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Abstract. A spiraling ion beam propagating through a magnetized plasma cylinder
containing K+ light positive ions, electrons, and C7F

−
14 heavy negative ions drives

electrostatic ion–cyclotron waves to instability via cyclotron interaction. Higher
harmonics of the beam cyclotron frequency can be generated in this way. The
unstable mode frequencies and growth rates of both unstable light positive ions
and heavy negative ions increase with the relative density of heavy negative ions.
Moreover, the growth rate of unstable modes scales as the one-third power of
the beam density. The growth rate of unstable modes increases with harmonic
number. The frequencies of both unstable modes also increase with magnetic fields.
In addition, the real part of both unstable modes (K+ and C7F

−
14) increases with the

beam energy and scales as almost one-half power of the beam energy.

1. Introduction
The electrostatic ion–cyclotron (EIC) instability is a low-
frequency, field-aligned current-driven instability that
has one of the lowest threshold drift velocities among
current-driven instabilities. These waves are observed
in a wide variety of situations, ranging from laborat-
ory experiments (D’Angelo and Motley 1962; Motley
and D’Angelo 1963) to space plasmas (D’Angelo 1973;
Bergman 1984). The first experimental observations of
EIC oscillations in laboratory plasmas were reported by
D’Angelo and Motely (1962). The observed oscillations
were identified as the current-driven EIC instability,
which had been theoretically predicted by Drummond
and Rosenbluth (1962). Ishizuka et al. (1974) observed
the excitation of ion–cyclotron waves due to ion beam.
The experiment was performed in pulsed helium plasma,
in which a high-energy ion beam of several kiloelectron
volts energy was injected. Michelson et al. (1976) ob-
served ion–cyclotron waves in a quiescent plasma in
which a low-energy beam of sodium ions was injected.
A complete description of experimental results of elec-
trostatic plasma oscillations near the ion–cyclotron fre-
quency has been given by Motley and D’Angelo (1963).
Several subsequent measurements of EIC oscillations
and related phenomena were made under almost the
same configuration and the results were discussed on the
basis of current-driven instability (Hendel and Yamada
1974; Correl et al. 1975; Schrittwieser et al. 1984).

More recently, there has been a great deal of in-
terest in studying EIC waves in multi-component plas-
mas (D’Angelo and Merlino 1986; Song et al. 1989;

Suszcynsky et al. 1989; D’Angelo 1990; Barkan et al.
1995; Chow and Rosenberg 1995; Chow and Rosenberg

1996; Shukla and Mamun 2002; Shukla et al. 2009;

Rosenberg 2010; Sharma and Sharma 2010a, b). Sharma

et al. (2010) studied the excitation of ion–cyclotron

waves by an ion beam in two-ion-component plasma.

There have been a number of theoretical and experi-
mental studies of EIC waves in negative ion plasmas.

D’Angelo and Merlino (1986) analyzed EIC wave modes
in plasma consisting of positive and negative ions and

electrons. The EIC waves in plasma containing negative
iodine ions were observed by Sheehan (1987). Song et al.

(1989) studied EIC waves in a plasma with negative
ions in a Q machine, and the results indicate that the
frequencies of two EIC wave modes increase with the
relative density of negative ions ε (= nSF−

6
/nk+ , where

nSF−
6

is the density of sulfur hexafluoride ions and nk+ is
the density of potassium ions), while the critical electron
drift velocities for the excitation of either mode decrease
with increasing ε. Excitations of EIC waves in negative
ion plasma by a magnetic field-aligned electron drift
were also derived by Chow and Rosenberg (1996) using
kinetic theory. They showed that the critical electron
drift velocity for the excitation of both positive and
negative ion modes decreased as the relative density of
the negative ions increased. Experimental and theoretical
investigations of EIC wave excitation in plasma contain-
ing negatively charged dust particles were performed by
Barkan et al. (1995) and Chow and Rosenberg (1995)

Kim et al. (2008) studied EIC waves in a plasma with
heavy negative ions where the excitation of fundamental
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and higher harmonic light and heavy ion EIC modes
were observed.

Rosenberg and Merlino (2009) presented a kinetic
theory analysis of EIC instability in a plasma contain-
ing electrons and positive and negative ions. In this
case, they investigated for exciting the fundamental and
higher harmonic EIC waves associated with each ion
species.

