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Abstract

We introduce a definition of long range dependence of random processes and fields on
an (unbounded) index space T ⊆R

d in terms of integrability of the covariance of indi-
cators that a random function exceeds any given level. This definition is specifically
designed to cover the case of random functions with infinite variance. We show the value
of this new definition and its connection to limit theorems via some examples including
subordinated Gaussian as well as random volatility fields and time series.
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1. Introduction

Let X = {Xt, t ∈ T} be a stationary random field on an unbounded index subset T of Rd,
d ≥ 1, defined on an abstract probability space (�,F , P). If X0 is square-integrable then the
classical definition of long range dependence is∫

T
|CX(t)| dt = +∞, (1)

where CX(t) = cov(X0, Xt), t ∈ T. There are also other definitions, for example in terms of spec-
tral density of X being unbounded at zero, growth comparison of partial sums (Allan sample
variance), the order of the variance of sums going to infinity, etc.; see the recent reviews [15],
[5], and [35] for processes and [20] for random fields. These approaches are not equivalent.

More importantly, there is no unified approach to defining the long memory property if X is
heavy-tailed, i.e. with infinite variance. Many authors use the phenomenon of phase transition
in certain parameters of the field (such as the stability index, Hurst index, heaviness of the tails,
etc.) to consider the different limiting behaviour. To give just a few examples, we mention [40]
for the subordinated heavy-tailed Gaussian time series whereas [34], [32], [31], [27], and [37]
consider the extreme value behaviour of partial maxima of stable random processes and fields
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570 R. KULIK AND E. SPODAREV

and a connection with their ergodic properties. In [12, page 76], the short or long memory
for stationary time series is defined by using different limits in functional limit theorems. The
papers [10] and [28] analyse different measures of dependence (such as α-spectral covariance)
for linear random fields with infinite variance lying in the domain of attraction of a stable law.
These are used to define various types of memory and prove corresponding limit theorems for
partial sums.

The main goal of our paper is to give a simple, uniform view of long range dependence that
applies to any stationary (light- or heavy-tailed) random field X; see Definition 1. In Section
3.2 we show that all rapidly mixing random fields are short range dependent in the sense of
the new definition. No moment assumptions are needed there. In Section 3.3 we give sufficient
conditions for a subordinated Gaussian (possibly heavy-tailed) random field to be short or long
range dependent. We show that the transition from short to long memory occurs at the same
boundary for both finite and infinite variance random fields; see Theorem 2 and Example 1.
This cannot be achieved using the classical definitions based on second-order properties. In the
next section the same is done for stochastic volatility random fields of the form Xt = G(Yt)Zt.
Different sources of long range dependence are described. Conditions for long or short memory
of α-stable moving averages and certain max-stable processes are discussed in the forthcoming
paper [25].

As indicated above, one can approach long memory from two different perspectives:
through the distributional properties of the process or the limiting behaviour of suitable statis-
tics. Our definition falls into the first category. Thus, as the next step, we attempt to link the
definition with limit theorems. In this context, the appropriate statistic to study appears to be
the volume of level sets of the field. This is done in Section 4. First, we consider subordi-
nated Gaussian random fields and show the agreement between our definition and the limiting
behaviour. See Section 4.1.1. In the following section we indicate that our definition is not
suitable for capturing the limiting behaviour of the empirical mean. In Section 4.2 we consider
the corresponding problems for random volatility models. In order to do so, we have to develop
limiting theory for integral functionals of random volatility models, including the case of limit
theorems for the volume of level sets of X. These results are of independent interest.

For better readability, proofs of the most of results are moved to the Appendix.

2. Preliminaries

Recall that T is an unbounded subset of R
d. Let N0 =N∪ {0}, and let νd( · ) be the d-

dimensional Lebesgue measure. We let R± denote either R+ = [0,+∞) or R− = ( − ∞, 0],
depending on the context. For instance, G : R→R± means that G maps R either to R+ or
to R−. Let ‖ · ‖ be a norm in the Euclidean space R

d. For two functions f , g : R→R we
write f (x) ∼ g(x), x → a if limx→a f (x)/g(x) = 1, where g(x) �= 0 in a neighbourhood of a. Let
〈f , g〉 = ∫

R
f (x)g(x) dx be the inner product in the space L2(R) of square-integrable functions.

Further, we shall make use of the inner product 〈f , g〉ϕ = ∫
R

f (x)g(x)ϕ(x) dx in the space L2
ϕ(R)

of functions which are square-integrable with the weight ϕ, where ϕ is the standard normal
density. For a finite measure μ on R, let supp(μ) be its support, i.e. the complement of the
largest measurable subset of μ-measure zero in R.

Let (�,F , P) be a probability space. We say that {Xt, t ∈ T} is white noise if it consists of
independent and identically distributed (i.i.d.) random variables Xt.

For any random variable X, let FX(x) = P(X ≤ x) and F̄X(x) = 1 − FX(x) be the cumula-
tive distribution function and the tail distribution function of X, respectively. Let FX,Y(x, y) =
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Long range dependence of heavy-tailed random functions 571

P(X ≤ x, Y ≤ y), x, y ∈R be the bivariate distribution function of a random vector (X,Y). Later
on we make use of the formula

cov(X, Y) =E(cov(X, Y|A)) + cov(E(X|A),E(Y|A)) (2)

for any σ -algebra A⊂F .
A random field X = {Xt, t ∈ T} is called associated (A) if

cov( f (XI), g(XI))) ≥ 0

for any finite subset I ⊂ T and for any bounded coordinate-wise non-decreasing Borel func-
tions f , g : R|I| →R, where XI = {Xt, t ∈ I}. X is called positively associated (PA) or negatively
associated (NA) if

cov( f (XI), g(XJ))) ≥ 0 ( ≤ 0),

respectively, for all finite disjoint subsets I, J ⊂ T, and for any bounded coordinate-wise non-
decreasing Borel functions f : R|I| →R, g : R|J| →R; see e.g. [7].

We use the notation B ∼ Sα(σ, 1, 0) for an α-stable subordinator B with scale parameter
σ > 0; see [36].

3. Long range dependence

Consider a real-valued stationary random field X = {Xt, t ∈ T}. Introduce

covX(t, u, v) = cov(1(X0 > u), 1(Xt > v)), t ∈ T, x, v ∈R.

It is always defined, as the indicators involved are bounded functions.

Definition 1. A random field X = {Xt, t ∈ T} is called short range dependent (s.r.d.) if, for any
finite measure μ on R,

σ 2
μ,X :=

∫
T

∫
R2

|covX(t, u, v)|μ(du)μ(dv) dt<+∞;

X is long range dependent (l.r.d.) if there exists a finite measure μ on R such that σ 2
μ,X = +∞.

For discrete parameter random fields (say, if T ⊆Z
d), the

∫
T dt above should be replaced by∑

t∈T : t �=0.

3.1. Motivation

Assume that X is stationary with marginal distribution function FX(x) = P(X0 ≤ x), x ∈R,
covariance function C(t) = cov(X0, Xt), t ∈ T, and moreover

covX(t, u, v) ≥ 0 or ≤ 0 for all t ∈ T, u, v ∈R. (3)

Examples of X with this property are all PA or NA random functions. Applying [21, Lemma
2], we have (the equality is originally attributed to Hoeffding (1940))

CX(t) =
∫
R2

covX(t, u, v) du dv.

Then X is long range dependent if∫
T

|CX(t)| dt =
∫

T

∫
R2

|covX(t, u, v)| du dv dt = +∞, (4)

which agrees with the classical definition.
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572 R. KULIK AND E. SPODAREV

However, in Definition 1 we integrate |covX(t, u, v)| with respect to a finite measure μ×μ

instead of Lebesgue measure du dv. First, for infinite variance the right-hand side of (4) is
often infinite, regardless of any dependence structure. As such, the classical definition of long
memory is irrelevant in the infinite variance case. Second, our definition will have a natural
link with the asymptotic behaviour of volumes of excursions of X above levels u, v. Recall the
functional central limit theorem (CLT) for normed volumes of excursion sets of X at level u
proved in [26] (see also [41, Theorem 9] for a generalization of this result to fields without a
finite second moment). Namely, for a large class of weakly dependent stationary random fields
X on R

d , the function ∫
Rd

covX(t, u, v) dt, u, v ∈R

is the covariance function of the centred Gaussian process which appears as a limit of

νd({t ∈ [0, n]d : Xt > u}) − ndF̄X(u)

nd/2 , u ∈R, n → ∞ (5)

in D(R) equipped with the J1 Skorokhod topology. If, in particular, the random field is PA or
NA, then by the continuous mapping theorem we have∫

R
νd({t ∈ [0, n]d : Xt > u})μ(du) − nd

∫
R

F̄X(u)μ(du)

nd/2
d−→ N(0, σ 2

μ,X) (6)

as n → ∞ for any finite measure μ with σ 2
μ,X as in Definition 1. So X is s.r.d. if the asymptotic

covariance σ 2
μ,X in the central limit theorem (6) is finite for any finite integration measure μ

prescribing the choice of levels u. In contrast,

σ 2
μ,X = +∞

for μ= δ{u0} means that a different normalization is needed in (5) and a non-Gaussian limit
may arise.

