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Stirring and sedimentation of solid inertial particles in low-Reynolds-number flows
has acquired great relevance in multiple environmental, industrial and microfluidic
systems, but few detailed numerical studies have focused on chaotically advected
experimentally realizable flows. We carry out one-way coupling simulations to study
the dynamics of inertial particles in the steady three-dimensional flow in a cylindrical
container with exactly counter-rotating lids, which was recently studied by Lackey &
Sotiropoulos (Phys. Fluids , vol. 18, 2006, paper no. 053601). We elucidate the rich
Lagrangian dynamics of the flow in the vicinity of toroidal invariant regions and show
that depending on the Stokes number inertial particles could get trapped for long times
in different equilibrium positions inside integrable islands. In the chaotically advected
region of the flow the balance between inertia and gravity forces (represented by the
settling velocity) can produce a striking fractal sedimentation regime, characterized
by a sequence of discrete deposition events of seemingly random number of particles
separated by hiatuses of random duration. The resulting staircase-like distribution of
the time series of the number of particles in suspension is shown to be a devil’s staircase
whose fractal dimension is equal to the 0.87 value found in multiple dissipative
dynamical systems in nature. Our work sheds new light on the complex mechanisms
governing the stirring and deposition of inertial particles and provides new information
about the parameters that are relevant in the characterization of particle dynamics in
different regions of chaotically advected flows.
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1. Introduction
Transport and stirring processes in chaotically advected flows (Aref 1984) have

been and continue to be the subject of intense research due to their profound role
in determining scalar mixing in several engineering and geophysical flows. Recent
experimental and computational studies have focused on two- and three-dimensional
experimentally realizable flows, yielding new insights into the mechanisms via which
flows that are simple from the Eulerian standpoint give rise to chaotic Lagrangian
transport and efficient stirring of passive particles (e.g. King et al. 2001; Sotiropoulos,
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Ventikos & Lackey 2001; Sotiropoulos, Webster & Lackey 2002; Solomon & Mezić
2003; Wiggins & Ottino 2004; Lackey & Sotiropoulos 2006). In sharp contrast
to the rapidly expanding body of literature dedicated to understanding passive
particle dynamics, however, studies with inertial particles in experimentally realizable,
chaotically advected flows are rather limited. Yet chaotic advection could play a major
role in determining transport and mixing phenomena in a wide range of particle-laden
flows in engineering and environmental applications – the separation of particles in
dynamic filtration (Wereley, Akonur & Lueptow 2002) and chemical and biological
processes in particulate microfluidic systems (Squires & Quake 2005) being just two
such examples. Even in geophysical flows dominated by large-scale coherent vortices,
chaotic Lagrangian dynamics have been shown to be the primary mechanism for scalar
transport and stirring (Ridderinkhof & Zimmerman 1992). It is, thus, reasonable to
argue that understanding the Lagrangian dynamics of inertial particles in chaotically
advected flows could also contribute to understanding important geophysical problems
such as sedimentation processes in natural aquatic environments.

Early studies of inertial particle dynamics focused on idealized two- and three-
dimensional analytical flows. Stommel (1949) was the first to study the motion of
spherical particles in cellular flows, demonstrating that particles with no inertia in a
gravitational field can remain indefinitely suspended depending on the ratio between
the fall velocity of the particle and the characteristic velocity of the flow. Maxey
(1987) used the same analytical flow to establish that under the influence of gravity
all inertial particles heavier than the fluid settle eventually, and their downward
trajectories merge in a few selected paths. McLaughlin (1988) computed trajectories
of inertial particles in three-dimensional Arnold–Beltrami–Childress (ABC) flows and
showed that chaotic advection can be diminished by inertia. He also showed that heavy
particles in a gravitational field can remain permanently suspended if they are trapped
in periodic orbits in the flow (McLaughlin 1988). Wang, Burton & Stock (1990, 1991)
and Wang et al. (1992) carried out a complete analysis of inertial particle trajectories
in unsteady two-dimensional and ABC flows and estimated the fractal dimension of
the phase-space attractor from the Lyapunov exponents of the system, relating their
values to some measures of dispersion, such as Taylor’s stochastic theory of turbulent
diffusion. More recently, Tsega, Michaelides & Eschenazi (2001) studied inertial
particles in Hamiltonian two-dimensional unsteady flows using the stream function
of Kelvin’s cat-eye vortices. They observed chaotic dynamics only for heavy particles
with large values of the Stokes number, which is defined as the ratio between the
particle response time and the characteristic time scale of the flow (Tsega et al. 2001).

Studies of experimentally realizable flows have focused on filtration for dilute
suspensions in Taylor–Couette flows between rotating cylinders. Rudman (1998)
performed a preliminary analysis of inertial particle stirring in the wavy Taylor–
Couette flow. Using the ratio between the velocity scale of the flow and the fall
velocity of the particle as a parameter, Rudman (1998) computed how axial dispersion
is affected by inertia for slower settling particles and determined that inertial effects
produce significant increases in particle dispersion. Wereley & Lueptow (1999) studied
the mechanisms that produce particle segregation in rotating filters. Employing an
analytical expression for the Taylor vortices and imposing a radial flow, they computed
inertial particle trajectories that were very different from the trajectories of fluid
particles with the same initial conditions. Wereley & Lueptow (1999) further showed
that trajectories of inertial particles approached limit cycles inside the Taylor vortices,
trapping them inside toroidal regions for long times, which could explain the efficiency
of these filters. A similar experimental analysis of filtration mechanisms by Wereley
et al. (2002) showed that a combination of the effect of the velocity gradient at the
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inner wall with the particle entrainment at the Taylor vortices moves particles away
from the filter membrane located at the inner cylinder. These same phenomena were
observed in microfluidic devices with dielectric fields (Tuval et al. 2005). In these
cases, forces induced by electrical fields are used to manipulate the particle dynamics
and control their position, producing trapping zones that can separate solid particles
in biological suspensions.

