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On finite sections of the multiplicative
Hilbert inequalities
Charif Abdallah Benyamine

Abstract. We determine the asymptotic behavior of the eigenvalues of finite sections of the multi-
plicative Hilbert matrices.

1 Introduction

The Hilbert matrix ((m + n + 1)−1)m ,n⩾0 is an example of Hankel matrix and it can
be viewed as the matrix representation of the integral operator

H f (z) ∶= ∫
1

0

f (x)
1 − xz

dx , ∣z∣ < 1

with respect to the basis (zn)n⩾0 for the Hardy space H2 on the unit disc D,
the space of analytic functions on D with square-summable Taylor coefficients.
The norm of the Hilbert matrix is equal to π. The multiplicative Hilbert matrix
((
√

mn log(mn))−1)m ,n⩾2 was introduced in the study of Dirichlet series. In [3],
Brevig et al. proved that the norm of the multiplicative Hilbert matrix is equal to π.
Note that the multiplicative Hilbert matrix is the matrix representation of the integral
operator

H f (s) ∶= ∫
+∞

1/2
f (w)(ζ(w + s) − 1)dw , R(s) > 1/2

with respect to the basis (n−s)n⩾2 forH2
0, the Hardy space of Dirichlet series vanishing

at +∞ and with square-summable coefficients, where ζ is the Riemann zeta function.
For a comprehensive study of multiplicative Hilbert matrices, and more generally
Helson matrices (also known as multiplicative Hankel matrices), we refer the reader
to [6–8].

The �p version of the multiplicative Hilbert matrix was also considered in [3],
namely, for p > 1 and n ⩾ 2, if a2 , . . . , an , b2 , . . . , bn are positive real numbers which
are not all zero, then

n
∑

i , j=2

a i b j

i1/q j1/p log(i j) ⩽
π

sin(π/p)(
n
∑
i=2

ap
i )

1/p

(
n
∑
j=2

bq
j )

1/q

,(1)
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On finite sections of the multiplicative Hilbert inequalities 209

where q = p/(p − 1), the best possible constant is π/ sin(π/p). In this paper, we are
interested in the multiplicative Hilbert inequalities restricted to n variables. The �p

version of the finite section of the Hilbert matrix was considered by de Bruijn–Wilf
[4, 11] for p = 2, and by Bolmarcich [2] for p ≠ 2. For p > 1 and n ⩾ 3, we denote by
λp,n the best possible constant for the inequality

n
∑

i , j=3

a i b j

i1/q j1/p log(i j) ⩽ λp,n(
n
∑
i=3

ap
i )

1/p

(
n
∑
j=3

bq
j )

1/q

.(2)

We get the following result:

Theorem There exists θ = θ(p) such that the best possible constant λp,n for the
inequality (2) satisfies

λp,n ⩽
π

sin(π/p) −
π5/ sin3(π/p)
θ(log log n)2 + O((log log n)−3), n →∞.

Furthermore, for p = 2, the best possible constant λp,n for the inequality (2) is exactly
θ = 2 and

λ2,n = π − π5

2(log log n)2 + O((log log n)−3), n →∞.

For the general case p > 1, we do not know the exact value of θ. But we know
that it satisfies 2 ⩽ θ ⩽max(p, q) + ε, where ε depending only on p. The proof of
our result is based on Bolmarcich’s theorem [2] which is a finite section version of
the classical inequalities of Hardy et al. [5, Theorem 318]. For the case of p = 2, we
compare the matrix operator with an integral operator whose spectral asymptotic can
be derived from general results of Widom [10], which gives the asymptotic behavior
of the eigenvalues of Toeplitz integral operators.

The plan of the paper is the following. In the next section, we recall Bolmarcich’s
Theorem which we use in the case p ≠ 2, and de Bruijn–Wilf ’s Theorem which we use
in the case p = 2. We also give some preliminaries results. In Section 3, we prove the
announced results.

2 Preliminaries

2.1 Lemmas for the case where p ≠ 2

We begin by giving Bolmarcich’s Theorem [2].

