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We examine disturbances leading to optimal energy growth in a spatially developing,
zero-pressure-gradient turbulent boundary layer. The slow development of the turbulent
mean flow in the streamwise direction is modelled through a parabolized formulation
to enable a spatial marching procedure. In the present framework, conventional spatial
optimal disturbances arise naturally as the homogeneous solution to the linearized
equations subject to a turbulent forcing at particular wavenumber combinations.
A wave-like decomposition for the disturbance is considered to incorporate both
conventional stationary modes as well as propagating modes formed by non-zero
frequency/streamwise wavenumber and representative of convective structures naturally
observed in wall turbulence. The optimal streamwise wavenumber, which varies with
the spatial development of the turbulent mean flow, is computed locally via an
auxiliary optimization constraint. The present approach can then be considered, in
part, as an extension of the resolvent-based analyses for slowly developing flows.
Optimization results reveal highly amplified disturbances for both stationary and
propagating modes. Stationary modes identify peak amplification of structures residing
near the centre of the logarithmic layer of the turbulent mean flow. Inner-scaled
disturbances reminiscent of near wall streaks, and amplified over short streamwise
distances, are identified in the computed streamwise energy spectra. In all cases,
however, propagating modes surpass their stationary counterpart in both energy
amplification and relative contribution to total fluctuation energy. We identify two
classes of large-scale energetic modes associated with the logarithmic and wake
layers of the turbulent mean flow. The outer-scaled wake modes agree well with the
large-scale motions that populate the wake layer. For high Reynolds numbers, the log
modes increasingly dominate the energy spectra with the predicted streamwise and
wall-normal scales in agreement with superstructures observed in turbulent boundary
layers.
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1. Introduction
The existence of organized, coherent motions is now recognized as a robust feature

of wall-bounded turbulence, persisting over a wide range of Reynolds numbers and
in a variety of canonical flow configurations. A number of studies over the past
several decades have focused on the identification and description of such motions
(Robinson 1991), highlighting their roles in turbulence production and self-sustainment
(Panton 2001) and their contributions to turbulent kinetic energy and Reynolds stress
(Balakumar & Adrian 2007). Recent studies report that, especially with regard to the
largest scales, their effects become increasingly important with increasing Reynolds
number (Hutchins & Marusic 2007a; Smits, McKeon & Marusic 2011). Apart from
a level of fundamental understanding, the persistent and surprisingly regular patterns
seem to imply that, despite all its complexity, at least some features of wall turbulence
may be well described by low-dimensional models (Sharma & McKeon 2013). To this
end, significant progress has been made in describing these ‘structures’ using simple,
linear analyses which leverage the amplification properties of the Navier–Stokes
equations (e.g. McKeon & Sharma 2010). In this study, we extend these approaches
to the non-parallel turbulent boundary layer, in which the spatial development of
the mean flow plays a role in the preferential selection of the large-scale motions.
Ultimately, a description of such motions, including their relation and interaction
with mean flow, is a crucial step in understanding, and potentially controlling, wall
turbulence. In what follows, we briefly review the energetic structures observed in
canonical wall-bounded turbulent flows, particularly the turbulent boundary layer, and
highlight recent theoretical approaches to predicting these based on predominantly
linear analysis tools.

1.1. Organized motions in wall turbulence
There are, at least currently, four types of organized motions generally recognized in
wall-bounded turbulent flows: near wall streaks, hairpin vortices, large-scale motions
(LSMs) and very large-scale motions (VLSMs) or superstructures in boundary layers
(Smits et al. 2011). Of these, hairpin vortices, or inclined horseshoe-shaped vortical
structures with heads aligned with the mean shear, were first identified by Theodorsen
(1952). Numerous studies (e.g. see Head & Bandyopadhyay 1981, Robinson 1991,
Adrian 2007, Wu & Moin 2009) have since confirmed the existence of hairpin vortices
and hairpin packets in wall-bounded turbulent flows; however, their relevance and
existence in fully developed, high Reynolds number turbulence remains controversial
(see, for example, Eitel-Amor et al. 2015). The remaining coherent motions, namely
the near wall streaks, LSMs and VLSMs can be loosely categorized as ‘streaky’
structures, with their streamwise scales generally much larger than their spanwise and
wall normal scales. The most widely studied of which are the near wall, quasi-periodic
streamwise vortices and velocity streaks originally visualized by Kline et al. (1967)
and associated with the inner peak in streamwise energy spectra. These ubiquitous
structures appear to be part of a near wall autonomous cycle (Jiménez & Pinelli 1999)
and populate the buffer region of the mean velocity profile, centred at approximately
15 viscous units from the wall with average spanwise spacing and streamwise lengths
of 100 and 1000 viscous units, respectively. Of particular importance is the role of
the near wall streaks in turbulence production and self-sustainment.

More recent studies on higher Reynolds number flows, coupled with the advancement
of experimental techniques and computational power, have identified the LSMs
and VLSMs. The LSMs are recognized as structures with a streamwise scale of
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approximately 2–3 outer units (i.e. channel half-height h, pipe radius R or boundary
layer height δ) and are suggested to be formed by the streamwise alignment of
hairpin vortex packets which in turn induce elongated regions of low momentum
fluid between their legs (Adrian, Meinhart & Tomkins 2000; Tomkins & Adrian 2003;
Hutchins, Hambleton & Marusic 2005; Dennis & Nickels 2011a). Their spanwise
scales appear to scale with outer units, with typical sizes of approximately 0.5–1δ
(Tomkins & Adrian 2005).

Very long regions of low momentum fluid, often paired in the spanwise direction
with regions of high momentum fluid, form the VLSMs in pipes and channels and
superstructures in boundary layers (Kim & Adrian 1999; Hutchins & Marusic 2007a;
Dennis & Nickels 2011b). The streamwise scale of the VLSMs are often an order of
magnitude above the outer length scale, with instantaneous structures identified using
visualization techniques extending up to 15–30R in pipes and channels and 10–20δ in
boundary layers. These motions are associated with the outer peak in the streamwise
energy spectra (∼6δ or ∼10–20R) that emerges at higher Reynolds number with
sufficient scale separation (Hutchins & Marusic 2007b; Marusic, Mathis & Hutchins
2010). Hutchins & Marusic (2007a) noted that the regions of low/high momentum
tend to meander in the spanwise direction as they convect downstream, causing
the often reported single point measurements of the streamwise energy spectra to
potentially underestimate the true length of the structures. Further, the same authors
showed the LSMs and VLSMs affect the near wall events by means of an amplitude
modulation, meaning the streamwise energy spectra cannot have a purely inner-scaled
region. Several studies have since verified these long wavelength motions are indeed
active in that they carry a significant fraction (∼50 %) of turbulent kinetic energy and
Reynolds stress (e.g. Balakumar & Adrian 2007).

Although qualitatively similar, the VLSMs in pipes and channels and the
superstructures in boundary layers have apparent quantitative differences, as highlighted
by Monty et al. (2009). On average, the length of the most energetic large structures
appear approximately fixed in outer units for each canonical flow. As previously noted,
however, internal flows support much longer structures than external flows, with the
streamwise energy spectra in boundary layers identifying energetically dominant outer
structures at λx ≈ 6δ as opposed to the 10 < λx/R < 20 in internal flows. Here, x
denotes the streamwise coordinate and λ the wavelength. Unlike pipes and channels,
where the VLSMs maintain appreciable energy content into the wake region of the
turbulent mean flow, the superstructures in boundary layers appear confined to the
logarithmic region. Outside, a rapid shortening of streamwise scales occurs such that
the wake is dominated by LSMs with λx ≈ 3δ (Monty et al. 2009). Mathis, Hutchins
& Marusic (2009) and Marusic et al. (2010) showed that the wall-normal location
of the outer peak in the streamwise energy spectra scaled well with the geometric
mean of the logarithmic overlap layer for increasing Reynolds number. This requires
the wall-normal location scaled in viscous units to increase with the square root of
the friction Reynolds number, Reτ = δuτ/ν, where uτ is the wall friction velocity
and ν the kinematic viscosity. Similarly, the peak location in outer units, scaled by
boundary layer thickness, decreases as Re−1/2

τ .
Of particular relevance to the present study, the spanwise scaling of superstructures

with increasing Reynolds number has received considerably less attention. Streamwise
scales can, at least approximately, be deduced experimentally from time-resolved
single point measurement coupled with Taylor’s hypothesis, or directly from
simulations in large streamwise domains. Estimations of spanwise scales, however,
are more difficult requiring multi-point measurements distributed across the span or
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global field measurements with large spanwise domain. This is burdensome both
experimentally and computationally for large Reynolds numbers. Recent studies seem
to indicate the spanwise scales of superstructures may scale with outer units such as
δ, (Eitel-Amor, Örlü & Schlatter 2014) with λz ∼O(δ), but higher Reynolds number
studies are needed.

1.2. A review of gain-based approaches to the formation of energetic motions
The fact that such energetic, organized motions have been repeatedly observed
supports conceptually a strong amplification mechanism present in the Navier–Stokes
equations, even in fully developed turbulent flows. Several recent studies have focused
on linear dynamics, highlighting the importance of linear transient amplification
mechanisms in turbulent flows. Absent an inflectional instability present in free shear,
canonical wall-bounded turbulent flows are shown to be stable to modal solutions of
the linearized disturbance equations (i.e. all eigenvalues of the linearized operator lie
in the stable half-plane (Reynolds & Tiederman 1967)). As in laminar shear flows,
however, turbulent shear flows are susceptible to potentially large transient energy
amplification, as evident in the Orr–Sommerfeld and Squire equations, when the
wall-normal vorticity is forced by the wall-normal velocity through the spanwise
modulation of the mean shear (Ellingsen & Palm 1975; Landahl 1980; Schmid &
Henningson 2001). The importance of this linear coupling term in the production
and sustainment of wall-bounded turbulence was emphasized in the direct numerical
simulation of Kim & Lim (2000).

The potential for transient growth of disturbance energy is related to the non-
normality of the Navier–Stokes equations. When linearized about an equilibrium
solution, the resulting linear operator exhibits strong non-normality in the presence
of high shear in the base state. In this case, the superposition of non-orthogonal
eigenmodes can lead to short-term energy growth of several orders of magnitude,
even in the absence of an unstable eigenvalue. This concept was first leveraged in
a variety of laminar shear flows to explain transition in flows that are either stable
to exponentially growing disturbances, or are found to transition at conditions much
earlier than that predicted by modal analysis. By optimizing kinetic energy over all
initial conditions, the disturbance which achieved maximum energy amplification at a
prescribed time was shown to amplify up to several thousand times the initial value
(Gustavsson 1991; Butler & Farrell 1992; Reddy & Henningson 1993). In all cases,
the so-called optimal disturbances correspond to initial spanwise periodic, streamwise
vortices that induce streamwise velocity streaks, infinitely elongated in the streamwise
direction. The optimization is typically extended over all spanwise wavenumbers, and
for all time, to determine the global optimum in energy amplification. Of primary
relevance to the present work, the initial parallel, temporal analyses were extended
by Andersson, Berggren & Henningsin (1999) and Luchini (2000) using an iterative
adjoint-based procedure to consider the spatial growth of streamwise elongated
disturbances in a non-parallel Blasius boundary layer. The motivation is to describe the
streaky structures that develop in laminar boundary layer subject to high free-stream
turbulence levels and cause rapid transition to turbulence (Matsubara & Alfredsson
2001). While qualitatively similar to the results of Butler & Farrell (1992), it was
shown that the spatial framework, which accounted for the streamwise development of
the base flow, resulted in optimal spanwise wavelengths approximately 20 % smaller
(∼3δ) than the parallel, temporal analysis. As discussed by both Andersson et al.
(1999) and Luchini (2000), the linearized equations are highly selective in that the
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optimal disturbance (leading singular value) is well separated from other sub-optimal
modes. The consequence is that, so long as a given input has a non-negligible
component in the direction of the optimal disturbance, the corresponding response
will be principally in the direction of the optimal output disturbance. In other words,
a random velocity disturbance can be expected to develop into a streamwise velocity
streak.

The physical reasoning by which disturbances transiently amplify and develop into
streamwise elongated streaky structures of low/high momentum is often attributed
to the lift-up effect (Ellingsen & Palm 1975; Landahl 1980). In this inviscid model,
transverse velocities locally displace a fluid element and, in the presence of shear,
produce a velocity disturbance which may grow as fast as linear in time. This
argument was originally put forth by Landahl (1980) as a possible mechanism for
the formation of near wall streaks in turbulent boundary layers. As such, the optimal
disturbances well studied in laminar shear flows have recently been adopted to
describe the formation of streaky structures about turbulent mean flows. Butler &
Farrell (1993) considered the formation of near wall streaks in turbulent channel flow
and found good agreement between the predicted spanwise scales of the optimal
disturbances by constraining the optimization times to typical eddy turnover times.
Linearizing about a turbulent mean flow, however, introduces unknown Reynolds
stresses into the governing equations. Using the approach of Reynolds & Hussain
(1972), del Álamo & Jiménez (2006) extended the analysis of Butler & Farrell (1993)
by modelling the unknown Reynolds stresses through an isotropic eddy viscosity
determined from the mean flow. Without any a priori constraint on the optimization
time, del Álamo & Jiménez (2006) identified two peak spanwise wavelengths, one
that scaled in outer units with λz ≈ 3h and a second that scaled with viscous units
with λ+z ≈ 100. Cossu, Pujals & Depardon (2009) followed the same approach
for a turbulent boundary layer, assuming a locally parallel flow approximation.
Similar to the channel flow analysis of del Álamo & Jiménez (2006), Cossu et al.
(2009) identified two peak spanwise wavelengths with an inner and outer scaling.
The inner-scaled peak, with λ+z ≈ 82, agrees well with the previous analyses and
experimental values for the characteristic spacing of the near wall structures. The
outer peak, however, was found to occur for very large structures with spanwise
wavelengths λz≈8δ. Aside from the optimal disturbance approach, which characterizes
the system response to initial conditions, several recent studies have also considered
the response to external harmonic and stochastic forcing with similar results in terms
of spanwise scale as optimal disturbances (e.g. Hwang & Cossu 2010).