In this work we seek to further the understanding of the Lagrangian dynamics of
inertial particles in an experimentally realizable steady three-dimensional chaotically
advected flow, emphasizing both transport and sedimentation processes. We consider
the steady, three-dimensional flow in a closed cylindrical container with exactly
counter-rotating lids. The stability of this flow to three-dimensional perturbations has
been previously studied by Nore et al. (2003, 2004) who showed that there is a range
of Reynolds numbers within which the flow becomes three-dimensional but remains
steady. The onset of three-dimensionality is the result of a Kelvin–Helmholtz-type
instability of the azimuthal shear layer that gives rise to the growth of radial vortices.
The fact that the flow in this axisymmetric geometry with simple boundary conditions
transitions to a complex, three-dimensional state but remains steady over a reasonably
broad range of Reynolds numbers makes it an excellent test case for investigating
chaotic advection in a steady experimentally realizable flow. Lackey & Sotiropoulos
(2006) studied numerically the dynamics of passive Lagrangian tracers in this flow
for Reynolds numbers in the three-dimensional, steady regime. They showed that the
rate at which passive tracers are stirred by the chaotically advected flow is not a
monotonic function of the Reynolds number. Rather an optimal Reynolds number
exists at which the stirring rate is maximized. For higher Reynolds number the stirring
rate was shown to decrease at a rate consistent with the theory developed by Mezić
(2001). In this paper we report a systematic, one-way coupling numerical investigation
of transport, stirring and sedimentation processes of small inertial particles in a flow
in the container with exactly counter-rotating lids, using the steady, three-dimensional
velocity fields obtained numerically by Lackey & Sotiropoulos (2006). We seek to
explore questions regarding the persistence of unmixed islands and chaotic regions
in the flow and identify sedimentation mechanisms as various governing parameters,
such as the particle Stokes number and settling velocity, are varied systematically.
The range of parameters is selected to perform simulations in realistic particle flows,
such that the model can be also used to design experiments and study general stirring
problems of inertial particles in chaotic advection. Our results yield novel insights into
the complex relationship between the various forces and the particle dynamics and
show that there is a range of governing particle parameters within which a striking
fractal sedimentation regime emerges.

The paper is organized as follows. A brief description of the flow used as the test
bed in this paper and a summary of previous work on this flow are provided in § 2.
The governing equations of the particle model are explained in § 3. In § 4 we show
the main characteristics of the particle dynamics in invariant regions and the effects
of inertia on the trapping inside the tori that exist for all the Reynolds numbers
studied. In § 5 we explore the mixing region, focusing on deposition and activation of
a fractal sedimentation regime represented by the devil’s staircase. The conclusions
in § 6 contain the implications of this study and summarize future ideas for research.

2. Flow in a container with exactly counter-rotating lids
We consider laminar flow of incompressible Newtonian fluid of kinematic viscosity

ν, in a closed cylinder of height H and radius R (see figure 1 for a schematic of the
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Figure 1. Schematic topology of the flow in a container with exactly counter-rotating lids
showing the invariant toroidal regions. The arrows mark the direction of the flow at the central
plane of the container that rotates in opposite directions and generates a shear layer. The
acceleration of gravity is parallel to the cylinder axis.

flow and definitions). The flow is driven by the top and bottom lids, which rotate in
opposite directions at the same constant angular velocity Ω , and is governed by two
non-dimensional parameters: the Reynolds number based on the cylinder radius,

Re =
ΩR2

ν
, (2.1)

and the aspect ratio of the container,

AR = H/R. (2.2)

As in Lackey & Sotiropoulos (2006) we consider the case AR = 1 for which numerical
simulations have shown that the flow remains steady and axisymmetric for Re < 300.
At higher Reynolds numbers the flow becomes three-dimensional but remains
steady over a relatively wide range of Reynolds numbers – Lackey & Sotiropoulos
(2006) reported steady three-dimensional solutions for Reynolds numbers as high
as Re = 850. The onset of three-dimensionality in the flow is characterized by the
growth of the m =3 azimuthal mode in the form of radial cat-eye vortices at the
equatorial plane. The instability is essentially the radial equivalent of the Kelvin–
Helmholtz instability in linear shear layers and gives rise to a very complex steady
three-dimensional flow consisting of radial and axial inclined vortices. The calculated
flow fields of Lackey & Sotiropoulos (2006) were shown to be in good agreement
with previous stability analyses for this flow by Nore et al. (2003, 2004) and were
employed to study the chaotic dynamics of Lagrangian transport of passive tracers
over the entire range of simulated Reynolds numbers, 300 < Re < 850. A major new
finding reported in Lackey & Sotiropoulos (2006) is that the stirring rate in this flow
is not a monotonic function of the Reynolds number. The stirring rate was shown to
initially increase for 300 < Re < 500 but to attain a maximum at Re ≈ 500. Further
increase in the Reynolds number was shown to cause the stirring rate to decrease
monotonically at a rate proportional to Re−1/2. The decline in stirring efficiency was
shown to be due to the growth with the Reynolds number of the regions in the flow
occupied by unmixed islands. This striking finding is explained by and appears to
support a recently proposed theory of chaotic advection (Mezić 2001). According
to the theory, in steady confined three-dimensional chaotically advected flows the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

15
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991534


Trapping and sedimentation of inertial particles 173

mixing rate should eventually decrease with increasing Reynolds number at a rate
proportional to the thickness of the near-wall boundary layer (∼Re−1/2).

In what follows, we employ the numerically simulated flow fields obtained by
Lackey & Sotiropoulos (2006) to carry out such an investigation. All velocity
fields analysed in this paper have been obtained on a polar cylindrical grid with
81 × 211 × 161 nodes in the radial, axial and azimuthal directions, respectively. This
grid was shown by Lackey & Sotiropoulos (2006) to be adequate for obtaining grid-
independent solutions. The reader is referred to the paper of Lackey & Sotiropoulos
(2006) for more details on the numerical method and other computational details.

3. Computational model of inertial particles
3.1. Particle equations and governing parameters

We simulate the motion of inertial particles in the steady flow fields, assuming one-
way coupling; that is the concentration of particles is sufficiently small not to affect
the flow of the carrier fluid. The governing equations are the particle trajectory and
momentum equations, which read in tensor form as follows (i = 1, 2, 3):

dxi

dt
= vi, (3.1)

m
dvi

dt
= fi. (3.2)

In the above equations, vi and xi are the ith component of the particle velocity
and position vectors, respectively; m is the particle mass; and fi represents the ith
component of the total force acting on the particle.