In this paper we study the generation of higher har-
monics by a spiraling ion beam in a collisionless magnet-
ized plasma containing two ion species (K+ light positive
ions and C7F

−
14 heavy negative ions). The expression for

growth rate for two unstable modes (C7F
−
14 and K+)

is obtained in Sec. 2, using the first-order perturbation
technique. Results and discussions are given in Sec. 3.
Finally, the conclusions are given in Sec. 4.

2. Instability analysis
Consider a cylindrical plasma column of radius a1 (con-
taining K+ light positive ions, C7F

−
14 heavy negative ions,

and electrons) with electron, positive ion, and heavy
negative ion densities as ne0 = (1 − ε)np0, n+0 = np0,

and n−0 = εnp0, where ε (= nC7F
−
14
/nk+ , where nC7F

−
14

and
nk+ are the equilibrium densities of perfluoromethyl-
cyclohexane and potassium ions respectively), np0 is
the plasma density, Te is the temperature of electrons,
Tk+(= Te) is the temperature of positive ions, and

TC7F
−
14
(= Te) is the temperature of heavy negative ions

immersed in a uniform static magnetic field along z-
axis. A spiraling ion beam of cesium with velocity
−→vb0 ‖ bz, mass mb, density nb0 = N0δ(r−rb)

2πrb
, and radius

rb propagates through the plasma along the magnetic
field, where radius rb = vθ0

ωcb
, where ωcb is the beam

cyclotron frequency and N0 is the number of beam ions
per unit axial length.

The beam plasma system prior to the perturbation is
quasi-neutral such that −ne0 − n−0 + nb0 + n+0 ≈ 0, since
we have taken np0 � nb0. All the three species (electrons,
heavy negative ions, and light positive ions) are treated
as fluids, described by the equations of motion and
continuity.

The equilibrium is perturbed by an electrostatic per-
turbation to the potential

φ1 = φ(r)e−i(ωt−lθ−kzZ). (1)

The response of plasma electrons to the perturbation is
governed by the equation of motion, which on lineariz-
ation yields the perturbed velocity,

v⊥1 =
e

me

[
∇⊥φ × −→ω ce + iω∇⊥φ(

ω2 − ω2
ce

)
]

− Te

mene0

(
iω∇⊥ne1 + ∇⊥ne1 × −→ω ce

)(
ω2 − ω2

ce

) , (2)

vz1 = −ekzφ

meω
+

Tekzne1

meωne0
, (3)

where ωce = eBs

mec
is the electron–cyclotron frequency and

subscript 1 refers to perturbed quantities. Substituting
the perturbed velocities given by (2) and (3) in the mass
conservation equation, we obtain the perturbed electron
density as

ne1 = (1 − ε)np0
eφ

mev
2
te

, (4)

where vte[= (Te/me)
1/2] is the electron thermal velocity.

The response of positive ions is given by(
1 − C2

+k
2
z

ω2

)
n1+ +

C2
+∇2

⊥n1+(
ω2 − ω2

c+

)

= −en+0

m+

[
∇2

⊥φ1

ω2 − ωc2
+

− k2
zφ1

ω2

]
, (5)

where C+ [= (Te/m+)1/2] is the thermal velocity of
positive ions and ωc+ (= eBs/m+c), e, and m+ are the
cyclotron frequency, charge, and mass for positive ions
respectively.

In the limit ω ∼ ωc+ and ω −ωc+ > k⊥C+, (5) gives
the perturbed density for positive ions,

n1+ = −np0eC
2
+

T+

[
∇2

⊥φ1(
ω2 − ω2

c+

) − k2
zφ1

ω2

]
. (6)

For heavy negative ions, by replacing e, m+,ωC+, T+,
and C+ by −e, m−,ωC−, T−, and C− respectively in (5),
we get (

1 − C2
−k

2
z

ω2

)
n1− +

C2
−∇2

⊥n1−

(ω2 − ω2
c−)

=
e n−0

m−

[
∇2

⊥φ1

ω2 − ωc2
−

− k2
zφ1

ω2

]
. (7)

In the limit ω ∼ ωc− and ω − ωc− > k⊥c− (|k⊥ρh| <

1), ρh(= C−/ωc−) is the heavy ion larmor radius, i.e., if
heavy ion larmor radius is less than the perpendicular
wavelength of the mode, then (7) gives the perturbed
density for heavy negative ions (in the limit of strongly
magnetized plasma),

n1− =
np0e ∈ C2

−
Te

[
∇2

⊥φ1

ω2 − ω2
c−

− k2
zφ1

ω2

]
, (8)

where C−[= (Te/m−)1/2] is the thermal velocity of heavy
negative ions and ωc−(= e Bs/m−c) is the cyclotron
frequency of heavy negative ions. By following Sharma
and Tripathi (1993), the perturbed ion beam density can
be written as

nb1 =
N0δ(r − rb)

