γ<β Eγ).

• We say that E is foundational iff there exists a sequence (Eα)α∈Ord of sets

of literals such that E =
⋃
α∈Ord Eα and for all ordinals α,

⋃
β<α Eβ is an

α-foundational extensor for (P, Ω).

Intuitively, an imperative extensor is a maximal set of hypotheses that will not be

refuted, an implicative extensor is a set of hypotheses that will be confirmed, and

a supporting extensor for P is a set of hypotheses that will be confirmed, thanks

to themselves and to the literals generated by P (but not to any nonhypothesis
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generated by a rule that fires only thanks to some hypothesis that activates its

body). When the literal marker Ω marks all occurrences of literals that can unify

with a hypothesis (so any hypothesis can be used in any context), supporting

extensors have an alternative definition. This is what the next property expresses,

with a corollary that will be used in relation to the well-founded semantics.

Property 10

Let a formal logic program P = (ϕε℘)(℘,ε)∈�(V�), a literal marker Ω = (Oε℘)(℘,ε)∈�(V�)

for P, and an extensor E for (P, Ω) be such that for all n ∈ �, ℘ ∈ Prd(V�, n),

ε ∈ {+,−}, literals ψ and occurrences o of ψ in ϕε℘, if some closed instance of ψ is

an instance of a member of E then o ∈ Oε℘. Then E is supporting iff for all ψ ∈ E,

[P ] ∪ E �P[ψ].

Corollary 2

Let a formal logic program P be given. Let a supporting extensor E for (P, 〈·,−〉P)
consist of negated atoms only. Then E is supporting iff for all ψ ∈ E, [P ]∪E�P[ψ].

Recall that we have defined a set X of literals to be saturated iff every closed

atom is an instance of a member of at least one of the sets X and ∼X.

Property 11

For all formal logic programs P and literal markers Ω for P, all imperative extensors

for (P, Ω) are saturated.

Property 12

For all formal logic programs P and literal markers Ω for P, all supporting extensors

for (P, Ω) are implicative.

Property 13

Let a formal logic program P, a literal marker Ω for P, and an extensor E for

(P, Ω) be given.

• For all ordinals α, if E is α-foundational then E is foundational.

• For all ordinals α, if E is α-foundational then E is β-foundational for all

ordinals β > α.

• If E is foundational then there is α ∈ Ord such that E is α-foundational.

It will be shown that the well-founded semantics is related to foundational

extensors, and the answer-set semantics to imperative extensors. As for the stable

model semantics, it will be shown to be related to both imperative and implicative

extensors, by virtue of the following property.

Property 14

For all formal logic programs P, literal markers Ω for P and complete sets E of

literals over V�, E is an implicative extensor for (P, Ω) iff E is an imperative extensor

for (P, Ω).

It is fair to say that to cast the answer-set, the stable model and the well-founded

semantics into our framework, it would be sufficient to work under the assumption

that V� = V: either these semantics are developed in a propositional setting, or
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they restrict the class of interpretations to Herbrand structures. There is no need

to impose such restrictions, but a natural question is how much more general the

notions become when the equality V� = V is not imposed. In relation to the answer-

set and the stable model semantics, the answer is: not much more. Indeed, the

following proposition establishes that when V� and V are distinct, the notion of

imperative extensor is often degenerate.

Proposition 2

Suppose that V \ V� contains a function symbol of arity 1 at least. Let a formal

logic program P, a literal marker Ω for P, and an imperative extensor E for (P, Ω)

be given. Then for all n ∈ � and ℘ ∈ Prd(V�, n), the set of members of [P +Ω E ]

of the form ℘ε(t1, . . . , tn) is either empty or equal to the set of all atoms over V� of

the form ℘(t1, . . . , tn) or equal to the set of all negated atoms over V� of the form

¬℘(t1, . . . , tn).

Proof

There is nothing to prove if V contains no constant, so suppose otherwise. Let n ∈ �
and ℘ ∈ Prd(V�, n) be given.

• Let X be the set of n-tuples of terms over V�, say (t1, . . . , tn), such that for

all closed terms t′1, . . . , t′n, if (t′1, . . . , t
′
n) is an instance of (t1, . . . , tn) then both

℘(t′1, . . . , t
′
n) and ¬℘(t′1, . . . , t

′
n) are instances of members of E.

• For all ε ∈ {+,−}, let Xε be the set of n-tuples of terms over V�, say (t1, . . . , tn),

such that ℘ε(t1, . . . , tn) ∈ [P+Ω E ].

Using the fact that E is an imperative extensor for (P, Ω), it is easy to verify that

X, X+, and X− are disjoint and that for all closed terms t1, . . . , tn, (t1, . . . , tn) is

an instance of some member of X ∪X+ ∪X−. Let a nonnullary function symbol f

in V \ V� be given. Then there exists an n-tuple (ι1, . . . , ιn) of distinct closed terms

that all start with f. Obviously, for all terms t1, . . . , tn over V�, if (ι1, . . . , ιn) is an

instance of (t1, . . . , tn) then t1, . . . , tn are distinct variables. So either all n-tuples of

closed terms are instances of some member of X, in which case [P+Ω E ] contains

no literal over V� of the form ℘(t1, . . . , tn) or ¬℘(t1, . . . , tn), or all n-tuples of closed

terms are instances of some member of X+, in which case [P +Ω E ] contains all

literals over V� of the form ℘(t1, . . . , tn), or all n-tuples of closed terms are instances

of some member of X−, in which case [P+Ω E ] contains all literals over V� of the

form ¬℘(t1, . . . , tn), completing the proof of the proposition. �

The following example shows that if V \ V� does not contain a function symbol

of arity 1 at least, then the notion of imperative extensor can be nondegenerate.