Theorem 1 (Bolmarchich) Let 1 < p, q < ∞ where 1/p + 1/q = 1 and let K(x , y) be a
positive kernel satisfying K(αx , αy) = α−1K(x , y) for x , y ⩾ 0 and α > 0. Suppose that

M ∶ = ∫
∞

0
K(1, t)t−1/pdt, δ ∶ = ∫

∞

0
K(1, t)t−1/p log t dt,

γ ∶ = ∫
∞

0
K(1, t)t−1/p(log t)2dt, σ ∶ = ∫

∞

0
K(1, t)t−1/p ∣ log t∣3dt
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210 C. A. Benyamine

all exist, and

∫
s

0
K(1, t)t−1/pdt ∼ sδ1 and ∫

s

0
K(t, 1)t−1/qdt ∼ sδ2 , s → 0.

for some δ1 > 0 and δ2 > 0. Then for f (x) ⩾ 0 and n ⩾ 1, the best possible constant Mn
for the inequality

∫
√

n

1/
√

n
(∫

√
n

1/
√

n
K(x , y) f (x)dx)

p

dy ⩽ M p
n ∫

√
n

1/
√

n
( f (x))pdx(3)

satisfies

Mn = M − π2(γ − δ2/M)
θ(log n)2 + O((log n)−3), n →∞,

where 2 ⩽ θ ⩽max(p, q) + ε, ε > 0. Furthermore, if K(x , y) is decreasing as x , y →∞,
a i ⩾ 0, then

n
∑
j=1
(

n
∑
i=1

K(i , j)a i)
p

⩽ M p
n

n
∑
i=1

ap
i .(4)

The following lemma gives the computation of the integrals M, δ, γ of Theorem 1
if the kernel is K(x , y) = 1/(x + y).

Lemma 2 Let p > 1. For k = 0, 1, 2, set

Jk = ∫
∞

0

t−1/p(log t)k

1 + t
dt.

Then

J0 =
π

sin(π/p) , J1 =
π2 cos(π/p)
sin2(π/p)

, and J2 =
π3(1 + cos2(π/p))

sin3(π/p)
.

Proof Let q > 1 such that 1/p + 1/q = 1. By applying a change of variable t = eu , we
get

Jk = ∫
∞

−∞

ukeu/q

1 + eu du for k = 0, 1, 2.

To compute for Jk , we use Cauchy’s formula. Let

fk(z) =
zkez/q

1 + ez for k = 0, 1, 2.

For R > 0, we consider the rectangular contour �R = I1 ∪ I2 ∪ I3 ∪ I4 where I1 =
[−R, R], I2 = [R, R + 2iπ], I3 = [R + 2iπ,−R + 2iπ, ], and I4 = [−R + 2iπ,−R]. By
Cauchy’s residue theorem,

∫
�R

fk(z) =
4
∑
j=1
∫

I j
fk(z)dz = −2(iπ)k+1eiπ/q .(5)
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for k = 0, 1, 2. We then obtain

lim
R→∞∫I1

fk(z)dz = Jk , lim
R→∞∫I2

fk(z)dz = lim
R→∞∫I4

fk(z)dz = 0(6)

for all k = 0, 1, 2, and

lim
R→∞∫I3

fk(z)dz =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−e2iπ/q J0 , if k = 0,

e2iπ/q(−J1 − 2iπJ0), if k = 1,

e2iπ/q(−J2 − 2iπJ1 + 4π2 J0), if k = 2.

(7)

By (5)–(7) we get the results. Note that the value of J0 was already known [4, 5, 11]. ∎

Remark 2 In Theorem 1, if we apply the substitution

u = x
√

n, v = y
√

n, and f (u/
√

n) = g(u),

then (3) takes the form

∫
n

1
(∫

n

1
K(u, v)g(u)du)

p

dv ⩽ M p
n ∫

n

1
(g(u))pdu.(8)

Indeed, we have

K(x , y) = K(u/
√

n, v/
√

n) =
√

nK(u, v).

Lemma 3 Let p > 1 and n ⩾ 1. Then for g ⩾ 0, the best possible constant Mn for the
inequality

∫
n

1
(∫

n

1

g(u)
u + v

du)
p

dv ⩽ M p
n ∫

n

1
(g(u))pdu(9)

satisfies

Mn =
π

sin(π/p) −
π5 sin3(π/p)

θ(log n)2 + O((log n)−3), n →∞,

where 2 ⩽ θ ⩽max(p, q) + ε, ε > 0.