Let us point out one possible interpretation of Definition 1 in a financial context. Assume
X = {Xt, t ≥ 0} to be a time series representing the stock price for which an American option
at price u0 > 0, t ∈ [0, n], n ∈N is issued. The customer may buy a call at price u0 whenever
Xt > u0 for some t ∈ [0, n]. Relation (6) with μ= δ{u0} is written as

ν1({t ∈ [0, n] : Xt > u0}) − nF̄X(u0)√
n

d−→ N(0, σ 2
δ{u0},X), n → ∞.

Then the long range dependence in the sense of Definition 1 of the stock price X (i.e. σ 2
δ{u0},X =

+∞) means that the amount of time within [0,n] at which the option may be exercised is not
asymptotically normal for large time horizons n. In contrast, the short range dependence of
stock X means asymptotic normality of this time span for any price u0 for which the option
was issued, provided that X satisfies the conditions of [26] or [41].

In terms of potential theory, the value σ 2
μ,X in Definition 1 is the energy of measure μ with

symmetric kernel K(u, v) = ∫
T |covX(t, u, v)| dt; see [19, page 77 ff.].

Self-similar random fields. We conclude this section with the formulation of long range
dependence in a special case of self-similarity.
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Let X = {Xt, t ∈R
d+} be a real-valued multi-self-similar random field. By definition, it is

stochastically continuous and there exist numbers H1, . . . ,Hd > 0 such that, for a diagonal
matrix A = diag(a1, . . . , ad) with a1, . . . , ad > 0, we have

{XAt, t ∈R
d+} d= {aH1

1 . . . aHd
d Xt, t ∈R

d+}.

Introduce the notation 1 = (1, . . . , 1) ∈R
d+ and es = (es1, . . . , esd ) for s = (s1, . . . , sd) ∈R

d.
By [11, Proposition 6], the field

Y = {
Ys = e− ∑d

j=1 sjHjXes, s ∈R
d}

is stationary. Using Definition 1 for Y together with the substitution ti = esi , i = 1, . . . , d, we
say that X is s.r.d. if, for any finite measure μ on R,

∫
R

d+

∫
R2

∣∣∣∣cov

(
1(X1 > u), 1

(
Xt > v ·

d∏
j=1

t
Hj
j

))∣∣∣∣ μ(du)μ(dv) dt∏d
j=1 tj

<+∞,

where dt = dt1 . . . dtd means integration with respect to Lebesgue measure in R
d+. Conversely,

X is l.r.d. if the above integral is infinite for some finite measure μ on R.

3.2. Checking the short or long range dependence

Let Pμ( · ) =μ( · )/μ(R) denote the probability measure associated with the finite measure
μ on R. Let U,V be two independent random variables with distribution Pμ. Then the variance
σ 2
μ,X from Definition 1 becomes

σ 2
μ,X

μ2(R)
=

∫
T
E|covX(t,U, V)| dt =

∫
T
E|FX0,Xt (U, V) − FX0 (U)FXt(V)| dt. (7)

This relation is useful for checking the short range dependence of X by showing the finiteness
of σ 2

μ,X for any i.i.d. random variables U and V . Definition 1 is equivalent to the following
lemma.

Lemma 1. A stationary real-valued random field X with marginal distribution function FX is
s.r.d. in the sense of Definition 1 if∫

T

∫
(ImFX)2

|C0,t(x, y) − xy| P0(dx) P0(dy) dt<+∞

for any probability measure P0 on Im FX, where C0,t is the copula of the bivariate distribution
of (X0, Xt), t ∈ T, and Im FX = FX(R̄) ⊆ [0, 1] is the range of FX on R̄=R∪ {+∞} ∪ {−∞};
X is l.r.d. in the sense of Definition 1 if there exists a probability measure P0 on Im FX such
that the above integral is infinite.

Proof. By relation (7) and Sklar’s theorem (see e.g. [14, Theorem 2.2.1]) we have, for any
definite measure μ on R,

σ 2
μ,X =μ2(R)

∫
T

∫
R2

|C0,t(FX(u),FX(v)) − FX(u)FX(v)| Pμ(du) Pμ(dv) dt.
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The choice of C0,t is unique on Im FX; see [14, Lemma 2.2.9]. Applying the substitution x =
FX(u), y = FX(v), we get

σ 2
μ,X =μ2(R)

∫
T

∫
(ImFX)2

|C0,t(x, y) − xy| P0(dx) P0(dy) dt,

where the probability measure P0 has a cumulative distribution function μ(( − ∞, F−
X (x))),

x ∈ [0, 1], and F−
X is the generalized inverse for FX . �

Lemma 1 implies that the new definition of memory is marginal-free, i.e. independent of
the distribution of marginals FX if Im FX = [0, 1], which is the case for absolutely continuous
FX . It essentially involves only the bivariate dependence structure encoded in the copula C0,t.

If condition (3) holds, then application of the Fubini–Tonelli theorem leads to

σ 2
μ,X =μ2(R)

∫
T

cov(Fμ(X0), Fμ(Xt)) dt,

where Fμ(x) = Pμ(( − ∞, x)) is the (left-side continuous) distribution function of probabil-
ity measure Pμ. In this case the s.r.d. condition σ 2

μ,X <+∞ reads as a classical covariance
summability property of the subordinated random field Yt = Fμ(Xt), t ∈ T.

By stationarity of X, we have covX(t, u, v) = covX( − t, u, v) for any t,−t ∈ T, u, v ∈R.
Hence, in order to show long range dependence for T =R, it is enough to check that∫ ∞

0
|covX(t, u0, u0)| dt = +∞

for some u0 ∈R. For T =Z it is sufficient to consider
∑∞

t=1 |covX(t, u0, u0)| = +∞.

3.2.1. Short range dependence for mixing random fields. Let U, V be two sub-σ -algebras of
F . Introduce the z-mixing coefficient z(U, V) (where z ∈ {α, β, φ, ψ, ρ}) as in [13, page 3]. For
instance, it is given for z = α by

α(U, V) = sup{|P(U ∩ V) − P(U)P(V)| : U ∈ U, V ∈ V}.
Let X = {Xt, t ∈ T} be a random field. Let XC = {Xt, t ∈ C}, C ⊂ T, and let σXC be the σ -algebra
generated by XC. If |C| is the cardinality of a finite set C, then the z-mixing coefficient of X is
given by

zX(k, u, v) = sup{z(σXA , σXB ) : d(A,B) ≥ k, |A| ≤ u, |B| ≤ v},
where u, v ∈N and d(A,B) is the Hausdorff distance between finite subsets A and B gen-
erated by the metric on R

d. The interrelations between different mixing coefficients zX ,
z ∈ {α, β, φ, ψ, ρ} are given in [13, Proposition 1], for example.

We state the result that links mixing properties and the short range dependence. The field X
may be non-Gaussian and have infinite variance.

Theorem 1. Let X = {Xt, t ∈ T} be a stationary random field with z-mixing rate satisfying∫
T zX(‖t‖, 1, 1) dt<+∞, where z ∈ {α, β, φ, ψ, ρ}. Then X is s.r.d. in the sense of Definition 1

with ∫
T

∫
R2

|covX(t, u, v)|μ(du)μ(dv) dt ≤ 8
∫

T
zX(‖t‖, 1, 1) dt ·μ2(R)<+∞.