More recently, McKeon & Sharma (2010) have addressed the ambiguity associated
with the optimal disturbance formulation with a resolvent-based analysis and critical
layer argument to identify the most energetically dominant structures in turbulent pipe
flow. In practice, coherent structures observed in turbulent boundary layers are known
to convect downstream with a speed at least approximately equal to the local mean
flow. However, in the classical optimal disturbance formulation, the most amplified
solutions are generally associated with zero streamwise wavenumber (Cossu et al.
2009), or zero frequency (Luchini 2000) such that they are infinitely elongated,
stationary disturbances. We note that Hack & Moin (2017) have also recently
examined propagating modes in the spatially developing Blasius boundary layer.
Alternatively, McKeon & Sharma (2010) examined travelling wave solutions, formed
by finite streamwise wavenumber–frequency pairs limited to physically observed
scales, showing large amplification when the phase velocity of the disturbance
approaches the local mean velocity. The resolvent formulation performs no explicit
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linearization; the nonlinear terms are lumped into an unknown internal forcing that
act in a feedback loop to the linear terms. Only the turbulent mean flow is assumed
known and essentially acts as a filter to the class of possible scales. However,
the resulting linear operator is identical to equations linearized about the turbulent
mean flow in Reynolds & Hussain (1972) and subsequent analyses following the
same approach (after neglecting the Reynolds stress term, typically referred to as a
quasi-laminar analysis). McKeon & Sharma (2010) viewed this linear sub-system as
a highly directional amplifier and showed that the resolvent formulation was able
to identify structures consistent with scaling observed in turbulent pipe flows, in
particular the VLSMs. Using the same decomposition, Sharma & McKeon (2013)
showed that relatively few resolvent modes could be superposed to create structures
resembling complex hairpin packets in turbulent boundary layers, highlighting the
low-dimensional nature of the coherent structures in wall turbulence. Moarref et al.
(2013) extended the analysis to turbulent channel flow, focusing on the scaling of
the streamwise energy spectra. The authors identified three classes of travelling wave
solutions associated with the inner, outer and logarithmic overlap regions of the mean
flow. Favourable agreement was found between the energetically dominant scales
observed in turbulent channel flow, again with the best agreement for the VLSMs
where the peak wall-normal contribution scaled well with the geometric mean of the
logarithmic region as observed experimentally.

1.3. Objectives of the current study and paper outline
In all previous gain-based studies focusing on wall-bounded turbulence, the mean
flow has either been parallel or the parallel flow approximation has been made.
Consequently, the disturbances have been assumed to develop locally rather than under
a spatially developing mean flow. The slow change in boundary layer thickness, or
equivalently local Reynolds number, is commonly invoked as argument for the parallel
flow approximation. This, however, neglects both the lifetime of these structures and
any history effect that may be present in the preferential selection of scales by the
mean flow.

For the largest scales of interest, empirically say O(20δ) in the streamwise direction,
the change in boundary layer thickness is appreciable (∼40 %). On average, these
structures are likely formed far upstream of where they are observed, where the mean
flow is invariably different. In temporal optimal disturbances, Cossu et al. (2009)
reported optimization times of several hundred convective units based on the local
boundary layer thickness for the most amplified disturbances. Over the equivalent
streamwise extent, the boundary layer thickness would more than double during the
disturbance lifetime. As such, we may expect significant quantitative differences in
the selection of scales, in particular the large-scale structures, when the spatial growth
of the turbulent boundary layer is considered.

In the present study, we formulate the optimal disturbance problem in a spatial
framework, similar to that of Andersson et al. (1999) and Luchini (2000). An
important distinction is made, however, which also allows the analysis of energetically
dominant traveling waves within the spatial optimal disturbance framework. Although
not specifically addressed in the present study, we also highlight the role of the
unknown forcing term, similar to McKeon & Sharma (2010), Beneddine et al.
(2016), to unify the connection between the present optimal disturbance framework
and resolvent analysis.

In what follows, we review the governing equations, linearized model and establish
the connection with structures observed in real turbulent flows in § 2. Here the
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problem is formulated to determine the disturbances which optimally amplify over
a given streamwise extent and the numerical implementation is outlined. In § 3,
conventional optimal disturbance results are presented corresponding to steady,
infinitely elongated structures (in terms of streamwise wavelength, as the growth of
the disturbances are ‘transient’ in space). In § 4, these results are extended to travelling
wave disturbances, where focus is given to scales which contribute dominantly towards
total fluctuation energy. In contrast to previous optimal disturbance approaches, these
propagating modes surpass their steady counterpart in both overall amplification and
relative energy content. We also examine the scaling of the optimal streamwise and
spanwise scales with increasing Reynolds number. A summary and discussion of the
relevant findings of the present work is provided in § 5.

2. Model formulation
In this section, we develop a model to explore the amplification properties of

the Navier–Stokes equations in which the mean flow is allowed to vary slowly
in the streamwise direction. The goal is to examine a harmonic decomposition of
the governing equations which permits the study of both non-modal and critical
layer behaviour while retaining the underlying inhomogeneities in a computationally
accessible manner. The derivation follows closely the classical parabolized stability
equations (PSE) and spatial optimal disturbances, slightly modified to extract the
most energetic motions about a turbulent mean.

We begin with the incompressible Navier–Stokes equations,

∂u
∂t
+ u · ∇u=−∇p+ ν∇2u, (2.1)

with the continuity constraint ∇ · u= 0, where u, p and ν represent the fluid velocity,
modified pressure and kinematic viscosity, respectively. We consider the fluctuating
velocity and pressure field about a long time-averaged mean flow such that the
instantaneous state is given by the Reynolds decomposition (u, p) = q = q + q′.
Here, the overbar and prime are used to denote the mean and fluctuating quantities,
respectively. Substitution of the Reynolds decomposition into (2.1), it can be shown
the mean flow field satisfies

u · ∇u+ u′ · ∇u′ =−∇p+ ν∇2u, (2.2)

with the fluctuations governed by

∂u′

∂t
+ u · ∇u′ + u′ · ∇u=−∇p′ + ν∇2u′ − u′ · ∇u′ + u′ · ∇u′, (2.3)

where both the mean and fluctuating quantities satisfy continuity, ∇ · u = 0 and ∇ ·
u′ = 0. Clearly, (2.2) and (2.3) are coupled through the Reynolds stresses −u′ · ∇u′.
However, if the mean flow is known a priori, either from experiment, computation
or modelling, the closure problem in (2.3) is avoided. Following McKeon & Sharma
(2010), Beneddine et al. (2016), we define f ′=u′ · ∇u′−u′ ·∇u′ as a turbulent forcing
term encapsulating the nonlinearity in (2.3). Note that, in the present study, we do
not explicitly consider the treatment of the nonlinear term, f ′, such that the resulting
analysis can be seen as a linearized analysis of the Navier–Stokes equations about
the turbulent mean. However, f ′ is carried through the following discussion to draw
comparisons with previous studies.
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2.1. Harmonic decomposition for non-parallel boundary layers
We consider a turbulent boundary layer developing on a flat plate with constant
free-stream velocity. The mean flow is assumed homogeneous along the span, but
develops slowly in the streamwise direction and varies rapidly in the wall-normal
direction. As such, the fluctuations q′ in (2.3) may be Fourier transformed in
the homogeneous spanwise direction and in time. Unless a locally parallel flow
approximation is made, however, the streamwise development of u precludes a
decomposition of q′ into Fourier modes with constant streamwise wavenumber.
Following a PSE-like decomposition, a spatially evolving field of constant frequency
ω and spanwise wavenumber β may be described by

q′(x, t)= q̂(x, y) exp[iΘ(x, z, t)], (2.4)

Θ(x, z, t)=
∫ x

x0

α(ξ) dξ + βz−ωt, (2.5)

where the streamwise wavenumber is represented by α = α(x) and the spatial
coordinates by x, y, z for the streamwise, wall-normal and spanwise directions,
respectively. Equation (2.4) then decomposes the fluctuating field into a wave-like
component described by the exponential term with corresponding amplitudes q̂. These
functions or ‘modes’ are convective, or form travelling waves, with local phase speed
c=ω/α. Note that because the decomposition (2.4) is the product of two x-dependent
functions, an ambiguity arises as both oscillations and energy growth/decay may be
absorbed into either the amplitude functions q̂ or the exponential term for α ∈C. In
this study, we take α to be a strictly real parameter such that streamwise oscillations
are contained in the exponential and absorb the fluctuation energy into the amplitude
functions. An auxiliary constraint is then implemented to determine the streamwise
variation of α. A similar approach has been considered in Tempelmann, Hanifi
& Henningson (2010) to capture non-modal growth in three-dimensional laminar
boundary layers, although the specification of the real streamwise wavenumber was
done differently. Details of the method for determining α(x), and a comparison with
the classical PSE approach, are delayed until § 2.5. The same decomposition may
then be considered for the turbulent forcing term, such that f ′= f̂ (x, y) exp[iΘ(x, z, t)].

Substitution of (2.4) into (2.3) yields an equation governing the global spatial
distribution of the amplitude functions q̂(x, y). However, as the boundary layer
develops slowly in the streamwise direction, this implies both the amplitude functions
and streamwise wavenumber α are also slowly varying in x. Formally, we may
introduce a conventional boundary layer scaling to eliminate terms O(Re−2) and
higher to obtain

∂ û
∂x
+ iαû+

∂v̂

∂y
+ iβŵ= 0, (2.6)

−iωû+ ū
(
∂ û
∂x
+ iαû

)
+ v̄

∂ û
∂y
+ û

∂ ū
∂x
+ v̂

∂ ū
∂y

=−
∂ p̂
∂x
− iαp̂+

1
Re

(
∂2û
∂y2 − (α

2
+ β2)û

)
+ f̂u, (2.7)

−iωv̂ + ū
(
∂v̂

∂x
+ iαv̂

)
+ v̄

∂v̂

∂y
+ û

∂v̄

∂x
+ v̂

∂v̄

∂y

=−
∂ p̂
∂y
+

1
Re

(
∂2v̂

∂y2 − (α
2
+ β2)v̂

)
+ f̂v, (2.8)
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− iωŵ+ ū
(
∂ŵ
∂x
+ iαŵ

)
+ v̄

∂ŵ
∂y
=−iβp̂+

1
Re

(
∂2ŵ
∂y2
− (α2

+ β2)ŵ
)
+ f̂w, (2.9)

where the variables have been non-dimensionalized by a reference length, `r, and
velocity, Ur, scale such that Re=Ur`r/ν. These are essentially the three-dimensional
PSE, where the neglected terms include all those involving ∂xx(), dxα and α∂x().
Writing the above equations in matrix operator form yields

Aq̂+ B
∂ q̂
∂x
+ C

∂ q̂
∂y
+ D

∂2q̂
∂y2
= Ef̂ , (2.10)

which represents a parabolized system in the streamwise direction amenable to
a marching solution. Equations (2.10) are solved subject to an initial condition
q̂(x0)= q̂0 with boundary conditions

y= 0 : û= v̂ = ŵ= 0, (2.11)
y→∞: û= ŵ= p̂= 0, (2.12)

and specified forcing f̂ . The coefficient matrices in (2.10) are defined in appendix A.
We note the amplitude functions for the turbulent forcing f̂ arise from the quadratic
nonlinearity in (2.3). In general, this internal forcing is unknown as it depends on the
fluctuating field and the interaction among wavenumbers. However, for a prescribed
wavenumber combination, equation (2.10) describes a linear sub-system of the full
Navier–Stokes equations relating the system response q̂ to a specific forcing amplitude
f̂ (McKeon & Sharma 2010; McKeon, Sharma & Jacobi 2013; Moarref et al. 2013;
Beneddine et al. 2016).

2.2. Solution of the linear sub-system
Upon replacing the wall-normal derivatives by their discrete counterpart, equation (2.10)
may be written in semi-discrete form as the generic state-space equation,

∂ q̂
∂x
=A(x)q̂+B(x)f̂ , (2.13)

where we refer to A as the dynamics matrix and B the forcing matrix. Equation (2.13)
represents a linear, non-autonomous and non-homogeneous differential equation for the
fluctuation amplitude functions q̂ subject to a specified forcing f̂ . Initially, we may
consider the homogeneous solution to (2.13), which satisfies the unforced equation
∂xq̂=Aq̂. As the system is linear, the homogeneous solution may be written as the
linear mapping,

q̂(x)=Φ(x, x0)q̂(x0), (2.14)

where Φ(x, x0) is referred to as the state transition, or propagator matrix which maps
a given state at x0 to the current state at x. The principal focus of the present study
is on investigating the dynamics of (2.13) via the state-transition matrix. A review of
the properties of Φ, in particular for non-autonomous operators, may be found, e.g.
in Farrell & Ioannou (1996).
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For known Φ, the particular solution to the non-homogeneous system (2.13) can
then be determined using the method of variation of parameters, such that the
complete solution is given by

q̂(x)=Φ(x, x0)q̂(x0)+

∫ x

x0

Φ(x, ξ)B(ξ)f̂ (ξ) dξ . (2.15)

In this case, Φ(x, ξ) (or, Φ(x, ξ)B(ξ)) is the propagator which maps an input state
(forcing) at ξ to an output at x, and is referred to as the resolvent, Green’s function or
impulse response of the system (Luchini & Bottaro 2014). Note that if the dynamics
matrix A was spatially invariant (i.e. A 6=A(x)), as would occur if the mean flow u
was independent of x, then Φ(x, ξ) would be given directly by the matrix exponential
eA(x−ξ). Furthermore, if the streamwise variation in the amplitude function is neglected,
the constant wavenumber α would completely describe the streamwise dependence.
As such, equation (2.13) could be directly solved to yield the algebraic mapping q̂=
−A−1Bf̂ . The operator −A−1B is then identical to the resolvent operator for parallel
flows McKeon & Sharma (2010) and the current parabolized approach given by (2.15)
can be seen as a direct extension to slowly developing mean flows.