In the most general case, the total force contains contributions from drag,
gravity, lift, added mass and pressure and viscous forces. Calculating these forces
using analytical expressions obtained for spherical non-rotating particles, a general
momentum equation can be written as follows (Crowe, Troutt & Chung 1998):

m
dv

dt
=

1

2
ρCD

πd̃2

4
|vr | vr +

(
1 − ρ

ρs

)
mg + ρCL

πd̃3

6
(vr × ω)

+ ρCm

πd̃3

6

(
Du
Dt

− dv

dt

)
+ ρ

πd̃3

6
(−∇p + μ∇2u), (3.3)

where u and v are the fluid and particle velocity vectors, respectively; vr = (u − v) is
the relative velocity; ρ is the density of the fluid; and ρs is the density of the particles.
The first term on the right-hand side of (3.3) is the drag force. The drag coefficient
CD is a function of the particle Reynolds number, which for particles of diameter d̃

is defined as follows:

Rer =
|vr | d̃

ν
. (3.4)

Extensive numerical tests, in which we compared the values of CD and particle
trajectories with the same initial conditions for different expressions of the drag
coefficient (Crowe et al. 1998), showed that Stokes drag is a good approximation for
determining CD . Therefore, the drag coefficient in (3.3) is computed as follows (Crowe
et al. 1998):

CD =
24

Rer

. (3.5)
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Figure 2. (a) Magnitude of particle forces during a simulation; lift FL and added mass with
pressure and viscous stresses FA are at least one order of magnitude smaller than drag FD

and gravity FG. (b) Settling or terminal velocity vs , as a function of non-dimensional particle
diameter for two different Froude numbers.

The second force term on the right-hand side of (3.3) is the gravitational force. The
acceleration of gravity is assumed to act vertically downward along the negative x3

axis, such that gi = −g δi3, where g is the gravitational constant and δij is Kronecker’s
delta.

The remaining forces in (3.3) correspond to the lift force, added mass and fluid
stresses. The lift mechanism considers the velocity gradient around a particle moving
in a non-uniform rotational flow. The lift coefficient CL has been considered constant
for inviscid flows (Auton, Hunt & Prud’homme 1988) or expressed as a function
of the vorticity magnitude and the particle Reynolds number in the Stokes regime
(Saffman 1965). The added mass coefficient is in general considered constant, equal
to the inviscid approximation, Cm = 0.5 (Crowe et al. 1998). The last two terms in
(3.3) are forces induced by flow stresses and can be calculated by interpolating the
flow field variables at the current particle position.

Including all these forces in the particle momentum equation (3.2) is neither efficient
nor necessary, as the relative magnitude of some of them is essentially negligible
compared to others. To explore the relative magnitude of the various forces in the
present flow we carried out systematic numerical experiments in order to identify
which of the forces make a significant contribution to the particle momentum budget.
Our numerical experiments showed that the lift and added mass forces and the
forces due to flow-induced stresses are smaller by at least one order of magnitude
compared to the drag force, as shown in figure 2(a). Based on these numerical findings
and for the sake of computational expedience we simplified the particle momentum
equation (3.3) by retaining on its right-hand side only the drag and gravity forces.
After non-dimensionalizing, respectively using R and ΩR as the length and velocity
scales, the final form of the particle momentum equation we use in all our subsequent
simulations reads as follows:

dvi

dt
=

1

SG

(
1

St
vri − δi3

Fr2

)
, (3.6)

where vi is now the non-dimensional particle velocity and vri represents the non-
dimensional relative particle velocity, defined as the difference between the local flow
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and particle velocities, vri = ui − vi . The three dimensionless parameters in the above
equations are defined as follows: SG is the ratio of the particle density to the fluid
density, i.e. the particle specific gravity SG = ρs/ρ. In our simulations, SG is set to
be constant and equal to the common value associated with sand grains in water
(SG = 2.65).

The Froude number Fr is the ratio of inertia and modified gravity and is defined
as

Fr =
ΩR√

(SG − 1)gR
. (3.7)

Finally the Stokes number St is defined as the ratio of the particle relaxation time
to the characteristic time scale of the flow in the container and serves to identify the
dynamical relation between the two phases. Since the drag is the dominant force, the
Stokes number is defined as

St =
4

3

d

CD |vr |
=

d2

18
Re. (3.8)

where d = d̃/R corresponds to the non-dimensionalized particle diameter. The Stokes
number quantifies the influence of the flow on the particles (Crowe et al. 1998). For
the computations performed in this study St � 1, and thus particles have enough time
to respond to changes in flow velocity along their trajectories.

The expression given by (3.8) shows that for a given Reynolds number the Stokes
number depends only on the non-dimensional particle diameter. Thus, for each Re

the magnitude of the inertial term on the right-hand side of (3.6), i.e. the expression
for the drag force that depends solely on St , is set by choosing a non-dimensional
particle diameter. The magnitude of the gravitational term, on the other hand, is
established by selecting the Froude number. This approach can be thought of as
implicitly modifying either the relation between Ω and R or the fluid viscosity.

A perfectly elastic collision scheme is also implemented in the model to account
for the interaction with the boundaries. The model, however, does not consider inter-
particle collisions or the influence of the inertial particles on the flow. Upon impact,
only the normal component of the particle velocity with respect to the boundary is
modified according to the following relation:

vn̂ = −vn̂, (3.9)

where vn̂ is the projection of the particle velocity on to the direction normal to the
solid surface, i.e. vn̂ = vi n̂i . Further details of the particle model can be found in
Escauriaza (2008).

A relevant parameter to classify the particle dynamics and quantify the results of
the simulations is the magnitude of the particle settling or terminal velocity vs , which
can be obtained by combining St and Fr into a single parameter as follows (Rudman
1998; Dávila & Hunt 2001):

vs =
St

Fr2
. (3.10)

This is the same parameter derived by Maxey (1987) and Rudman (1998) in the
simulations of inertial particle dynamics and one of the dimensionless quantities
utilized recently by Dávila & Hunt (2001) in the study of small particle trajectories
near vortices. Figure 2(b) shows the relation between vs and the particle diameter
for Fr2 = 0.01 and 0.001 and various Reynolds numbers. Using the expressions in
(3.7), (3.8) and (3.10), we observe that smaller Fr2 or larger diameter results in
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higher gravitational forces and higher settling velocities. The subsequently reported
simulations were performed for different combinations of d and Fr2, resulting in a
broad range of settling velocities 1 × 10−6 � vs � 0.1. The flow fields we employ were
obtained for Re = 350, 500, 700 and 850 (Lackey & Sotiropoulos 2006).

3.2. Numerical integration details

The first step in the numerical integration of the particle momentum equation (3.6)
is to calculate the terms on its right-hand side at the current particle location. This
is accomplished by interpolating the flow variables from the surrounding Eulerian
grid nodes to the particle’s position using the second-order tri-linear interpolation
procedure explained in Sotiropoulos et al. (2001). Following this step, the momentum
and trajectory equations, (3.6) and (3.1), are advanced in time using a fourth-order
Runge–Kutta scheme (as in Sotiropoulos et al. 2001), employing a non-dimensional
time step of 10−5 of a lid rotation.