Proof. Without loss of generality, we prove the result for α-mixing X. Introduce random
variables ξ (u) = 1(X0 > u), η(v) = 1(Xt > v), where t ∈ T, u, v ∈R. Then, by the covariance
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inequality in [13, Theorem 3] connecting the covariance of random variables with their mixing
rates, we have∫

T

∫
R2

|covX(t, u, v)|μ(du)μ(dv) dt =
∫

T

∫
R2

|cov(ξ (u), η(v))|μ(du)μ(dv) dt

≤ 8
∫

T
α(σX0, σXt ) dt

∫
R2

‖ξ (u)‖∞‖η(v)‖∞μ(du)μ(dv)

≤ 8
∫

T
αX(‖t‖, 1, 1) dt ·μ2(R)<+∞,

where ‖Y‖∞ = Ess-sup(Y). �
To illustrate the above theorem, we let Y = {Yt, t ∈N} denote a stationary almost surely

(a.s.) non-negative ψ-mixing random sequence with univariate cumulative distribution func-
tion FY and

∫
Rd ψY (‖t‖, 1, 1) dt<+∞. Examples of ψ-mixing random sequences can be

found for instance in [13, Example 4] (see also references therein), [16, Theorem 2.2], [29,
Proof of Claim 2.5], [6], and [38, pages 54–55]. Let F−1

Z be the quantile function of a random
variable Z with EZ2 = +∞. Set G(x) = F−1

Z (FY (x)), x ≥ 0; then Xt = G(Yt), t ∈N is ψ-mixing

as well. Moreover, it is s.r.d. by the last theorem and has infinite variance because of X0
d= Z.

Remark 1. For a Gaussian φ-mixing random field X, the statement of Theorem 1 is trivial,
since such an X is m-dependent [17, Theorem 17.3.2], and the integral

∫ ∞
0 |covX(t, u, v)| dt in

Definition 1 is bounded by 2m for any u, v ∈R.

3.3. Subordinated Gaussian random fields

Recall that ϕ(x) is the density of the standard normal law. We use the notation �(x) for its
cumulative distribution function. Introduce the Hermite polynomials Hn of degree n ∈N0 by

Hn(x) = ( − 1)nϕ(n)(x)/ϕ(x),

where ϕ(n) is the nth derivative of ϕ. Clearly

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, . . . .

For even orders n, Hermite polynomials are even functions, whereas for odd n they are odd
functions. It is well known that Hermite polynomials form an orthogonal basis in L2

ϕ(R). For

any function f ∈ L2
ϕ(R) with 〈f , 1〉ϕ = 0, let

rank ( f ) = min{n ∈N : 〈f ,Hn〉ϕ �= 0}
be the Hermite rank of f . Furthermore, the Hermite rank can also be defined for functions
f �∈ L2

ϕ(R), as long as 〈|f |1+θ , ϕ〉<∞ for some θ ∈ (0, 1); see [40] or [5, Section 4.3.5].
Let Y = {Yt, t ∈ T} be a stationary centred Gaussian real-valued random field with var Yt = 1

and CY (t) = cov(Y0, Yt), t ∈ T. The subordinated Gaussian random field X is defined by Xt =
G(Yt), t ∈ T, where G : R→ Im (G) ⊆R is a measurable function.

Assume first that X is square-integrable. The following lemma is proved in [33, Lemma
10.2].

Lemma 2. Let Z1, Z2 be standard normal random variables with ρ = cov(Z1, Z2), and let F, G
be functions satisfying EF2(Z1),EG2(Z1)<+∞. Then

cov(F(Z1),G(Z2)) =
∞∑

k=1

〈F,Hk〉ϕ〈G,Hk〉ϕ
k! ρk.
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Let CX(t) = cov(X0, Xt), t ∈ T. Assuming CY (t) ≥ 0 for all t ∈ T and applying this lemma to
our subordinated process X = G(Y) we get that it is s.r.d. in the sense of Definition 1 if∫

T
|CX(t)| dt =

∞∑
k=1

〈G,Hk〉2
ϕ

k!
∫

T
Ck

Y (t) dt<+∞. (8)

We shall see that an analogous result holds also if X has no finite second moment. Introduce
the condition

(ρ) |CY (t)|< 1 for all t �= 0 if T is countable, and for νd-almost every t ∈ T if T is
uncountable.

The following result gives the conditions for short range dependence of a subordinated
Gaussian random field, without a moment assumption. Its proof is given in the Appendix.

Theorem 2. Let Y be the Gaussian random field introduced above. Let X be a subordinated
Gaussian random field defined by Xt = G(Yt), t ∈ T, where G is a right-continuous strictly
monotone (increasing or decreasing) function. Assume that condition (ρ) holds. Let

bk(μ) =
(∫

Im (G)
Hk(G−(u))ϕ(G−(u))μ(du)

)2

, (9)

where G− is the generalized inverse of G if G is increasing or the generalized inverse of −G if
G is decreasing. Then X is s.r.d. in the sense of Definition 1 if and only if

∞∑
k=1

bk−1(μ)

k!
∫

T
|CY (t)|Ck−1

Y (t) dt<+∞ (10)

for any finite measure μ on R.

Corollary 1. Assume that the conditions of Theorem 2 hold.

(i) Let μ(dx) = f (x) dx for f ∈ L1(R) such that f (x) ≥ 0 for all x ∈R. If G ∈ C1(R) and
Im (G) =R, then bk(μ) = 〈G′f (G),Hk〉2

ϕ , k ∈N. In this case all coefficients bk(μ) are

finite if, for some θ ∈ (0, 1), we have E[|G′(Y0)f (G(Y0))|1+θ ]<+∞. If G′f (G) is an
even function then bk(μ) = 0 for all natural odd k.

(ii) If Xt = G(|Yt|), t ∈ T, then the s.r.d. condition (10) simplifies to
∞∑

k=1

b2k−1(μ)

(2k)!
∫

T
C2k

Y (t) dt<+∞. (11)

Remark 2. Based on Theorem 2 and Corollary 1, the long range dependence in the sense of
Definition 1 can also be formulated as follows.

(i) X = G(Y) is l.r.d. if there exists u0 ∈R such that bk(δ{u0})<+∞ for all k and the series
(10) diverges to +∞.

(ii) If the initial process Y is s.r.d. then all powers of CY are integrable on T and the long
memory of X = G(|Y|) can only come from function G. This can happen, for example,
if its coefficients bk(μ) decrease to zero slowly enough. Conversely, assume that Y is
l.r.d., 0< b2k−1(μ)<+∞ for all k ∈N and some finite measure μ. If there exists k ∈N

such that
∫

T C2k
Y (t) dt = +∞, then X is l.r.d.

Let us illustrate the last point of Remark 2 with an example.

https://doi.org/10.1017/jpr.2020.107 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.107


Long range dependence of heavy-tailed random functions 577

Example 1. Let G(x) = ex2/(2α), α > 0, T =R
d. Then it is easy to see that

P(|X0|> x) = L(x)x−α,

where L(x) = √
2/(π log x). For α ∈ (1, 2], E X0 <∞, E X2

0 = +∞.

To compute b2k−1(μ), we notice that

√
b2k−1(μ) = 1√

2π

∫ ∞

1
u−αH2k−1(

√
2α log u)μ(du), k ∈N.

Using the upper bound |H2k−1(x)| ≤ x ex2/4(2k − 1)!!/4, x ≥ 0 from [1, page 787], one can
show that

b2k−1(μ) ≤ α

16π
[(2k − 1)!!]2

(∫ ∞

1
u−α/2√log uμ(du)

)2

≤ α

4π
μ2([1,+∞))[(2k − 1)!!]2

<+∞
for all k ∈N.

We note that the use of the finite measure μ is crucial here, since for the Lebesgue measure
the integral

∫ ∞
1 u−α/2√log uμ(du) is infinite for α ≤ 2.

Now, by Stirling’s formula [4, Theorem 1.4.2], we get

[(2k − 1)!!]2

(2k)! ∼ c3√
k
, k → +∞

for c3 > 0, so
b2k−1(μ)

(2k)! = O

(
1√
k

)
, k → +∞. (12)

Assume that CY (t) ∼ ‖t‖−η as ‖t‖ → +∞, η > 0. Then X = eY2/(2α), α > 0, is

• l.r.d. if η ∈ (0, d/2], since then

∞∑
k=1

b2k−1(μ)

(2k)!
∫

T
C2k

Y (t) dt = +∞;

• s.r.d. if η > d/2, since then we have∫
Rd

C2k
Y (t) dt = O(k−1) as k → +∞,

and the series (11) behaves like
∑∞

k=1 k−3/2 <+∞.