2.3. Current focus on the homogeneous solution
The full system is characterized by (2.15), including both the response to the internal
forcing f̂ and the downstream response to the initial state q̂(x0). It is common in
linear stability theory to consider the system initially at rest, such that q̂0 = 0 and
examine the long-term state response subject to the harmonic forcing f̂ . In (2.15),
however, the initial condition is defined in space as opposed to time. Furthermore,
it is not our intention to model the boundary layer through laminar and transitional
stages: the boundary layer is assumed turbulent originating from a virtual origin xvo.
At a given downstream position x0 > xvo, the fluctuation amplitude q̂(x0) is surely
non-zero and the homogeneous solution should not be neglected. It implicitly accounts
for the cumulative effect of forcing upstream of x0 that is not explicitly modelled
in (2.15). Moreover, as the sub-system given specified forcing amplitude is linear,
we may analyse each term in (2.15) independently. In this study, we focus on the
homogeneous solution and the dynamics of the state-transition matrix Φ(x, x0).

As formulated in § 2.4, a direct connection may then be made between the present
analysis and the theory of spatial optimal disturbances (Andersson et al. 1999;
Luchini 2000). The main differences between these approaches are that here we
consider a turbulent mean flow as opposed to a laminar base state; we further
consider perturbations with non-zero frequency and streamwise wavenumber as to
include propagating modes as opposed to purely stationary modes. A related approach
for stationary optimal disturbances in turbulent flows has been considered by Uzun
et al. (2017).

We also note the likely overlap between both terms in (2.15). The boundary
layer may be assumed to be convection dominated, such that all disturbances are
immediately washed downstream by the mean flow with, on average, no upstream
propagation (i.e. α > 0). The largest downstream response will then be given by a
sufficiently upstream ‘forcing’. If the forcing amplitude functions f̂ (ξ) are restricted
to a single streamwise plane x0, then both terms in (2.15) become equivalent. We may
expect that only large-scale fluctuations survive over large streamwise distances. As
such, the homogeneous solution can then be seen as a filter in which only large-scale
structures with upstream sensitivity are retained.
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2.4. Optimal disturbance formulation
Given the solution (2.14), we seek to determine the initial amplitude functions which
maximize the downstream state response. To measure the size of the fluctuations, we
choose the local kinetic energy

E(u(x))=
∫
∞

0
(|u|2 + |v|2 + |w|2) dy. (2.16)

Note the kinetic energy is chosen as it provides both a physically meaningful measure
of the fluctuation and it is consistent with the dimension of the internal forcing f̂ ,
which only operates on the velocity components. We then define û= Rq̂, or û

v̂
ŵ

=
1 0 0 0

0 1 0 0
0 0 1 0


 û
v̂
ŵ
p̂

 , (2.17)

where R is a restriction operator to eliminate the pressure term from the full state
vector. Similarly, the velocity vector may be mapped to the full dimension of the state
vector using the prolongation operator Pû for P=RT . Equation (2.16) then defines the
energy norm and associated scalar product as E(û)= ‖û‖2

= 〈û, û〉.
Following Beneddine et al. (2016), we define an arbitrary velocity state ψ(x0), for

which the downstream velocity response is given by (2.14) as ψ(x)=RΦ(x, x0)Pψ(x0)
≡Φuψ(x0). The amplification, or gain G, from ψ(x0) to ψ(x) is then defined as

G=
‖ψ(x)‖2

‖ψ(x0)‖2
=
‖Φuψ(x0)‖

2

‖ψ(x0)‖2
=
〈Φuψ(x0),Φuψ(x0)〉

〈ψ(x0),ψ(x0)〉
=
〈Φ†

uΦuψ(x0),ψ(x0)〉

〈ψ(x0),ψ(x0)〉
(2.18)

for Φ†
u the adjoint operator of Φu. The so-called optimal disturbance that leads to

maximum amplification, Gmax, over all possible ψ(x0), is identified by the solution of
the optimization problem

Gmax(x)=max
ψ(x0)

〈Φ†
u(x, x0)Φu(x, x0)ψ(x0),ψ(x0)〉

〈ψ(x0),ψ(x0)〉
(2.19)

given by the leading eigenvector of Φ†
uΦuψj(x0) = Gjψj(x0). In the following, we

assume the eigenvectors ψj(x0) have been normalized such that ‖ψj(x0)‖
2
= 1 and

sorted in descending order, such that g2
1 > g2

2 > · · · where g2
j ≡Gj. The corresponding

optimal response, also normalized, can be determined as g1ψ1(x)=Φuψ1(x0).
The question then arises as to how well the optimal response ψ1(x) approximates

the full system response amplitude functions û(x). Following McKeon & Sharma
(2010), Beneddine et al. (2016), we note the operator Φ†

uΦu is Hermitian and, as
such, the eigenvectors ψj(x0) may be chosen as an orthonormal basis for û(x0) such
that

û(x0)=
∑

j

ajψj(x0), aj = 〈ψj(x0), Rq̂(x0)〉. (2.20)

Using the relation gjψj(x)=Φuψj(x0), the velocity response amplitude functions may
be written as

û(x)=Φuû(x0)=
∑

j

ajgjψj(x). (2.21)
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Note the ψj(x) also form an orthonormal basis for the velocity response, as shown
by the singular value decomposition of Φu=

∑
j ψj(x)gjψ

H
j (x0). Using (2.21), if g1�

g2 > g3 · · · we may consider the velocity response to be approximated by only the
first response mode, the so-called rank 1 approximation:

û(x)≈ 〈ψ1(x0), Rq̂(x0)〉g1ψ1(x). (2.22)

As shown by Beneddine et al. (2016), the approximation holds globally (in an L2
sense) provided

g2
1|〈ψ1(x0), Rq̂(x0)〉|

2
�

∑
j>2

g2
j |〈ψj(x0), Rq̂(x0)〉|

2, (2.23)

which states that the optimal disturbance, or leading response mode, must capture
the dominant portion of the total kinetic energy and the initial state must not be well
aligned with any of the sub-optimal modes ψj(x0), j> 2. The first of these conditions
is easily verified by examining the computed eigenvalues g2

j . The second condition,
however, stands as a plausible assumption that can be verified a posteriori with
experimental comparison.

As shown in § 4, the leading eigenvalue g2
1 corresponding to the optimal disturbance

generally contains a dominant fraction of the total energy at a particular wavenumber/
frequency combination. This result, consistent with previous resolvent-based approaches
(McKeon & Sharma 2010; Moarref et al. 2013), indicates the linear sub-system is
highly selective, or the linearized Navier–Stokes equations about the turbulent mean
acts as a strong directional amplifier. In fact, the shape of the input forcing, or initial
condition, is largely inconsequential so long as there is some non-zero component in
the direction of ψ1(x0). Virtually any input, e.g. randomized, will tend towards the
‘optimal’ output and a power iteration approach to solving (2.19) converges extremely
fast. In what follows, similar to previous gain-based studies, we consider inputs
ψ(x0) of unit integrated kinetic energy across all frequencies and wavenumbers and
examine purely the inherent amplification of the linear operator. That is, in the rank
1 approximation (2.22), we do not consider the weighting a1 = 〈ψ1(x0), Rq̂(x0)〉 or
rather assume a1 = 1. Of course, this is not the case in practical turbulent flows, in
particular across all parameter combinations. As such, we can expect only qualitative
agreement in the amplitude shape functions and computed amplification spectrum.
Knowledge of the response û at one or more locations can be used to improve the
approximation (Moarref et al. 2013; Beneddine et al. 2016), however this is not
considered.

2.5. Method for determining the streamwise wavenumber
We now return to the method for updating the streamwise wavenumber introduced in
§ 2.1. To enforce a slow variation in q̂ of the order of the mean flow, the classical
PSE approach imposes an auxiliary equation that enforces the kinetic energy of the
shape function be independent of x (Herbert 1997). This auxiliary equation removes
the ambiguity associated with (2.4) and provides a method to iteratively compute
the local streamwise wavenumber α(x). However, this is designed as a natural
extension to normal modes analysis, with the initial condition generally specified as
a local eigenmode. As such, the classical PSE formulation is appropriate to study the
streamwise evolution of a modal disturbance in which the spatial growth is specified
by a local exponential growth rate αi(x).
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In the present approach, we do not seek a conventional modal description of the
fluctuation amplitudes such that non-modal growth is also captured. The objective is
to determine the initial q̂(x0) which maximizes the downstream response rather
than choosing a local eigenmode and studying its downstream evolution. The
streamwise wavenumber is then specified as a real parameter and chosen such
that the kinetic energy (2.16) is maximized. Note that α(x) is chosen locally as
part of the downstream marching procedure such that for each discrete streamwise
plane xj, α(xj) is chosen as that which maximizes 〈ψ(xj),ψ(xj)〉. In this manner, this
inner optimization procedure for α may be seen as an auxiliary constraint such that
streamwise oscillations are captured in the exponential term of (2.4) and the growth
at a particular wavenumber/frequency combination are captured in the amplitude
response functions ψ(x). As the mean flow varies only slowly with x, and in the
absence of strong modal growth, this implies α, G and hence ψ also vary slowly with
x. As noted by Tempelmann et al. (2010), in which spatial growth was also absorbed
into the amplitude functions with real α, this approach is limited to non-modal and
moderate exponential growth. Modes exhibiting strong exponential growth may violate
the slowly varying approximation used in the parabolization step.

The current iteration procedure for α naturally enforces α → 0 as ω → 0. As
such, for stationary modes with ω = 0, the method is equivalent to conventional
spatial optimal disturbances (i.e. Andersson et al. (1999)). It also follows that, for
propagating modes, the optimal streamwise wavenumber is induced by the mean flow
and the (ω, β) pair, rather than treated as an independent parameter in the resolvent
analysis of McKeon & Sharma (2010), Moarref et al. (2013). Details of the numeric
implementation are given in the following section.

2.6. Computational approach
In (2.10), the wall-normal direction is discretized using a spectral collocation method
based on Chebyshev polynomials. The Chebyshev collocation points, defined on
the interval [−1, 1], are mapped to the physical domain [0, ymax] using the rational
mapping given by Hanifi, Schmid & Henningson (1996), chosen to cluster points
near the centre of the logarithmic region in the turbulent mean flow. The streamwise
direction is discretized on a uniform grid over the interval [x0, xf ] and the streamwise
derivative in (2.10) approximated with a second-order backwards difference. On the
first streamwise plane, a first-order scheme is used. Further details of the wall-normal
and streamwise discretization are provided in appendix A.

The kinetic energy norm at each streamwise plane may then be written as E(û)=
‖û‖2
= ûHMû where H denotes the conjugate transpose and M is a diagonal, positive

definite matrix that contains the appropriate quadrature weights (Clenshaw–Curtis) and
grid metrics. For known state-transition matrix Φ(xf , x0), the discrete solution to the
optimization problem (2.19) is readily obtained by solving the eigenvalue problem

Gψ(x0)= (M
−1
x0
ΦH

u (xf , x0)MxfΦu(xf , x0))ψ(x0), (2.24)

where the leading eigenvector is referred to as the optimal disturbance with
amplification Gmax.

As previously discussed, because of the spatial development of the mean flow,
the operator A in (2.13) is non-autonomous and a general form of state-transition
matrix cannot be expressed by standard functions (e.g. the matrix exponential).
The alternative is to either directly compute a numerical approximation to the
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state-transition matrix, after which ΦH
u is readily computed, or to adopt an iterative

approach by which the action of Φu and ΦH
u are computed by integration of the

forward and adjoint equations. The latter avoids direct computation and storage of
the state-transition matrix and is the approach taken, for example, by Andersson
et al. (1999) and Luchini (2000) in computing optimal disturbances in the Blasius
boundary layer. A similar approach is followed here, slightly modified to compute the
optimal streamwise wavenumber as part of the marching procedure. We also note this
adjoint approach is trivially extended to the case where f̂ 6= 0. The adjoint equations
are given in appendix B, derived by formulating the optimization problem as one
of optimal control theory and driving to zero all variations in the corresponding
Lagrange functional. The adjoint implementation was verified by comparing to the
direct approach, by approximating Φu, for stationary disturbances and the current
code has been verified in Uzun et al. (2017) with the results of Andersson et al.
(1999). It should be mentioned the direct approach is only applicable for stationary
disturbances due to the inner optimization for the streamwise wavenumber. It is also
verified in § 4 that the retrieved optimal disturbance contains a dominant fraction of
the total kinetic energy such that the current rank 1 approximation is valid.