Example 5

Suppose that V consists of 0, s and a binary predicate symbol p, and assume that

V� = {s, p}. Let P be the formal logic program determined by ϕ+
p ≡ v1

.
= v2 and

ϕ−p ≡
∨

�. Let E be the set of literals defined as

{p(v1, v2)} ∪ {¬p(sn(v0), v0), ¬p(v0, sn(v0)) | n ∈ � \ {0}}.

Set Ω = (�, �). Then E is an imperative extensor for (P, Ω) and [P+Ω E ], which

is obviously equal to [P ], is {p(sn(vi), sn(vi)) | n ∈ �, i ∈ �}.
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To summarise the previous considerations, we have not assumed in Definition 16

that V� and V are equal simply because none of the results we want to establish

needs that assumption to be made. But the notion of imperative extensor (which

is the key notion in relation to the stable model and the answer-set semantics) is

defined in such a way that it is only interesting when V� = V or when V� and V

take very specific values.

5.3 A few technical results

The results that follow will be used in the sequel.

Lemma 2

Let a formal logic program P and a literal marker Ω for P be given. For all sets E

and F of literals, if E ⊆ F then [P+Ω E ] ⊆ [P+Ω F ].

Proof

Let E and F be two sets of literals with E ⊆ F . It is immediately verified by

induction that for all ordinals α, [P +Ω E ]α ⊆ [P +Ω F ]α. We conclude with

Property 2. �

Lemma 3

Let a formal logic program P and a literal marker Ω for P be given. For all sets E

and F of literals,
[
P+Ω [P+Ω E ] ∪ F

]
⊆ [P+Ω E ∪ F ].

Proof

Let E and F be two sets of literals. Let ordinal λ be such that [P +Ω E ]λ is

equal to [P +Ω E ]λ+1. It is easy to verify by induction that for all ordinals α,

[P+Ω [P+Ω E ] ∪ F ]α ⊆ [P+Ω E ∪ F ]λ+α. We conclude with Property 2. �

Lemma 4

For all formal logic programs P, literal markers Ω for P and implicative extensors

E for (P, Ω),
[
P+Ω [P+Ω E ]

]
= [P+Ω E ].

Proof

The lemma follows immediately from Lemmas 2 and 3. �

Corollary 3

For all formal logic programs P, literal markers Ω for P and implicative extensors

E for (P, Ω), [P+Ω E ] is an implicative extensor for (P, Ω).

Proposition 3

Let a formal logic program P be locally consistent. Let a literal marker Ω for P be

given. Let a set X of implicative extensors for (P, Ω) be such that
⋃
X is consistent.

Then
⋃
X is an extensor for (P, Ω).

Proof

Write P = (ϕε℘)(℘,ε)∈�(V�). Set E =
⋃
X. We show by induction that for all ordinals

α, E ∪ [P +Ω E ]α is consistent. Let an ordinal α be given and assume that for

all β < α, E ∪ [P +Ω E ]β is consistent. Since P is locally consistent and E is

consistent (used in the case where α = 0), there exists no n ∈ �, ℘ ∈ Prd(V�, n) and
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closed terms t1, . . . , tn such that E ∪
⋃
β<α[P+Ω E ]β forces ϕ+

℘[t1/v1, . . . , tn/vn] and

ϕ−℘[t1/v1, . . . , tn/vn]. Hence E ∪ [P +Ω E ]α cannot be inconsistent unless the set of

closed instances of members of [P +Ω E ]α intersects the set of closed instances of

members of ∼E. Assume that the set of closed instances of members of [P+Ω E ]α
indeed intersects the set of closed instances of members of ∼E. Since all members

of X are implicative, any closed instance of any member of E is an instance of some

member of
⋃
F∈X[P +Ω F ]. Let ordinal λ be least such that there exists a closed

literal ϕ with
⋃
F∈X[P +Ω F ]λ � ϕ and [P +Ω E ]α � ∼ϕ. Let F ∈ X and a closed

literal ϕ be such that [P+Ω F ]λ � ϕ and [P+Ω E ]α �∼ϕ. Set

Y =
⋃
β<λ

[P+Ω F ]β ∪ [P+Ω E ]α.

We derive from the choice of λ that Y is consistent. Let n ∈ �, ℘ ∈ Prd(V�, n) and

terms t1, . . . , tn be such that ϕ is ℘(t1, . . . , tn) or ¬℘(t1, . . . , tn). By the choice of ϕ,

Y forces both ϕ+
℘[t1/v1, . . . , tn/vn] and ϕ−℘[t1/v1, . . . , tn/vn], which is impossible since

P is locally consistent. We conclude that E ∪ [P+Ω E ]α is consistent. �

As an immediate consequence of Property 12 and Proposition 3:

Corollary 4

Let a formal logic program P be locally consistent. Let a literal marker Ω for P be

given. Let X be a set of supporting extensors for (P, Ω) such that
⋃
X is consistent.

Then
⋃
X is a supporting extensor for (P, Ω).

To end this section, let us give a simple application of some of the previous

observations. Complete sets of literals can obviously be identified with standard

structures, hence it is natural to ask whether a complete set of the form [P+Ω E ]

is a model of the classical logical form of P. It is easy to answer that question

positively for implicative extensors.

Proposition 4

Let a formal logic program P, a literal marker Ω for P, and an implicative extensor

E for (P, Ω) be such that [P+Ω E ] is complete. Then the set of closed instances of

atoms in [P+Ω E ] is a model of Clf(P).