Here the source of long memory of X is the l.r.d. field Y. If α > 2 the variance of X0 is finite,
and our results agree with the definition in (1) by relation (8) if we note that rank (G) = 2.
However, the main point of this example is that we have the same transition from short to long
memory (i.e. η= d/2) for both finite and infinite variance fields.

Note that for η ∈ (d/2, d) the Gaussian field Y is l.r.d. but the subordinated field X = eY2/(2α)

is s.r.d. This agrees with the classical theory for finite variance, but is novel for infinite variance.
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3.4. Stochastic volatility models

We present a way of constructing random fields with long memory by introducing a random
volatility G(Yt) (being a deterministic function of a random scaling field Y = {Yt, t ∈ T}) of a
random field Z = {Zt, t ∈ T}. We assume that Y and Z are independent. An overview of random
volatility models and their applications in finance can be found in [39] and [3, Part II], for
example. For each t ∈ T, Xt = G(Yt)Zt is a scale mixture of G(Yt) and Zt; see [42, Chapter VI,
page 345]. Let F̄Z = 1 − FZ be the marginal tail distribution function of Zt for stationary Z.

For a finite measure μ, introduce the functional

Dμ(G(Y), Z0) =
∫

T

∫
R2

cov(F̄Z(u/G(Y0)), F̄Z(v/G(Yt)))μ(du)μ(dv) dt.

The next lemma follows trivially from relation (2), independence of Y and Z, and Tonelli’s
theorem.

Lemma 3. Let a random field X = {Xt, t ∈ T} be given by Xt = G(Yt)Zt, where Y = {Yt, t ∈ T}
and Z = {Zt, t ∈ T} are independent stationary random fields, Z has property (3), G : R→R±
and P(G(Yt) = 0) = 0 for all t ∈ T. Then∫

T

∫
R2

covX(t, u, v)μ(du)μ(dv) dt

= Dμ(G(Y), Z0) +
∫

T

∫
R2

E[covZ(t, u/G(Y0), v/G(Yt))]μ(du)μ(dv) dt. (13)

Let us illustrate the use of Lemma 3.

Corollary 2. Let the random field X be given by Xt = AZt, t ∈ T, |T| = +∞, where A> 0 a.s.,
A and Z are independent, and Z ∈ PA is stationary. Then X is l.r.d. in the sense of Definition 1
if there exists u0 ∈R such that F̄Z(u0/A) �= const. a.s.

The above corollary evidently holds true if, for example, Z0 ∼ Exp(λ), A ∼ Fréchet(1)
for any λ > 0. It also clearly applies to a sub-Gaussian random field X, where A = √

B,
B ∼ Sα/2(( cos πα/πα)2/α, 1, 0), α ∈ (0, 2), and Z is a centred stationary Gaussian random
field with covariance function C(t) ≥ 0 for all t ∈ T and a non-degenerate tail F̄Z .

The following corollary describes the situation where a light-tailed Y is responsible for the
long range dependence of X while Z is responsible for heavy tails.

Corollary 3. For the random field X = {Xt, t ∈ T} given by Xt = YtZt, t ∈ T, assume that ran-
dom fields Y = {Yt, t ∈ T} and Z = {Zt, t ∈ T} are stationary and independent. Assume that Z0
has a regularly varying tail, that is, P(Z0 > x) ∼ L(x)/xα as x → +∞ for some α > 0, where the
function L is slowly varying at +∞. For Y0 > 0 a.s. assume that EYδ0 <∞ and E(Yδ0Yδt )<∞
for some δ > α and all t ∈ T. Let Y, Z ∈ PA(NA). Then X is l.r.d. if Yα = {Yαt , t ∈ T} is l.r.d.

Now we scale a l.r.d. (possibly heavy-tailed) random field Z by a random volatility G(Y)
being a subordinated Gaussian random field.

Lemma 4. Let Xt = G(Yt)Zt be a random field as in Lemma 3. Assume further that Y is a
centred Gaussian random field with unit variance and covariance function ρ(t) ≥ 0 satisfying
condition (ρ). Then

Dμ(G(Y), Z0) =
∞∑

k=1

(∫
R
〈F̄Z(u/G( · )),Hk( · )〉ϕ μ(du)

)2

k!
∫

T
ρk(t) dt.

https://doi.org/10.1017/jpr.2020.107 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.107


Long range dependence of heavy-tailed random functions 579

The following example illustrates our definition of long range dependence in the context
of a popular long memory stochastic volatility model that is used in econometrics to model
log-returns of stocks; see [5, page 70 ff.] and references therein.

Example 2. Assume that X = {Xt, t ∈ Z} has a form Xt = eY2
t /4Zt, where Zt is a sequence of

i.i.d. random variables with finite moment of order 2 + δ for some δ > 0, while Yt is a centred
stationary Gaussian PA long memory sequence with unit variance and covariance function CY

satisfying condition (ρ). Both sequences Zt and Yt are assumed to be independent of each other.
From Example 1 we know that eY2

0 /4 is regularly varying with index α= 2. By Breiman’s
lemma the tail distribution function of |X0| is also regularly varying with index α = 2, and
hence X0 has infinite variance. Choose μ= δ{u0} for some u0 ∈R. Lemmas 3 and 4 yield

∞∑
t=1

∫
R2

covX(t, u, v)μ(du)μ(dv) =
∞∑

k=1

〈F̄Z(u0/G),Hk〉2
ϕ

k!
∞∑

t=1

Ck
Y (t), (14)

where G(x) = ex2/4. Since F̄Z(u0/G) is symmetric, monotone non-decreasing, and bounded, we
get 〈F̄Z(u0/G),Hk〉ϕ = 0 for all odd k, and it is finite for all even k ∈N. Moreover, by Lemma
5(ii) we have rank (F̄Z(u0/G)) = 2. It is clear that X is l.r.d. if

∑∞
t=1 ρ

2(t) = +∞. In particular,
if CY (t) ∼ |t|−η as |t| → ∞, then long range dependence occurs if η ∈ (0, 1/2]. Again, similarly
to Example 1, the point here is that we obtain long memory for both finite and infinite variance.

4. Limit theorems

In this section we investigate connections between Definition 1 and limit theorems for ran-
dom volatility and subordinated Gaussian random fields. In order to do so, we have to specify
the statistic whose limiting behaviour we consider. We focus on the volume of the excursion
sets.

In Section 4.1 we consider subordinated Gaussian random fields. In Section 4.1.1 we show
by a natural example that our definition of long memory is in agreement with the existing
limiting behaviour of the volume of excursions of X over some levels u. On the other hand,
in Section 4.1.2 we will indicate that the limiting behaviour of the empirical mean cannot be
directly related to our definition. The latter is not surprising.

In Section 4.2 we consider related problems for stochastic volatility random fields.
From now on we assume the random field X to be measurable. In what follows, L will

indicate a slowly varying function at infinity, that can be different at each of its occurrences.
We start with the following lemma, which will play a major role.

Lemma 5. Let Y, Z be independent random variables such that Y ∼ N(0, 1). For any monotone
right-continuous non-constant function G : R→R± with ν1({x ∈R : G(x) = 0}) = 0, consider
the functions G̃(y) = G(|y|) and

ζG,Z,u(y) =E[1{G(y)Z> u}] − P(G(Y)Z> u), y ∈R (15)

for a fixed u> 0 if G ≥ 0 and u< 0 if G ≤ 0. Then the following hold.

(i) Let G : R→R± be as above such that E|G(Y)|1+θ <+∞ for some θ ∈ (0, 1]. Then

rank (G) = rank (ζG,1,u) = rank (ζG,Z,u) = 1.
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(ii) Let G : R+ →R± be as above such that E|G̃(Y)|1+θ <+∞ for some θ ∈ (0, 1],
G−(u) �= 0, where G− is the generalized inverse of G. Then

rank (G̃) = rank (ζG̃,1,u) = rank (ζG̃,Z,u) = 2.

Remark 3.

(i) If Z ≡ 1, then the assertion of Lemma 5(i) holds under milder assumptions
on G and u. Thus let G : R→R be a monotone right-continuous non-constant
function such that E|G(Y)|1+θ <+∞ for some θ ∈ (0, 1]. Then, for any u ∈R,
rank (G) = rank (ζG,1,u) = 1.