Proof Put K(u, v) = 1/(u + v). The kernel K is positive and satisfies K(αu, αv) =
α−1K(u, v). By Lemma 2, the integrals M, δ, γ, σ converge, and the values of M, δ, γ
are given by J0, J1, J2. Moreover,

∫
s

0
K(1, t)t−1/pdt = ∫

s

0

t−1/p

1 + t
dt ∼ sq ,

and

∫
s

0
K(t, 1)t−1/qdt = ∫

s

0

t−1/q

t + 1
dt ∼ sp , s → 0.
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212 C. A. Benyamine

Then by Theorem 1 and Remark 2, we obtain

Mn = M − π2(γ − δ2/M)
θ(log n)2 + O((log n)−3)

= π
sin(π/p) −

π5 sin3(π/p)
θ(log n)2 + O((log n)−3) (n →∞). ∎

Lemma 4 Let p > 1 and α ⩾ 2. Then for f ⩾ 0, the best possible constant M̃n for the
inequality

∫
n

α
(∫

n

α

f (x)
x 1/q y1/p log(x y)dx)

p

dy ⩽ M̃ p
n ∫

n

α
( f (x))p dx(10)

satisfies

M̃n =
π

sin(π/p) −
π5 sin3(π/p)
θ(log log n)2 + O((log log n)−3), n →∞,

where 2 ⩽ θ ⩽max(p, q) + ε, ε > 0.

Proof By setting

f (x) = x−1/p g(log x/ log α), u = log x/ log α, and v = log y/ log α,

the inequality (10) takes the form

∫
log n/ log α

1
(∫

log n/ log α

1

g(u)
u + v

du)
p

dv ⩽ M̃ p
n ∫

log n/ log α

1
(g(v))pdv ,

and by Lemma 3, the best constant possible M̃n is

M̃n = Mlog n/ log α

= π
sin(π/p) −

π5 sin3(π/p)
θ(log(log n/ log α))2 + O((log(log n/ log α))−3)

= π
sin(π/p) −

π5 sin3(π/p)
θ(log log n)2 + O((log log n)−3) (n →∞). ∎

2.2 Lemmas for the case where p = 2

We begin by providing the statement of following version of Widom’s Theorem [10]
given by de Bruijn–Wilf [4] (see also [11, Theorem 2.9] and Section 2.5 p. 32)

Theorem 5 Let n ⩾ 1, g ∈ L([1, n]), g ⩾ 0. The largest eigenvalue μn of the integral
equation

∫
n

1

g(u)
u + v

du = μg(v), 1 ⩽ v ⩽ n,
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satisfies

μn = π − π5

2(log n)2 + O((log n)−3), n →∞.

Lemma 6 Let n ⩾ α (α ⩾ 2), f ∈ L([α, n]), f ⩾ 0. The largest eigenvalue μ̃n of the
integral equation

∫
n

α

f (x)
√x y log(x y)dx = μ̃ f (y), α ⩽ y ⩽ n,(11)

satisfies

μ̃n = π − π5

2(log log n)2 + O((log log n)−3), n →∞.

Proof By setting

f (x) = g(log x/ log α)/
√

x , u = log x/ log α, and v = log y/ log α,

the equation (11) becomes

∫
log n/ log α

1

g(u)
u + v

du = μ̃g(v).

Using Theorem 5, we obtain

μ̃n = μlog n/ log α

= π − π5

2(log(log n/ log α))2 + O((log(log n/ log α))−3)

= π − π5

2(log log n)2 + O((log log n)−3) (n →∞). ∎

Lemma 7 Let n ⩾ 2, f ∈ L([3, n + 1]), f ⩾ 0. The largest eigenvalue μ̃n of the integral
equation

∫
n+1

3

f (x)√
(x − 1)(y − 1) log((x − 1)(y − 1)

dx = μ̃ f (y), 3 ⩽ y ⩽ n + 1,(12)

satisfies

μ̃n = π − π5

2(log log n)2 + O((log log n)−3), n →∞.