(ω1 − lωcb)2
e

mb

(
l2

r2
+ K2

z

)
φ1

2πrb
, (9)

where ω1 = ω − kzvb0.
Using (4), (6), (8), and (9) in Poisson’s equation ∇2φ1 =

4πe (−n1+ − n1b + ne1 + n1−), we obtain a second-order
differential equation in φ1, which can be rewritten for

https://doi.org/10.1017/S002237781300007X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781300007X


Higher harmonics generation by a spiraling ion beam 579

axially symmetric case as

∂2φ1

∂r2
+

1

r

∂φ1

∂r
+

(
p2 − l2

r2

)
φ1

= −
2N0e

2

(
l2

r2
+ K2

z

)
φ1δ(r − rb)

mb(ω1 − lωcb)2rbL
, (10)

where

p2 =

ω2
plk

2
z

ω2
+

ω2
phk

2
z

ω2
−

ω2
pe

v2
te

− k2
z

1 −
ω2

pl

ω2 − ω2
c+

−
ω2

ph

ω2 − ω2
c−

, (11)

L= 1 −
ω2

pl

ω2 − ω2
c+

−
ω2

ph

ω2 − ω2
c−

,

ω2
pe =

4π ne0e
2

me

, ω2
ph =

4π εnp0e
2

m−
,

and ω2
pl =

4π np0e
2

m+
.

In the absence of the beam, when the right-hand
side (RHS) is zero, the solution of (10) is given by
φ1 = AJl(pn r), p1 = pn. At r = a1, φ1 must vanish, hence
Jl(pna1) = 0, i.e., pn = xn

a1
(n = 1, 2, . . .), xn are the

zeros of the Bessel function Jl(x). In the presence of the
beam, the solution wave function φ1 can be expressed
in a series of orthogonal sets of wave functions:

φ1 =
∑

m
AmJl(pmr). (12)

Now substituting the value of φ1 from (12) in (10), we
multiply both sides of (10) by rJl(pnr) and integrating
over r from 0 to a1 (where a1 is the plasma radius), we
get

p2 − p2
n = −

Ω2
pb

(
l2

r2b
+ k2

z

)
J2
l (pnrb)

L (ω1 − lωcb)2J
2
l+1(pna1)

. (13)

Substituting the value of p2 from (11) into (13), we
obtain

1 −
ω2

plk
2
z

p2
nαω

2
−

ω2
ph

ω2

k2
z

p2
nα

−
ω2

pl(
ω2 − ω2

c+

)
α

−
ω2

ph(
ω2 − ω2

c−
)
α

= −
Ω2

pb

(
l2

r2b
+ k2

z

)
J2
l (pnrb)

p2
nα(ω1 − lωcb)2J

2
l+1(pna1)

, (14)

where Ω2
pb = 4N0e

2

mba
2
1
,

α =
p2
n + k2

z

p2
n

+
ω2

pe

v2
tep

2
n

= 1 +
ω2

pi

C2
s p

2
n

∼=
ω2

pi

C2
s p

2
n

andC2
s =

Te

mi

.

2.1. Beam plasma interaction with light positive (K+)
ions

In the absence of heavy negative ions (i.e., in the limit
ω ∼ ωc+, and light ion Larmor radius is less than the

perpendicular wavelength of the mode), (14) can be
rewritten as:

1 −
ω2

plk
2
z

p2
nαω

2
−

ω2
pl(

ω2 − ω2
c+

)
α

= −
Ω2

pb

(
l2

r2b
+ k2

z

)
J2
l (pnrb)

p2
nα(ω1 − lωcb)2J

2
l+1(pna1)

.