(ii) The assumption of non-negative or non-positive G is essential to the rank condi-
tion rank (ζG,Z,u) = 1 of Lemma 5(i), since for G(y) = y and symmetric Z we have
E[Y1{YZ > u}] = 0, so the Hermite rank of ζG,Z,u is greater than 1. Similarly, one
can construct examples of functions G with rank (ζG̃,Z,u)> 2 for some u ∈R if
the assumptions of Lemma 5(ii) do not hold. For instance, G−(u) = 0 means that
rank (ζG̃,Z,u) ≥ 4.

(iii) If G is non-negative or non-positive and u = 0, then it is easily seen that ζG,Z,0 ≡ 0 and,
formally speaking, its Hermite rank is infinite.

4.1. Limit theorems for subordinated Gaussian processes

Let X = {Xt, t ∈R
d}, where Xt = G(Yt) and Y = {Yt, t ∈R

d} is a stationary isotropic l.r.d.
centred Gaussian random field with covariance function CY (t) = ‖t‖−ηL(‖t‖), η ∈ (0, d/q)
(see [18], [22], and [23]). Here EG2(Y0)<+∞ and q is the Hermite rank of G. Under some
technical assumptions on the spectral density f (λ) of Y (see [23, Assumption 2]),

nqη/2−dL−q/2(n)
∫

Wn

G(Yt) dt
d−→ R, n → +∞,

where

R = (γ (d, η))q/2
∫ ′

Rdq

∫
W

ei〈λ1+...+λq,u〉 du
B̃(dλ1) . . . B̃(dλq)

(‖λ1‖ · . . . · ‖λq‖)(d−η)/2 , (16)

γ (d, η) = �((d − η)/2)

2ηπd/2�(η/2)
,

and
∫ ′
Rdq is the multiple Wiener–Itô integral with respect to a complex Gaussian white noise

measure B̃ (with structural measure being the spectral measure of Y; see [18, Section 2.9]).
It is easy to see that for q = 1 the distribution of R is Gaussian. However, the normalization
nη/2−dL−1/2(n) differs from the usual CLT normalizing factor n−d/2, which agrees with the fact
that X is l.r.d. in the sense of the usual definition as in (1). For q ≥ 2, we get a q-Rosenblatt-type
distribution for R; see [43] and [24] and references therein for its properties in the case q = 2.

4.1.1 Volume of level sets. We apply the above observations to level sets. Assume G : R→R

to be a monotone right-continuous function such that E|G(Y)|1+θ <+∞ with θ ∈ (0, 1). Let
the variance of X0 be infinite. For any u ∈R introduce the function gu(x) = ζG,1,u(x), where
ζG,1,u is given in (15). By Remark 3(i), the Hermite ranks of G and gu are equal to one. If
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η ∈ (0, d) then∫
Wn

gu(Yt) dt

nd−η/2L1/2(n)
=

∫
Wn

1(G(Yt)> u) dt − νd(Wn)P(G(Y0)> u)

nd−η/2L1/2(n)
d−→ R

as n → +∞, where R is given in (16). The normalization in this limit theorem is not of CLT
type n−d/2, which should be attributed to the l.r.d. case. Let us compare this behaviour with
Definition 1. As an example, we consider

G(x) = sign(x)
(

ex2/β2 − 1
)
, x ∈R

for some β >
√

2(1 + θ ). Note that it is possible that the variance of X = G(Y) is infinite. Set
μ= δ{0}. By Remark 2(i) we get bk(μ) = H2

k (0)/(2π)<+∞ for any k ≥ 0, b0 > 0, b1 = 0, etc.
By the choice CY (t) = ‖t‖−ηL(‖t‖), η ∈ (0, d) we get that

∫
Rd |CY (t)| dt = +∞, and the series

(10) diverges. Then X is l.r.d. in the sense of Definition 1 for η ∈ (0, d), which is in accordance
with the above limit theorem.

4.1.2. Empirical mean: infinite variance case. In this section we show that Definition 1 cannot
be linked to the behaviour of integrals or partial sums of the field X if X has infinite variance.
For that, we use the framework of time series X = {Xt, t ∈Z}, where many more models have
been widely explored, as compared to (continuous-time) random fields.

Consider (as in Section 3.3) a subordinated time series Xt = G(|Yt|), t ∈ Z, where {Yt, t ∈ Z}
is a centred Gaussian long memory linear time series with non-decreasing covariance function
CY (t) = cov(Y0, Yt) ∼ |t|−ηL(t), t → +∞, η ∈ (0, 1), and such that P(|X0|> x) ∼ x−αL(x), α ∈
(0, 2). It is further assumed that G has Hermite rank q. By Corollary 1(ii), X is short range
dependent in the sense of Definition 1 whenever, for any finite measure μ on R,

∞∑
k=1

b2k−1(μ)

(2k)!
∞∑

t=1

C2k
Y (t)<+∞.

We note that ∞∑
t=1

C2k
Y (t) ≤ c0

∫ ∞

1

L2k(t)

t2kη
dt ≤

∫ ∞

1

c1 dt

t2k(η−δ) , k ∈N, (17)

where δ > 0 is arbitrary and c0, c1 > 0 are some constants. The second inequality holds since
L(t) ≤ c2tδ for t ≥ t0, where t0 > 0 is large enough and c2 = c2(δ, t0) = (1 + δ)L(t0)/tδ0 ≤ 1 for
large t0; see [30, Proposition 2.6]. The right-hand side of (17) is finite and equal to O(1/k)
whenever η ∈ (1/2, 1), since δ > 0 can be chosen arbitrarily small. The series in (17) diverges
if η ∈ (0, 1/2). If η= 1/2, the summability of the series in (17) depends on the particular form
of the slowly varying function L and will not be discussed here.

Thus, for η ∈ (1/2, 1), X is s.r.d. whenever

∞∑
k=1

b2k−1(μ)

(2k)!k <+∞ (18)

for any finite measure μ.
Now we have to consider a special example of function G in order to get more explicit

results for the s.r.d. case. As in Example 1, set G(x) = ex2/(2α), α ∈ (0, 2]. By relation (12),
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TABLE 1. Short or long memory of Xt = eY2
t /(2α) in the infinite variance case α ∈ (1, 2) depending on the

long memory parameter η of Y according to [40].

Parameter range Limit of normalized sums Sn

1 − 1/α < η < 1 α-stable
0< η < 1 − 1/α Rosenblatt

condition (18) is satisfied for η ∈ (1/2, 1), hence X is s.r.d. in the sense of Definition 1 if
η ∈ (1/2, 1) and l.r.d. if η ∈ (0, 1/2).

Let us compare this result with the limiting behaviour of the partial sums Sn = ∑n
t=1 (Xt −

E[Xt]) as given in [40] and [5, Section 4.3.5]; see Table 1. There some discrepancies are seen,
that is, Definition 1 does not agree with the asymptotic behaviour of Sn.

4.2. Limit theorems for the integrals of functionals of l.r.d. random volatility fields

In this section we will justify that our definition of long range dependence is in agreement
with limit theorems for volumes of level sets for random volatility models. Unlike the subor-
dinated Gaussian case, where the limiting results are known, a general asymptotic theory has
to be developed.

Let X be a random volatility field of the form Xt = G(Yt)Zt, t ∈ Z
d, where

• {G(Yt), t ∈R
d} is a subordinated Gaussian measurable random field, which is sampled

at points t ∈Z
d ,

• {Zt, t ∈Z
d} is white noise,

• the random fields Y and Z are independent.

Our goal is to prove limit theorems for
∑

t∈Wn
g(Xt) as n → ∞, where Wn = [ − n, n]d ∩Z

d

and g is a real-valued Borel-measurable function such that

E[g(X0)] = 0, E[g2(X0)]> 0. (19)

Introduce the function
ξ (y) =E[g(G(y)Z0)].