The particle tracking and numerical solution methods were validated using the
numerical simulations performed by McLaughlin (1988) in ABC flows as benchmark.
The analytical ABC solution was assigned to a three-dimensional grid with 106

nodes, and the trajectory and momentum of inertial particles were computed by
interpolating the flow variables to the location of the particles, instead of obtaining
these quantities directly from the analytical ABC velocity equations. The results
reproduced all the trajectories of inertial particles simulated by McLaughlin (1988)
with excellent accuracy, including the capturing of heavy particles in periodic orbits.
The details of the numerical method along with the results of the validation study
can be found in Escauriaza (2008).

4. Particle trapping in invariant regions
Lackey & Sotiropoulos (2006) showed that for the entire range of simulated

Reynolds numbers for which the flow is three-dimensional (Re > 300), the dynamics
of passive particle transport is very rich and is characterized by topologically complex,
toroidal invariant regions embedded in the chaotic sea that occupies most of the
container (see figure 14 in Lackey & Sotiropoulos 2006). In this section we seek to
explore the existence and persistence of invariant regions for inertial particles over a
range of particle governing parameters. The results shown in this section have been
obtained using the velocity field for Re = 350. Similar results, however, have been
obtained for all simulated Reynolds numbers.

The particle dynamics in the flow can be observed by plotting Poincaré sections
at vertical (θ = const.) planes across the cylinder. We constructed such return maps
for the entire range of simulated settling velocities (1 × 10−6 � vs � 0.1) by placing
104 particles in the chaotic region of the flow and tracking their trajectories for 50
lid rotations. A typical Poincaré section is shown in figure 3(a) for vs =1 × 10−5.
The simulated trajectories clearly show that toroidal barriers to transport similar to
those observed by Lackey & Sotiropoulos (2006) for passive particles are also present
for inertial particles. It is evident from this figure that the interior of these toroidal
regions is not accessible to particles originating in the chaotic region, at least within the
simulated time interval. Even though not shown herein due to space considerations,
similar unmixed toroidal regions are found for all simulated settling velocities. On the
other hand, particles that originate in the interior of the invariant regions depicted in
figure 3(a) are found to remain trapped for very long times, but their trajectories can
be markedly different depending on the particle governing parameters. This is shown
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Figure 3. Poincaré maps of inertial particles with settling velocity vs = 1 × 10−5 and Re = 350,
at X = 0. (a) Poincaré section for 10 000 particles with d =0.002. (b) Poincaré section of two
particles trapped in the upper torus with different diameters and the same settling velocity,
d = 0.002 (◦) and d = 0.007 (•).

(a) (b)

y

Z

X

xz

Figure 4. Trajectories of particles with different values of St inside the upper torus for
Re = 350. The small particle with d = 0.002 remains trapped (black line), while the larger
particle with d = 0.007 (grey line) escapes and sediments after 163 lid rotations. For both cases
Fr2 = 0.02.

in figure 3(b), which shows a Poincaré section for two particles with identical vs but
different St (established by varying the particle diameter), starting from exactly the
same initial position within the upper invariant toroidal region shown in figure 3(a).
Note that maintaining the same terminal velocity for two particles with different
Stokes numbers requires changing the gravitational force, i.e. the Froude number. As
seen in figure 3(b), the dynamics of the particles for the range of parameters selected
depends strongly on the particle Stokes number. As depicted in figure 4, the small-St

(d = 0.002) particle behaves, as one would anticipate, essentially like a passive tracer,
and its trajectory remains confined during the entire simulation period of 200 lid
rotations on a torus forming a limit cycle in the Poincaré section. The larger St

(d = 0.007) particle, on the other hand, is seen to gradually spiral around the outer
part of the torus with changing return periods and eventually escapes after 163 lid
rotations.
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The results shown in figures 3 and 4 as well as those we have obtained for other
values of St point to the important conclusion that even though the invariant toroidal
regions of the flow (as seen in the transport of passive particles) do exist for inertial
particles as well, particle inertia will ultimately cause particles to escape from the
invariant regions and explore the rest of the flow domain or settle towards the
bottom lid as we will see in the following section. The effect of particle inertia is
obviously quantified by St , which appears to dictate the residence time of particles
in the interior of invariant regions. In the limit as St → 0 particles will behave as
passive, non-diffusive tracers and will remain trapped on KAM surfaces indefinitely.
On the other hand, for St > 0 particles will eventually escape due to the effects of
inertia, but the time they will remain trapped in invariant regions of the flow is
a decreasing function of their Stokes number. Clearly our results suggest that the
capacity of the flow to trap inertial particles in invariant toroidal regions should also
depend on the magnitude of the Stokes number and not only on the value of the
settling velocity vs . It is worth emphasizing here that all these results are applicable
to the range of parameters studied, which also consider a constant specific gravity of
the inertial particles.

The particle trapping mechanisms discussed above were also observed by Wereley &
Lueptow (1999) and Wereley et al. (2002) in rotating filters. The efficiency of these
filters is directly related to the capacity of the Taylor vortices and the azimuthal
velocity gradient to capture and trap inertial particles. The fact that trapping zones
coincide with invariant regions of the fluid flow has also been observed in the
experiments of Abatan, McCarthy & Vargas (2006) for the flow in a cylindrical tank
with co-rotating flat-disk impellers. Abatan et al. (2006) showed that particles are
displaced inside the toroidal regions after long periods of time, reaching different
equilibrium positions either inward or outward towards the torus surface.

To gain a more complete understanding of the richness of dynamics near invariant
regions, we utilize the Lagrangian averaging technique proposed by Mezić &
Wiggins (1999). Lagrangian averaging is a very effective computational technique
for visualizing invariant regions in chaotically advected flows and has also been used
to develop a non-intrusive experimental method for visualizing unmixed islands in
chaotically advected flows (Mezić & Sotiropoulos 2002; Sotiropoulos et al. 2002).
Assuming steady three-dimensional flow, the Lagrangian averaging technique can be
implemented as follows. Associate with any point A of the flow field the Lagrangian
time average of a function f (some property of the flow field) along the particle
trajectory that passes through A. This quantity can be computed by averaging over
the values of f at the points visited by the particle as it moves along its trajectory
(Malhotra, Mezić & Wiggins 1998; Mezić & Wiggins 1999). The fact that as time
approaches infinity such an average exists can be rigorously established from ergodic
theory (Mezić & Sotiropoulos 2002). The invariant regions of the Poincaré map of
the flow can then be visualized by (i) distributing a sufficiently large number of initial
points on a plane through the flow field, (ii) computing the Lagrangian time averages
of the chosen function f for all these points and (iii) plotting the isocontours of
the resulting scalar field in terms of the initial particle locations. It can be shown
(Malhotra et al. 1998; Mezić & Wiggins 1999) that regular islands in the flow are found
around the extrema of the Lagrangian time-averaged field. Lagrangian averaging has
already been used by Lackey & Sotiropoulos (2006) to visualize invariant regions
in the present flow over a range for Reynolds numbers. Here we utilize Lagrangian
averaging to visualize the rich dynamics of inertial particles near invariant tori over
a range of particle motion governing parameters.
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We construct Lagrangian average maps by defining a set of 100 × 100 initial
conditions uniformly distributed on a θ = const. plane and compute averages of
the particle velocity magnitude along particle trajectories employing the same
methodology described in detail by Lackey & Sotiropoulos (2006). The Lagrangian-
averaged particle velocity magnitude UL

ij is defined as follows:

