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SUMMARY
This paper describes a vehicle detection system based
on support vector machine (SVM) and monocular vision.
The final goal is to provide vehicle-to-vehicle time gap
for automatic cruise control (ACC) applications in the
framework of intelligent transportation systems (ITS). The
challenge is to use a single camera as input, in order to
achieve a low cost final system that meets the requirements
needed to undertake serial production in automotive industry.
The basic feature of the detected objects are first located in
the image using vision and then combined with a SVM-
based classifier. An intelligent learning approach is proposed
in order to better deal with objects variability, illumination
conditions, partial occlusions and rotations. A large database
containing thousands of object examples extracted from real
road scenes has been created for learning purposes. The
classifier is trained using SVM in order to be able to classify
vehicles, including trucks. In addition, the vehicle detection
system described in this paper provides early detection of
passing cars and assigns lane to target vehicles. In the paper,
we present and discuss the results achieved up to date in real
traffic conditions.

KEYWORDS: Vision; Vehicle detection; Automatic cruise
control; SVM (support vector machine); Intelligent
transportation systems.

1. Introduction
Insufficient distance keeping is a major source of rear-end
accidents as many drivers find it difficult to keep adequate
headway distance because it requires taking into account both
the distance to the vehicle ahead and the travelling speed of
their vehicle. The importance of keeping sufficient headway
for reduction of accidents is recognized by traffic authorities
worldwide and is being enforced in an increasing number
of countries. Headway is defined as the time it will take to
reach the current position of a vehicle driving ahead, and is
calculated by dividing the distance to the vehicle ahead with
the travel speed of the host vehicle. Monocular vision can be
used for vehicle detection and range measurement, and also
to apply lane analysis in order to measure road geometry and
curvature to determine the closest in-path vehicle. Headway
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measurement can be done by relying on the detection of the
car rear in lit conditions, and on detection of taillights in
dark night conditions. Situations where the vehicle would
collide with another vehicle if no changes were made to the
vehicle speed or direction can be detected. In this situation the
vehicle can warn the driver by a warning sound and visual
indication. If the time predicted to the collision is smaller
than typical human reaction time emergency braking can
be activated. The vision system can also detect and classify
targets ahead of the host vehicle and send range and range
rate (relative velocity) information to the automatic cruise
control (ACC) controller to maintain a constant time gap
between the host and followed vehicles. In such a case, the
ACC controller automatically adjusts the speed of the host
vehicle to maintain the desired headway by using throttle
control and braking, and resumes to the set speed when the
lane ahead is clear. In this paper, we propose a monocular
vision system for vehicle detection mainly intended for
ACC functionality, although the results of this system
can also be used for Stop & Go and emergency braking
applications.

In the context of active braking applications and ACC,
long range radar information is used for very accurate range
and relative velocity measurements. The vehicle path and
target vehicle boundaries are used to predict the probability
of an accident. Radar sensors have many advantages,
such as accurate measurement capability and resistance to
poor weather conditions, but this application cannot be
implemented using long-range radar only. The radar ACC
system uses a single sensing modality, the 76 GHz radar, to
perceive the environment in which it operates. This single-
sensor approach to perception problems, however, leads to
single-mode failures. Although this radar is unaffected by
weather and lighting conditions, sensor data from the radar
is extremely limited in the context of trying to interpret an
extremely complex and dynamic environment. In most cases,
the combination of smart processing with radar data works
well for the constrained application of ACC, but there are
ACC situations where no matter how much processing is
performed on the radar data, the data itself does not reflect
the environment with a high enough fidelity to completely
interpret the situation. Besides, spatial resolution is relatively
coarse for the detected field of view, such that detections
can be improperly localized in the scene and object size is
impossible to determine.
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Fig. 1. Vehicle searching area as a result of lane markings analysis.