It follows from (19) that for ν1-almost every y ∈R

ξ (y)<∞. (20)

By (19) we also have E[ξ (Y0)] = 0. Let

J(m) = 〈ξ,Hm〉ϕ =E[Hm(Y0) g(G(Y0)Z0)]

be the mth Hermite coefficient of ξ . We recall that a sufficient condition for the finiteness of
J(m) is

E
[|g(X0)|1+θ] =E

[|ξ (Y0)|1+θ] =E
[|E[g(G(Y0)Z0) |Y]|1+θ]<∞ (21)

for some θ ∈ (0, 1], where Y is a sigma-field generated by the entire sequence Y. Let rank (ξ ) =
q. Furthermore, set

m(y, Zt) = g(G(y)Zt) −E[g(G(y)Zt)] = g(G(y)Zt) − ξ (y),
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which is almost everywhere finite by (20), and χ(y) =E[m2(y, Z0)]. We also assume

E[χ3(Y0)]<∞. (22)

Note that under (22), using the Lyapunov inequality on a space of finite measure and the
stationarity of Yt, we have for any finite subset I ⊂Z

d

E

[(∑
t∈I

χ(Yt)

)3]
<∞.

The following result shows that the limiting behaviour is primarily determined by the function
ξ , with ξ ≡ 0 being the boundary case.

Theorem 3. Assume that the random field Xt = G(Yt)Zt, t ∈Z
d, is as above, and satisfies the

following:

• Y is a homogeneous isotropic centred Gaussian random field with the covariance
function CY (t) =E[Y0Yt] = ‖t‖−ηL(‖t‖), η ∈ (0, d/q) and L is slowly varying at infinity,

• Y has a spectral density f (λ) which is continuous for all λ �= 0 and decreasing in a
neighbourhood of 0.

Assume that (19), (21) with θ = 1, and (22) hold.

(i) If ξ (y) ≡ 0, then

n−d/2
∑
t∈Wn

g(Xt)
d−→N (0, σ 2), n → +∞, (23)

where σ 2 =E[g2(X0)]2d > 0.

(ii) If ξ (y) �≡ 0, then

nqη/2−dL−q/2(n)
∑
t∈Wn

g(Xt)
d−→ R, n → +∞, (24)

where the random variable R is given in (16) with W = [ − 1, 1]d.

Example 3. Assume that g(y) = y, E[G2(Y0)]<∞, and E[Z0] = 0. Then ξ (y) = G(y)E[Z0] =
0 and (23) always holds. In this case there is no contribution from the long memory of the
random field Yt.

Example 4. Assume that g(y) = y −E[G(Y0)Z0] and E[Z0] �= 0. Then ξ (y) =E[Z0]{G(y) −
E[G(Y0)]}. Condition (22) is satisfied if E[|Z0|3]<+∞ and E[G4(Y0)]<+∞. In this case
ξ (y) �≡ 0, and (24) always holds.

Example 5. Assume that g(y) = gu(y) = 1{y> u} − P(G(Y0)Z0 > u), where G is non-negative
or non-positive ν1-a.e. Then

ξ (y) =E[1{G(y)Z0> u}] − P(G(Y0)Z0 > u) �≡ 0

if u �= 0, so case (24) applies. If u = 0, then ξ (y) ≡ 0 (compare Remark 3(iii)), so case (23)
holds true.

Example 6. Let the random volatility field Xt = G(|Yt|)Zt, t ∈Z
d be as in Lemma 4, where {Zt}

is heavy-tailed white noise, EZ2
0 = +∞. Let Y satisfy the assumptions of Theorem 3. Choose
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G(x) ≥ 0 as in Lemma 5(ii), and let CY (t) ∼ ‖t‖−η as ‖t‖ → +∞ be non-negative. Similarly to
Example 2, an analogue of relation (14) holds true: for μ= δ{u0}, u0 > 0 we have

∑
t∈Zd, t �=0

∫
R2

covX(t, u, v)μ(du)μ(dv) =
∞∑

k=1

〈F̄Z(u0/G̃),Hk〉2
ϕ

k!
∑

t∈Zd, t �=0

Ck
Y (t),

where G̃(y) = G(|y|), y ∈R. Since rank (F̄Z(u0/G̃)) = 2, X is l.r.d. in the sense of Definition 1
if

∑
t∈Zd, t �=0 C2

Y (t) = +∞, i.e. if η < d/2.

Consider function ξ from Example 5 with u = u0 > 0 and G̃ instead of G. By Lemma 5(ii),
rank (ξ ) = 2. By Theorem 3 and Example 5, the asymptotic behaviour of the cardinality of
the level sets of X at level u0 is of l.r.d. type if η ∈ (0, d/2), which is in agreement with our
definition.

Remark 4. We would like to connect the assumption ξ ≡ 0 to our definition. Let g,h be func-
tions such that E[g(X0)] =E[h(X0)] = 0. If E[g(X0)h(Xt)]<∞ for all t, and E[g(G(y)Z0)] =
E[h(G(y)Z0)] = 0 for all y, then for t �= 0

cov(g(X0), h(Xt)) =
∫ ∫

E[g(G(y0)Z0)]E[h(G(yt)Zt)]PY0,Yt (dy0, dyt) = 0,

where PY0,Yt is the joint law of (Y0, Yt). In particular, take

g(x) = gu(x) = 1(x> u) − P(X0 > u), h(x) = hv(x) = 1(x> v) − P(X> v).

Then

σ 2
μ,X =

∑
t∈Zd, t �=0

∫
R2

|cov(gu(X0), hv(Xt))| du dv = 0,

and the random field X is s.r.d. according to Definition 1 for ξ ≡ 0.

5. Summary and outlook

We proposed a new definition of long memory for stationary random fields X indexed by
any set T ⊂R

d , which works also for heavy-tailed X. We showed that this definition is a good
fit to the asymptotic behaviour of the volume of the excursion set of X at a level u ∈R in an
unboundedly growing observation window Wn. This connection to non-central limit theorems
was proved for a class of random volatility fields with subordinated l.r.d. Gaussian volatility.

Appendix A. Proofs

Proof of Theorem 2. If X is a centred stationary unit variance Gaussian random field with
covariance function CY (t),

covX(t, u, v) = 1

2π

∫ CY (t)

0

1√
1 − r2

exp

{
−u2 − 2ruv + v2

2(1 − r2)

}
dr; (25)

see [8, Lemma 2].
Consider representation (25). Since the density f(U,V) of a bivariate normal distribution with

zero mean, unit variances, and correlation coefficient ∓r equals

1

2π
√

1 − r2
exp

{
−x2 ± 2rxy + y2

2(1 − r2)

}
≥ 0,
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then it is easy to see that

|covY (t, x, y)| = 1

2π

∫ |CY (t)|

0

1√
1 − r2

exp

{
−x2 − 2 sign (CY (t))rxy + y2

2(1 − r2)

}
dr.

Since G is strictly monotone, by properties of the generalized inverse of G we have∫
T

∫ +∞

−∞

∫ +∞

−∞
|covX(t, u, v)|μ(du)μ(dv) dt

=
∫

T

∫
(Im(G))2

|covY (t,G−(u),G−(v))|μ(du)μ(dv) dt

=
∫

T

∫
(Im(G))2

∫ |CY (t)|

0
exp

(
− (G−(u))2 − 2 sign (CY (t))rG−(u)G−(v) + (G−(v))2

2(1 − r2)

)
drμ(du)μ(dv) dt

2π
√

1 − r2
.

By [9, formula (21.12.5)] for the density f(U,V) with correlation coefficient sign (CY (t))r ∈
(− 1, 1), we have

fU,V(x, y) =
∞∑

k=0

�(k+1)(x)�(k+1)(y)

k! (sign(CY (t))r)k, x, y ∈R. (26)

By condition νd({t ∈ T : |CY (t)| = 1}) = 0, the above series converges uniformly for r ∈
(− 1, 1), so integration over r ∈ [0;|CY(t)|] and summation with respect to k can be inter-
changed. Then the above triple integral reads∫

T

∫
Im (G)2

∫ |CY (t)|

0

∞∑
k=0

�(k+1)(G−(u))�(k+1)(G−(v))

k! (sign(CY (t))r)k drμ(du)μ(dv) dt

=
∫

T

∫
Im (G)2

ϕ(G−(u))ϕ(G−(v))
∞∑

k=0

Hk(G−(u))Hk(G−(v))

k! sign (CY (t))k

× |CY (t)|k+1

k + 1
μ(du)μ(dv) dt

=
∫

T

∫
Im (G)2

|CY (t)|ϕ(G−(u))ϕ(G−(v))
∞∑

k=0

Hk(G−(u))Hk(G−(v))

(k + 1)k! CY (t)kμ(du)μ(dv) dt.

