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Abstract

Let E and D be open subsets of Rn+1 such that D is a compact subset of E, and let v be a supertemperature

on E. A temperature u on D is called extendable by v if there is a supertemperature w on E such that w = u

on D and w = v on E\D. From earlier work of N. A. Watson, [‘Extendable temperatures’, Bull. Aust. Math.

Soc. 100 (2019), 297–303], either there is a unique temperature extendable by v, or there are infinitely

many; a necessary condition for uniqueness is that the generalised solution of the Dirichlet problem on D

corresponding to the restriction of v to ∂eD is equal to the greatest thermic minorant of v on D. In this

paper we first give a condition for nonuniqueness and an example to show that this necessary condition is

not sufficient. We then give a uniqueness theorem involving the thermal and cothermal fine topologies and

deduce a corollary involving only parabolic and coparabolic tusks.
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1. Introduction

Given an open set E in Rn+1, a function u ∈ C2,1(E) that satisfies the standard heat

equation on E is called a temperature. If

W(x, t) =















(4πt)−n/2exp(−|x|2/4t) if t > 0,

0 if t ≤ 0,

then W is a temperature on Rn+1\{0}. For any point (x0, t0) ∈ Rn+1 and any positive

number c, the set

Ω(x0, t0; c) = {(y, s) ∈ Rn+1 : W(x0 − y, t0 − s) > (4πc)−n/2}

is called the heat ball with centre (x0, t0) and radius c. Temperatures can be

characterised in terms of mean values over heat balls, since a function u ∈ C2,1(E)

is a temperature if and only if

u(x0, t0) = (4πc)−n/2

"
Ω(x0,t0;c)

|x0 − x|2

4(t0 − t)2
u(x, t) dx dt

whenever Ω(x0, t0; c) ⊆ E.
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An extended real-valued function v on E is called a supertemperature on E if it

satisfies the following four conditions:

(δ1) −∞ < v(p) ≤ +∞ for all p ∈ E;

(δ2) v is lower semicontinuous on E;

(δ3) v is finite on a dense subset of E;

(δ4) given any point (x0, t0) ∈ E and positive number ǫ, there is a positive number

c < ǫ such that the closed heat ball Ω(x0, t0; c) ⊆ E and

v(x0, t0) ≥ (4πc)−n/2

"
Ω(x0,t0;c)

|x0 − x|2

4(t0 − t)2
u(x, t) dx dt.

If v is a supertemperature on E, D is an open subset of E and u is a temperature such

that u ≤ v on D, then u is called a thermic minorant of v on D.

Let E and D be open sets such that D is a compact subset of E, and let v be a

supertemperature on E. If u is a temperature on D such that the function w, defined by

w =















u on D,

v on E\D,

can be extended to a supertemperature on E, we say that u is extendable by v (to E).

The reader is assumed to be familiar with the article [13] where extendable

temperatures were introduced. It was noted there that [8, Theorem 6] gave examples

of open subsets D, such as heat balls, for which there is only one temperature u on D

that is extendable by a given supertemperature v. Otherwise there are infinitely many.

The examples in [8] are of very special open sets and it is the purpose of this paper to

present a general condition for uniqueness.

We require a classification of the boundary points of E, in which we use the

following notation for upper and lower half-balls. Given any point p0 = (x0, t0) in Rn+1

and r > 0, we put H(p0, r) = {(x, t) : |x − x0|
2
+ (t − t0)2 < r2, t < t0} and H∗(p0, r) =

{(x, t) : |x − x0|
2
+ (t − t0)2 < r2, t > t0}. Let q be a boundary point of the bounded

open set D. In our classification of boundary points, we always suppose that the

boundary of D does not contain any polar set whose union with D would give another

open set. We call q a normal boundary point if every lower half-ball centred at

q meets the complement of D. If this condition fails, and also for every r > 0 we

have H∗(q, r) ∩ D , ∅, then q is called a semi-singular boundary point. The set of all

normal boundary points of D is denoted by ∂nD and that of all semi-singular points by

∂ssD. The essential boundary ∂eD is equal to ∂nD ∪ ∂ssD and the singular boundary

∂sD is ∂D\∂eD. A similar classification is made relative to the adjoint equation, by

interchanging H and H∗ throughout. This leads, in particular, to the idea of a point

q ∈ ∂D being a cothermal normal boundary point if every upper half-ball centred at q

meets the complement of D; the set of all such points is denoted by ∂∗nD.