Some previous developments use available sensing
methods such as radar,21 stereo vision,15,19,22 or a
combination of stereo vision and laser11 (Perrollaz et al.,
2006). In Hoffman et al.10 and Bombini et al.1 the authors
propose the fusion of stereo vision and radar for creating
a hybrid velocity adaptive control system called HACC.
Only a few works deal with the problem of monocular
vehicle detection using symmetry and colour features2,3,12,20

or pattern recognition techniques17 including support vector
machines (SVM).16 In Broggi et al.2 the authors propose the
use of horizontal edges and vertical symmetry together with
a shape-dependent process for removing objects that are too
small or too big in the image plane. Chateau and Lapreste
2004 deals with robust real-time vehicle tracking. Hilario
et al.9 propose the use of a geometrical model for vehicle
characterization using evolutionary algorithms, assigning
different geometrical models depending on the vehicle lane.
Chem and Hou5 provide night-time vehicle detection by
combination with lane departure warning (LDW) in one-way
roads for reducing false positive detections. Let us remark
that the pattern recognition techniques used by all these
systems for vehicle recognition can also be used for other
ITS applications such as pedestrian detection13 because of
their generalization capability. A complete review of vehicle
detection systems can be found in Sun et al.18

In the current work, the searching space in the image
plane is reduced in an intelligent manner in order to
increase the performance of the vehicle detection module.
Accordingly, road lane markings are detected and used as
the guidelines that drive the vehicle searching process. The
area contained by the limits of the lanes is scanned in
order to find vehicle candidates that are passed on to the
vehicle recognition module. This helps reduce the rate of
false positive detections. In case that no lane markings are
detected, a basic area of interest is used instead covering
the front part ahead of the ego-vehicle. The presence
of collections of horizontal edges together with vertical
symmetries triggers the attention mechanism.

The rest of the paper is organized as follows; Section 2
provides a description of the candidate selection method
used as attention mechanism. Section 3 describes the SVM-
based vehicle recognition and tracking system. Section 4 is
dedicated to experimental results. In Section 5 a discussion
about the system and its weak points is presented and, finally,

Section 6 summarizes the conclusions and proposes future
work.

2. Candidates Selection
An attention mechanism is necessary in order to filter
out inappropriate candidate windows based on the lack of
distinctive features, such as horizontal edges and vertical
symmetrical structures, which are essential characteristics
of road vehicles. This has the positive effect of decreasing
both the total computation time and the rate of false positive
detections. Each road lane is sequentially scanned, from the
bottom to the horizon line of the image looking for collections
of horizontal edges that might represent a potential vehicle.
The scanned lines are associated in groups of three. For
each group, a horizontality coefficient is computed as the
ratio of connected horizontal edge points normalized by the
size of the area being analysed. The resulting coefficient
is used together with a symmetry analysis in order to
trigger the attention mechanism. Apart from the detected
road lanes provided by a lane departure warning system
(LDWS) developed by the authors in previous works,16

additional virtual lanes have been considered so as to cope
with situations in which a vehicle is located between two
lanes (e.g., if it is performing a change lane manoeuvre).
Virtual lanes provide the necessary overlap between lanes,
avoiding both misdetections and double detections caused
by the two halves of a vehicle being separately detected as
two potential vehicles. A virtual lane is located to provide
overlap between two adjoining lanes. Figure 1 provides
some examples of lane markings detection in real outdoor
scenarios. Detected lanes determine the vehicle searching
area and help reduce false positive detections. In case no
lane markings are detected by the system, fixed lanes are
assumed instead. The system proposed in this article can
also detect vehicles in the hard shoulder although it was
not originally designed to do so. The fact that the vehicle
detection process is driven by lane markings detected on the
road makes it viable to detect vehicles on the right-hand side
hard shoulder, just next to the outer lane marking.

The first step of the process for detecting collections of
horizontal edges is carried out by performing an adaptive
thresholding. This process permits to obtain robust image
edges, as depicted in the examples provided in Fig. 2.
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Fig. 2. Edge images after adaptive thresholding.

This adaptive process is based on an iterative algorithm that
gradually increases the contrast of the image, and compares
the number of edges obtained in the contrast increased image
with the number of edges obtained in the actual image.
If the number of edges in the actual image is higher than
in the contrast increased image the algorithm stops.
Otherwise, the contrast is gradually increased and the process
resumed. Figure 3 summarizes the algorithm flow diagram.