The full optimization procedure utilizing the adjoint approach, including the
determination of the local streamwise wavenumber, can be summarized as follows:

(i) Specify β, ω, the initial plane x0, the final plane x= xf (specified in terms of Reδ∗)
and an initial guess, α0. The initial condition ψ(x0) is initialized as a random
vector.

(ii) Solve the forward equations (2.10) (with f̂ = 0):
(1) Solve the discretized system at streamwise plane xj

Ajψ(xj)= Bjψ(xj−1)+ C jψ(xj−2) (2.25)

for the local response ψ(xj). The matrices A,B,C depend on the local mean
flow, the parameters β,ω, and the local estimate for α(xj). Note, on the first
marching plane, a first-order version of the discretized system is solved.

(2) Evaluate the auxiliary constraint G= 〈ψ(xj),ψ(xj)〉 =ψ
H(xj)Mxjψ(xj).

(3) Update the estimate of the local streamwise wavenumber α(xj) based on G
and ∂G/∂α.

(4) Repeat steps (1)–(3) until convergence of G and/or α(xj) within specified
tolerance.

(5) Increment j and repeat until the final plane xf .
(iii) Obtain the initial condition to the adjoint equation using ψ(xf ) according to

(B 10)–(B 12).
(iv) Solve the adjoint equations (B 7) from xf to x0.
(v) Obtain a new estimate for the initial condition (optimal input disturbance) ψ(x0)

using the adjoint state at x0 and (B 13)–(B 15).
(vi) Repeat steps 2–5 until the relative tolerance in G(xf ) is below a specified value.

The inner optimization with respect to the local streamwise wavenumber is performed
using a quasi-Newton line search algorithm. Depending on Reynolds number,
the number of collocation points used in the wall-normal direction ranges from
Ny = 150–300. In the streamwise direction, Nx = 100 points are used. To avoid any
low Reynolds number effects in the specification of the mean flow (see § 2.8) the
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minimum initial plane is taken as x0= 0.1xf . In select cases, the location of the input
plane is also examined, where x0 is varied in 20 logarithmically spaced points ranging
from xf − x0= 0.9xf to x+f − x+0 = 10 where + denotes scaling based on inner units. In
the results presented below, all variables have been scaled by reference length scales
at the final output plane xf , e.g. boundary layer thickness δ≡ δf is defined as that xf .

2.7. Comments on the amplification mechanisms
The downstream marching procedure to solve (2.10) involves essentially the inverse
of the coefficient matrices (see also appendix A). These matrices include the local
mean flow u and the parameters α, β, ω. Of these, only the A matrix is ‘tuneable’ by
the specification of wavenumber/frequency. From a numerical point of view, the gain
over a given 1x will become large when the diagonal terms of A become small. For
large Re, the viscous contribution may always be assumed small, though not negligible.
Therefore, as with a parallel resolvent analysis, we may anticipate large amplifications
for α =ω= 0, or when the convective term is balanced such that (αu−ω)→ 0.

The first of these conditions corresponds to the stationary disturbances of
streamwise velocity streaks classically identified in optimal disturbance theory. In this
case, amplification is determined by the off-diagonal terms, dominantly the spanwise
wavenumber β and the streamwise velocity shear ∂yu. The physical mechanism by
which the corresponding structures amplify is generally attributed to the lift-up effect
(Ellingsen & Palm 1975; Landahl 1980) by which three-dimensional disturbances
act in regions of high mean shear to induce large streamwise velocities. As noted
by Luchini (2000) in the Blasius boundary layer, these structures are necessarily
static. For a purely convective mean flow (i.e. no reverse flow, separation, etc.),
global oscillations of stationary disturbances, such as those generated by ω 6= 0 but
with α = 0, would tend to disrupt the amplification process by the lift-up effect. In
the present context of a turbulent mean flow, these stationary disturbances can help
guide passive control strategies, as in Pujals, Depardon & Cossu (2010), and hence
provide valuable information regarding preferential scaling. In describing turbulent
fluctuations, however, these stationary disturbances are somewhat ambiguous as they
do not contribute to the fluctuation energy and naturally observed structures are
convective. Their relation to real turbulent structures is often accompanied by a
secondary instability mechanism describing the breakdown to convective disturbances.

The second condition for large amplification corresponds to so-called critical layer
behaviour when the phase velocity of the fluctuation matches that of the local mean,
or ω/α = u such that the diagonal terms of A are minimized. Note the critical
layer behaviour is naturally enforced in an integral sense, as the fluctuation is
distributed in the wall-normal direction. This concept is also related to the convective
non-normality described by Marquet, Lombardi & Chomaz (2009). The most amplified
fluctuation can be seen as that which is optimally transported by the mean flow. As
these structures are naturally convective, we expect them to better represent the
natural structures observed in turbulent boundary layers. Furthermore, because of this
convective nature, the downstream response will be most sensitive to an upstream
condition, such that the spatial development of the mean flow will play a prominent
role in the selection of the optimal response. The present formulation is then well
equipped to identify these structures.

2.8. Turbulent boundary layer mean flow
The solution of (2.10) requires only the specification of the turbulent boundary layer
mean flow profile and its gradients at each streamwise position. In the current study,
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this is modelled using the self-consistent, composite profile proposed by Monkewitz,
Chauhan & Nagib (2007) for high Reynolds number, zero-pressure-gradient turbulent
boundary layers. The composite profile follows a classical scaling of inner, outer wake
and logarithmic overlap layers locally given by

ū(y)
uτ
=U+inner(y

+)−U+log(y
+)+U+

∞
(Reδ∗)−W+outer(η), (2.26)

where uτ = (τw/ρ)
1/2 is the wall friction velocity, y+ = yuτ/ν is the viscous wall unit

(inner coordinate), U+
∞

is the free-stream velocity scaled by uτ , Reδ∗ is the Reynolds
number based on displacement thickness δ∗, and η = y/∆ is the outer coordinate,
or the wall-normal coordinate scaled by the Rotta–Clauser length scale ∆ = U+

∞
δ∗.

Note in the description of the mean flow by Monkewitz et al. (2007), ∆ is taken as
the outer length scale. Although not strictly constant, the conventional 99 % boundary
layer thickness δ is roughly 0.22∆. This also defines the friction Reynolds number as
Reτ ≈0.22Reδ∗ . In the current study, we typically use the more familiar boundary layer
thickness δ as the outer scale to ease comparison with experimental data. The explicit
expressions for the terms in (2.26) are provided in Monkewitz et al. (2007) and are
not repeated here for brevity sake. However, the profiles are shown to fit well to
experimental data (e.g. Österlund (1999)) from the wall to the free stream. Monkewitz
et al. (2007) also provides explicit expressions for the streamwise development of the
boundary layer length scales (e.g. the momentum thickness, θ(x)) used to compute
the spatially evolving mean flow. Cossu et al. (2009) provides additional relations to
compute the wall-normal velocity component and corresponding mean flow gradients.

Though not explicit in (2.26), the streamwise coordinate x is defined with respect
to the virtual origin such that the boundary layer is assumed to be fully developed
with self-similar inner and outer mean velocity profiles, from x= 0 onward. While this
may not represent a physical location in real flows, it provides a sensitive metric of the
quality of turbulent boundary layer data in that a given experiment should produce the
same virtual origin at various streamwise measurement stations. As such, it represents
an equivalent development length insensitive to the genesis of the boundary layer. We
also note that the same profile was used in the temporal optimal disturbances of Cossu
et al. (2009), although under the parallel flow approximation. Sample profiles of the
turbulent mean flow at various Reynolds numbers investigated in the current study are
shown in figure 1.

3. Steady, streamwise elongated optimal disturbances

In accordance with previous optimal disturbance studies on both laminar and
turbulent flows, we limit our initial discussion to the development of steady,
streamwise elongated streaks of α=ω= 0 with spanwise wavenumber β, discussed in
§ 2.7. These are generally recognized as the global optimum in terms of amplification,
although this is shown in § 4 not to be the case for present study. Nonetheless,
these steady disturbances are significantly amplified and provide valuable scaling
information regarding the selection of preferential scales by the turbulent mean flow
and the effect of streamwise development in a condensed parameter space.

To examine the spatial development of optimal disturbances in the turbulent
boundary layer where a separation of scales is known to occur, at least for high
enough Reynolds number, it is also necessary to examine the relation between
input/output plane and spanwise wavenumber. We may expect the spanwise wavelength
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FIGURE 1. Turbulent boundary layer profiles for various Reynolds number, Reδ∗ , for (a)
the mean flow plotted in outer units, (b) the mean flow plotted in inner units, with
the linear sublayer and logarithmic layer denoted and (c) the spatial development of the
turbulent boundary layer mean flow from Reδ∗ = 2× 103 to Reδ∗ = 2× 104. The contour
levels are 20 evenly spaced increments from u/U∞ = 0.1 to 0.99 (i.e. the upper contour
denotes the 99 % thickness). Note in (c) the x and y axes are not scaled equally for
visualization purposes. Both ∆ and δ scaling is shown for comparison.

of the disturbance be proportional to the separation distance between input and output
plane corresponding effectively to a scale-dependent disturbance ‘lifetime’. To examine
this dependence, while evaluating the optimals at the same streamwise location, the
output is fixed at a prescribed xf defined by Reδ∗ . The input plane is then varied from
near virtual origin of the turbulent boundary layer, x0= 0.1xf , to very short separation
distances, x+f − x+0 = 10, over which the mean flow may be considered essentially
parallel. This range is then discretized into 20 logarithmically spaced streamwise
positions, and for each separation distance x∗ the optimal disturbance computed for
varying β.

The optimization results for a moderately high Reδ∗ = 2 × 104 (Reτ = 4460)
are reported in figure 2(a), in which the wavenumber sweep at each streamwise
position represents a slice from a surface of optimal energy amplification. Note
all length scales have been normalized by boundary layer thickness at the output
plane xf . As expected, the range of amplified wavenumbers directly corresponds to
the separation between input/output planes. For the smallest x∗, only the highest
wavenumbers are amplified. Increasing x∗ leads to a decrease in the local optimal β,
or increase in λz. This is accompanied by a monotonic increase in the local maximum
amplification, such that the most amplified wavenumbers are achieved for the largest
x∗, or disturbances generated farthest upstream. Because disturbances are transient,
the longer the separation distance the larger the required disturbance to maximize
amplification far downstream. Smaller scales are amplified faster, but also rapidly
decay due to viscous diffusion.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

80
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.807


Optimal disturbances in turbulent boundary layers 57

G
m

ax G
m

ax

ı∂ ı∂
x* /∂100

101

102

103

104

10310210110010-1

101

10-1

10-3 100

101

102

103

104

10310210110010-1

(a) (b)

FIGURE 2. (a) The surface of optimal energy amplification for steady, streamwise
elongated (α=ω= 0) disturbances as a function of spanwise wavenumber and streamwise
separation distance x∗ = xf − x0, computed for Reδ∗ = 2× 104. The colour scale indicates
the streamwise separation of the input/output plane, with light to dark representing short to
long separation, respectively. The thick line in the β–x plane is the isocontour of Gmax= 1,
outside of which no energy amplification occurs. (b) The projection into the β–Gmax plane,
with the dash-dotted line indicating the spatial envelope of maximum energy amplification
over all streamwise separations at each spanwise wavenumber.

For each streamwise separation distance, there is a relative band of spanwise
wavenumbers which are amplified. Outside of which, the energy of any input
disturbance has decayed below its initial value, although this spatial decay is not
necessarily monotonic. This region is denoted in figure 2(a) by the dashed line at
the intersection of the local amplification spectrum with the Gmax = 1 plane. At a
given Reδ∗ , however, we expect the cumulative effect of all upstream disturbances
such that the full spectrum of amplification is given by projection of figure 2(a)
into the β–Gmax plane. This is equivalent to further optimizing the amplification
at xf with respect x0 and analogous to temporal optimal disturbances in which
the optimization is generally performed for all time (see, for example, Schmid &
Henningson 2001). This projection is shown in figure 2(b), which identifies the
spatial envelope of maximum amplification denoted by the dash-dotted line. Here, it
is seen that the amplification reaches nearly four orders of magnitude at the peak
wavenumber βδ≈ 15.6, corresponding to λz≈ 0.4δ. This peak, however, is quite broad
and a wide range of wavenumbers achieve appreciable energy amplification, spanning
wavelengths from several times to less than 1 % of the boundary layer thickness.

To investigate the Reynolds number effect on the steady optimal disturbances, we
compute the spatial envelopes for varying Reynolds number ranging from low, in
which the mean flow lacks an appreciable logarithmic layer, to moderately high
values with a well developed logarithmic layer and expected separation of scales
(see figure 1b). These results are presented in figure 3 in which the envelopes for
each Reδ∗ show a single, dominant peak in maximum energy amplification. We also
note that, although not shown, in each case the maximum amplification occurs for
the farthest upstream x0. For each Reδ∗ , both amplitude and spanwise wavenumber
increase with Reynolds number. This indicates, contrary to previous temporal optimal
disturbance results, that the optimal spanwise wavenumber does not scale purely in
outer units, e.g. boundary layer thickness. In addition, the range of spanwise scales
that are amplified increases accordingly with Reδ∗ . For Reδ∗ ≈ 1 × 104 (Reτ ≈ 2230)
and higher, an intermediate region marked by a β−2 dependence in the amplification
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FIGURE 3. The spatial envelope of maximum energy amplification for steady, streamwise
elongated disturbances (α = ω = 0), computed for various Reynolds numbers. (a) Outer
scaling and (b) inner scaling. The legend is the same as figure 1(a).

spectrum is observed connecting the peak amplification with the high wavenumber
decay. This β−2 dependence was also observed in the linear analysis of Hwang
& Cossu (2010) for harmonic forcing in turbulent channel flow, and was derived
from the generalized Orr–Sommerfeld and Squire equations under the assumption
of a logarithmic variation of the mean flow and geometrically similar disturbances,
i.e. y ∼ λz. Similar conclusions can be drawn from the scaling analysis of Moarref
et al. (2013) for self-similar resolvent modes in the log layer with zero streamwise
wavenumber. Consistent with these parallel approaches, we note the β−2 dependence
emerges only at Reynolds numbers high enough for a well-established log layer to
emerge in the mean flow. It is worth noting, however, that no such behaviour is
observed in the analogous temporal response to initial conditions under the parallel
flow approximation (Cossu et al. 2009).