UL
ij =

ūL
ij − 〈u〉

〈u〉 , (4.1)

where ūL
ij is the particle velocity magnitude (which is equal to the local flow velocity

for passive particles) averaged along the particle trajectory originated at the (i, j )
position and 〈u〉 is the Eulerian average velocity magnitude over the entire container.
A qualitative explanation why invariant regions will be located in the vicinity of
maxima of UL in the Lagrangian average map is as follows. If most of the flow is
occupied by chaotic trajectories and the (i, j ) particle originates in the chaotic region,
UL

ij will be close to zero. This is because such a particle would cover ergodically the
entire chaotically advected region of the flow, and thus the Lagrangian average of
the velocity magnitude would be very close to its Eulerian average over the entire
container. On the other hand, if a particle is placed in an invariant region and as
such can only sample a small portion of the flow domain, UL

ij will acquire a large
magnitude. It is important to emphasize, however, that the above arguments as well as
the theory presented in Mezić & Wiggins (1999) are strictly valid for passive particles.
As we will show below, in the case of inertial particles UL can acquire very large
values even for particles that originate within chaotic regions. This is because such
particles will, under the action of gravity, settle eventually to the bottom rotating lid.
Since in our model particles that sediment do not get resuspended by the flow but
rather stay at the bottom and move forever with the velocity of the rotating lid, UL

ij

for these points attains the maximum possible magnitude in the flow domain. This
issue not withstanding, however, Lagrangian average maps can provide important
qualitative information about the rich dynamics of inertial particle transport, and in
particular they should be able to readily identify invariant regions in which particles
are trapped for very long times. Such regions for inertial particles will be characterized
by a smoothly varying UL field and contour levels distinctly different from, although
not necessarily larger than, those in the surrounding chaotic sea.

As a base for comparison we start by discussing the Lagrangian average map for
passive particles shown in figure 5(a). We can readily distinguish in this map the
toroidal invariant core of the flow where UL varies smoothly and attains large values.
The invariant core is surrounded by the chaotic sea which is characterized by a very
distinct fractal-like distribution of UL contours. Note in particular the Cantor-dust-
like set of points that are distributed throughout the darker-colour chaotic sea in
which UL attains very large magnitude, pointing to the existence of a Cantor set of
very high-order invariant orbits. What is even more striking in this plot is the structure
of the contours near the interface between the invariant core of the flow and the
chaotic sea. Even though it is evident from this figure that the invariant core creates
an impermeable barrier to transport, the transition zone between the integrable core
and the chaotic region in this map as well as in the results of Lackey & Sotiropoulos
(2006) is not smooth and is occupied by a series of islands that contain periodic orbits
intermingled with chaotic areas. To elucidate the dynamics in this transition zone,
we show in figure 5(b) a Lagrangian average map constructed by embedding all 104

initial conditions within a small patch of the larger map shown in figure 5(a). As seen
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Figure 5. (a), (b) Lagrangian average maps with increasing resolution for Re =350, showing
the upper toroidal invariant region, and narrow bands of periodic orbits nested and folded
near the boundary of the torus.

in figure 5(b), the dynamics in the transition zone is very rich and is characterized
by the existence of nested structures that appear as foldings of integrable dynamics,
with narrow bands that seem to have a fractal distribution in space. By examining
the trajectories of passive particles starting from these regions (not shown herein)
we observe that inside the folded islands particles have distinctly different dynamics,
spiralling quasi-periodically around the toroidal invariant core without completing
closed loops and remaining always near the boundary of the integrable core with
their motion restricted to regions of the map inside the integrable folds (typical three-
dimensional trajectories showing this structure of the tori can be observed in figure 14
of Lackey & Sotiropoulos 2006). Similar results were found for passive particles at
all the different Reynolds numbers, with maps that also show thin bands of periodic
trajectories distributed in the outer region of the invariant tori. It is important to
note that these folded islands are not cantori, i.e. leaky barriers to transport (Mackay,
Meiss & Percival 1984), as passive non-diffusive particles will remain trapped within
these structures of enormous topological richness for ever.

To systematically gauge the effects of inertia and gravity on particle dynamics,
we construct Lagrangian average maps for different particle diameters and Froude
numbers using the same set of 104 initial conditions as those used in figure 5. For
small values of St and large Fr , the Lagrangian maps of inertial particles show a
fairly uniform velocity along the periodic orbits inside the invariant regions. For the
simulations with d =0.002 and Fr2 = 0.2 depicted in figure 6(a), the map shows smaller
velocities for the inertial particles compared to the Lagrangian average maps for the
passive tracers (see figure 5). The higher-resolution map shown in figure 6(b), reveals
characteristics similar to those of the Lagrangian average maps for passive particles,
with numerous bands of periodic orbits distributed as nested folds in selected areas
near the boundary of the torus. To increase the relative importance of the gravitational
force while keeping the particle diameter constant we decrease Fr2 by one order of
magnitude, and the resulting Lagrangian maps are shown in figures 6(c) and 6(d )
(d = 0.002 and Fr2 = 0.02). It is seen that for sufficiently large gravitational force,
the chaotic flow outside the invariant regions is no longer capable of maintaining
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Figure 6. Maps for inertial particles contain the average velocity magnitudes of inertial
particles, scaled with the average flow velocity inside the container for 50 lid rotations. (a), (b)
The particle diameter and Froude number are d = 0.002 and Fr2 = 0.2 respectively. (c), (d )
The results for d =0.002, and a larger gravitational term with Fr2 = 0.02. (e), (f ) With larger
Stokes number given by d = 0.006 and Fr2 = 0.2.