After thresholding, horizontal edges in the scan regions
given by the LDW system (extended to three lanes) are
examined to detect the rear part of potential vehicles. In
order to decide if the collection of horizontal lines represents
a possible vehicle candidate, its width is compared to that of
an ideal car. The ideal car width is obtained for each vertical
coordinate using the camera pinhole model. Resolving the
pinhole classical equation of reference changes (Eq. (1)), the
searched relation is obtained (Eq. (2)):

ui = fu

Xi

Z
+ u0, (1)

u2 − u1 = fu

Z
(X2 − X1), (2)

where u0 and fu are intrinsic camera parameters, Z is the host-
to-vehicle distance and Xi and ui are the points to evaluate
as represented in Fig. 4.

To calculate the Z distance, the pinhole model is used again.
The origin of the vehicle coordinate system is located at the
central point of the camera lens. The XV and YV coordinates
of the vehicle coordinate system are parallel to the image
plane and the ZV -axis is perpendicular to the plane formed
by the XV and YV axes. A vehicle at a look-ahead distance
Z from the camera will be projected into the image plane at
a vertical and horizontal coordinates (u, v) respectively. The
vertical road mapping geometry following this nomenclature
is depicted in Fig. 5. The vertical model considers
the flat terrain assumption. The flat terrain assumption can be

considered approximately valid during the detection stage,
since first time detection takes place in short distances.
During the tracking stage the distance measurement error
remains bellow 5% in average. These small errors in distance
measurement have little influence on the ACC system since it
is based on fuzzy logic rules and variables. This is specially
truth if we consider that the shorter the distance measured
(and thus, the more dangerous the situation is) the smaller
the distance error committed, and subsequently, the smaller
the influence on the vehicle control. The camera parameters
can then be calibrated using standard calibration methods.
The proposed mapping uses the following parameters:
I: image plane
Z: look-ahead distance for planar ground (m)
hCAM : elevation of the camera above the ground (m)
Pitch: camera pitch angle relative to vehicle pitch axis
(rad)
θZ: incident angle of the preceding vehicle’s contact
-to-asphalt point relative to vehicle pitch axis (rad)
v: vertical image coordinate (pixels)
HEIGHT: vertical size of the CCD (pixels)
Fv: vertical focal length (pixels)
Fu: horizontal focal length (pixels)
kv: vertical scaling factor for the camera (pixels/
mm).

According to Fig. 5, the vertical mapping geometry is
mainly determined by the camera elevation hCAM above the
local ground plane as well as the pitch angle. The longitudinal
axis of the vehicle is assumed to be always tangential to the
road at the vehicle centre of gravity (cg). For each image
scan line at v, there corresponds a pitch angle relative to the
local tangential plane given by Eq. (3):

θZ = Pitch + a tan

(
v

f Kv

)
. (3)
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Fig. 3. Block diagram of the adaptive thresholding algorithm.

Fig. 4. Car width variables.
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Fig. 5. Vertical road mapping geometry.

Based on this, the planar look-ahead distance corresponding
to v, is obtained as

Z = hCAM

tan (θZ)
. (4)

Applying a coordinate change due to the fact that the image
origin in our case is on the top of the image instead of in the
centre, the new vertical coordinate v(top) is given by

v(top) = 2v(centre) − HEIGHT. (5)

In Eq. (6), the vertical scaling factor of the camera is
introduced in the distance length parameter

Fv = f Kv. (6)

The equation for computing the look-ahead distance Z
becomes

Z = hCAM

tan
(

Pitch + a tan
(

2·v−HEIGHT
Fv

)) . (7)

Once the car width is computed at the current frame it is
compared to the collection of horizontal lines found after
the thresholding analysis. If they are similar to some extent
defined by an empirical value, a square area above the
collection of horizontal lines, denoted as candidate Region
Of Interest (ROI), is considered for further analysis. The aim
is to compute the entropy of the candidate ROI and its vertical
symmetry. Only those regions containing enough entropy and
symmetry are identified as potential vehicles. Figure 6 shows
a detailed block diagram of the detection procedure, and Fig.
7 depicts two examples of the detection step.

Detection distance is typically in the range 5–40 m for the
first detection stage. Vehicles can then be tracked up to 60–
70 m once detected. Compared to laser and radar systems,
detection distance is lower since radar and laser can provide
detection above 100 m. Nonetheless, information provided
by these types of sensors is much less reliable than that
provided by vision sensors in terms of interpretability.