To investigate the scaling of the high wavenumber spectrum, the spatial envelopes
are plotted in figure 3(b) as a function of spanwise wavelength in wall units. For small
wavelengths, an identical collapse is observed with a Reynolds number independent
energy amplification. As Reδ∗ is increased, this region of collapse is extended across
higher spanwise wavelengths. For λ+z &100 a characteristic change in the amplification
is seen. This corresponds to the β−2 region of figure 3(a). Structures associated with
wavelengths below this threshold are centred approximately in the viscous sub- and
buffer layers of the mean flow while those above have their maximum contribution
within the log layer for sufficiently high Reδ∗ .

Noticeably absent, however, in the envelope of figure 3(b) is the presence of
a secondary, inner-scaled peak for λ+z ≈ 80–100 reported in temporal optimal
disturbances of wall-bounded turbulent flows (del Álamo & Jiménez 2006; Cossu
et al. 2009). Although the envelope spans the appropriate wavenumber range, and
displays a characteristic scaling in wall units, the appearance of a secondary ‘inner’
peak is a direct consequence of the scale separation imposed by the use of an
eddy viscosity based on the mean flow which is not included in the present model
(this is briefly discussed in § 5). As shown below, however, the familiar inner peak
is reproduced in the premultiplied streamwise energy density rather than the raw
amplification spectrum.

Although not shown, the optimal disturbances corresponding to the amplification
in figure 3 form the familiar streamwise velocity streaks well known in non-modal
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FIGURE 4. (a) The optimal output, û, corresponding to the peak spanwise wavenumber in
figure 2 for increasing Reynolds number. The mean flow is also plotted in grey to illustrate
the location of the disturbance at the approximate centre of the logarithmic region. The
legend is the same as figure 1(a). (b) The variation in optimal spanwise wavelength, λ+max,
and its wall-normal maximum, y+max, with Reynolds number Reτ . The solid lines indicate
a best fit to Re1/2

τ . Note an additional Reynolds number of Reδ∗ = 8× 104 (Reτ ≈ 17 800)
was included to verify the identified scaling.

stability theory for both laminar and turbulent flows (e.g. Andersson et al. 1999).
The associated input disturbances consist predominantly of wall-normal and spanwise
velocity components forming counter-rotating vortices, with essentially negligible
streamwise component. However, at the output, only the streamwise disturbance
component is appreciably amplified.

3.1. Scaling of the optimal spanwise wavenumber
Aside from the absence of a secondary peak in figure 3, the most substantial result is
the apparent lack of outer scaling in the spanwise spectrum as the optimal spanwise
wavenumber shifts to higher values for increasing Reynolds number. In terms of
outer units, this requires the optimal structures to decrease in spanwise wavelength
with respect to the local boundary layer thickness. To examine the scaling of the
peak wavenumber, the streamwise component of the optimal disturbance is plotted
alongside the mean flow in figure 4(a) for various Reynolds number. Note the
disturbance velocity has been scaled to match the mean flow for graphical clarity.
The wall-normal location of peak disturbance velocity, denoted as y+max, clearly
increases with increasing Reynolds number when scaled in viscous units. Further,
these profiles are approximately similar in the scaling y/ymax. Interestingly, the
increase in the inner-scaled wall-normal position of the optimal disturbance is aligned
with the increase in the extent of the logarithmic overlap in the mean flow, with the
peak disturbance velocity occurring near the centre of the log layer. This result is
consistent with the scaling of VLSMs and superstructures observed experimentally
in turbulent boundary layers, where Mathis et al. (2009) showed the outer peak in
the premultiplied streamwise energy spectra occurred near the geometric mean of the
log region. Assuming fixed lower and upper bound estimates for the log region of
y+ > 100 and y/δ < 0.15 respectively, or 100 < y+ < 0.15Reτ , the geometric mean
increases as y+c ∼ 3.9Re1/2

τ .
In figure 4(b), the variation of the optimal spanwise wavelength, corresponding

to maximum amplification in figure 3(b), and wall-normal location of maximum
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FIGURE 5. (a) Premultiplied streamwise energy density, defined by (3.1), obtained from
the optimal output disturbance along the envelope of maximum energy amplification and
(b) the streamwise energy density integrated over all spanwise wavenumber contributions,
Euu(y)/Re2

τ . Only the higher Reynolds number cases are shown, Reτ ≈ 2230, 4460, 8920.

disturbance velocity is plotted as a function of Reτ . Both the inner-scaled spanwise
wavelength and wall-normal position are well described by a Re1/2

τ dependence,
denoted by the fit lines in figure 4(b). The location of the maximum disturbance
velocity lies just above the estimated centre of the log layer at y+max ≈ 5.8Re1/2

τ . The
optimal spanwise wavelength, λ+z,max, similarly increases as ∼27Re1/2

τ , leading to
constant aspect ratio disturbances with λz ∼ 4.7y. As expected, the Re1/2

τ dependence
is strictly observed only for the higher Reynolds number cases. In fact, for the lowest
Reynolds number Reτ ≈ 446, the upper bound of the estimated log region, y> 0.15δ,
lies below the lower bound of y+ > 100 such that no log layer can be said to exist.
As noted by Hutchins & Marusic (2007b), the overlap between these two positions
occurs for Reτ & 667 such that an appreciable log layer occurs only for significantly
higher Reτ . This is reflected in the scaling observed in figure 4(b).

3.2. Identification of energetic spanwise structure
To determine the spanwise structure with the largest contribution to the total
disturbance energy, we use the streamwise component of the optimal disturbance
response to construct a rank 1 approximation to the streamwise energy density as a
function of spanwise wavenumber. The premultiplied streamwise energy density for
stationary disturbances is then defined as

Euu(y; β)= β(g1(β)|u1(y; β)|)2, (3.1)

where u1 is the streamwise velocity of the optimal disturbance response normalized
to unit integrated kinetic energy and g1 is the square root of the mode energy. Euu
is plotted in figure 5(a) as a function of λ+z , where only the higher Reδ∗ cases are
shown for clarity. Contrary to the pure amplification spectra in figure 3, figure 5(a)
reveals two peaks in the premultiplied streamwise energy density. We refer to these
peaks here as the inner and outer peaks, in which the outer peak is associated with the
log-layer-scaled structures identified in figure 4. In figure 5(a), however, the dominant
contribution to the streamwise energy is from the inner peak. The location of this
inner peak is constant in both spanwise wavelength and wall-normal position when
scaled in wall units, with the contour levels for all three Reδ∗ nearly indistinguishable.
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Though a direct comparison with streamwise energy of turbulent fluctuations may not
be strictly valid as the disturbances here correspond to stationary structures with zero
frequency, the scaling of the inner peak in figure 5(a) is consistent with the near
wall streaks observed in wall-bounded turbulence. The maximum is seen to occur for
(λ+z , y+)≈ (40, 10), in reasonable agreement with the well accepted near wall streaks
of λ+z ≈ 100 centred at y+ ≈ 12–15.

The secondary, outer peak contributes less to the overall energy and shifts to
both higher spanwise wavelengths and wall-normal positions scaled in inner units.
It should be mentioned, this outer peak is only distinguishable from the inner peak
for moderately high Reδ∗ . Similar to the most amplified disturbances shown in
figure 4, the location of the secondary peak in the premultiplied streamwise energy
density scales with Re1/2

τ , shifted to slightly smaller positions with λ+z ≈ 20Re1/2
τ and

y+ ≈ 5.5Re1/2
τ . The spanwise wavelength and wall-normal position of both the inner

and outer peak agree well with the resolvent analysis of Moarref et al. (2013) in
turbulent channel flow, where the inner peak in the premultiplied streamwise energy
density was found to occur at (λ+z , y

+)≈ (44,11) and the middle peak for λ+z ≈20Re1/2
τ

and y+ ≈ 5.2–5.8Re1/2
τ . Note, however, that the results of Moarref et al. (2013) were

obtained for traveling wave solutions integrated over all streamwise wavelengths and
temporal frequencies and also contained a dominant peak corresponding to large-scale
outer layer structures scaling with the channel height. Such outer-scaled structures
are not observed here for stationary modes but will be discussed in § 4.

Finally, the profile of streamwise energy intensity obtained by integrating over all
spanwise wavenumbers in figure 5(a) is shown in figure 5(b). A large peak in the
streamwise energy is seen at y+≈ 10 with amplitude approximately constant with Re2

τ .
Similar to figure 5(a), an outer peak is seen for larger y+ values. The location of this
outer peak increases in y+ with increasing Reynolds number. The amplitude, however,
does not scale with Re2

τ as the inner peak.

4. Travelling wave optimal disturbances
In this section, we present results for the more general case in which the disturbance

frequency, and hence the streamwise wavenumber, is not constrained to zero. This
model, as discussed in § 2, forms travelling wave disturbances and permits a more
physically relevant comparison with natural energetic fluctuations observed in turbulent
boundary layers.

In what follows, we restrict the discussion to large-scale disturbances generated far
upstream with x0 = 0.1xf . Our focus on these disturbances is twofold. As shown in
the previous section, the most amplified disturbances correspond to those generated
farthest upstream. Accordingly, these structures are most influenced by the spatial
development of the mean flow and hence of particular interest in the present study.
As the separation between input/output plane becomes smaller, higher wavenumber
disturbances are amplified. In the case of travelling wave disturbances, this translates
to higher frequency disturbances with shorter streamwise and spanwise scales. In this
manner, the small-scale, inner layer structures are recovered with similar spanwise
scaling shown in figure 5(a). However, in the streamwise extent over which these
small structures are preferentially amplified, the mean flow is essentially parallel
and the results reproduce the scalings observed in similar parallel resolvent-based
analyses (e.g. Moarref et al. 2013). Considering this, we focus on the disturbances
which reveal differences as a consequence of the spatially developing mean flow.

Sample optimization results are shown in figure 6, computed for Reδ∗ = 2 × 104

with βδ= 15.6 and ωδ/U∞= 0.223. The chosen spanwise wavenumber corresponds to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

80
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.807


62 T. B. Davis, A. Uzun and F. S. Alvi

å∂

0.24
0.26
0.28
0.30
0.32

Optimal å

x/xf x/xf

G
(x

; ı
, ø

)

j

g2 j/
∑

kg
2 k

0

0.2

0.4

0.6

0.8

5 10 15
100

101

102

103

104

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
ø/u(x, ym)

(a) (b) (c)

FIGURE 6. Sample results for propagating disturbances, computed for Reδ∗ = 2 × 104

with βδ = 15.6, ωδ/U∞ = 0.223. (a) The relative energy contribution of the first 15
modes (j = 1 referred to here as the optimal disturbance with g2

1 = Gmax). (b) The
streamwise evolution of the energy amplification of the optimal disturbance and (c) the
local streamwise wavenumber computed at each x position, compared with a critical layer
approximation α =ω/u(x, ym) for ym the location where |u| is maximum.

the peak wavenumber identified from the steady disturbances (ω = 0) in figure 2(b).
Figure 6(a) illustrates the relative energy contribution of the first 15 modes, or
eigenvalues of (2.24). Note the optimal propagating modes are computed using the
iterative approach of the forward and adjoint equations, as discussed in § 2.6, which
converges to the leading eigenmode by default. Successive eigenmodes are then
computed using a modified Gram-Schmidt orthogonalization procedure, by which
the current estimate of the initial condition at x0 for mode number j is projected
orthogonal to all preceding modes 1, . . . , j − 1. This procedure is continued until
the computed eigenvalue is below one, i.e. the modes no longer achieve any energy
amplification at the specified output, which occurs for j = 16 in this case. The
leading mode j = 1, or optimal disturbance, dominates all subsequent modes with
≈70 % of the total energy amplification. The relative contribution of successive
modes decays rapidly. Similar trends were observed for other parameter combinations
(β, ω). As such, following the discussion of § 2.4, we may consider the optimal
disturbance (rank 1 approximation) to be representative of, on average, energetic
motions observed in real turbulent flows if there exists an input (feedback) at the
particular wavenumber/frequency combination.

The streamwise evolution of the energy amplification for the optimal disturbance
(j=1 in figure 6a) is shown in figure 6(b). Similar to the stationary disturbances in § 3,
the energy amplification reaches nearly four orders of magnitude at the final output
plane xf . Note the optimization is performed with respect to the final output plane only,
and not the full spatial evolution, such that at xf , G(xf ) ≡ Gmax. The corresponding
streamwise wavenumber, computed from the inner optimization described in § 2.5, is
shown in figure 6(c). A general increase in α is observed over the streamwise domain,
or a decrease in the streamwise wavelength, although this behaviour is not strictly
representative of all (β, ω) parameter combinations. For reference, the streamwise
wavelength at xf corresponds to λx ≈ 20δ, with phase speed c = 0.69U∞. Plotted
alongside the optimized streamwise wavenumber is an estimate using a local critical
layer approximation. As discussed in § 2.7, the amplification should be maximized
when the disturbance phase velocity matches that of the local mean, or the term (αu−
ω)→ 0. To illustrate this, in figure 6(c) the ratio ω/u(x, ym) is plotted, where u(x, ym)

is the mean streamwise velocity at wall-normal location ym, and ym the location at
which the disturbance streamwise velocity |u| is maximum. A good agreement is seen
between the optimized α and the critical layer estimate. The two differ most for small
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FIGURE 7. (Colour online) (a) Amplification of the optimal disturbance as a function
of spanwise wavenumber and radian frequency, computed for Reδ∗ = 2 × 104. (b) The
corresponding phase speed with isocontours of the amplification in (a) are overlaid for
reference.

x/xf , largely due to the fact that the initial disturbance is comprised mainly of wall-
normal and spanwise velocity components, with small streamwise velocity used to
compute ym in the estimate.