the particles in suspension. This is evident by the fact that the average values in the
fractalized chaotic zone become very large, since, as already discussed above, most of
the particles originating in this region sediment quickly and end up on the bottom lid
of the container. A striking finding seen in figure 6(c), however, is that even though the
perturbation introduced on the inertial particles by the relatively strong gravitational
force is considerable, the size of the invariant toroidal region does not change in
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any appreciable manner. Particles continue to remain trapped inside the toroidal
core or within the topologically rich integrable islands formed within the transition
zone. From the magnified map shown in figure 6(d ), we can readily identify that
the complex islands around the torus become coarser, and particles trapped in their
interior have overall smaller average velocities. Finally, figures 6(e) and 6(f ) show
Lagrangian maps for larger Stokes number and the same value of Fr as that shown
in figures 6(a) and 6(b). It is seen that increasing St while keeping Fr constant
causes the total area of the invariant core to decrease considerably. Particles near
the boundary of the original torus escape to the chaotic region within the total
time of the simulation, forming the irregular lighter-colour area at the border of the
invariant region depicted in the Lagrangian average map of figures 6(d ) and 6(e).
In addition, the folded structures start to become high-period islands with a defined
boundary, where quasi-periodic trajectories are maintained as equilibrium position of
these initial conditions.

In summary, the key conclusion from the results presented in this section is that
regions in the flow that are impermeable barriers to transport for passive tracers persist
for inertial particles as well. The key governing parameter that determines the ability
of an invariant flow region to trap inertial particles for very long times is the particle
St , since the drag generated by the relatively uniform velocity fields seen by particles
originating in invariant regions is capable of keeping inertial particles trapped.
Contrary to what one might have anticipated, the magnitude of Fr , and by extension
the relative magnitude of the gravity force, has little influence on whether particles will
escape an invariant region or remain trapped for arbitrarily long times. The Froude
number of course, or equivalently the settling velocity, does determine how quickly
particles in the mixed region of the flow will sediment at the bottom of the container.

5. Particle deposition: settling down the devil’s staircase
Material lines originating in chaotic regions undergo continuous stretching and

folding by the chaotically advected flow, leading to exponential separation of initial
conditions and efficient stirring. Lackey & Sotiropoulos (2006) investigated the chaotic
stirring of passive tracers by the flow under consideration across a wide range of
Reynolds numbers. To demonstrate the process of chaotic stirring for inertial particles,
we show in figure 7 instantaneous snapshots illustrating the stirring of three spherical
blobs of identical diameter equal to 0.1, each consisting of 1000 identical initial
conditions. One blob, however, consists of passive (grey) particles, while the other
two blobs contain inertial particles with d = 0.007 and vs =1 × 10−5 (white) and
vs = 1 × 10−3 (black), respectively (i.e. same St but different Fr). The results illustrate
that initially all three blobs undergo similar stretching and folding processes as they
are advected by the flow within the container. Up until four lid rotations the three
blobs have spread in a similar manner with the heaviest (black) particles showing
a clear tendency to diverge from the other two sets of particles. After 10 more lid
rotations any initial structure has been lost, as the repeated stretching and folding
processes have led to exponential separation and caused the random dispersion of
particles within the entire domain. An interesting feature that is evident in figure 7(c),
however, is that after 14 lid rotations most of the heavier black particles have settled
on the bottom lid and have been pushed away to the corner by the centrifugal force.

The fact that under the action of gravity particles will eventually sediment at the
bottom of the container is obviously not surprising. The results shown is figure 7,
however, do raise an important question regarding the rate at which particles of
different properties will settle under the action of gravity. For the inertial particles
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Figure 7. Three thousand particles in the chaotically advected region at Re = 350. Grey
particles are passive, while white and black have vs = 1 × 10−5 and vs = 1 × 10−3, respectively,
and d = 0.007: (a) initial conditions, (b) after four lid rotations and (c) after 14 lid rotations.
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Figure 8. Fraction of suspended particles for d = 0.006 and Re =500. (a) Curves for different
settling velocities. (b), (c) Magnification of the fractal curve in the rectangular regions for
vs =0.001, showing the self-similar structure of the devil’s staircase.

in figure 7, gravity introduces a drift in the vertical direction that depends on the
magnitude of the Stokes number relative to the Froude number, which is quantified
by the settling velocity given by (3.10). As vs → ∞, the inertial effects cannot maintain
suspension, and rapid sedimentation will abruptly terminate the stirring process. On
the other hand, in the limit vs → 0 particles behave as passive tracers, and in the
absence of molecular diffusion stirring will continue indefinitely. The question that we
would like to explore herein is exactly how the transition between these two limiting
states takes place as the settling velocity varies from zero to infinity.
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To explore the rate of particle deposition as a function of the settling velocity, we
plot in figure 8(a) the temporal variation of the fraction of an initial population of
particles that remain in suspension at a given instant in time. The results shown in
figure 8 have been obtained by releasing 5000 particles along a series of concentric
circles covering the entire top lid for Re =500. We consider three types of particles,
all having the same diameter d (i.e. fixed Stokes number) but with settling velocities
varying across three orders of magnitude: vs = 10−1, 10−3 and 10−4. As we already
discussed in the previous paragraph, for vs = 10−4 the inertial particles are dispersed
throughout the entire container; the stirring process continues for very long times; and
the rate of particle deposition is sluggish. On the other hand, for the largest settling
velocity (vs = 10−1) shown in figure 8(a) gravity dominates the particle dynamics and
the sedimentation process is monotonic and rapid with all particles depositing on the
bottom lid within a few lid rotations.

A striking new finding that follows from figure 8(a) is the sedimentation regime
that emerges for settling velocities in the transitional state between the two limiting
cases. As seen in figure 8(a), the particle deposition process for vs = 10−3 is highly
intermittent and is characterized by discrete deposition bursts during which a
seemingly random number of particles settle simultaneously on the bottom lid.
These deposition bursts are separated by hiatuses, or plateaus, of random duration.
Furthermore, as shown in figures 8(b) and 8(c), the resulting staircase-like curve
exhibits self-similar structure at smaller scales when it is magnified up to the resolution
of the number of particles and time step of the simulation. Therefore, the results shown
in figure 8 point to the conclusion that the sedimentation curve for vs = 10−3 is the
fractal object known as the devil’s staircase curve (Bak 1986; Sotiropoulos et al. 2001).
The devil’s staircase has been found to emerge in a number of nonlinear systems,
in both physics and engineering, undergoing a mode-locking transition to chaos.
In such systems, the staircase has been shown to describe the dynamical behaviour
as a function of frequency with the characteristic plateaus indicating locking at
various rational frequencies (for specific examples, see Bak 1986; Lacis et al. 1997;
Reichhardt & Nori 1999). Perhaps a more relevant and rather striking analogy with
the physical phenomenon we consider in this work is the apparent emergence of devil’s
staircase distributions in stratigraphic records describing sediment accumulation in
nature over geological time scales (Sadler 1981, 1999). This analogy will be discussed
in more detail later on in this paper. What determines the emergence of the devil’s
staircase in the sedimentation process in the container flow appears to be the transition
between the chaotic state, for which particles never settle but remain suspended and
get stirred by the flow indefinitely, and the complete equilibrium state with all particles
lying on the bottom lid. In this transitional fractal regime, which is obviously driven by
the competition between inertia and gravitational forces, particles remain suspended
during lapses of time, which correspond to the plateaus of the curve, followed by
instantaneous sedimentation events within which groups of particles get deposited
simultaneously on the bottom lid and never return to the flow.