Figure 7 shows an example of candidate analysis and
validation. As can be observed, the detected candidate has
enough horizontal edges so as to be considered a potential

vehicle. In addition, symmetry analysis, conducted around
the vertical central axis of the candidate bounding box,
provides additional clues about the presence of a potential
vehicle in the scene. A detailed zoomed image of the
validated candidate is also depicted in Fig. 7.

The potential vehicle candidate might not be detected in
the optimal position in the image plane, due to displacements
caused by inaccurate lateral location. In order to improve
the location accuracy, a further symmetry analysis is carried
out. For this purpose, a region of analysis is shifted from
left to right around the detected candidate. Symmetry is
computed at each position of the region of analysis. The
position yielding the maximum value of vertical symmetry
is chosen to correct the original vehicle position in the image
plane. This symmetry-based vehicle correction mechanism
contributes to improve the accuracy of candidates’ location.
Figure 8 depicts a couple of examples in which vehicle
position is corrected using this method. Blue squares
represent the original position of the candidate, whereas red
squares show the final, corrected position after symmetry
analysis. Improving the accuracy of vehicle detection in
the image plane has a significant positive impact on the
classification stage.

The attention mechanism can provide lots of overlapping
candidates due to the fact that potential vehicles are detected
based on edge and symmetry features. Many areas of
the image can exhibit vehicle-like features and attract the
focus of the attention mechanism. In particular, a single
vehicle in the image can yield several candidates. The
next step is then to avoid candidates overlapping. For this
purpose, overlapping candidates are grouped together and
analysed. A coefficient is computed for each overlapping
candidate, defined as the ration between Entropy+Symmetry
and candidate area. Coefficients obtained for each group of
overlapping candidates are compared. The candidate yielding
the highest coefficient is chosen and the rest of candidates
overlapping with him are discarded. Figure 9 depicts an
example of overlapping candidate removal following this
approach. For each group of overlapping candidates only
one candidate remains. Figure 10 shows some examples of
candidates selected by the attention mechanism, including
vehicles and non-vehicles.

Accurate detection of the wheel-to-road contact point of
the preceding vehicle is essential for assuring maximum
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Fig. 6. Block diagram of the vehicle detection mechanism.

Fig. 7. Example of validated vehicle candidate, road scene and zoomed edge image.
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Fig. 8. Examples of symmetry-based vehicle position correction mechanism. Blue squares represent the original position of detected
candidates. Red squares show the corrected position after symmetry analysis.

precision of the host-to-vehicle estimated distance. Thus, the
error committed in estimating the host-to-vehicle distance
Zerr due to a vehicle detection error of n pixels in the image
plane is given by

Zerr = Zn − Z = FvhCAM

v + n
− Z = −nZ2

FvhCAM + nZ
, (8)

where v is the vertical coordinate of the wheel-to-road
contact point in the image plane, Z is the estimated host-

to-vehicle distance and hCAM represents the camera height
(as previously defined). Considering an error of one pixel n =
1 and FvhCAM � nZ, Zerr becomes

Zerr ≈ nZ2

FvhCAM
. (9)

For example, for a 640 × 480 image, a focal length of 740
pixels, and a camera height hCAM = 1.2 m, an error of 1 pixel

Fig. 9. Candidate overlapping removal in the attention mechanism: original candidates (left); result after overlapping removal (right).
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Fig. 10. Examples of initial candidates detected by the attention mechanism (vehicles and non-vehicles).

(n = 1) becomes a relative 5% error at a distance

Z = Zerr

Z
FvhCAM = 0.05 ∗ 740 ∗ 1.2 = 44 m. (10)

On the other hand, the error at 90 m is 10%. These
values are more than enough for the ACC function. What
is really important is the measurement of relative host-to-
vehicle velocity. Relative velocity Rv is computed using the
following equation:

Rv = �Z

�t
. (11)

Based on the scale change s of detected objects in the image
plane, the optimal value of t that minimizes the estimation
noise can be calculated. Let W denote the width (in meters)
of the preceding vehicle, w and w′ the width of the preceding
vehicle in the image plane when it is located at distances Z
and Z′, respectively, with regard to the host vehicle. The scale
change s can be defined as

s = ω − ω′

ω′ . (12)

The estimated relative velocity can be computed as follows:

Rv = �Z

�t
= Z ω−ω′

ω′

�t
= Zs

�t
. (13)

As demonstrated in Stein et al.,17 the value of t that minimizes
the error in the estimated relative velocity is given by

�t =
√

2Z2serr

FvWa
, (14)

where a represents the acceleration of the host vehicle,
and serr is the error committed in the estimation of scale
change. Building on this result, the optimal value of t for
zero acceleration is infinite. In practice, it has been limited
to t = 1.8 s.