A function f on ∂eD is called resolutive if it has a PWB (Perron–Wiener–Brelot)

solution to the generalised Dirichlet problem, in the sense of [10]. That solution is

denoted by SD
f
. Every function f ∈ C(∂eD) is resolutive. For any point p ∈ D there is

a unique nonnegative Borel measure µD
p on ∂eD such that SD

f
(p) =

∫

∂eD
f dµD

p holds
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for every f ∈ C(∂eD). The completion of this measure is called the caloric measure

relative to D and p; it is also denoted by µD
p . A point q ∈ ∂nD is called regular if

limp→q SD
f
(p) = f (q) for all f ∈ C(∂D); a point q ∈ ∂∗nD is called coregular if this holds

relative to the adjoint equation.

Further details of all the concepts we use can be found in [10].

2. Nonuniqueness of extendable temperatures

Since each of SD
v (the generalised solution of the Dirichlet problem on D corre-

sponding to the restriction of v to ∂eD) and GMD
v (the greatest thermic minorant of v

on D) is extendable by v to E, a necessary condition for uniqueness is that these are

always equal. By [12, Corollary 14], this happens if and only if every point of ∂D is

a coregular point of ∂∗nD [13, page 301]. We shall give an example to show that this

condition is not sufficient, using the following criterion for nonuniqueness.

THEOREM 2.1. Let D and E be open sets such that D is a compact subset of E, and

let K be a relatively closed subset of D with no interior points. If K contains a regular

point of ∂e(D\K), then there is a supertemperature v on E for which there are distinct

temperatures on D\K that are extendable by v to E.

PROOF. Let (x0, t0) be a regular point of ∂e(D\K) that belongs to K. We choose

δ > 0 such that the ball B((x0, t0), δ) ⊆ D, and denote by v the restriction to E of

the characteristic function of Rn× ]t0 − δ,+∞[, which is a supertemperature on E.

The temperatures S
D\K
v and SD

v are both extendable by v to E, the former from

D\K and the latter from D. Given any p ∈ D and r > 0 such that B(p, r) ⊆ D, we

have B(p, r) ∩ (D\K) , ∅ because K has no interior points, so that p ∈ D\K. Thus

D ⊆ D\K, which implies that D = D\K. It follows that the restriction of SD
v to D\K

is also extendable by v to E. We claim that SD
v , S

D\K
v on D\K. To show this we note

that, because (x0, t0) is a regular point of ∂e(D\K), we have S
D\K
v (x, t)→ v(x0, t0) = 1 as

(x, t)→ (x0, t0) if (x0, t0) ∈ ∂n(D\K), or as (x, t)→ (x0, t0+) if (x0, t0) ∈ ∂ss(D\K); but

SD
v (x, t) = 0 whenever t ≤ t0 − δ, so that SD

v (x0, t0) < 1 in view of the strong maximum

principle and the fact that SD
v ≤ 1 on D. �

For our example we also use the following extension of a theorem of Kaufman and

Wu [6].

LEMMA 2.2. Let D be an open set and let (x∗, t∗) ∈ ∂D. Let Ξ be a hyperplane parallel

to the t-axis and passing through the point (x∗, t∗). If Rn+1\D contains a set of the form

Ξ ∩ (B × [t′, t∗]) for some neighbourhood B of x∗ in Rn and some t′ < t∗, then (x∗, t∗) is

a regular point of ∂nD.

PROOF. If n = 1 then Ξ = {x∗} × R, and so Ξ ∩ (B × [t′, t∗]) = {x∗} × [t′, t∗]. Here

Kaufman and Wu [6, Theorem 5] have proved the result using the function

w(x, t) =

√

δ

π
−

∫ δ

0

W(x − x∗, t − t∗ + s) ds
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on R2, where δ = t∗ − t′. This function is positive except at (x∗, t∗), where it is

continuous to zero, and is a temperature outside {x∗} × [t′, t∗]. Therefore the restriction

of w to D is a barrier at (x∗, t∗) and the point is regular by [10, Theorem 8.46].

Now suppose that n > 1. We can assume that Ξ is orthogonal to the xn-axis,

and also that B =
∏n

i=1]x∗
i
− ǫ, x∗

i
+ ǫ[ for some ǫ > 0. Then Ξ = Rn−1 × {x∗n} × R and

Ξ ∩ (B × [t′, t∗]) =
∏n−1

i=1 ]x∗
i
− ǫ, x∗

i
+ ǫ[×{x∗n} × [t′, t∗]. Taking the above function w,

we put v(x, t) = w(xn, t). Then v is positive except on Rn−1 × {x∗n} × {t
∗}, where it is con-

tinuous to zero, and is a temperature outside Rn−1 × {x∗n} × [t′, t∗]. Therefore the restric-

tion of v to D ∩ (
∏n−1

i=1 ]x∗
i
− ǫ, x∗

i
+ ǫ[×R × R) is a barrier at (x∗, t∗), and the point is

regular. �

EXAMPLE 2.3. We let L denote the cylinder {(x, t) : |x| < 1,−4 < t < −1}, M the strip