Proof

Obviously, for all formulas ϕ and sets O of occurrences of literals in ϕ, ϕ logically

implies �O[
P+Ω[P+ΩE ]

]ϕ in W. It follows that Clf(P+Ω [P+Ω E ]) logically implies

Clf(P) in W. By Lemma 4, [P +Ω E ] =
[
P +Ω [P +Ω E ]

]
, and we derive from

Corollary 1 that [P+Ω E ] logically implies Clf(P+Ω [P+Ω E ]) in W. We conclude

that [P+Ω E ] �W Clf(P). �

5.4 Relationship to the answer-set semantics

In this section, we consider the enrichment of Lω1ω(V) with a second negation

operator, written not , which can be applied to any literal, and to literals only. We

do not develop the formalism beyond this minimalist syntactic consideration as we
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use not to remind the reader of the usual definition of answer-sets, but we will

not use it in an alternative definition of answer-sets that will immediately be seen

to be equivalent to the usual definition. For this purpose, let us introduce some

preliminary notation. Let a formula ϕ and a set O of occurrences of literals in ϕ be

given. We define a member ϕ[O] of the enrichment of Lω1ω(V) with not , thanks to

the inductive construction that follows.

• Suppose that ϕ is an identity, a distinction, or a literal.

— If O = � then ϕ[O] is ϕ.

— If O = {ϕ} and ϕ is an atom then ϕ[O] is not ¬ϕ.

— If O = {ϕ} and ϕ is of the form ¬ψ then ϕ[O] is not ψ.

• Suppose that ϕ is of the form
∨
X or

∧
X. For all ψ ∈ X, let Oψ be the

(unique) set of occurrences of literals in ψ, say o, with o ∪ {ϕ} ∈ O.

— If ϕ is the formula
∨
X then ϕ[O] is

∨
{ψ[Oψ] | ψ ∈ X}.

— If ϕ is the formula
∧
X then ϕ[O] is

∧
{ψ[Oψ] | ψ ∈ X}.

• Suppose that ϕ is of the form ∃xψ or ∀xψ. Let Oψ be the (unique) set of

occurrences of literals in ψ, say o, with o ∪ {ϕ} ∈ O.

— If ϕ is the formula ∃xψ then ϕ[O] is ∃xψ[Oψ].

— If ϕ is the formula ∀xψ then ϕ[O] is ∀xψ[Oψ].

Now let a formal logic program P and a literal marker Ω for P be given. Write

P = (ϕε℘)(℘,ε)∈�(V�) and Ω = (Oε℘)(℘,ε)∈�(V�), and set P[Ω] =
(
ϕε℘[Oε℘]

)
(℘,ε)∈�(V�)

. Then

P[Ω] is what is known in the literature as an extended logic program, a logic

program with two kinds of negation, ¬ and not . Conversely, let an extended logic

program G that, without loss of generality, is written in such a way that for every

n ∈ � and ℘ ∈ Prd(V�, n), G has one rule whose head is ℘(v1, . . . , vn), one rule whose

head is ¬℘(v1, . . . , vn), and no other rule whose head is of the form ℘(t1, . . . , tn)

or ¬℘(t1, . . . , tn). Then there exists a unique formal logic program P and a unique

literal marker Ω for P with G = P[Ω].

For instance, assume that V consists of four nullary predicate symbols p1, p2, p3,

and p4. Suppose that P is given by the following formulas.

ϕ+
p1
≡ p2 ∧ p3 ϕ+

p2
≡ p4 ϕ+

p3
≡ p3 ϕ+

p4
≡ ¬p3

ϕ−p1
≡ p2 ∨ ¬p4 ϕ−p2

≡ ¬p3 ϕ−p3
≡ ¬p3 ∧ p2 ϕ−p4

≡
∨

�

Suppose that Ω is given by the following sets.

O+
p1
≡ � O−p1

≡ {{p2 ∨ ¬p4, p2}, {p2 ∨ ¬p4, ¬p4}}
O+
p2
≡ � O−p2

≡ �

O+
p3
≡ � O−p3

≡ {{¬p3 ∧ p2, p2}}
O+
p4
≡ {{¬p3}} O−p4

≡ �

So (P, Ω) can be represented as

p1 ← p2 ∧ p3 p2 ← p4 p3 ← p3 p4 ← ¬p3
�

¬p1 ← p2
�
∨ ¬p4

�
¬p2 ← ¬p3 ¬p3 ← ¬p3 ∧ p2

�
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and P[Ω] is the extended logic program

p1 ← p2 ∧ p3 p2 ← p4 p3 ← p3 p4 ← not p3

¬p1 ← not ¬p2 ∨ not p4 ¬p2 ← ¬p3 ¬p3 ← ¬p3 ∧ not ¬p2

Moreover, it is easy to see that the extensors for (P, Ω) are

• all subsets E of {p1, ¬p1, ¬p2, p3, p4}, in which case [P+Ω E ] = �;

• all subsets E of {p1, ¬p1, p2, ¬p2, p3, p4, ¬p4} which contain at least one of p2

and ¬p4, in which case [P+Ω E ] = {¬p1};
• all subsets E of {p1, ¬p1, p2, ¬p2, p3, ¬p3, p4, ¬p4} which ¬p3 belongs to, in

which case [P+Ω E ] = {¬p1, p2, p4}.

Out of these, only {¬p1, p2, p3, ¬p3, p4} is imperative. Moreover, there is a unique

answer-set for P[Ω], namely {¬p1, p2, p4}.
Having realised that the class of extended logic programs is in one-to-one

correspondence with the class of pairs (P, Ω) where P is a formal logic program

and Ω a literal marker for P (the correspondence in question putting a pair of the

form (P, Ω) in relation to P[Ω]), it is easy to see that if one assumes that V� is

equal to V, then Definition 17 amounts to the notion of an answer-set—recall the

discussion at the end of Section 5.2 about not assuming that V� and V are equal.

Definition 17

Let a formal logic program P and a literal marker Ω for P be given. An answer-set

for (P, Ω ) is a consistent set of closed literals M for which there exists a (necessarily

saturated) set E of literals over V� with the following property.