In the following, for each parameter combination (β, ω), we extract the values of
Gmax and α at the final output plane xf corresponding to the chosen Reδ∗ .

4.1. Most amplified propagating modes
To examine the dependence of optimal disturbance amplification on spanwise
wavenumber and frequency, these parameters are discretized on logarithmically
spaced grids and the procedure outlined in figure 6 computed for each combination.
Here, only the leading mode considered. The computations are truncated when
the amplification Gmax < 1. Results for Reδ∗ = 2 × 104 are plotted in figure 7(a).
The limω→0 Gmax naturally corresponds to the stationary disturbances discussed in
the previous section and the spanwise spectrum at the smallest frequency plotted
in figure 7(a) (ωδ/U∞ = 0.002) aligns exactly with the amplification spectrum in
figure 2(a) for x0= 0.1xf . This amplification is approximately constant, or independent
of ω, for ωδ/U∞ . 0.07. However, a further increase in frequency leads to an
appreciable increase in Gmax, such that the global optimum in energy amplification
occurs for propagating modes and not the stationary modes discussed in § 3.

In figure 7(a), two distinct peaks in energy amplification are seen in the propagating
modes. The first peak (in terms of increasing ω) is observed for a slightly smaller
spanwise wavenumber than the corresponding stationary modes, with βδ ≈ 10 and
ωδ/U∞ ≈ 0.3. For reference this corresponds to a spanwise wavelength of λz ≈ 0.6δ
and streamwise wavelength, using the computed α at the output plane, of λx ≈ 13.8δ.
These values are well aligned with reported structures observed in turbulent boundary
layers, in particularly the VLSMs or superstructures identified in instantaneous
visualizations. In comparison to the previously discussed steady disturbances, the
energy amplification associated with this peak increases by approximately 43 %.

The second peak occurring for higher frequency disturbances is the primary, or
global, peak in energy amplification at this particular Reδ∗ with ∼51 % increase in
amplification over the stationary modes. This occurs for βδ ≈ 2.2 and ωδ/U∞ ≈ 1.0,
or spanwise and streamwise wavelengths of λz ≈ 2.8δ and λx ≈ 5.1δ, respectively.
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Note the spanwise wavelength associated with this primary peak is significantly
larger than the secondary peak, although the streamwise wavelength is much shorter.
As such, the aspect ratio λx/λz of these higher frequency disturbances are smaller. The
spanwise wavelength leading to maximum amplification is also in good agreement
with the spanwise scale of conventional optimal disturbances in Blasius boundary
layers (λz ≈ 2.8δ) (Andersson et al. 1999), and laminar and turbulent channel flow
(λz ≈ 3h) (Reddy & Henningson 1993; del Álamo & Jiménez 2006), although those
were obtained for stationary disturbances with either infinite or very long streamwise
wavelengths.

At this moderate Reynolds number, both peaks are well separated in spectral space.
Furthermore, no similarly scaled disturbances were identified in the stationary results
such that the corresponding modes appear unique to propagating disturbances. The
physical significance of both peaks are discussed in following sections. For frequencies
ωδ/U∞ & 2.2, no parameter combination leads to appreciable amplification for the
input plane considered, x0 = 0.1xf . It should be noted, however, if the input plane is
moved closer to the output, smaller-scale structures (i.e. higher β and ω) are amplified
such that the upper contours in figure 7(a) would continue diagonally to the right.
As seen in the stationary disturbances, these small-scale structures have much lower
amplification, but cover a much larger spanwise wavenumber and frequency range,
such that their energy contribution is significant.

Each parameter combination in figure 7(a) is associated with a unique streamwise
wavenumber extracted at the final output plane. As such, we plot the disturbance
phase velocity, c = ω/α, in figure 7(b), with isocontours of amplification overlaid
for reference. Here, the two identified peaks are seen to have phase velocities of
approximately 0.7U∞ and 0.8U∞, respectively. Similar to the amplification, the
phase velocity is approximately constant for fixed β with increasing frequency for
ωδ/U∞ . 0.07. For higher frequency disturbances, there is a general increase in
phase velocity with increasing frequency, and similarly with decreasing spanwise
wavenumber. In accordance with Taylor’s hypothesis, the disturbances are seen
to convect at approximately the local mean evaluated near the disturbance peak
streamwise velocity. As ω increases, the corresponding disturbance mode shapes
(for example, see figures 10 and 11) begin to lift off the wall, with their maximum
contribution centred in regions of higher mean flow velocity. A similar behaviour has
been noted in McKeon & Sharma (2010). For large ω and relatively low β, the mode
shapes can be said to become detached from the wall such that they have negligible
contribution in the near wall region (figure 11a). These are essentially free-stream
modes with their wall-normal maximum occurring either in the wake region of the
mean flow, or near the edge of the boundary layer, and denoted with phase velocity
c & 0.8 in figure 7(b). Conversely, modes with small frequency but large spanwise
wavelength have support over a large wall-normal extent such that they maintain high
convection velocity.

To examine the Reynolds number scaling, the amplification spectrum in figure 7(a)
is computed for varying Reynolds number. Two additional representative cases
ranging from low to moderately high Reδ∗ are shown in figure 8. Note the results
of figure 7(a) are reproduced in figure 8(b) for reference. In each case, a peak in
amplification is observed for ω > 0. This occurs consistently for a slightly lower
spanwise wavenumber than for the corresponding stationary optimal. For the lowest
Reδ∗ considered (figure 8a), only a single peak in amplification can be clearly
distinguished at βδ≈ 2.2. This is a direct consequence of the lack of scale separation
in the mean flow. The location of this peak with increasing Reδ∗ is approximately
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FIGURE 8. (Colour online) Amplification of the optimal disturbance, (a) Reδ∗ = 2× 103,
(b) Reδ∗ = 2× 104, (c) Reδ∗ = 4× 104. Note the contour levels are scaled by the maximum
amplification for each Re and are hence not the same.

constant in the outer-scaled spanwise wavenumber, with a slight increase in ω. The
peak at lower ω emerges only for the higher Reδ∗ cases. Additional cases not shown
here indicate the two peaks become distinguishable for Reδ∗ > 1× 104. Similar to the
stationary disturbances, this peak shifts to higher β with increasing Reynolds number.
For the larger Reδ∗ cases in which an appreciable logarithmic overlap layer can be
said to occur, the modes associated with this peak have their principal support within
the logarithmic region of the mean flow. The increase in spanwise wavenumber is
explained by the same reasoning as for the stationary disturbances. As Reδ∗ increases,
the centre of the log region moves closer to the wall in outer-scaled units. For y∝ λz,
this requires smaller spanwise structures and hence larger spanwise wavenumber.
Conversely, the modes associated with the higher ω peak at constant βδ ≈ 2.2 are
centred in the wake region of the mean flow with constant scaling in outer units.
Based on this scaling, and the relative location of the corresponding mode shapes
within the boundary layer, we refer to these identified modes as log and wake modes,
respectively.

Interestingly, the relative amplification of the two peaks changes with increasing
Reδ∗ . In figure 8(a,b), the higher frequency wake modes achieve the highest overall
energy amplification. However, as shown in figure 8(c), for Reδ∗ > 4× 104 the lower
frequency log modes are most amplified. In both cases the amplification increases with
Reδ∗ , although clearly at different rates. The amplification of the outer-scaled peak
initially increases before approximately saturating for higher Reδ∗ . For Reδ∗ > 1× 104

in which the log peak is distinguishable, the amplification increases approximately as
Re0.75

δ∗ . As such, the log modes becomes increasingly dominant as Reynolds number
increases.

4.2. Identification of large-scale energetic propagating modes
The spectra in figure 8 identify propagating modes which amplify by several orders
of magnitude given optimal forcing by means of an initial condition. However, the
pure amplification spectrum is poorly suited to identify scales which, on average,
contain the dominant portion of total fluctuating energy. This is better visualized by
the premultiplied amplification, βωGmax, such that equal area corresponds to equal
contribution to total integrated kinetic energy on a logarithmic scale. In this case,
it is immediately obvious that the stationary modes considered in § 3, and the low
frequency modes in figure 8, do not appreciably contribute to total kinetic energy
and hence not directly representative of the dominant, energetic motions in turbulent
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FIGURE 9. (Colour online) Premultiplied amplification, βωGmax, of the optimal
disturbance, (a) Reδ∗ = 2× 103, (b) Reδ∗ = 2× 104, (c) Reδ∗ = 4× 104. In (b), the location
of the identified log and wake modes are labelled ‘`’ and ‘w’, respectively.

x/∂
10 20 30 40 50 60 70 80

y/∂

y/∂

(x - xf)/∂

0

0.5

1.0

0
0.5
1.0

-10 -8 -6 -4 -2 0

(a)

(b)

FIGURE 10. (Colour online) Streamwise component of the optimal disturbance response
corresponding to the global peak in premultiplied energy amplification at Reδ∗ = 2× 104

(see figure 9b). (a) Spatial evolution over the full streamwise domain and (b) plotted
with equal axis scaling on a shortened streamwise domain. Here, βδ = 16.5 (λz ≈

0.4δ), ωδ/U∞ = 0.76 (λt = 2π/ω ≈ 8.3δ/U∞). At the output, the induced streamwise
wavelength is λx ≈ 6.1δ with phase velocity c≈ 0.74U∞.

boundary layers. The peaks in figure 8 may, however, be more representative of
structures visualized in instantaneous snapshots.

The premultiplied spectra, for the same cases as figure 8, are shown in figure 9.
Aside from the absence of low frequency content (note the lower axis limits in
figure 9 are different than in figure 8), the premultiplied spectra show similar features.
Again at the lowest Reδ∗ considered, there is insufficient scale separation such that
only one elongated peak region is observed. For high Reδ∗ , two regions are identified
associated with the log and wake modes. These are respectively labelled as ‘`’ and ‘w’
in figure 9. Note the weighting of the premultiplication shifts the locations of these
regions to higher spanwise wavenumbers and frequencies as compared to figure 8.
Furthermore, for the higher Reδ∗ the log modes increasingly contain the dominant
portion of fluctuation energy content. The scaling of the log and wake modes with
increasing Reynolds numbers are discussed in the following section.
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FIGURE 11. (Colour online) Streamwise component of the optimal disturbance response
corresponding to the secondary peak in premultiplied energy amplification at Reδ∗ =
2 × 104 (see figure 9b). (a) Spatial evolution over the full streamwise domain and (b)
plotted with equal axis scaling on a shortened streamwise domain. Here, βδ= 3.35 (λz≈

1.8δ), ωδ/U∞ = 1.38 (λt ≈ 4.5δ/U∞). At the output, the induced streamwise wavelength
is λx ≈ 3.7δ with phase velocity c≈ 0.82U∞.

The two classes of structures identified by the peaks in figure 9 are visualized
for Reδ∗ = 2 × 104 in figures 10 and 11. Note the location of these modes in the
premultiplied energy spectrum are those labelled as ` and w in figure 9(b). The
real component of the optimal streamwise velocity response, given by (2.4), is
plotted for arbitrary time and spanwise plane. In figure 10(a), the log mode is
shown over the entire streamwise domain and again in figure 10(b) for a shortened
streamwise domain such that the mode may be visualized with equal axes scaling.
The response indicates a wave packet structure attaining its maximum amplitude at
the prescribed output plane. As shown in figure 10, the streamwise velocity structures
are initially tilted backwards during the early amplification phase and rotate forwards
over the streamwise domain as a result of the wall-normal shear. This suggests the
Orr mechanism plays a significant role in the early amplification process of these
propagating modes, in addition to the optimal alignment of the disturbance phase
velocity with that of the local mean. Note the maximum streamwise velocity occurs
for y < 0.2δ, such that these ‘log modes’ are dominant throughout the log region
of the mean flow. Figure 10(b) provides a more realistic picture of the relative
streamwise and wall-normal scales, reminiscent of the streamwise velocity streaks
reported in turbulent boundary layers. The wavelength corresponds to λx ≈ 6.1δ, in
close agreement with the experimentally observed structures and the outer peak in
streamwise velocity spectra (Mathis et al. 2009).

Similarly, the streamwise velocity response mode corresponding to the secondary
wake mode in figure 9(b) is shown in figure 11. It is immediately recognized that
these have a shorter streamwise wavelength than the log modes, with much larger
wall-normal extent. They also have significantly less initial upstream tilt, indicating
possible reasons why they experience lower amplification than the corresponding log
modes (in addition to being centred in a region with less mean shear). As noted
in previous discussion, as the wake mode develops in the streamwise direction, it
becomes essentially detached from the wall with little to no support in the near
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FIGURE 12. Re scaling of the most energetic optimal disturbance wavelengths, determined
from the peaks in premultiplied energy amplification (see figure 9). (a,c) Peaks
corresponding to log-layer modes, (b,d) the peaks corresponding to wake modes. Open
symbols represent data from the current model, filled symbols are experimental data
estimated from the premultiplied streamwise energy spectra in Mathis et al. (2009) for
zero-pressure-gradient turbulent boundary layers. The solid lines represent trend lines. In
(c), the dotted line corresponds to λ+x = 6Reτ in accordance with the generally accepted
scaling of the streamwise wavenumber. In (d) the dotted line corresponds to λ+x = 3Reτ .

wall region. The dominant contribution comes in the wake of the mean flow, well
outside the log layer, with the ‘heads’ protruding near the edge of the boundary layer
(figure 11b).