R
n−1 × {0} × [−4,−2] and N the truncated cone {(x, t) : |x| < −t,−1 ≤ t < 0}. We put

A = N ∪ L. Then A\M is an open set such that every point of ∂A is a regular point

of ∂n(A\M), by the parabolic tusk test [5, 10, Theorem 8.52], and every point of

∂(A\M)\∂A is a regular point of ∂n(A\M), by the above lemma. We now put D = −A

and K = (−M) ∩ D, so that D\K = −(A\M). Now every point of ∂(D\K) is a coregular

point of ∂∗n(D\K). Furthermore, if (y, s) ∈ K and 2 < s < 4, then (y, s) is a regular point

of ∂n(D\K) by the lemma. If E is any open superset of D, Theorem 2.1 now shows that

there is no uniqueness for D.

3. A sufficient condition for uniqueness

Our condition requires the concept of the thermal fine topology, which is the

coarsest topology on Rn+1 that makes every supertemperature on Rn+1 continuous.

It is strictly finer than the Euclidean topology and notions relative to it will be prefixed

thermal fine. Any supertemperature on any open set is thermal fine continuous. A

set S is said to be thermally thin at a point if that point is not a thermal fine limit

point of S. Further details can be found in [4, 10] and, in much more general contexts,

in [2, 3].

Every result about the heat equation has an obvious dual for the adjoint heat

equation, obtained by reversing the temporal variable. Such results are not usually

stated explicitly, but are referred to as the cothermal duals of given results on the heat

equation itself. In particular, the thermal fine topology has a dual topology related to

the adjoint equation called the cothermal fine topology, which we shall also use.

To recap, a necessary condition for uniqueness is that every point of ∂D is a

coregular point of ∂∗nD. By the cothermal dual of [10, Theorem 9.40], an equivalent

condition is that every point of ∂D is a cothermal fine limit point of E\D. This form

of the condition is one of the hypotheses of Theorem 3.1 below, which also uses the

concept of a caloric measure null set. We recall from [9] that a subset Z of ∂eD is a

caloric measure null set for D if µD
p (Z) = 0 for all p ∈ D. An equivalent condition is

that SD
χZ
= 0 on D, where χZ denotes the characteristic function of Z.

We use mn+1 to denote Lebesgue measure on Rn+1.
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THEOREM 3.1. Let E and D be open sets such that D is a compact subset of E, and let

Z be the set of points of ∂eD where E\D is thermally thin. Suppose that:

(a) every point of ∂D is a cothermal fine limit point of E\D;

(b) Z is a caloric measure null set for D; and

(c) mn+1(Z) = 0.

Then for each supertemperature v on E there is a unique temperature u on D that is

extendable by v to E.

PROOF. Let v be a supertemperature on E and let F denote the class of all supertem-

peratures on E that are equal to v on E\D. For any function w ∈ F , we know from

[11, Theorem 2.5] that the restriction of w to ∂eD is resolutive for D, and the function

which is equal to SD
w on D and to w = v on E\D can be extended to a supertemperature

w∗ ∈ F . Since [10, Lemma 9.3] shows that w is thermal fine continuous on E, we have

w = v on ∂eD\Z. Therefore condition (b) implies that w = v on ∂eD outside a caloric

measure null set, so that SD
w = SD

v on D in view of [10, Corollary 8.34]. Let µ denote

the Riesz measure associated with w and let Y denote the complement in ∂D of the set

of coregular points of ∂∗nD. Then [12, Theorem 7] shows that

GMD
w = SD

w + G=DµY = SD
v + G=DµY ,

where µY is the restriction to Y of µ. Since condition (a) holds, every point of ∂D is

a coregular point of ∂∗nD, by the cothermal dual of [10, Theorem 9.40], so that Y = ∅

and GMD
w = SD

v = v∗ on D. Hence, if w is also a temperature on D, then w = GMD
w = v∗

on D, so that w = v∗ on E\∂D. From above, w = v = v∗ on ∂eD\Z, so that w = v∗ on

E\(Z ∪ ∂sD). Since [10, Theorem 8.40] shows that ∂sD is contained in a sequence

of hyperplanes of the form Rn × {t}, we have mn+1(∂sD) = 0, and hence condition (c)

implies that w = v∗ almost everywhere on E. Therefore w = v∗ everywhere on E by

[10, Theorem 3.59], which proves the uniqueness. �

REMARK 3.2. In the definition of the set Z in Theorem 3.1, we cannot replace E\D

by E\D. To show this, we take the set D of Example 2.3. The only points of ∂eD

that are not thermal fine limit points of E\D are, by [10, Theorem 9.40], those that

are not regular points of ∂nD, which are those in the set {(x, t) : |x| < 1, xn = 0, t = 2}.