• For all closed literals ϕ, ϕ ∈M iff ∼ϕ is not an instance of a member of E.

• M is the set of closed instances of members of [P |Ω E ].

The next proposition shows that the concept of imperative extensor fully charac-

terises the notion of answer-set.

Proposition 5

Let a formal logic program P, a literal marker Ω for P, and a set E of literals over

V� be given. Let F be the set of closed instances of members of E, and let M be

the set of all closed literals ϕ with ∼ϕ /∈ F . Then E is an imperative extensor for

(P, Ω ) iff M is an answer-set for (P, Ω ).

Proof

Assume that E is an imperative extensor for (P, Ω ). By Definition 16, the set of

closed instances of members of [P+Ω E ] is consistent, is precisely equal to M, and

is included in F , which implies by Lemma 1 that [P+ΩE ] = [P|ΩE ]. We conclude

that M is an answer-set for (P, Ω ).

Conversely, assume that M is an answer-set for (P, Ω). Hence M is consistent,

and so M ⊆ F . By Definition 17 and Property 8, M consists of the closed instances

of the members of [P |Ω E ], and so by Lemma 1, consists of the closed instances of

the members of [P+Ω E ]. Hence E is an imperative extensor for (P, Ω ). �
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In the answer-set semantics, not ϕ intuitively means that ϕ is not provable, that is,

not derived. The way to go from the usual presentation of the answer-set semantics

to our setting is to let hypotheses of the form ∼ϕ take effect in contexts where the

answer-set framework has statements of the form ‘ϕ is not provable’. The fact that

ϕ is either provable or not is then mapped to the constraint, captured by the notion

of imperative extensor, that either ϕ should be derived or ∼ϕ should be assumed.

5.5 Relationship to the stable model semantics

The stable model semantics takes the sets of positive rules as the object of study;

but as mentioned repeatedly, the class of these sets is in one-to-one correspondence

with the class of symmetric formal logic programs, hence it is legitimate to study

the stable model semantics on the basis of the latter. If one assumes that V� is

equal to V, then Definition 18 captures the notion of stable model—again, recall

the discussion at the end of Section 5.2 about not assuming that V� and V are

equal. Note how Notation 15 is being used in Definition 18 to basically describe the

Lloyd–Topor transformation.

Definition 18

Let a formal logic program P = (ϕε℘)(℘,ε)∈�(V�) be given. A set of closed literals M

is said to be stable for P iff there exists a complete set E of literals over V� such

that M is the set of closed instances of members of E and for all closed atoms ϕ,

ϕ ∈M iff

{�−Eϕ+
℘ → ℘(v1, . . . , vn) | n ∈ �, ℘ ∈ Prd(V�, n)} �W ϕ.

Note that the condition on E only depends on the positive rules of P. In

Definition 18, P is not assumed to be symmetric; but it is essential to assume that P
is symmetric to obtain the result stated in the proposition that follows. Together with

Property 14, this proposition shows that both concepts of imperative and implicative

extensors relative to the literal markers that collect all occurrences of all negated

atoms fully characterise the notion of stable model.

Proposition 6

For all symmetric formal logic programs P and complete sets E of literals over V�,

the set of closed instances of members of E is stable for P iff E is an implicative

extensor for (P, 〈−,−〉P).

Proof

Let a symmetric formal logic program P = (ϕε℘)(℘,ε)∈�(V�) and a complete set E of

literals over V� be given. Let E+ be the set of atoms in E, and let E− be the set of

negated atoms in E.

Suppose that the set of closed instances of members of E is stable for P.

Then Clf(P |〈−,−〉P E) logically implies E+ in W. Since negation does not occur

in the left-hand side of any implication in Clf(P |〈−,−〉P E), it follows that E+ is

a subset of [P |〈−,−〉P E ]. Let n ∈ �, ℘ ∈ Prd(V�, n), and closed terms t1, . . . , tn
be given. Since E is complete and P is symmetric, E forces one and only one of

ϕ+
℘[t1/v1, . . . , tn/vn] and ϕ−℘[t1/v1, . . . , tn/vn]. Suppose that ¬℘(t1, . . . , tn) is an instance
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of a member of E. If E � ϕ+
℘[t1/v1, . . . , tn/vn] then E+ � �−Eϕ+

℘[t1/v1, . . . , tn/vn],

hence there exists terms t′1, . . . , t′n over V� such that (t1, . . . , tn) is an instance of

(t′1, . . . , t
′
n) and ℘(t′1, . . . , t

′
n) ∈ E, contradicting the assumption that E is consistent.

We infer that E+ � �−Eϕ−℘[t1/v1, . . . , tn/vn], hence there exists terms t′1, . . . , t′n over

V� such that (t1, . . . , tn) is an instance of (t′1, . . . , t
′
n) and ¬℘(t′1, . . . , t

′
n) belongs to

[P |〈−,−〉P E ]. Suppose that ℘(t1, . . . , tn) is an instance of a member of E. Then

E � ϕ+
℘[t1/v1, . . . , tn/vn], hence E � ϕ−℘[t1/v1, . . . , tn/vn], hence E does not force

�−Eϕ−℘[t′1/v1, . . . , t
′
n/vn] for any terms t′1, . . . , t′n over V� such that (t1, . . . , tn) is

an instance of (t′1, . . . , t
′
n). It is then easy to conclude that for all closed literals ϕ,

[P |〈−,−〉P E ] � ϕ iff ϕ is an instance of a member of E. Together with Lemma 1,

this completes the verification that E is an implicative extensor for (P, 〈−,−〉P).
Conversely, assume that E is an implicative extensor for (P, 〈−,−〉P). Since E is

complete, Lemma 1 again implies that [P+〈−,−〉P E ] = [P |〈−,−〉P E ]. Set

X = {�−Eϕ+
℘ → ℘(v1, . . . , vn) | n ∈ �, ℘ ∈ Prd(V�, n)}.