Fig. 11. Vehicle class separation using SVMs.

3. Vehicle Recognition and Tracking
Detected candidates are classified as vehicles or non-vehicles
depending on features obtained from the vehicle ROI using
SVM.6 SVMs are a set of related supervised learning
methods used for classification and pattern recognition.
One special property of SVMs is that they simultaneously
minimize the empirical classification error and maximize the
geometric margin. Hence they are also known as maximum
margin classifiers. SVMs map input vectors to a higher
dimensional space where a maximal separating hyperplane
is constructed, by maximizing the distance between both
classes. An assumption is made that the larger the margin
or distance between these parallel hyperplanes the better the
generalization error of the classifier will be. An example of
this can be seen in Fig. 11.

The output of the SVM, D, is simply the signed distance
of the test instance from the separating hyperplane. This
output indicates whether the analyzed object corresponds to
a vehicle (+1, in theory) or not (−1, in theory) and can be
used as a threshold for separating them. Two aspects are
essential in the deployment of SVM classifiers: the training
strategy and the classifier structure.

3.1. Training strategy
The first step in the design of the training strategy is to
create representative databases for learning and testing. The
following considerations must be taken into account when
creating the training and test sets.

• The ratio between positive (vehicles) and negative (others)
samples has to be set to an appropriate value. A very large
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Fig. 12. Examples of final candidates classified as vehicles.

number of positive samples in the training set may lead to
a high percentage of false positive detections during on-
line classification. On the contrary, a very large number of
negative samples produce misslearning.

• The size of the database is a crucial factor to take care
of. As long as the training data represent the problem
well, the larger the size of the training set the better for
generalization purposes.

• A sufficiently representative test set must be created
for verification. The content of the test set has similar
characteristics to those of the training sets in terms of
variability and ratio of positive/negative samples.

3.2. Classifier structure
An input vector for the classifier was defined. This vector
is composed of different parameters which are computed
for all candidates and define the state vector for the SVM.
Those parameters are local histograms of oriented gradients
(HOG).7 The aim of this method is to describe an image by a
set of local histograms which count occurrences of gradient
orientation in a local part of the image (the selected candidate
ROI). As a general overview, the algorithm is composed of
the following steps:

• Parameters of the detected objects (HOG) are computed
and used as inputs (SVM feature vector) to the SVM
classifier.

• Once the parameters vector is computed, the SVM process
analyzes this vector and returns a value which is simply
the signed distance of the test instance from the separating
hyperplane.

Figure 12 shows a couple of examples of vehicle detection
after SVM classification and re-calculation of the host-to-car
distance.

3.3. Vehicle tracking
After detecting consecutively an object a predefined number
of times (empirically set to 3 in this work), tracking is
implemented using Kalman filtering techniques. For this
purpose, a dynamic state model and a measurement model
must be defined. The proposed dynamic state model is
simple. Let us considered the state vector x [n], defined as

follows:

x [n] =

⎡
⎢⎣

x

y

w

h

⎤
⎥⎦ . (15)

In the state vector x and y are the respective horizontal and
vertical image coordinates for the top left corner of every
object, and w and h are the respective width and height in
the image plane. A dynamical model equation can be written
like this:

x[n + 1] = F · x[n] + ωn. (16)

In the model, F represents the system dynamics matrix and
ωn is the noise associated to the model. In this case, F has
been defined as an Identity matrix, i.e. a diagonal matrix with
all diagonal elements set to 1. Although simple, it proves to be
highly effective in practice. The system dynamics matrix has
been approximated by an identity matrix since the real time
operation of the system permits to assure that there will not
be great differences in distance for the same vehicle between
consecutive frames. The model noise has been modelled as a
function of distance and camera resolution. The state model
equation is used for prediction in the first step of the Kalman
filter. Physically, it means that the prediction for the next
frame is that the state vector will remain basically equal to
the estimation at the current frame. The next step is to define
the measurement model. A measurement model equation can
be established as follows:

z[n + 1] = H · x[n + 1] + �n. (17)

In Eq. (17), H represents the measurement matrix and �n is
the noise associated to the measurement process. H has been
defined as an Identity matrix. The purpose of the Kalman
filtering is to obtain a more stable position of the detected
vehicles. Besides, oscillations in vehicles position due to the
unevenness of the road makes y coordinate of the detected
vehicles change several pixels up or down.