(15)

Equation (15) can be rewritten as(
ω2 − c2

1

) (
ω2 − c2

2

)
(ω − kzvb0 − lωcb)

2

=

ω2
(
ω2 − ω2

c+

)
Ω2

pb

(
l2

r2b
+ k2

z

)
J2
l (pnrb)

p2
nαJ

2
l+1(pna1)

, (16)

where

ω2 = c2
1 = ω2

c+ +
(
k2
z + p2

n

)
C2
s

1

(1 − ε)
, (17)

ω2 = c2
2 =

ω2
c+

1

1 − ε
k2
zC

2
S

ω2
c+ +

1

1 − ε
k2C2

S

, (18)

and k2 = p2
n + k2

z , p
2
n > k2

z . Here ω ∼= c1, ω ∼= kzvb0 +
lωcb corresponding to the dispersion relation of the EIC
wave and the beam mode respectively. In (18) if we
take ε = 0, then we can recover the dispersion relation
of Sharma and Tripathi (1993). When nb0 � 0, we can
expand it as

ω = c1 + δ1 = kzvbo + lωcb + δ1,

where δ1 is the modification in ω due to the finite RHS
of (16).

Thus, (16) gives the growth rate of the unstable (light
positive ion) mode,

γ = Im δ1

=

√
3

2

⎡
⎢⎢⎢⎢⎣

c1

(
c2
1 − ω2

c+

)
Ω2

pb

(
l2

r2b
+ k2

z

)
J2
l (pnrb)

2
(
c2
1 − c2

2

)
p2
n

[
p2
n + k2

z

p2
n

+
ω2

pi

C2
s p

2
n

]
J2
l+1(pna1)

⎤
⎥⎥⎥⎥⎦

1/3

.

(19)

The real part of the frequency of the unstable mode for
light positive ions in terms of beam energy is given as

ωr = kz(2eVb/m)1/2

−1

2

⎡
⎢⎢⎢⎢⎣

c1

(
c2
1 − ω2

c+

)
Ω2

pb

(
l2

r2b
+ k2

z

)
J2
l (pnrb)

2
(
c2
1 − c2

2

)
p2
n

[
p2
n + k2

z

p2
n

+
ω2

pi

C2
s p

2
n

]
J2
l+1(pna1)

⎤
⎥⎥⎥⎥⎦

1/3

.

(20)
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Figure 1. Dispersion curves of EIC waves with light positive ions and a beam mode for different values of ε. The parameters are
given in the text.

2.2. Beam plasma interaction with heavy negative (C7F
−
14)

ions

In the absence of positive ions (i.e., in the limit ω ∼
ωc−, and heavy ion Larmor radius is less than the
perpendicular wavelength of the mode), (14) can be
rewritten as

1 −
ω2

phk
2
z

p2
nαω

2
−

ω2
ph(

ω2 − ω2
c−

)
α

= −
Ω2

pb

(
l2

r2b
+ k2

z

)
J2
l (pnrb)

p2
nα(ω1 − lωcb)2J

2
l+1(pna1)

.

(21)

Equation (21) can be rewritten as(
ω2 − d2

1

) (
ω2 − d2

2

)
(ω − kzvb0 − lωcb)

2

=

ω2
(
ω2 − ω2

c−
)
Ω2

pb

(
l2

r2b
+ k2

z

)
J2
l (pnrb)

p2
nαJ

2
l+1(pna1)

, (22)

where

d2
1 = ω2

c− +
ε

(1 − ε)

(
k2
z + p2

n

)
C2
s

mi

m−
and (23)

d2
2 =

ω2
c−

ε

1 − ε
k2
zC

2
S

mi

m−

ω2
c− +

ε

1 − ε

mi

m−
k2C2

S

. (24)

If we assume n−0 = np0, then in (23) and (24) the
parameter ε/1 − ε is replaced by 1/1 − ε. In the absence
of negative ions, i.e., ε = 0 and for equal masses of ions,
i.e., positive ion mass = negative ion mass, from (23)
and (24), we can recover the dispersion relation of ion
cyclotron waves of Sharma and Tripathi (1993).

By following the earlier method, (22) gives the growth
rate of the unstable (heavy negative ion) mode,

γ =

√
3

2

⎡
⎢⎢⎢⎢⎣

d1

(
d2

1 − ω2
c−

)
Ω2

pb

(
l2

r2b
+ k2

z

)
J2
l (pnrb)

2
(
d2

1 − d2
2

)
p2
n

[
p2
n + k2

z

p2
n

+
ω2

pi

C2
s p

2
n

]
J2
l+1(pna1)

⎤
⎥⎥⎥⎥⎦

1/3

.