Clearly, Clf(P |〈−,−〉P E), being logically equivalent in W to the complete set E, is

also logically equivalent to E−∪X in W. Hence E−∪X �W E+. Since negation does

not occur in any implication in X, this implies that X �W E+, which completes the

verification that the set of closed instances of members of E is stable for P. �

5.6 Supporting and foundational extensors

The well-founded semantics is related to the notion of foundational extensor, and

we will need to establish some of the properties that the latter enjoys in order

to establish the relationship. The notion of supporting extensor has mainly been

introduced as a useful building block in the definition of foundational extensors, but

it is interesting in its own right. By Property 12, supporting extensors are implicative

extensors, which means that they consist of hypotheses that are guaranteed to be

confirmed. But more is true. Intuitively, given a formal logic program P and a

literal marker Ω for P, a supporting extensor for (P, Ω) is sufficiently rich in literals

to ‘generate itself ’ using P and Ω, and not contradict any literal generated by

P+Ω E. So for all members ϕ of a supporting extensor E for (P, Ω), there exists a

‘constructive proof’ of ϕ, from the rules formalised as P, such that the only literals

that occur in the proof either are in [P ] or are members of E that occur in contexts

where Ω accepts that they be assumed. The next example will help grasp the idea

in the simple case where Ω accepts that any literal be assumed in any context, and

where no member of [P ] is actually needed in the ‘constructive proofs’.

Example 6

If P is the formal logic program of Example 2 then the supporting extensors for

(P, 〈±,±〉P) which are disjoint from [P ] are the consistent unions of

• {p4(2n) | n � m} where m is an arbitrary member of �,

• {¬p4(2n) | n � m} where m is an arbitrary member of �,

• {p4(2n+ 1) | n � m} where m is an arbitrary member of �,

• {¬p4(2n+ 1) | n � m} where m is an arbitrary member of �,
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• {q2, q3},
• {¬q2, ¬q3}, and

• {q4}.

Casting the well-founded semantics into our framework requires to focus on

symmetric formal logic programs only. But the notion of ⊆-maximal foundational

extensor, which will be seen to formalise the key principle behind the well-founded

semantics, can be applied to arbitrary formal logic programs, hence to P of

Example 2. For this particular formal logic program, the notion of ⊆-maximal

foundational extensor reduces to that of ⊆-maximal supporting extensor; this is

because in this particular case, the process of transfinitely transforming P with a

⊆-maximal supporting extensor converges after its first application. Also, because

of its full bias toward negated atoms, the well-founded semantics elects the literal

marker that marks all occurrences of all negated atoms in the bodies of all rules

or, alternatively, all negated atoms in the bodies of all negative rules (both choices

are equivalent). It will be seen that the well-founded semantics of P is captured

by the ⊆-maximal set of negated atoms over V� that is a foundational extensor

for (P, 〈−,−〉P) or (P, 〈·,−〉P); with respect to the previous example, that set is

{¬p4(n) | n ∈ �} ∪ {¬q2, ¬q3}.
The ‘dual’ of that semantics would be fully biased toward nonnegated atoms, and

would be captured by the ⊆-maximal set of atoms over V� that is a foundational

extensor for (P, 〈+,+〉P) or (P, 〈+,·〉P) (where 〈+,+〉P and 〈+,·〉P would denote the literal

marker for P that marks all occurrences of all nonnegated atoms in the bodies of

all rules or all positive rules, respectively); in the context of the previous example,

that set is {p4(n) | n ∈ �} ∪ {q2, q3, q4}.
A ‘balanced’ semantics in the family of the semantics determined by maximal

foundational extensors could elect a ⊆-maximal foundational extensor for (P, 〈±,±〉P)
that contains {p4(2n), ¬p4(2n+ 1) | n ∈ �}, and allows one to transform P into

a formal logic program that provides a fourth way of generating the set of even

numbers and its complement, using the predicate symbol p4—besides the three

options already available with p1, p2, and p3.

Subsuming the notion of foundational extensor given in Definition 16 is the

notion of foundational chain, which we make explicit in order to easily investigate

the properties of the foundational extensors. Given a formal logic program P and

a literal marker Ω for (P, Ω), a foundational chain for (P, Ω) can be described as

follows.

• Start with a supporting extensor E0 for (P, Ω).

• Propose a supporting extensor E1 for (P+Ω E0, Ω + E0).

• Propose a supporting extensor E2 for (P+Ω E0 ∪ E1, Ω + E0 ∪ E1).

• Etc.

Formally, this translates into the following definition.

Definition 19

Let a formal logic program P and a literal marker Ω for P be given.
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Given an ordinal α, an α-foundational chain for (P, Ω) is a sequence (Eβ)β<α of

sets of literals over V� such that for all ordinals β < α, Eβ is a supporting extensor

for (P+Ω

⋃
γ<β Eγ, Ω +

⋃
γ<β Eγ).

A foundational chain for (P, Ω) is a sequence (Eα)α∈Ord of sets of literals over V�

such that for all ordinals α, (Eβ)β<α is an α-foundational chain for (P, Ω).

The proposition that follows generalises Property 12.

Proposition 7

For all formal logic programs P and literal markers Ω for P, all foundational

extensors for (P, Ω) are implicative.