Abel’s uniform convergence test allows us to interchange the sum and the integral over
Im (G)2. Since bk ≥ 0, we get∫

T

∞∑
k=0

∫
Im (G)2

ϕ(G−(u))ϕ(G−(v))
Hk(G−(u))Hk(G−(v))

(k + 1)! |CY (t)|CY (t)k drμ(du)μ(dv) dt

=
∫

T

∞∑
k=0

1

(k + 1)!
(∫

Im (G)
ϕ(G−(u))Hk(G−(u))μ(du)

)2

|CY (t)|CY (t)k dt

=
∫

T

∞∑
k=0

bk(μ)

(k + 1)! |CY (t)|CY (t)k dt =
∞∑

k=1

bk−1(μ)

k!
∫

T
|CY (t)|ρk−1(t) dt,
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where the integral over T and the sum are interchangeable by Tonelli’s theorem subdividing
T into parts T+ = {t ∈ T : CY (t) ≥ 0} and T− = {t ∈ T : CY (t)< 0}. Then X = G(Y) has short
memory if

∞∑
k=1

bk−1(μ)

k!
∫

T
|CY (t)|ρk−1(t) dt<+∞

for any finite measure μ on R. �

Proof of Corollary 1. (i) It follows from relation (9) using the change of variables u = G(x)
and by [5, Lemma 4.21].

(ii) Without loss of generality, assume G is an increasing function. Since the probabil-
ity density of the centred univariate and bivariate Gaussian distribution is invariant under
transformation x �−→ −x, y �−→ −y, we get

covX(t, u, v) = P(|Y0|>G−(u), |Yt|>G−(v)) − P(|Y0|>G−(u))P(|Yt|>G−(v))

= 2(P(Y0 >G−(u), Yt >G−(v)) − P(Y0 >G−(u))P(Yt >G−(v))

+ P(Y0 >G−(u), Yt <−G−(v)) − P(Y0 >G−(u))P(Yt <−G−(v))).

Let Z = −Yt, x = G−(u), and y = G−(v). Thus

P(Y0 > x, Yt > y) − P(Y0 > x)P(Yt > y) = cov(1(Y0 ≥ x), 1(Yt ≥ y)),

P(Y0 > x, Yt <−y) − P(Y0 > x)P(Yt <−y) = cov(1(Y0 > x), 1(Z> y)).

Since cov(Y0, Z) = −CY (t) and xy = G−(u)G−(v) ≥ 0, we have by formula (25) that

|covX(t, u, v)|

= 2

2π

∣∣∣∣
∫ CY (t)

0

1√
1 − r2

exp

(
−x2 − 2rxy + y2

2(1 − r2)

)
dr

+
∫ −CY (t)

0

1√
1 − r2

exp

(
−x2 − 2rxy + y2

2(1 − r2)

)
dr

∣∣∣∣
=

∫ |CY (t)|

0

(
exp

(
−x2 − 2rxy + y2

2(1 − r2)

)
− exp

(
−x2 + 2rxy + y2

2(1 − r2)

))
dr

π
√

1 − r2
.

Similarly to the proof of Theorem 2, we use representation (26) to write∫
T

∫ +∞

−∞

∫ +∞

−∞
|covX(t, u, v)|μ(du)μ(dv) dt

= 2
∫

T

∫
Im (G)2

∞∑
k=0

1 − ( − 1)k

(k + 1)! Hk(x)Hk(y)ϕ(x)ϕ(y)|CY(t)|k+1μ(du)μ(dv) dt

=
∫

T

∞∑
k=1

4

(2k)!
(∫

Im (G)
H2k−1(G−(u))ϕ(G−(u))μ(du)

)2

|CY (t)|2k dt

= 4
∞∑

k=1

b2k−1(μ)

(2k)!
∫

T
ρ2k(t) dt. �
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Proof of Corollary 2. Choose μ= δ{u0}, u0 ∈R and write∫
T

∫
R2

covX(t, u, v)μ(du)μ(dv) dt

=
∫

T
cov(F̄Z(u0/A), F̄Z(u0/A)) dt +

∫
T
E[covZ(t, u0/A, u0/A)] dt

≥
∫

T
var(F̄Z(u0/A)) dt

= +∞,

since Z ∈ PA, F̄Z(u0/A) is non-degenerate and bounded. �

Proof of Corollary 3. Without loss of generality assume Z, Y ∈ PA. Then Yα ∈ PA too, and
the second term in (13) is non-negative. Let

Au,v(t) = cov(F̄Z(u/Y0), F̄Z(v/Yt)), u, v ∈R+, t ∈ T.

Since Y ∈ PA and the function F̄Z(u/ · ) is bounded and non-decreasing for u> 0, we get
Au,v(t) ≥ 0 for all u, v ∈R+, t ∈ T. Using the regular variation of the tail of Z0, the indepen-
dence of Y and Z, and Potter’s bound [30, Proposition 2.6], one can easily show that under the
above assumptions on the integrability of Y we obtain

Au,v(t) ∼ F̄Z(u)F̄Z(v)cov(Yα0 , Yαt ), u, v → +∞,

for any t ∈ T. Then, for sufficiently large N > 0, there exists u0 >N such that for the Dirac
measure μ= δ{u0} and some ε ∈ (0, 1), we have∫

T

∫
R2

covX(t, u, v)μ(du)μ(dv) dt ≥
∫

T
Au0,u0(t) dt ≥ εF̄2

Z(u0)
∫

T
cov(Yα0 , Yαt ) dt,

which is infinite if Yα is l.r.d. Thus X = YZ is l.r.d. if Yα is l.r.d. �

Proof of Lemma 4. Without loss of generality, assume G is non-negative. By Lemma 2, and
the Fubini and Tonelli theorems for Gu(y) = F̄Z(u/G(y)), we get

Dμ(G(Y), Z0) =
∫

T

∫
R2

cov(Gu(Y0),Gv(Yt))μ(du)μ(dv) dt

=
∞∑

k=1

(∫
R
〈Gu,Hk〉ϕ μ(du)

)2

k!
∫

T
ρk(t) dt.

The change of order of the sum and integrals is justified by the Weierstrass uniform
convergence test since, for almost all t ∈ T,

∞∑
k=1

|〈Gu,Hk〉ϕ〈Gv,Hk〉ϕ |
k! ρk(t) ≤

∞∑
k=1

〈1, |Hk|〉2
ϕ

k! ρk(t) ≤
∞∑

k=1

ρk(t)<∞

due to 〈1, |Hk|〉ϕ ≤ √
k!, by the Cauchy–Schwarz inequality and due to condition (ρ). �
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Proof of Lemma 5. (i) If G : R→R is monotone, then rank (G) = 1 due to

〈G,H1〉ϕ =E[YG(Y)] =
∫ ∞

0
(G(y) − G( − y))yϕ(y) dy �= 0. (27)

What is the Hermite rank of ζG,Z,u? First consider Z ≡ 1. Since the Hermite rank of
y �→ 1{y> u} − F̄Y(u) is one, we can write

〈ζG,1,u,H1〉ϕ =E[Y1{G(Y)> u}] =E[Y1{Y >G−(u)}] �= 0,

where G is non-decreasing without loss of generality. Hence rank (ζG,1,u) = 1 for any u ∈R.
Now let G : R→R± and Z be arbitrary. Without loss of generality, assume G is non-negative.
Then

〈ζG,Z,u,H1〉ϕ =
∫
R

F̄Z(u/G(y))yϕ(y) dy �= 0,

since for any u �= 0 the function y �→ F̄Z(u/G(y)) is monotone, and we can use the reasoning
(27). For non-positive G replace F̄Z above with FZ .

(ii) Without loss of generality, assume that G is non-negative and non-decreasing. We prove
that rank (G̃) = 2.

Clearly, since y �→ G(|y|) is even, we have E[YG(|Y|)] = 0. Now

E[H2(Y)G(|Y|)] = 2
∫ ∞

0
G(y)(y2 − 1)ϕ(y) dy.

We note that ∫ ∞

0
(y2 − 1)ϕ(y) dy = 0, (28)

and hence by symmetry ∫ 1

0
(y2 − 1)ϕ(y) dy = −

∫ ∞

1
(y2 − 1)ϕ(y) dy.

Also, by the mean value theorem, due to monotonicity of non-constant G, there exists
y0 ∈ [0, 1) such that ∫ 1

0
G(y)(y2 − 1)ϕ(y) dy = G(y0)

∫ 1

0
(y2 − 1)ϕ(y) dy.