(25)

The real part of the frequency of the unstable heavy
negative ion mode in terms of beam energy is given as

ωr = kz(2eVb/m)1/2

−1

2

⎡
⎢⎢⎢⎢⎣

d1

(
d2

1 − ω2
c+

)
Ω2

pb

(
l2

r2b
+ k2

z

)
J2
l (pnrb)

2
(
d2

1 − d2
2

)
p2
n

[
p2
n + k2

z

p2
n

+
ω2

pi

C2
s p

2
n

]
J2
l+1(pna1)

⎤
⎥⎥⎥⎥⎦

1/3

.(26)

3. Results and discussions
We have used typical negative ion plasma parameters
in our calculations. In Figs. 1 and 2, we have plotted
the dispersion curves of an ion–cyclotron wave for the
following parameters: electron plasma density ne0 =
109cm−3, electron and ion temperatures are assumed to
be Te = Ti = 0.2 eV, plasma radius a1 = 2 cm, magnetic
field Bs = 0.5 kg, the relative density of heavy negative
ions, i.e., ε (= nC7F

−
14
/nK+ , where nC7F

−
14

and nK+ are the
equilibrium densities of perfluoromethylcyclohexane and
potassium ions respectively) 0–0.98. We have also plotted
the beam mode for the beam energy Eb = 10 eV (cf.
Figs. 1 and 2). The frequencies and the corresponding
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Figure 2. Dispersion curves of EIC waves with heavy negative ions and a beam mode for different values of ε. The parameters

are given in the text.

Figure 3. Normalized growth rates of light positive ion mode as a function of the azimuthal mode  for ε = 0.5 for the same
parameters as in Fig. 1 and for beam density nbo = 4 × 106 cm−3 and beam radius rb = 1.5 cm.

wave numbers of the unstable wave are obtained by
the point of intersections between the beam mode and
plasma mode, and are given in Tables 1 and 2. It can be
seen from Figs. 1 and 2 that the positive ion mode is a
higher frequency mode and the heavy negative ion mode
is a lower frequency mode. It can also be seen that as the
negative ion density increases, the unstable frequencies
of both the modes also increases (cf. Figs. 1 and 2).

Using (19) and (25), we plotted in Figs. 3 and 4 the
normalized growth rate γ of the two unstable modes
versus the azimuthal mode number  for the same
parameters as used for plotting Figs. 1 and 2 and
for beam density nb0 = 4 × 106cm−3 and beam radius
rb = 1.5 cm. From Figs. 3 and 4, it can be seen

Table 1. From Fig. 1 (ion beam + plasma with light positive
ions) we obtain the values of unstable wave frequencies ω
(rad/s) and axial wave numbers kz (cm−1) for different values
of ε = 0, 0.3, 0.5, 0.7, 0.9, and 0.98 and  = 1.

ε kz(cm
−1) ω (rad/s)

0 0.0150 7.509 × 105

0.3 0.0200 7.550 × 105

0.5 0.0332 7.633 × 105

0.7 0.0547 7.776 × 105

0.9 0.1571 8.496 × 105

0.98 0.6525 1.192 × 106

that the growth rates of both unstable modes increase
with the azimuthal mode number . The growth rate
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Figure 4. Normalized growth rates of the heavy negative ion mode as a function of the azimuthal mode  for ε = 0.5 for the
same parameters as in Fig. 2 and for beam density nbo = 4 × 106 cm−3 and beam radius rb = 1.5 cm.

Figure 5. Frequency f (= ωr/2π in Hz) of the unstable mode for light positive ions as a function of magnetic field Bs (in gauss)
for different values of relative density of heavy negative ions ε.

Table 2. From Fig. 2 (ion beam + plasma with heavy negative
ions) we obtain the values of unstable wave frequencies ω
(rad/s) and axial wave numbers kz (cm−1) for ε = 0, 0.3, 0.5,
0.7, 0.9, and 0.98 and  = 1.

ε kz(cm
−1) ω (rad/s)

0 0.02140 8.376 × 104

0.3 0.03097 8.914 × 104

0.5 0.03896 9.633 × 104

0.7 0.05814 1.088 × 105

0.9 0.12687 1.573 × 105

0.98 0.36498 3.224 × 105

increases up to  = 6 and becomes maximum at  =
7. These results of growth rates are consistent with the
theoretical predictions of Sharma and Tripathi (1993).

If we compare Figs. 3 and 4 with Fig. 1 of Sharma
and Tripathi (1993), the trend of our plots seems to be
consistent with theoretical predictions.