Proof

Proof is by induction. Let a formal logic program P, a literal marker Ω for P, and

a foundational chain (Eα)α∈Ord for (P, Ω) be given. Let an ordinal α be given and

suppose that for all β < α,
⋃
γ<β Eγ ⊆ [P +Ω

⋃
γ<β Eγ ]. There is nothing to verify

if α = 0. If α is a limit ordinal then it follows immediately from Lemma 2 that⋃
β<α Eβ is included in [P +Ω

⋃
β<α Eβ ]. Suppose that α is of the form δ + 1. By

inductive hypothesis,
⋃
γ<δ Eγ is included in [P +Ω

⋃
γ<δ Eγ ]. Moreover, it follows

from Properties 9 and 12 that
[
P+Ω [P+Ω

⋃
γ<δ Eγ ] ∪ Eδ

]
contains Eδ . Lemma 3

then implies that Eδ ⊆ [P+Ω

⋃
γ�δ Eγ ]. We conclude with Property 13. �

The next proposition will allow us to relate our framework to the well-founded

semantics of a formal logic program P either in terms of a particular foundational

extensor E for (P, 〈·,−〉P), or in terms of [P+〈·,−〉P E ] for a particular foundational

extensor E for (P, 〈,·,−〉P).

Proposition 8

Let a formal logic program P, a literal marker Ω for P, and a foundational extensor

E for (P, Ω) be given. Then [P+Ω E ] is a foundational extensor for (P, Ω).

Proof

By Property 13, choose an ordinal α and an α-foundational chain (Eβ)β<α for

(P, Ω) with
⋃
β<α Eβ = E. Set Eα = [P +Ω E ]. Using Property 9, Lemma 4 and

Proposition 7, it is easy to verify that (Eβ)β�α is an (α + 1) foundational chain for

(P, Ω). We conclude with Property 13 again. �

As mentioned in the discussion following Example 6, our framework and the

well-founded semantics of a formal logic program P can be related using either 〈·,−〉P
or 〈−,−〉P; this will be a consequence of the property that follows.

Property 15

Let a formal logic program P and a set E of negated atoms over V� be given.

Then E is a foundational extensor for (P, 〈·,−〉P) iff E is a foundational extensor for

(P, 〈−,−〉P).

We now state a counterpart to Corollary 4 for foundational chains.
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Proposition 9

Let a formal logic program P be locally consistent. Let a literal marker Ω for

P and a set I be given. Let a set of foundational chains for (P, Ω) of the form

{(Eσα )α∈Ord | σ ∈ I} be given. Then (
⋃
σ∈I E

σ
α )α∈Ord is a foundational chain for (P, Ω)

iff
⋃
σ∈I

⋃
α∈Ord E

σ
α is consistent.

Proof

Only one direction of the proposition requires a proof. The argument is by induction.

For all ordinals α, set Fα =
⋃
σ∈I E

σ
α . Assume that

⋃
α∈Ord Fα is consistent. Let an

ordinal α be given, and assume that for all β < α, (Fγ)γ<β is a β-foundational chain

for (P, Ω). Trivially, if α = 0 or if α is a limit ordinal then (Fβ)β<α is an α-foundational

chain for (P, Ω). Assume that α is of the form δ + 1. To complete the proof of the

proposition, it is clearly sufficient to show that Fδ ∪
[
(P+Ω

⋃
γ<δ Fγ)+Ω+

⋃
γ<δ Fγ

Fδ
]

is

consistent. By Property 9, it suffices to verify that Fδ ∪ [P+Ω

⋃
γ�δ Fγ ] is consistent.

But this is an immediate consequence of the fact that by Propositions 3 and 7,⋃
γ�δ Fγ , equal to

⋃
σ∈I

⋃
γ�δ E

σ
γ , is an extensor for (P, Ω). �

As an application of Proposition 9, we can follow the main path in the field of

logic programming, be biased toward negative information, and get the following

proposition.

Proposition 10

Let a locally consistent formal logic program P be given.

• There exists a unique ⊆-maximal set E of negated atoms over V� that is a

foundational extensor for (P, 〈·,−〉P), or equivalently, for (P, 〈−,−〉P).
• There exists a unique ⊆-maximal set F of literals over V� that is a foundational

extensor for (P, 〈·,−〉P), or equivalently, for (P, 〈−,−〉P); moreover, F is equal to

both [P+〈·,−〉P E ] and [P+〈−,−〉P E ].

Proof

The existence of a unique ⊆-maximal set E of negated atoms over V� that

is a foundational extensor for (P, 〈·,−〉P), or equivalently, for (P, 〈−,−〉P), follows

immediately from Proposition 9 and Property 15. Let Ω denote either 〈·,−〉P or 〈−,−〉P.

By Proposition 8, [P+Ω E ] is a foundational extensor for (P, Ω). Let (Fα)α∈Ord be

a foundational chain for (P, Ω). For all ordinals α, let Gα be the set of negated

atoms in Fα. We show that (Gα)α∈Ord is a foundational chain for (P, Ω). Proof is

by induction, so let α ∈ Ord be given, and assume that for all β < α, (Gγ)γ<β is

a β-foundational chain for (P, Ω). Trivially, if α = 0 or α is a limit ordinal then

(Gβ)β<α is an α-foundational chain for (P, Ω). Suppose that α is of the form δ + 1.