4.3. Scaling of the propagating modes and comparison with experimental
measurements

Here we present the Re-scaling of the most energetic optimal disturbance modes
and a comparison to energetic scales observed in turbulent boundary layers. To this
end, we extract length scales associated with the log and wake mode peaks in the
premultiplied amplification spectra (see figure 9), denoted with the subscript ‘max’,
for Reδ∗ = 2 × 103–1.6 × 105, or Reτ ≈ 446–36 000. These results are plotted in
wall units as a function of Reτ in figure 12(a,c) for the log modes and 12(b,d) for
the wake modes. We also plot experimental data, estimated from the premultiplied
streamwise energy spectra of Mathis et al. (2009) for high Re turbulent boundary
layers. In this case, the location of the ‘outer peak’ in the streamwise energy spectra
generally associated with ‘superstructures’ (or VLSMs), is plotted alongside the log
modes. Similarly, the approximate location of the emergence of the ‘outer hump’, as
described by Monty et al. (2009) and associated with the LSMs, is plotted alongside
the wake modes. Note that no matching information is available for the spanwise
wavelengths.

Figure 12(a) shows the extracted spanwise and wall-normal scaling the log modes.
Similar to the stationary modes in figure 4(b), both the inner-scaled spanwise
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wavelength and wall-normal position vary approximately as Re0.5
τ for the Re

range considered here. Following the discussion in § 3.1, this Reτ -dependence is
in agreement with the scaling of the geometric centre of the logarithmic layer of
the mean flow, and the approximate location of the peak Reynolds shear stress
(Sreenivasan 1989). The wall-normal position of the optimal disturbance energy lies
slightly above the location of the outer peak in the experimental measurements.
However, the approximate square root scaling is well predicted. The aspect ratio of
the log modes remains approximately constant in the streamwise plane, with spanwise
wavelength given by λ+z,max ≈ 26Re1/2

τ . As a practical consideration, note the increase
in both y+max and λ+z,max expressed in wall units is associated with a corresponding
decrease in outer units as Re−1/2

τ (i.e. if y+ ∼ Rep
τ H⇒ y/δ ∼ Rep−1

τ for arbitrary
power, p). This requires the energetic modes move closer to the wall relative to local
boundary layer thickness with decreasing spanwise wavelength as Re increases.

The streamwise wavelength of the log mode displays different scaling than the wall-
normal and spanwise scales, as shown in figure 12(c). A simple linear regression
analysis on the logarithmic-scaled data yields λ+x,max ∼ Re0.7

τ , indicating a Reynolds
number dependence and hence slight shortening in streamwise length relative to the
boundary layer thickness. Note the two lower Reτ points have not been included in
the fit as there is no clear distinction between the log and wake modes (see figure 9a).
It is generally accepted the outer peak in premultiplied streamwise energy spectra is
approximately fixed in outer units with λx ≈ 6δ (Hutchins & Marusic 2007a). This
requires the inner-scaled wavelength increase linearly as λ+x ≈ 6Reτ (dotted line in
figure 12c). However, recent high Reynolds number experimental data indicate a Re0.5

τ

dependence on the streamwise wavelength associated with the outer peak (Vallikivi,
Ganapathisubramani & Smits 2015). This is in agreement with the present results in
that there may be at least a moderate Reynolds number dependence. Nevertheless,
the agreement in figure 12(c) between the computed streamwise wavelengths of the
optimal disturbance log modes and the outer peak in the experimental measurements
over roughly an order of magnitude in Reτ is encouraging. Both the best fit and a
6Reτ trend line are shown for comparison.

In figure 12(b,d), we show the respective scaling of the wake modes and comparison
of the approximated LSMs in Mathis et al. (2009). Again, both the spanwise and
wall-normal scales of the optimal disturbance modes scale similarly. However, here
they show approximately linear increase with Reτ , or constant scaling in terms of
boundary layer heights. In this case, y ≈ 0.3δ with λz ≈ 1.7δ. Note, consistent with
this outer scaling, these modes are centred in the wake region of the mean flow,
with diminishing support extending towards the wall (e.g. figure 11). The associated
streamwise wavelength, plotted in figure 12(d), reveals a weak Reτ -dependence with
λ+x ∼ Re0.9

τ . Similar to the streamwise scales of the log modes, this indicates a
slight shortening of λx/δ with increasing Reynolds number. Over the range of Reτ
considered here, λx ≈ 3–4δ, in good agreement with the location of the outer hump
in the streamwise energy spectra (Monty et al. 2009). The dotted line in figure 12(d)
denotes λx = 3δ.

5. Summary and discussion
Optimal disturbances have been computed in a turbulent boundary layer in which

the spatial development of the mean flow is retained through a parabolized formulation.
The classical spatial approach for steady disturbances is modified to also consider
travelling wave disturbances where the local streamwise wavenumber is computed as
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part of the optimization algorithm. In the context of disturbances developing about
a turbulent mean flow, optimal disturbances are viewed as the homogeneous solution
to the equations governing the fluctuations subject to a turbulent forcing at particular
wavenumber/frequency combinations. The main findings from the present study are
summarized here.

We find both steady and travelling wave modes achieve energy amplification
up to several orders of magnitude. All identified modes correspond to streaky
structures, with streamwise length scales larger than their corresponding spanwise
scales. The computed amplification and optimal scales show a strong dependence on
the local mean flow and the streamwise development length, or separation between
input and output planes. In particular, as shown for steady disturbances, the largest
and most amplified disturbances are generated farthest upstream. As the separation
between input/output planes is reduced, there is a monotonic decrease in peak
amplification and associated spanwise wavelength. For steady disturbances, a single
peak is identified in the amplification spectra as a function of spanwise wavenumber.
Disturbances associated with this peak attain their maximum velocity near the centre
of the logarithmic layer of the mean flow. As such, the spanwise wavelength and
wall-normal position, in inner-scaled units, increases as ∼Re0.5

τ . In addition, the
premultiplied streamwise energy spectra reveal a second, dominant peak in constant
inner-scaled units with spanwise and wall-normal scaling similar to the near wall
streaks.

For all Reynolds numbers and parameter combinations considered, travelling wave
optimal disturbances achieve significantly higher energy amplification than steady
disturbances. These disturbances have convection velocities approximately equal to
the local mean flow, related to critical layer behaviour. For high Reynolds numbers, in
which a sufficient separation of outer and inner scales occurs, two peaks are identified
in the amplification spectra for propagating modes. Both of these peaks occur for
different spanwise wavenumber than the steady disturbances. An outer-scaled peak,
with approximately constant spanwise wavelength in terms of boundary layer height,
dominates for low to moderately high Reynolds numbers. A mixed-scaling peak,
which shifts to smaller spanwise wavelength in terms of boundary layer height for
increasing Reynolds numbers, dominates at the highest Reynolds numbers investigated.

The premultiplied amplification spectra is used to identify scales which contribute
most to total fluctuation energy. Similar to the pure amplification spectra, two classes
of modes are identified. These are referred to as log and wake modes based on their
identified scaling and location within the boundary layer mean flow profile. The wake
modes have their principal support in the wake of the turbulent mean flow, essentially
detached from the wall, with peak velocity at y≈ 0.3δ, spanwise wavelength λz≈ 1.7δ
and convection velocity c ≈ 0.82U∞. The streamwise wavelength shows a slight
Reynolds number dependence, with λx ≈ 3–4δ over approximately two orders of
magnitude in Reynolds number. For moderately high Reynolds numbers, the log
modes increasingly dominate the contribution to fluctuating energy. The wall-normal
and spanwise scaling of the log modes is similar to the steady disturbances, with
the inner-scaled wall-normal position and spanwise wavelength increasing as ∼Re0.5

τ .
The streamwise wavelength shows moderate Reynolds number dependence, increasing
in inner-scaled units as ∼Re0.7

τ . Over the range of Reynolds numbers considered, λx

ranges from 4–8δ with convection velocity c≈ 0.74U∞. The identified energetic scales
are shown to be in good quantitative agreement with established energetic motions in
natural turbulent boundary layers.
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5.1. Comparison of results with related gain-based approaches
The current approach is related to several recent studies on the linear amplification
properties of the Navier–Stokes equations about wall-bounded flows. In particular,
Cossu et al. (2009) has studied temporal optimal disturbances with the same mean
flow profile used here along with a parallel flow approximation. An eddy viscosity
was also included to model the interaction of incoherent background turbulence
with the amplified disturbances. Qualitatively, the optimization results in Cossu et al.
(2009) are similar to the (steady) disturbances presented here in that streaky structures
are amplified with spanwise and wall-normal velocity components generating large
streamwise velocity response. Quantitative results are quite different, however. Cossu
et al. (2009) identified two peaks in the amplification spectrum, one corresponding to
very large disturbances (λz ≈ 8δ) centred at the edge of the boundary layer and one
inner-scaled peak associated with buffer layer structures with scaling similar to near
wall streaks (λ+z ≈ 81). Negligible amplification was found for structures within the
logarithmic region of the mean flow. As such, aside from the inner layer structures
identified here in the streamwise energy density, the most amplified disturbances
are orders of magnitude different in spanwise wavelength and wall-normal position
with the steady optimal disturbances identified in the current results. A potential
reason for such discrepancy is the use of the eddy viscosity in Cossu et al. (2009)
(see also § 5.3). However, using only the molecular viscosity in the temporal optimal
disturbance results does not appear to improve the agreement. Note the temporal
optimal disturbances may be regarded as fundamentally different than the current
spatial implementation, because those disturbances are neither steady nor time
harmonic propagating modes as in the current approach.

Recently, Hack & Moin (2017) have examined propagating optimal disturbances in
spatially developing laminar boundary layers within the PSE framework. In contrast
to current approach, Hack & Moin (2017) do not employ an adjoint-based solver but
rather use an expansion based on local, parallel eigenfunctions coupled with their
downstream evolution via the PSE linear operator. As such, Hack & Moin (2017)
do not evolve the converged optimal disturbance with a single (spatially evolving)
streamwise wavenumber. Rather, each spatially evolving eigenfunction develops
according to the streamwise wavenumber selected by the PSE auxiliary equation. In
the current method, the conventional PSE auxiliary equation is not used. Although
the formulation and base flow differ (laminar versus turbulent), Hack & Moin (2017)
also find the largest energy amplification with three-dimensional disturbances of finite
frequency resulting from the interaction of the Orr and lift-up mechanisms.

An approach more closely related to the current formulation is the resolvent
analysis of Moarref et al. (2013), although performed for parallel turbulent channel
flow. The resolvent approach identifies both steady and propagating modes and the
current method degenerates to the same linear operator if the streamwise derivative
of the disturbance is neglected. Moarref et al. (2013) focused on energetic scales
based on the rank 1 model of streamwise energy density. Two classes of large
scale structures were identified: an outer and so-called middle peak corresponding
essentially to the wake and log modes identified here. The wall-normal and spanwise
scales of the middle peak are in good quantitative agreement with the present
results. The streamwise wavelengths identified here are shorter (i.e. λx ≈ 6δ as
opposed to λx ≈ 12–16h). However, these are consistent with differences observed
experimentally between internal (channel) and external (boundary layer) flows (Monty
et al. 2009). The largest difference is seen with regard to the outer peak, or wake
modes. The identified wall-normal and spanwise scales are similar, y ≈ 0.45h and
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λz ≈ 2h in Moarref et al. (2013) as compared to y ≈ 0.3δ and λz ≈ 1.7δ here.
Again, these are consistent with experimentally observed trends. However, in Moarref
et al. (2013), the streamwise scales of the outer peak increased as λx/h ∼ 0.1Reτ
indicating an increase in the outer-scaled wavelength with increasing Reynolds
number and structures much larger than observed experimentally. In the current
spatial approach, the corresponding structures show a slight decrease in outer-scaled
streamwise wavelength with increasing Reynolds number and lengths λx ≈ 3–4δ, in
good agreement with experimental observations (Monty et al. 2009). Furthermore,
Moarref et al. (2013) showed an increase in the relative strength of the outer peak
structures with increasing Reτ . In contrast, here we find the relative amplification of
the wake modes decreases with Reτ such that the log modes become increasingly
dominant at higher Reynolds numbers. Of course, a comparison is somewhat limited
as the mean flows are different. However, it does appear the spatial implementation
significantly alters the development of at least the largest energetic scales.

5.2. Spatial formulation and influence of the spatial development of the mean flow
In the current formulation, the spatial development enters through both the streamwise
evolution of the mean flow and through the streamwise development/lifetime of
the disturbance. The disturbances are purely harmonic in time. However, these
disturbances are ‘transient’ in the streamwise direction. A small disturbance generated
far upstream will have negligible amplitude sufficiently far downstream, regardless of
the initial amplification.