It is important to point out that in this work we made no attempt to determine via
numerical experiments the exact range of settling velocities within which the fractal
sedimentation regime emerges. This is a computationally challenging task, since there
are at least three governing parameters whose combination determines the emergence
of the fractal regime: (i) the Reynolds number of the flow, (ii) the particle diameter
(i.e. the Stokes number) and (iii) and the particle Froude number. Another parameter
that could also be important in this regard is the specific gravity of the particles,
which has been kept constant throughout this work. Exploring this multi-dimensional
phase space via numerical simulations is a significant undertaking that will be left as

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

15
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991534


Trapping and sedimentation of inertial particles 185

a topic for future research. Nevertheless, the results we reported in figure 8 along with
several additional numerical experiments for various Reynolds numbers, which are
not included for space considerations, do show conclusively that for a given Reynolds
number there is a range of intermediate values of the settling velocity within which
fractal sedimentation occurs.

It is also worth noting that the sedimentation times for each particle, all of which
are embedded within the devil’s staircase, are closely linked to the Lagrangian average
maps presented in the previous section. To illustrate this connection, first note that
the sedimentation time is essentially the stop time of the dynamical system consisting
of the particle trajectory equations. Since particles start from a known initial position,
the time that every particle takes to reach its respective stop time tstop occurs when
the centre of mass of the particle is located at a distance d/2 away from the bottom
lid, which can be related to the Lagrangian average of the vertical velocity, v̄L

3 , as
follows:

x3(tstop) =

∫ tstop

0

v3(x0, x, t) dt = tstop v̄
L
3 , (5.1)

where x0 is the particle initial position; x3(tstop) = d/2 is the final vertical position
of the particle when it reaches the bottom lid; and v3 is the instantaneous particle
velocity at position x. Due to the increments in velocity when particles are in contact
with the bottom lid (in our simulations particles that sediment are not removed
but stay attached to and rotate with the bottom lid), the Lagrangian average maps
shown in figures 6(c) and 6(d ) for particles starting in the chaotic region of the
flow exhibit a fractalized structure with patches of higher UL. For 50 lid rotations,
multiple small darker-colour regions emerge in the Lagrangian average map as seen
in figure 6(c). These results are more evident in figures 6(e) and 6(f ). Due to the larger
settling velocity vs , the sedimentation times tstop are shorter, and few particles remain
in suspension, which are represented by the lighter-colour patches non-uniformly
distributed in the chaotic region.

To formally establish the fractal character of the curve shown in figure 8 we can
count the spaces between plateaus that ultimately shrinks to the Cantor set associated
with the devil’s staircase construction. Following the methodology described by Bak
(1986) and Sotiropoulos et al. (2001), we calculate the total width of plateaus that are
larger than a time scale r , defined as T (r). Subsequently we compute the space between
steps, representing the time intervals when depositional events can be identified using a
scale r: Tmax −T (r), where Tmax is the total time of the computation. We then measure
this quantity to obtain the total number of time windows N(r) with magnitude r ,
required to contain all the segments previously calculated:

N(r) =
Tmax − T (r)

r
. (5.2)

For a devil’s staircase curve, the variation of N(r) should exhibit a power-law relation
with the time scale r , such that

N(r) ∼ (1/r)D0, (5.3)

where D0 is the fractal dimension of the Cantor set associated with the devil’s staircase
curve.

We apply the above algorithm to deposition curves obtained for successively larger
particle ensembles (released along concentric circles covering the top lid), since, as
has already been shown by Sotiropoulos et al. (2001), a converged fractal dimension
is only obtained above a threshold particle ensemble size. Numerical sensitivity
experiments showed that for Re = 350 and Re = 700, 2 × 104 particles are required
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Figure 9. Fractal dimension of the devil’s staircase for different Reynolds numbers. The
symbols are the numerical results while the lines correspond to a slope of 0.87.

for converged solutions, while for Re = 500 twice as many particles are required
for convergence. This apparent non-monotonic variation of the number of particles
required for convergence with Reynolds numbers is due to the fact that as shown by
Lackey & Sotiropoulos (2006) the stirring rate for this flow is maximized at Re = 500.
The cases shown in figure 9 for the deposition of inertial particles are computed for
three Reynolds numbers, with different numbers of total particles in each computation
released in concentric circles from the top lid: 2 × 104 particles for Re = 350 and Re =
700 and 4 × 104 particles for Re = 500. As seen in figure 9, the departure from the
power-law relationship occurs only at small 1/r corresponding to large plateaus that
require long times of computation, when particles with long residence times inside
the container settle. Since the last remaining particles can have arbitrarily long
residence times, the integration time requires excessive computational resources for
the large number of particles employed in the computation. Remarkably, for all cases
the same value for the fractal dimension D0 emerges. Namely we find D0 = 0.87
which is essentially identical to the ‘universal’ value found in numerous dissipative
dynamical systems in nature (Bak 1986).

It is important to note that Sotiropoulos et al. (2001) were the first to demonstrate
that the devil’s staircase emerged in chaotically advected flows. They observed the
devil’s staircase distribution for passive particles in the emptying of steady, three-
dimensional vortex breakdown bubbles in a cylindrical container with a rotating
bottom. Sotiropoulos et al. (2001) showed that for a range of swirl velocities,
very small, steady three-dimensional perturbations of the Eulerian velocity field
can give rise to very rich Lagrangian dynamics of passive tracers in the interior of
vortex breakdown bubbles, characterized by KAM-tori cantori periodic islands and
a large chaotic sea. Passive particles entering this dynamically rich region of the flow
were shown to exit the vortex breakdown bubble via a series of random bursting
events separated by hiatuses of random duration in a similar manner as the fractal
sedimentation mechanism for inertial particles depicted in figure 8. Sotiropoulos et al.
(2001) calculated the fractal dimension of the resulting devil’s staircase distribution for
various Reynolds numbers. They found values that depend on the Reynolds number
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and are overall smaller than the 0.87 value we have found herein. This difference,
however, should not be surprising, as the passive particles considered in the work of
Sotiropoulos et al. (2001) comprise a volume-preserving dynamical system, whereas
the inertial particles we have studied herein comprise a dissipative dynamical system.
As already mentioned above, the 0.87 value appears to be ‘universal’ in a wide range
of dissipative dynamical systems including the present case.