Obviously, [P+Ω

⋃
β<δ Fβ ] = [P+Ω

⋃
β<δ Gβ ]. This together with the fact that Fδ

is a supporting extensor for
(
[P +Ω

⋃
β<δ Fβ ], Ω +

⋃
β<δ Fβ

)
implies immediately

that Gδ is a supporting extensor for
(
[P +Ω

⋃
β<δ Gβ ], Ω +

⋃
β<δ Gβ

)
, which

completes the proof that (Gα)α∈Ord is a foundational chain for (P, Ω). Obviously,

[P+Ω

⋃
α∈Ord Gα ] = [P+Ω

⋃
α∈Ord Fα ]. Moreover,

⋃
α∈Ord Gα is a subset of E. Hence

F , which is a subset of [P+Ω

⋃
α∈Ord Fα ] by Proposition 7, is included in [P+Ω E ]

by Lemma 2. Hence [P +Ω E ] is the unique ⊆-maximal set F of literals over V�

that is a foundational extensor for (P, Ω). �
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5.7 Relationship to the well-founded semantics

The well-founded semantics takes the class of sets of positive rules as object of

study; so again, it is legitimate to study the well-founded semantics on the basis

of the class of symmetric formal logic programs. But we will see that the hypothesis of

symmetry is unnecessarily strong: it is enough to focus on locally consistent formal

logic programs. If one assumes that V� is equal to V, and if one remains in the

realm of symmetric formal logic programs, then Definition 20 captures the notion

of well-founded model. Here not assuming that V� and V are equal offers a genuine

generalisation.

Definition 20

Let a formal logic programP be given. Define two sequences (E+
α )α∈Ord and (E−α )α∈Ord

of sets of literals as follows. Let an ordinal α be given, and assume that E+
β and E−β

have been defined for all β < α.

• E+
α is defined as the set of closed instances of the ⊆-smallest set X of atoms

over V� such that for all ψ ∈ X,
⋃
β<α E

−
β ∪X forces P[ψ].

• E−α is defined as the set of closed instances of the ⊆-largest set X of negated

atoms over V� such that for all ψ ∈ X,
⋃
β<α E

+
β ∪X forces P[ψ].

Set E =
⋃
α∈Ord(E

+
α ∪ E−α ). If E is consistent, then P is said to have a well-founded

model and E is called the well-founded model of P.

Property 16

Let a formal logic program P = (ϕε℘)(℘,ε)∈�(V�) be given. Let (E+
α )α∈Ord and (E−α )α∈Ord

be the two sequences of sets of literals defined in Definition 20. Then for all ordinals

α, {�−⋃
β<α E

−
β
ϕ+
℘ → ℘(v1, . . . , vn) | n ∈ �, ℘ ∈ Prd(V�, n)} �W E+

α .

Recall that by Proposition 10, we can talk about ‘the ⊆-maximal foundational

extensor for (P, 〈·,−〉P)’ when P is locally consistent. The next proposition shows that

this extensor fully characterises the notion of well-founded model. The proposition

does more than embed the well-founded semantics into our framework as it

encompasses all formal logic programs that are locally consistent rather than just

symmetric, and as it does not assume that V� and V are equal.

Proposition 11

Let P be a locally consistent formal logic program, and let F be the ⊆-maximal

foundational extensor for (P, 〈·,−〉P). Then P has a well-founded model, which is

precisely the set of closed instances of members of F .

Proof

Let (E+
α )α∈Ord and (E−α )α∈Ord be the sequences of literals defined in Definition 20.

For all ordinals α, let D+
α be the set of atoms over V� all of whose closed instances

belong to E+
α , and let D−α be the set of negated atoms over V� all of whose closed

instances belong to E−α . Note that for all α ∈ Ord, E+
α and E−α are the sets of

closed instances of members of D+
α and D−α , respectively. Set E =

⋃
α∈Ord(E

+
α ∪ E−α ).

By Proposition 10, let (Fα)α∈Ord be a foundational chain for (P, 〈·,−〉P) such that all

members of
⋃
α∈Ord Fα are negated atoms and F = [P+〈·,−〉P

⋃
α∈Ord Fα ].
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We first show that for all ordinals α, (D−β )β<α is an α-foundational chain for

(P, 〈·,−〉P). Proof is by induction, so let ordinal α be given, and assume that for all

β < α, (D−γ )γ<β is a β-foundational chain for (P, 〈·,−〉P). Trivially, if α = 0 or α is a

limit ordinal then (D−β )β<α is an α-foundational chain for (P, 〈·,−〉P). Suppose that α

is of the form δ+1. Let ψ ∈ D−δ be given. Then
⋃
β<δ E

+
β ∪D−δ forces P[ψ]. Together

with Property 16, this implies that [P +〈·,−〉P
⋃
β<δ D

−
β ] ∪ D−δ forces P[ψ], hence

also (P+〈·,−〉P
⋃
β<δ D

−
β )[ψ], which together with Corollary 2 implies that (D−β )β<α is

an α-foundational chain for (P, 〈·,−〉P), as wanted. Now by the definition of F and

Proposition 8, [P+〈·,−〉P
⋃
α∈Ord D

−
α ] is included in F . We conclude with Lemma 2,

Property 16 again and Property 8 that the set of closed instances of members of F

contains E, which is therefore consistent. Hence P has a well-founded model, which

is E.

To establish the converse, we show by induction that for all ordinals α,

• all closed instances of members of Fα belong to E, and

• all closed instances of members of [P+〈·,−〉P
⋃
β<α Fβ ] belong to E.

So let an ordinal α be given and assume that (i) for all ordinals β < α, all closed

instances of members of Fβ belong to E, and (ii) for all ordinals β < α, all closed

instances of members of [P+〈·,−〉P
⋃
γ<β Fγ ] belong to E. Note the following:

(�) for all literals ψ over V�, (P+〈·,−〉P
⋃
β<α Fβ)[ψ] ∪

⋃
β<α Fβ forces P[ψ].