This effect makes the distance detection unstable, so
a Kalman filter is necessary for minimizing these kinds
of oscillations. As a future idea, even though an image
correction and filtering can be done, it would be much
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Fig. 13. Cars remain under tracking in spite of bad image conditions.

Fig. 14. Introducing a positive candidate in the database.

more efficient to go through this problem by introducing an
oscillation sensor in the car. As an example of this, Figure 13
shows a case in which three cars passing beneath a bridge
are not detected as potential vehicles in the original images
(left images) due to bad image conditions. Nonetheless, the
three cars are kept under tracking by the system using the
previously described Kalman filter (right images).

4. Implementation and Results
The system was implemented on a PC Pentium IV at 2.4
GHz onboard a car-like robot (modified Citroën C4) and
tested in real traffic conditions using a 640 × 320 CMOS
camera. For this purpose, a training strategy based on a
large and representative database for learning and testing

has been devised. The training database contains 10,000
representative samples while the test set has 3,000 samples. In
both cases, a positive/negative ratio of 1:2 has been observed.
We have tested that this ratio ensures a low percentage of false
positive detections during on-line classification. The size of
the database (10,000 samples) represents a crucial factor to
take care of. The large size of this training set represents
the problem well, and it permits to achieve a reasonable
solution for generalization purposes. To obtain a sufficiently
representative set we have taken cars and trucks as positive
samples, and crash barriers, median strip, pieces of road,
etc, like negative samples. The samples have been taken in
different weather conditions (with and without rain, shadows,
etc). The content of the test set has similar characteristics to
those of the training set in terms of variability and ratio
of positive/negative samples. The size of the test set (3,000
samples) is appropriate for verification of the overall system.
To create the samples sets, we have developed a tool called
‘ACC Database’. This tool represents an extended option of
the main software used for vehicle detection. The tool allows
entering the candidates extracted by the car detection system
as positive or negative samples in the database. To illustrate
the process, the next figures show how candidates detected by
the attention mechanism can then be manually introduced in
the database as positive, negative or not valid candidate (when
the user is not sure about the type of candidate). Figure 14
shows the introduction of two positive candidates in the
database. The first candidate was extracted in the central lane
of the road and upon validation the tool labels the candidate
in blue colour. The next extracted candidate is assigned to
the adjoining left lane and labelled in green colour.
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Fig. 15. Introducing a negative candidate in the database.

Figure 15 shows the introduction of a negative candidate
in the database. The first detected candidate is a crash barrier
extracted on the right-hand side of the image. After manual
validation as negative sample, the tool labels the candidate
in red. The next extracted candidate is on the left-hand side
of the image. It is also introduced as a negative sample and
labelled in green.

Figure 16 shows the introduction of a negative candidate
in the database, on the left part of the image, and the
cancellation of a non-sure candidate. The first candidate was
extracted on the left adjoining lane of the road while the

Fig. 16. Introducing a negative candidate in the database (red) and
cancellation of a non-sure candidate (green).

second was assigned to the adjoining right lane. The first
candidate is validated as a negative sample (red), while the
second one was not included in the database because the user
was not sure about the type of candidate due to bad image
conditions.

Using ACC database tool an intensive training stage
was accomplished. The next table shows the number of
samples obtained for training and testing from several video
sequences recorded in real traffic conditions.

After training, a SVM model using 2281 support vectors is
obtained. This means that the classification process does not

Fig. 17. Receiver operating characteristic curve (ROC curve).
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Fig. 18. Host-to-vehicle distance in a real experiment.