Therefore ∫ ∞

0
G(y)(y2 − 1)ϕ(y) dy

≥ G(y0)
∫ 1

0
(y2 − 1)ϕ(y) dy + G(1)

∫ ∞

1
(y2 − 1)ϕ(y) dy

= −G(y0)
∫ ∞

1
(y2 − 1)ϕ(y) dy + G(1)

∫ ∞

1
(y2 − 1)ϕ(y) dy

= (G(1) − G(y0))
∫ ∞

1
(y2 − 1)ϕ(y) dy> 0.
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For non-negative non-increasing G, we can use the estimate∫ ∞

0
G(y)(y2 − 1)ϕ(y) dy ≤ G(y0)

∫ 1

0
(y2 − 1)ϕ(y) dy + G(1)

∫ ∞

1
(y2 − 1)ϕ(y) dy

= (G(y0) − G(1))
∫ 1

0
(y2 − 1)ϕ(y) dy< 0.

If G(y) ≤ 0 just multiply it by −1. This proves that the Hermite rank of G(|y|) is 2.
Now compute the Hermite rank of ζG̃,1,u for any u ∈R. Since ζG̃,1,u is even,

rank (ζG̃,1,u)>1. Assuming without loss of generality that G is non-negative and non-
decreasing, we calculate

〈ζG̃,1,u,H2〉ϕ =E[(Y2 − 1)1{G(|Y|)> u}]

=
∫
R

(y2 − 1)1{|y|>G−(u)}ϕ(y) dy

= 2
∫ ∞

G−(u)
(y2 − 1)ϕ(y) dy �= 0

due to (28) and G−(u) �= 0. So rank ζG̃,1,u = 2. For general Z, we note that ζG̃,Z,u is even, so
rank (ζG̃,Z,u)> 1. If G is non-negative, then

〈ζG̃,Z,u,H2〉ϕ =
∫
R

F̄Z(u/G(|y|))H2(y)ϕ(y) dy �= 0

by the first part of the proof of (ii), since F̄Z(u/G(|y|)) is a monotone even function of y.
Modifications of the proof for G ≤ 0 or G non-increasing are obvious. �

Proof of Theorem 3. Let Y be the σ -algebra generated by the entire random field {Yt, t ∈ Z
d}.

Then ∑
t∈Wn

g(Xt) =
∑
t∈Wn

(g(Xt) −E[g(Xt) |Y]) +
∑
t∈Wn

E[g(Xt) |Y] = Mn + Kn,

where

Mn =
∑
t∈Wn

(g(Xt) −E[g(Xt) |Y]) =
∑
t∈Wn

m(Yt, Zt)

and

Kn =
∑
t∈Wn

E[g(Xt) |Y] =
∑
t∈Wn

ξ (Yt).

The above decomposition is allowed by (20). The limiting behaviour of the sum depends on
interplay between Mn and Kn. First we state the limiting results for Mn and Kn separately.

Lemma 6. Under the assumptions of Theorem 3,

M̃n :=n−d/2Mn
d−→N (0, σ 2),

where σ 2 =E[χ(Y0)]2d > 0.
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Proof. We calculate

E[exp{izM̃n} |Y] =E

[
exp

{
iz

nd/2

∑
t∈Wn

m(Yt, Zt)

}
|Y

]
=: E

[
exp

{
iz

nd/2

∑
t∈Wn

Vt

}
|Y

]
,

where Vt = m(Yt, Zt). Note that, due to stationarity of Y and Z, the random variables Vt are
identically distributed and conditionally independent, given Y . Therefore

E[exp{izM̃n} |Y] =E

[
exp

{
iz

nd/2

∑
t∈Wn

Vt

}
|Y

]
=

∏
t∈Wn

E

[
exp

{
iz

nd/2
Vt

}
|Y

]
.

The standard inequality,

|exp (itz) − (1 + itz − t2z2/2)| ≤ min{|tz|2, |tz|3},

yields

∣∣∣∣E
[

exp

{
iz

nd/2
Vt

}
|Y

]
−E

[(
1 + izVt

nd/2
− 1

2

z2Vt

nd

)
|Y

]∣∣∣∣ ≤E

[
min

{ |z|2V2
t

nd
,
|z|3|Vt|3

n3d/2

}
|Y

]
=: E[Vt,n |Y].

For complex numbers z1, . . . , zm, w1, . . . ,wm of modulus at most 1, we have

∣∣∣∣
m∏

i=1

zi −
m∏

i=1

wi

∣∣∣∣ ≤
m∑

i=1

|zi − wi|.

Hence

An(Y) :=
∣∣∣∣ ∏
t∈Wn

E

[
exp

{
iz

nd/2
Vt

}
|Y

]
−

∏
t∈Wn

E

[(
1 + izVt

nd/2
− 1

2

z2V2
t

nd

)
|Y

]∣∣∣∣
≤

∑
t∈Wn

∣∣∣∣E
[

exp

{
iz

nd/2 Vt

}
|Y

]
−E

[(
1 + izVt

nd/2 − 1

2

z2V2
t

nd

)
|Y

]∣∣∣∣
≤

∑
t∈Wn

E[Vt,n |Y].

We argue that An(Y) → 0 in probability. If this is the case, then the conditional characteristic
function

E[exp{izM̃n} |Y]

and

Bn(Y) :=
∏

t∈Wn

E

[(
1 + izVt

nd/2 − 1

2

z2V2
t

nd

)
|Y

]
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have the same limit in probability. Applying the log to the above expression and log (1 − x) =
−x + O(x3), we have

log Bn(Y) =
∑
t∈Wn

logE

[
1 + izVt

nd/2
− z2V2

t

2nd
|Y

]

= iz

nd/2

∑
t∈Wn

E[Vt |Y] − z2

2nd

∑
t∈Wn

E[V2
t |Y]

+ O(1)
|z|3

n3d/2

∑
t∈Wn

(|E[Vt |Y]|)3 + O(1)
z6

n3d

∑
t∈Wn

(E[V2
t |Y])3.

The expression in the last line is oP(1) by (22). By the definition, E[m(y, Zt)] = 0 and hence
E[Vt |Y] = 0. We have E[V2

t |Y] = χ(Yt) and therefore

log Bn(Y) = − z2

2nd

∑
t∈Wn

χ(Yt) + op(1).

Since χ is measurable, the ergodic theorem [44, page 339] implies that

1

nd

∑
t∈Wn

χ(Yt)
P−→E[χ(Y0)]2d, n → +∞,

whenever the covariance of the field χ(Yt) goes to zero as ‖t‖ → +∞. To check the latter
property, we use Lemma 2 to conclude

|cov(χ(Y0), χ(Yt))| ≤ |CY (t)|
∞∑

k=1

〈χ,Hk〉2
ϕ

k! → 0

as ‖t‖ → +∞, since the infinite series in the last expression is finite due to var(χ(Y0))<∞;
see (22). Hence log Bn(Y) → −z2σ 2/2 in probability. By the continuous mapping theorem,

E[exp{izM̃n} |Y]
P−→ e−z2σ 2/2, n → +∞.

Since |E[exp{izM̃n} |Y]| ≤ 1 for all n ∈N, this sequence is uniformly integrable. Using the
property of L1-convergence of uniformly integrable sequences, we get

E[exp{izM̃n}] → e−z2σ 2/2, n → +∞,

and we are done. �

Lemma 7. Under the assumptions of Theorem 3,

nqη/2−dL−q/2(n)Kn
d−→ R, n → ∞.

Proof. Consider the random variable

Kn(q) =
∞∑

m=q

J(m)

m!
∫

[−n,n]d
Hm(Yt) dt.
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According to [23, Theorem 4] and [2, Theorem 4.3], the random variables

Kn√
varKn

,
Kn(q)√
varKn(q)

have the same limiting distributions as n → +∞. Furthermore, if η ∈ (0, d/q) we have by [23,
Theorem 5] that

nqη/2−dL−q/2(n)
∫

[−n,n]d
Hq(Yt) dt

converges in distribution to random variable R. �

If ξ (y) ≡ 0, the long memory part Kn is not present and we apply Lemma 6. If ξ (y) �≡ 0,
we note that the rate of convergence in Lemma 7 is slower than in Lemma 6, whenever η ∈
(0, d/q). �
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