Let an ordinal δ be such that E = E+
δ ∪ E−δ . Using (�), we obtain by induction that

for all γ ∈ Ord and ψ ∈ [P +〈·,−〉P
⋃
β<α Fβ ]γ , if

⋃
β′<γ[P +〈·,−〉P

⋃
β<α Fβ ]β′ forces

(P +〈·,−〉P
⋃
β<α Fβ)[ψ] then

⋃
β′<γ[P +〈·,−〉P

⋃
β<α Fβ ]β′ ∪

⋃
β<α Fβ forces P[ψ]; this

together with (i) easily implies that if X+ and X− denote the set of atoms and the

set of negated atoms in
⋃
β′<γ[P+〈·,−〉P

⋃
β<α Fβ ]β′ ∪ {ψ}, respectively, then

• the set of closed instances of members of X+ is included in E+
δ+1, and

• the set of closed instances of members of X− ∪
⋃
β<α Fβ is included in E−δ+1.

Hence all closed instances of members of [P +〈·,−〉P
⋃
β<α Fβ ] belong to E. Using

(�) again, we obtain that for all ψ ∈ Fα, since [P +〈·,−〉P
⋃
β<α Fβ ] ∪ Fα forces

(P +〈·,−〉P
⋃
β<α Fβ)[ψ] by Corollary 2, then E ∪ Fα forces P[ψ]; this easily implies

that the set consisting of the closed instances of either the negated atoms in E or

the members of Fα is included in E−δ+1. Hence all closed instances of members of

Fα belong to E. Since F is equal to [P +〈·,−〉P
⋃
α∈Ord Fα ], we have shown that all

closed instances of members of F belong to E, which completes the proof of the

proposition. �

6 Conclusion

Given a formal logic program P, we have defined the set [P ] of literals generated

by P following a process that can be intuitively described as: fire the rules

in P transfinitely often, and at each stage interpret disjunction and existential

quantification constructively to determine whether an instance of the body of a

rule should be activated, the rule fired, and the corresponding instance of the head
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added to [P ]. The view that has been adopted is that [P ] captures the operational

semantics of P. This view is closely related to Kripke–Kleene semantics (this is the

contents of Proposition 1). We have introduced the notion of ‘literal marker for P’ to

formalise the intuitive idea of ‘marking some literals in the bodies of some rules inP’.

Given such a literal marker Ω forP and a set E of literals conceived of as a collection

of hypotheses, meant to be assumed only in the contexts authorised by Ω, we have

formalised the intuitive operation of making these contextual, local assumptions,

resulting in a new formal logic program, denoted P+ΩE; the denotational semantics

of that program is of course captured by [P+ΩE ]. For a given literal marker Ω for

P and a given set E of literals, [P+Ω E ] can also be conceived of as an alternative

semantics to P, and we have seen how to choose Ω and E in order to retrieve the

answer-set, the stable model and the well-founded semantics.

• Answer-sets are captured by sets of the form [P+Ω E ] in which Ω marks the

occurrences of literals of the form ¬atom , represented in the usual setting as

not atom , or of the form atom , represented in the usual setting as not ¬atom ,

and E is a maximal (in a strong sense) set of literals that P +Ω E does not

refute (this is the contents of Proposition 5).

• Stable models are captured by sets of the form [P +Ω E ] in which Ω marks

all occurrences of negated atoms in the bodies of all rules, and E is a maximal

set of negated atoms which determines a complete set of literals that P+Ω E

confirms (this is the contents of Proposition 6).

• The well-founded model is the set [P+Ω E ] in which Ω marks all occurrences

of negated atoms in the bodies of all negative rules, and E is the maximal set of

negated atoms that P+Ω E confirms in a strong sense, based on the concept

of a set of hypotheses that can get ‘self-confirmation’ with no additional help

but what can be derived from P itself, put into action transfinitely often (this

is the contents of Propositions 10 and 11).

The relationships have actually been established for a class of logic programs more

general than those usually considered in the literature, but for which those semantics

could be naturally adapted. The classes of extensors (legitimate sets of hypotheses)

that have been introduced can be subjected to natural variations; the choices for Ω

can range from fully biased toward negated atoms to fully biased toward nonnegated

atoms, or seek some balance between both kinds of literals, etc. Hence the three

semantics captured by [P+Ω E ] for the specific choices of Ω and E that have been

described are members of families of semantics determined by a pair (Ω, E) that

naturally satisfies more general properties. We have not investigated these alternative

semantics for lack of space, but we think that one of the main contributions of

this paper is to have laid the foundation for such a work, with applications to

hypothetical reasoning in knowledge-based systems, where hypotheses are applied

locally and contextually, and are constrained to satisfy variations on properties such

as confirmation or nonrefutation.

Though Kripke–Kleene, the answer-set, the stable model and the well-founded

semantics are expressed in terms of ‘intended’ or ‘preferred’ models, we do not view

[P ] as the intended model of what we have called the classical logical form, denoted

https://doi.org/10.1017/S1471068411000378 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000378
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Clf(P), of the formal logic programP. Indeed, we have carefully not defined a formal

logic program as a set of logical formulas. We have chosen to model the behavior

of a set of rules that can fire transfinitely often, hence provide an operational

semantics, which does not require to represent rules as logical implications. Another

paper will present a declarative semantics, in such a way that {�ϕ | ϕ ∈ [P ]}
is precisely the set of formulas of the form �ϕ with ϕ a literal that are logical

consequences of a set of modal formulas that is obtained from Clf(P) by preceding

all occurrences of literals with the modal operator of necessity. (The main work is to

capture properly the transformation of P into P+Ω E—marking literals has to find

its logical counterpart—and to properly represent the hypotheses.) In this setting,

‘logical consequence’ is interpreted classically, that is, in reference to a notion of

interpretation that generalises the interpretations used in epistemic logic, in which

every formula is either true or false (not undefined), negation is classical, and the

law of excluded middle holds but is irrelevant, because a rule such as q ← p ∨ ¬p
is logically translated into �p ∨�¬p→ �q: to derive q, derive p or derive ¬p, and

q ← p ∨ ¬p does not automatically fire because �p ∨�¬p is not valid.
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