The growth rates of both unstable modes in presence
of K+ and C7F

−
14 ions increase with beam density and

scales as the one-third power of the beam density (cf.
(19) and (25)). It can be seen from Figs. 5 and 6 that
the frequency of both unstable modes increases with
increasing magnetic fields and this increase in frequency
is linear. We have also plotted frequency versus relative
density of negative ions ε of both unstable modes and
found that the frequency f (in Hz) increases with ε

for different values of magnetic fields Bs (in Tesla). It
can also be seen from Figs. 7 and 8 that for ε � 0.6,
the increase in frequency is not so significant but as
the relative density of negative ions increases further,
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Figure 6. Frequency f (= ωr/2π in Hz) of the unstable mode for heavy negative ions as a function of the magnetic field Bs (in
gauss) for different values of relative density of heavy negative ions ε.

Figure 7. Frequency f (= ωr/2π in Hz) of the unstable light positive ion mode as a function of ε for different values of
magnetic field strength Bs (in Tesla).

i.e., for ε � 0.6, unstable frequencies of both unstable
modes increase and become maximum at 0.98 (cf. Figs.
7 and 8). The real part of frequency of unstable modes
increases with beam energy and scales as almost the one-
half power of the beam energy (cf. (20) and (26)). At
ω ≈ ωci, the ion–cyclotron mode is strongly cyclotron
damped on plasma ions and hence cannot be driven.
For ω − ωci�kzvti, collisionless cyclotron damping is
weak and the growth rate scales as the cube root of
the beam current. In the present case, we have chosen
the parameters in such a way that the collisionless
damping does not play any significant role. Moreover,
we have shown that by increasing the relative density of
heavy negative ions, the growth rate of unstable mode
increases. This result is in line of Song et al. (1989),
where it was shown that the critical electron drift for

the excitation of either mode (positive or negative ion)
decreases as the density of negative ions increases.

In the present calculations plasma radius a1 = 2 cm
and spiraling ion beam radius rb = 1.5 cm. For the
parameters mentioned in the manuscript, beam radius
� the gyroradius of ion beam ρL or ρh (= c+

ωc+
or c−

ωc−
).

Hence the ion beam will spiral in a device.

4. Conclusion
In conclusion, we may say that a spiraling ion beam
propagating through a magnetized plasma cylinder drives
ion–cyclotron waves to instability when ion beam pos-
sesses a large perpendicular energy. The presence of
heavy negative ions in plasma has a significant effect on
the excitation of light positive ion and heavy negative ion

https://doi.org/10.1017/S002237781300007X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781300007X


584 J. Sharma et al.

Figure 8. Frequency f (= ωr/2π in Hz) of the unstable heavy negative ion mode as a function of ε for different values of
magnetic field strength Bs (in Tesla).

EIC wave modes. The frequency of both unstable modes
is less than the ion–cyclotron frequency, and it increases
with the azimuthal mode numbers slightly more rapidly
than linear. The growth rates and mode frequencies are
evaluated for typical negative ion plasma parameters,
and it is found that the unstable mode frequencies
increase with the relative density of negative ions. The
growth rate of unstable modes has the largest value for
the modes whose eigen functions peak at the location
of the beam.

Our theoretical predictions, e.g., mode frequencies
versus relative density of light positive and heavy neg-
ative ions, mode frequencies versus magnetic fields for
different relative densities of light positive and heavy
negative ions, and mode frequencies versus relative dens-
ity of light positive and heavy negative ions for different
values of magnetic fields are in line with the experimental
observations (cf. Song et al. 1989; Kim et al. 2008)
and theoretical results (cf. D’Angelo and Merlino 1986;
Chow and Rosenberg 1996). In addition, our theoretical
predictions of higher harmonic generation results are
also in line with the experimental observations of Kim
et al. (2008) and theoretical predictions of Kim et al.
(2008) and Rosenberg and Merlino (2009). However,
we cannot compare our theoretical results with the
experiments that do not have spiraling ion beams.

Our theoretical model is useful in predicting the excit-
ation of higher harmonic EIC wave modes by a spiraling
ion beam and the dependence of mode frequencies on
the relative density of negative ions. Negative ions have
been found in ionospheres of Mercury, Earth’s Moon,
and Jupiter’s Moon as well as in stellar atmospheres,
so this model may find applications in such situations
(Horwitz 1982; Coates et al. 2007). Ion–cyclotron waves
are extremely useful in plasma heating devices. In this
case, the electrons move with velocity close to the phase

velocity of the wave, resonantly absorbing energy from
the wave via Cerenkov interaction.
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