Proof By setting

s = x − 1, t = y − 1, and h(s) = f (x + 1),
the equation (12) becomes

∫
n

2

h(s)√
st log(st)

ds = μ̃h(t).

By Lemma 6, we get the result. ∎
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3 Proof of the main theorem

3.1 Proof of the Theorem for the case p ≠ 2

Let λp,n denote the best possible constant for the inequality

n
∑
j=3
(

n
∑
i=3

a i

i1/q j1/p log(i j))
p

⩽ λp
p,n

n
∑
i=3

ap
i .

We have

λp
p,n = max

∥(a i)∥�p=1

n
∑
j=3
(

n
∑
i=3

a i

i1/q j1/p log(i j))
p

.

To determine λp,n , the method consists in relating λp,n to M̃n , where M̃n is the best
possible constant for the inequality

∫
n

2
(∫

n

2

f (x)
x 1/q y1/p log(x y)dx)

p

dy ⩽ M̃ p
n ∫

n

2
( f (x))pdx .

Let (a i)3⩽i⩽n be a positive sequence of �p such that ∥(a i)∥�p = 1. Put f (x) = a i+1 for
i ⩽ x ⩽ i + 1, we have ∥ f ∥L p = 1. Then

M̃ p
n ⩾ ∫

n

2
(∫

n

2

f (x)
x 1/q y1/p log(x y)dx)

p

dy ⩾
n
∑
j=3
(

n
∑
i=3

a i

i1/q j1/p log(i j))
p

.

This is true for all (a i)i positive such that ∥(a i)∥�p = 1. Hence, by Lemma 4,

λp,n ⩽ M̃n =
π

sin(π/p) −
π5 sin3(π/p)
θ(log log n)2 + O((log log n)−3).

3.2 Proof of the theorem for the case p = 2

Let λ2,n denote the best possible constant for the inequality
n
∑

i , j=3

a i a j√
i j log(i j)

⩽ λ2,n
n
∑
i=3

a2
i .

λ2,n is just the largest eigenvalue of the matrix equation
n
∑
i=3

a i√
i j log(i j)

= λa j .(13)

To determine λ2,n , the method consists in relating λ2,n to μ̃n , where μ̃n is the largest
eigenvalue of the integral equation

∫
n

3

f (x)
√x y log(x y)dx = μ̃ f (y).
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Put f (x) = a i for i ⩽ x ⩽ i + 1, we have

∫
n+1

3

f (x)√
[x][y] log([x][y])

dx =
n
∑
i=3

a i√
i j log(i j)

and the equation (13) takes the form

∫
n+1

3

f (x)√
[x][y] log([x][y])

dx = λ f (y).

Now, for 3 ⩽ x , y ⩽ n + 1, we have

1√
[x][y] log([x][y])

⩾ 1
√x y log(x y) .

Since all the kernels are positive, then by Perron–Frobenius theory, the largest
eigenvalue of the kernel on the left is not less than the largest eigenvalue of the kernel
on the right. Hence, by Lemma 6,

λ2,n ⩾ μ̃n+1 ∶= π − π5

2(log log n)2 + O((log log n)−3), n →∞.

On the other hand, for 3 ⩽ x , y ⩽ n + 1, we have

1√
[x][y] log([x][y])

⩽ 1√
(x − 1)(y − 1) log((x − 1)(y − 1))

.

Then, by Perron–Frobenius theory and by Lemma 7,

λ2,n ⩽ μ̃n ∶= π − π5

2(log log n)2 + O((log log n)−3), n →∞.

4 Remark

It would be interesting to study the �p version of the finite section of the Beurling
inequalities. In [1, pp. 367–368] (see also [9]) Beurling showed the following inequal-
ity: Let a1 , a2 , . . . be non-negative real numbers such that∑∞n=1 na2

n < ∞, then
∞
∑

i , j=1

a i a j

log(i + j) ⩽ K
∞
∑
n=1

na2
n , where K = 4e

e − 1
.

Since log(i + j) ⩾ log(
√

i j) for all i , j ∈ N, if we set an = ãn/
√

n, (ãn) ∈ �2, then by
the multiplicative Hilbert inequality (1), we get a better constant K = 2π. However, it
is still unknown if the best possible constant is 2π.
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