Fig. 19. Host-to-vehicle relative velocity in a real experiment.

need to use all the database vectors to obtain the hyper plane.
Figure 17 shows the receiver operating characteristic curve
(ROC curve) using the training and test sets illustrated in
Table I. The ROC curve depicts the detection rate (DR) versus
false positive rate (FPR) of the final single-frame classifier.
A trade-off point has been chosen at (DR = 90%, FPR =
6%) for achieving robust vehicle detection at an acceptable
level of false positive detections.

Figure 18 shows a plot of the host-to-vehicle distance
measured in a sequence of 830 frames using the vision-based
vehicle detection system proposed in this paper. Likewise,
Figure 19 depicts the relative velocity between the host
vehicle and the preceding one. As can be observed, most of
the time the relative host-to-vehicle velocity is zero during
the selected sequence. Nonetheless, the difference of speed
goes up to 10 km/h in some moments.

Figure 20 depicts a sequence example in which a vehicle
is detected and tracked by the system. In the sequence, the
detected preceding vehicle is highlighted using a blue square.
Other vehicles circulating along adjoining lanes are marked

Table I. Number of samples obtained from video sequences for
training and testing.

Video Frames Positive Negative Training/test

Sequence 1 (rain) 4962 721 2183 Training
Sequence 2 (dry, bridges) 2214 954 3071 Training
Sequence 3 (dry, glare) 2215 502 765 Training
Sequence 4 (rain) 2213 297 1218 Test
Sequence 5 (cloudy) 2664 1327 423 Training
Sequence 6 (cloudy) 1338 725 808 Test

Table II. Global performance of the ACC system.

Video # Frames Tpf (ms) Detected Missed FA Cause

Sequence 7 2.456 62 1 0 0 —
(cloudy)

Sequence 8 3.765 33 9 1 0 Motorcycle
(sunny)

Sequence 9 1.987 30 1 1 0 Truck (rain)
(rain)

Sequence 10 2.367 31 8 0 1 Road fence
(cloudy)

Sequence 11 2.678 53 9 1 0 Motorcycle
(rain)

by a red horizontal line. Lane markings detected by the
system are depicted in green.

Table II provides a summary of statistics concerning global
system performance. The table shows the results achieved
using the previously described database containing 13,000
samples. The average processing time per frame (tpf) is given
in ms, as well as the number of detected vehicles, missing
vehicles and number of false alarms. As can be observed
from Table II, not only the detection rate and false alarm rate
are provided, but also the reasons that cause it.

The system operates in real time at 30 frames per second
in average, as observed in Table II (tpf). All images are then
processed in real time conditions. The system yields a global
detection rate of 90.32% with 1 false alarm. Miss detections
mainly occur with motorcycles and trucks under heavy rain.
Given the fact the SVM system has been trained using only
cars and trucks it can be considered that motorcycles miss
detections can be solved by incorporating a sufficient number
of motorcycle images in the database. For this purpose, the
candidate selection mechanism should be modified in order
to raise candidates with the shape and aspect of motorcycles,
not only cars, trucks and buses. Indeed, if the effect of miss-
detected motorcycles is neglected, a detection rate of 96.77%
is achieved for cars, trucks and buses. In order to diminish
the number of false alarms due to road artifacts, such as road
fences, these types of elements should be included in the
database as negative samples. Although these elements are
already included in the current database, it should be further
enlarged and enriched until proper generalization will be
achieved.

5. Discussion
In this section some key problems are identified and
described, together with the proposed solutions that would
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Fig. 20. Vehicle tracking example in a real sequence.

lead to sorting out the fore mentioned problems or, at least,
to mitigating their negative effects in order to increase the
system performance.

5.1. Single-frame classification performance
Although the attained single-frame classification results are
high (DR above 90% for a FPR of 6%), the classifier
performance has still to be improved in order to achieve

an acceptable level of global performance for a real e-Safety
application. This can be carried out by increasing the size
and variability of the samples in the database, including
samples of vehicles in different conditions for training and
testing the SVM. It is important to notice that the training
of the classifier was done with a limited amount of data. In
addition, the system can be divided in three modulus, one for
each road lane as depicted in Fig. 21, improving the system

https://doi.org/10.1017/S0263574709990464 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709990464


778 Perception advances in outdoor vehicle detection for automatic cruise control

Fig. 21. SVM-based classification stage can be divided in three
modulus, one for each lane.

Fig. 22. Example of false vehicle detection.

performance by means of specialization and reducing the
global execution time of the ACC function.