In comparing with related analyses under parallel approximations, we may then
ask which effect is more critical in determining optimal scales: the evolution of the
mean flow, or the transient streamwise development of the disturbance. The latter
includes any history effects as well. Of course, perhaps for all but the smallest-scale
disturbances, these two effects may be inextricably bound. Nevertheless, the identified
scaling in §§ 3 and 4 indicates that the disturbance lifetime and local mean flow are
the dominant factors in selecting the preferential scales. In all the results presented
in this study, although the disturbance evolves in a spatially varying mean flow, the
scaling is presented based on the mean flow scales at the final output plane (i.e.
the Reδ∗ the case has been labelled). This is consistent with typical experimental
measurements. Although we observe some scatter in the Re scaling (e.g. figure 12),
which may be expected in particular because the composite mean profile is not
self-similar, the identified trends appear to scale quite well using only the mean flow
scales at the output. This suggests the optimal scales adjust rather quickly to the
local mean flow, despite the fact that the mean flow may be substantially different
far upstream where the disturbance was generated (for large scales).

5.3. Turbulent mean flow and eddy viscosity
The nonlinear source term involving the fluctuating Reynolds stresses is treated here as
a generic internal forcing at particular wavenumber/frequency combinations (McKeon
& Sharma 2010; Beneddine et al. 2016). This provides a consistent means to study
the linear amplification properties of disturbances about a turbulent mean. Note,
however, that no explicit distinction is made between the nature of fluctuations in the
Reynolds decomposition. Coherent disturbances are rather implied through maximizing
kinetic energy and the rank 1 approximation. Alternatively, one may consider a triple
decomposition (Reynolds & Hussain 1972) in which the flow is decomposed into a
mean, coherent fluctuation, and so-called background turbulent motion. Deriving the
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FIGURE 13. Spatial envelope of maximum energy amplification for steady, streamwise
elongated disturbances (α = ω = 0), computed for Reδ∗ = 2 × 104. (——): quasi-laminar,
(– - – - –): eddy viscosity.

equations for the coherent fluctuations generates Reynolds stresses associated with
the fluctuations and background turbulence. Modelling the Reynolds stresses of the
background turbulence typically involves introducing an eddy viscosity based on the
turbulent mean flow (e.g. Viola et al. 2014). Neglecting them is generally referred to
as a quasi-laminar approach, equivalent to assuming the background turbulence only
effects the development of the coherent motion implicitly through modification of the
turbulent mean flow, with the resulting linearized equations equivalent to those used
in the current study.

In general, use of an eddy viscosity produces larger structures with significantly
less amplification, as previously noted. In figure 13, we briefly compare the results
of the current spatial approach with those computed using an eddy viscosity as in
Cossu et al. (2009) for steady disturbances (ω = 0) at Reδ∗ = 2 × 104. We refer to
the results without the eddy viscosity as quasi-laminar and note these are identical
to the results in § 3. Figure 13 shows the disturbances computed using the eddy
viscosity have significantly less amplification (∼2 orders of magnitude) as a result
of the additional large artificial dissipation. Furthermore, the eddy viscosity results
reveal the two-peak structure, similar to that identified in del Álamo & Jiménez
(2006) and Cossu et al. (2009), with a relatively high amplitude outer peak at small
β and a low amplitude inner peak at high β. Repeating the calculations at various
Re identifies the outer peak with constant scaling in outer units (λz ≈ 3.4δ) and inner
peak with constant scaling in wall units (λ+z ≈ 80). The inner peak agrees well with
the inner peak identified by Cossu et al. (2009), with nearly identical amplification.
The outer peak, however, occurs for much shorter spanwise wavelength (but with
similar amplification), λz ≈ 3.4δ as compared to λz ≈ 8δ in Cossu et al. (2009).
More importantly, the region between the two peaks in the eddy viscosity results has
essentially negligible amplification. Note that this local minimum corresponds to the
region for which the quasi-laminar results have maximum amplification. This range
of spanwise wavelengths has been associated with structures having peak velocity in
the log region of the mean flow (§ 3), known to be dominated by energetic motions
in real turbulent boundary layers. The minimum amplification in the eddy viscosity
results arise because the Reynolds shear stress peaks near the centre of the log layer
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and as such, the eddy viscosity is high. This tends to dampen the growth of optimal
disturbances. We cannot expect the eddy viscosity results to predict the energetic
log modes in this gain-based approach, without resorting to a secondary instability
mechanism (e.g. Alizard (2015)). Indeed, attempting to reconstruct streamwise energy
density using the eddy viscosity optimal disturbance modes and amplification, as in
(3.1) and shown figure 5 for the quasi-laminar results, yields non-physical results.

5.4. Outlook
The current study is focused on the downstream response to upstream initial
conditions/forcing (at a single plane), as in conventional spatial optimal disturbances.
This has been formulated as the homogeneous solution to the governing equations
subject to a distributed, internal turbulent forcing. While the linearized operator
examined here includes all the relevant dynamics, it would be beneficial to examine
the full solution and optimal response to distributed forcing. For the boundary layer,
the largest scales are most sensitive to upstream forcing. As such, the distributed
forcing is likely to have the largest impact on the smallest scales, in which the
streamwise location of the forcing amplitude is freely permitted to shift downstream
closer to the output optimization plane. In this case, it would be unnecessary to
vary the location of the input plane as in § 3 provided the full streamwise domain is
sufficiently resolved.

Finally, we have shown that the most energetic optimal disturbances, arising from
simple, linear analysis, shows good agreement with energetic motions naturally
observed in turbulent boundary layers. In particular, this is especially the case for
propagating modes considered with scales resembling LSMs and VLSMs. This
supports the view that these structures may be essential, fundamental elements to
wall turbulence (Sharma & McKeon 2013). Of course, real turbulent motions are not
optimized or linear. As the amplification presented here is computed as the response
to unit forcing across all frequencies and wavenumbers, quantitative differences may
be expected between the predicted optimal scales and the structures observed in
natural turbulent boundary layers. This analysis examines the optimized response
to forcing, but makes no attempt at describing how or if a particular forcing may
occur in real turbulent flows. However, we would expect a large response if the
boundary layer is artificially forced at the most amplified wavenumbers/frequencies.
As such, the present results may also serve to guide potential passive and active
control schemes, in particular when a finite streamwise domain is considered.
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Appendix A. Governing equations and discretization

The parabolized equations governing the amplitude function q̂ subject to forcing f̂
are given by (2.10),

Aq̂+ B
∂ q̂
∂x
+ C

∂ q̂
∂y
+ D

∂2q̂
∂y2
= Ef̂ , (A 1)
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where the coefficient matrices A, B, C, D, E are given by

A=

a+ ∂xū ∂yū 0 iα
∂xv̄ a+ ∂yv̄ 0 0
0 0 a iβ
iα 0 iβ 0

 , B=

ū 0 0 1
0 ū 0 0
0 0 ū 0
1 0 0 0

 , (A 2a,b)

C=

v̄ 0 0 0
0 v̄ 0 1
0 0 v̄ 0
0 1 0 0

 , D=−
1

Re

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , E=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , (A 3a−c)

with

a= i(αu−ω)+
1

Re
(α2
+ β2). (A 4)

Note the b14 term in the matrix B corresponds to the streamwise derivative of the
pressure amplitude function and may be neglected (in particular, to eliminate residual
ellipticity in the equations).

In (A 1), the wall-normal direction is discretized using a spectral collocation method
based on Chebyshev polynomials. The Chebyshev collocation points, ξ ∈ [−1, 1], are
mapped to the physical domain, y∈ [0, ymax], using the rational mapping (Hanifi et al.
1996),

y= â
1+ ξ

b̂− ξ
(A 5)

with

â=
ycymax

ymax − 2yc
, b̂= 1+

2â
ymax

. (A 6a,b)

This mapping clusters the collocation points near the wall to capture the steep
gradients in both the turbulent mean flow and solution q̂. The parameters â and b̂
control the point distribution, with half the collocation points mapped to the interval
[0, yc]. To resolve the energetic, log-layer structures, yc is chosen near the centre of
the logarithmic region of the mean flow, estimated as y+c = 4.5Re1/2

τ with Reτ = δuτ/ν
the friction Reynolds number and + denoting inner units. This ensures that, with
increasing Reynolds number, the most energetic structures are well resolved.

The streamwise direction in (A 1) discretized into Nx, points xj = x0 + j1xj for j=
0, . . . , Nx − 1 and 1xj = xj − xj−1. In this study, we take 1xj = 1x, such that the
streamwise derivative at xj may be approximated using the second-order backwards
difference

∂ q̂
∂x
≈

3q̂j − 4q̂j−1 + q̂j−2

21x
. (A 7)

On the first plane, j= 1, the first-order backwards difference is used. Substitution of
(A 7) into (A 1) (with f̂ = 0) yields the linear system

Ajq̂j = Bjq̂j−1 + C jq̂j−2 (A 8)

to be solved at each streamwise plane xj for the amplitude functions q̂j.
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Appendix B. Adjoint equations and the optimality system
Here we present an abridged derivation of the optimality system and adjoint

equations using the method of Lagrange multipliers. Rather than writing the optimal
disturbance as in § 2.4 in terms of the state-transition matrix Φu, we formulate
the equivalent constrained optimization problem in which the goal is to maximize
a specified objective function(al) subject to additional constraints. In this case,
the objective function is the amplification from an initial condition at x0 to the
corresponding response at xf , subject to the state equation (2.10). As such, we define

J (q̂)=
‖û(xf )‖

2

‖û(x0)‖2
=

∫
∞

0
ûHû|xf dy (B 1)

as the objective function where it is assumed that the initial condition has been scaled
to unit energy norm, and only the velocity components are considered. It is required
that q̂ satisfy (2.10), namely

F(q̂)= Aq̂+ B
∂ q̂
∂x
+ C

∂ q̂
∂y
+ D

∂2q̂
∂y2
− Ef̂ = 0. (B 2)

We may then define the Lagrange function as the augmented objective function

L(q̂, q̂+)=J (q̂)− 〈q̂+, F(q̂)〉, (B 3)

where the second term is associated with the scalar product defined over the entire
domain,

〈q̂+, F(q̂)〉 =
∫ xf

x0

∫
∞

0
q̂+HF(q̂) dy dx. (B 4)

Here, q̂+= (û+, v̂+, ŵ+, p̂+)T is referred to as the Lagrange multiplier, or adjoint state.
Formally, we could introduce additional Lagrange multipliers in (B 3) to enforce the
initial condition to (A 1) at x0 and to enforce the scaling to unit norm. These are
neglected for compactness. A necessary condition for optimality of (B 3) is that first
order variations in the Lagrangian δL subject to variations in the states δq̂ and δq̂+
are zero, i.e.

δL
δq̂+
= lim

ε→0

L(q̂, q̂+ + εq̃+)−L(q̂, q̂+)
ε

= 0, ∀q̃+ (B 5)

and similarly for δL/δq̂. Evaluation of (B 5), and requiring that this vanish for all
arbitrary q̃+, retrieves the original constraint equation F(q̂)= 0. Similarly, evaluating
δL/δq̂, we obtain (after applying integration by parts)

δL
δq̂
= 2

∫
∞

0
ûHũ|xf dy−

∫ xf

x0

∫
∞

0

[(
q̂+HA−

∂ q̂+H

∂x
B−

∂ q̂+H

∂y
C+

∂2q̂+H

∂y2
D

)
q̃

+ q̂+H
(
∂B

∂x
+
∂C

∂y

)
q̃

]
dy dx−

∫
∞

0

[
q̂+HBq̃

]xf

x0

dy

−

∫ xf

x0

[
q̂+HCq̃+ q̂+HD

∂ q̃
∂y
−
∂ q̂+H

∂y
Dq̃

]∞
0

dx. (B 6)
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The first term arises from the objective function (B 1) and the remaining terms derive
from the scalar product (B 4). The term ∂xB+ ∂yC is zero as the mean flow satisfies
continuity. In order for (B 6) to vanish for all arbitrary variations q̃, we require the
adjoint state q̂+ to satisfy

AH q̂+ − BH ∂ q̂+

∂x
− CH ∂ q̂+

∂y
+ DH ∂

2q̂+

∂y2
= 0. (B 7)

Equation (B 7) is the adjoint equation to (A 1). Note the adjoint equation has a similar
form to the forward equation, with the sign of first derivative terms appearing negative
due to the integration by parts. As such, equation (B 7) is integrated backwards in
space, from x0 to xf . Initial and boundary conditions for (B 7) are derived by requiring
the remaining boundary terms in (B 6) are zero for arbitrary q̃. Expanding the last term
in (B 6), and after simplification, we choose boundary conditions to match the forward
equations,

y= 0 : û+ = v̂+ = ŵ+ = 0 (B 8)
y→∞: û+ = ŵ+ = p̂+ = 0. (B 9)

Similarly, the initial conditions to the adjoint equation at xf are given by

ūû+ + p̂+ = û (B 10)
ūv̂+ = v̂ (B 11)

ūŵ+ = ŵ. (B 12)

Here, it has been assumed the term in B associated with the streamwise pressure
gradient has been neglected. The terminal conditions of (B 6) at x0 are assigned to the
initial condition of the forward equation to achieve the optimality conditions. These
arises naturally in (B 6) if it were not assumed in (B 1) that ‖û(x0)‖

2
= 1. The initial

conditions for q̂ at x0 are then given by

û= ūû+ + p̂+ (B 13)
v̂ = ūv̂+ (B 14)

ŵ= ūŵ+. (B 15)

As in Tempelmann et al. (2010), we neglect the adjoint pressure p̂+ in the
initial condition (B 10). In the upstream marching solution of (B 7), we use a
second-order forwards difference for the discretization of the streamwise derivative.
The wall-normal discretization is the same as the forward solution.
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