This set is polar [7, page 280], and hence both a caloric measure null set for D and a

Lebesgue null subset of Rn+1. Hence conditions (a)–(c) of Theorem 3.1 are satisfied if

the definition of Z is changed, but there is no uniqueness.

There is no relationship between the two conditions on Z in Theorem 3.1. Clearly

∂eD is never a caloric measure null set for D, whereas there are many open sets for

which mn+1(∂eD) = 0. We now give an example in which a caloric measure null set Z

has Lebesgue measure mn+1(Z) > 0. This is similar to [1, Example 6.5.4], which dealt

with harmonic measure.
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EXAMPLE 3.3. Let {tk} be a dense sequence in ]0, 1[ and let

D = ]0, 1[n×

( ∞
⋃

k=1

] tk, (tk + 2−k−1) ∧ 1[

)

.

The density of {tk} implies that D = [0, 1]n+1. Also,

mn+1(∂eD) = mn+1(D) − mn+1(∂sD) − mn+1(D) ≥ 1 −

∞
∑

k=1

2−k−1
=

1

2
.

Let Z be the set of all points in ∂eD that are not in ∂eΛ(q; D) for any point q ∈ D.

It follows from [9, Lemma 4.3] that Z is a caloric measure null set for D. Let

{qj} be a sequence of points in D such that
⋃∞

j=1Λ(qj; D) = D. Given any point

q ∈ D, we can find j such that q ∈ Λ(qj; D), so that Λ(q; D) ⊆ Λ(qj; D) and hence

Λ(q;Λ(qj; D)) = Λ(q; D) ⊆ Λ(qj; D). It therefore follows from [9, Lemma 2.9] that

∂eΛ(q; D) ⊆ ∂eΛ(qj; D), which implies that Z is the set of points in ∂eD that do not

belong to ∂eΛ(qj; D) for any j. Any component of D is an (n + 1)-dimensional interval,

so that the same is true of Λ(qj; D) for every j. Therefore mn+1(∂eΛ(qj; D)) = 0 for all

j, so that

mn+1(Z) = mn+1(∂eD) − mn+1

( ∞
⋃

j=1

∂eΛ(qj; D)

)

= mn+1(∂eD) ≥
1

2
.

It is desirable to have a uniqueness theorem which does not explicitly involve the

thermal and cothermal fine topologies, and so can be applied without knowledge of

those topologies. One can be given using parabolic and coparabolic tusks, which are

defined as follows. Let q = (y, s), let r < s and let B be a closed n-dimensional ball.

Given any point x ∈ B, we denote by γx the parabolic curve with vertex at q that passes

through the point (x, r). The set

Γ =

⋃

x∈B

γx

is called a parabolic tusk with vertex at q. Dually, if r > s, the set

∆ =

⋃

x∈B

γx

is called a coparabolic tusk with vertex at q.

Usually mn+1(∂D) = 0, in which case condition (c) in Theorem 3.1 is superfluous.

We incorporate this into our final result.

COROLLARY 3.4. Let E and D be open sets such that D is a compact subset of E and

mn+1(∂eD) = 0. Suppose that each point of ∂D is the vertex of some coparabolic tusk

∆ ⊆ E\D, and that each point of ∂eD outside a set Z of caloric measure zero is the

vertex of some parabolic tusk Γ ⊆ E\D. Then for each supertemperature v on E there

is a unique temperature u on D that is extendable by v to E.
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PROOF. Let q ∈ ∂D, so that q is the vertex of some coparabolic tusk ∆q ⊆ E\D. By the

cothermal dual of [10, Example 9.42], q is a cothermal fine limit point of ∆q, so that q

is also a cothermal fine limit point of E\D. Furthermore, each point q ∈ ∂eD\Z is the

vertex of some parabolic tusk Γq ⊆ E\D. By [10, Example 9.42], q is a thermal fine

limit point of Γq, so that it is also a thermal fine limit point of E\D. Since mn+1(Z) ≤

mn+1(∂eD) = 0, the result now follows from Theorem 3.1. �
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