5.2. False vehicle candidates
There are some cases in which the proposed features for
vehicle detection, entropy and symmetry, produce values
that turn out to be enough to raise a non-vehicle candidate
as a potential vehicle candidate. This problem is normally
fixed in the classification stage, but it implies an additional
and unnecessary computational cost that can be avoided
by developing a more structured detection mechanism.
Figure 22 shows an example where a shadow of a bridge
is incorrectly considered as a vehicle candidate before
classification in three consecutive iterations.

5.3. Shadows
Although shadows are very useful to detect vehicles (as
the horizontal edge detected at the lower part of cars and
trucks), in some cases they can cause severe problems in
the detection stage, especially if shadows are large (normally
at sunset and sunrise). Changing illumination conditions are
considered in the edge extraction stage. For this purpose, the
variable Canny thresholds are adapted at all iterations as a
function of illumination conditions given by the histogram
properties. This allows obtaining edges even in shaded
regions. Nonetheless, Figure 23 depicts an example in which

Fig. 23. Example of large shadow caused by a car.

a large shadow produced by a car can lead to raise a false
vehicle candidate in the adjoining right lane.

To solve this problem, we propose to use the ‘hat
transform’.23 The hat transformation is a powerful operator
which permits the detection of contrasted objects on non-
uniform background. There are two different types of top-
hat transformations: white hat and black hat. The white
hat transformation is defined as the residue between the
original image and its opening. The black hat transformation
is defined as the residue between the closing and the
original image. The white and black hat transformations are
analytically defined as follows:

WHT (x, y) = (f − f ◦ b) (x, y) white hat, (18)

BHT (x, y) = (f • b − f ) (x, y) black hat. (19)

Both operators, white and black hat transform, can be used
in order to modify the contrast of the image or enhancing
contrast in some regions of the image. Normally, in grey scale
images, the local contrast is ruled by two kinds of features:
bright and dark features. The white hat image contains local
peaks of intensity and the black hat image contains local
valleys of intensity. The effect of shadows can be mitigated by
using a combination of the white and black transformations
as explained in Fernández et al.8

6. Conclusions and Future Work
We have developed and implemented a vehicle detection
system based on SVM and monocular vision with
the objective of providing vehicle-to-vehicle time gap
measurement for ACC applications in the framework of ITS.
Vehicle candidates are raised using an attention mechanism
based on horizontal edges, vertical symmetry and entropy.
The detected objects are passed on to a SVM-based classifier.
After classification, detected vehicles are tracked using
Kalman filtering. A large database containing thousands of
vehicle examples extracted from real road images has been
created for learning purposes. The classifier is trained using
SVM in order to be able to classify cars and trucks. In
addition, the vehicle detection system described in this paper
provides early detection of passing cars and assigns lane to
target vehicles based on the use of a LDWS. After assessment
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of the practical results achieved in our experiments, the
following general conclusions can be summarized:

• The global performance of the monocular daytime ACC
developed and described in this paper yields a detection
rate above 90% for a false alarm rate around 1%.

• The combination of ACC and LDWS is possible using the
same single camera as input. Indeed, the performance of
ACC is significantly increased by building on the output
provided by the LDWS function.

• The presence of large shadows on the asphalt due to
vehicles circulating along the road produces negative
effects on the candidate selection mechanism, yielding
to inaccuracy in measuring the distance to the vehicles.
This effect is more clearly observable when the sun is
very low, at sunset or at sunrise.

Based on these conclusions, the following actions are
proposed as future work:

• Fusion of vision data with data provided by a laser or radar
system is strongly recommended.

• Three specialized SVM classifiers will be developed for
each individual road lane in order to provide more accurate
vehicle classification. The reason for that relies on the
fact that vehicles circulating on adjoining lanes are not
perceived in the image plane with the same perspective as
vehicles circulating along the same lane (where the lateral
sides of the vehicles are not perceived in the image).

• The combination of the White and Black Hat transforms
will be applied to minimize the effect of shadows on the
road due to other vehicles.

• Extensive experiments at nighttime conditions will be
carried out in the next stage of development of the ACC
application. For this purpose, detection and tracking of
vehicles at night time will be performed by relying on
vehicles tail lights.
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