A remarkable phenomenon that is analogous to the process we uncovered herein is
the emergence of the devil’s staircase in sedimentary records observed over geological
time scales. Through an exhaustive analysis of stratigraphic data Sadler (1981, 1999)
was the first to observe that sedimentation processes in nature are characterized by
unsteady and discontinuous events of deposition. Records of sediment accumulation
over a range of time scales of several orders of magnitude yield staircase-like plots,
containing hiatuses that correspond to periods of erosion or no deposition. Sadler
(1981, 1999) applied scaling concepts to show that the variation of the rate of
sediment accumulation is proportional to the time scale employed to measure it,
finding power-law relations for the mean rate of sediment accumulation in time.

The fractal deposition of inertial particles observed in the present flows acquires
great relevance in the context of Sadler’s work. The results shown in figures 8 and
9 raise intriguing questions regarding the origin of the fractal accumulation rate in
stratigraphic records and the possible role of chaotic advection in the transport and
deposition of sediment in natural aquatic environments. Since chaotic advection is a
fundamental mechanism of transport and stirring in geophysical flows, as shown for
coastal regions (Ridderinkhof & Zimmerman 1992), further investigations are required
to determine its relation to sediment transport and the intermittent accumulation of
sedimentary deposits (Sadler 1981). Our results also emphasize the need to study
geomorphologic systems coupling the flow and sediment dynamics. Chaotic dynamics
may arise due to the complex interactions between the coastal and inland water flows
and the earth’s surface, leading to the alternation of random periods of stirring and
transport with depositional episodes of sediment accumulation.

5.1. Stirring rate of inertial particles

In this section we seek to examine the effect of inertia on particle stirring relative
to the passive particle case, which was studied in detail by Lackey and Sotiropoulos
(2006). We quantify the stirring rates using the variance of concentration numerical
technique developed by Lackey & Sotiropoulos (2006), which was based on the
experimental analysis of Voth et al. (2003). The variance of concentration is a statistic
employed to quantify the effectiveness of the flow in stirring the particles inside the
container. Lackey & Sotiropoulos (2006) calculated the variance of concentration
σ 2

c (t) for passive particles by collapsing the azimuthal direction for every instant
in time and then computing the instantaneous particle concentration at every grid
node in a two-dimensional plane. As particle trajectories are stretched and folded
inside the container, their distribution becomes more uniform in time, decreasing the
magnitude of σ 2

c (t) (see Lackey & Sotiropoulos 2006 for details). In the inertial particle
case, if the settling velocity is large enough to produce sedimentation, particles can
accumulate on the bottom lid and increase the variance of concentration magnitude
in time, as will be subsequently shown.

A brief description of the technique of Lackey & Sotiropoulos (2006) is as follows.
At every instant in time, the instantaneous three-dimensional particle positions are
collapsed in the azimuthal θ direction, and the resulting two-dimensional plane is
divided in control volumes that cover the entire domain and are associated with the
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Figure 10. Variance of concentration at Re = 500 for inertial particles with d =0.002 (grey
and dashed lines) and for passive particles (black solid line), to quantify the decrease in the
stirring rate due to inertia.

(i, j ) nodes in the r–z space. By defining as nij the number of particles inside the
control volume identified by the node (i, j ) at time t , we compute the instantaneous
discrete particle concentration as follows:

Cij (t) =
nij (t)

N
, (5.4)

where N is the total number of particles. The statistical variance of the discrete
concentration field is therefore calculated at every instant in time as

σ 2
c (t) =

1

I × J

I∑
i

J∑
j

[
Cij (t) − C̄(t)

]2
, (5.5)

where I and J are the maximum number of grid nodes in the radial and vertical
directions respectively, and the mean instantaneous concentration is computed as
follows:

C̄(t) =
1

I × J

I∑
i

J∑
j

Cij (t). (5.6)

We compute σ 2
c (t) for particles released along concentric circles on the top lid,

simulating passive and inertial particles (d = 0.002, vs = 1 × 10−5 and vs = 0.001) at
Re = 500 as shown in figure 10. Note that this specific Reynolds number is selected
herein because according to the results of Lackey & Sotiropoulos (2006) this is the
Reynolds number at which stirring rate is maximized for this flow. We use the same
initial conditions in all the simulations for a total period of computation of 50 lid
rotations, which was the appropiate time considered to mix passive particles in the
container (Lackey & Sotiropoulos 2006).

The results shown in figure 10 clearly show that the decay of the variance is faster
for both sets of passive particles, which leads to the important conclusion that particle
inertia decreases the stirring rate. Lackey & Sotiropoulos (2006) quantified the stirring

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

15
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991534


Trapping and sedimentation of inertial particles 189

rate of the flow as the rate at which σ 2
c (t) decreases. They fitted an exponential decay

curve to the calculated σ 2
c (t) time series, such that the time evolution of the statistic

can be expressed as

σ 2
c (t) = C0 exp(−Rmt) + C1, (5.7)

where C0 and C1 are constants.
By applying this technique to the results shown in figure 10, we find that the ratio

of the stirring rates for inertial particles (vs = 1 × 10−5) to those of passive particles is
equal to RI

m/RP
m = 0.88. The reason for the slower stirring rate in this case is obviously

due to the effects of inertia, which depending on the Stokes number can decelerate
the stirring process.

The emergence of this phenomenon can be attributed to the accumulation
or non-homogeneous spatial distribution of particles, also known as preferential
concentration of inertial particles first observed by Squires & Eaton (1991) in turbulent
flows. Using a model similar to the one employed in the present investigation to
represent the dynamics of inertial particles, Bec (2005) also described the phenomenon
of particle clustering or preferential concentration using scaling analysis for the spatial
distribution of particles in two-dimensional and three-dimensional flows. He studied
the particle trajectories neglecting gravity and other forces in the momentum equation,
integrating the dynamics in simple random flows generated as sums of Fourier modes.
The fractal characteristics of the inertial particle positions in two-dimensional and
three-dimensional flows were described in terms of the Stokes numbers of the particles.
Bec’s simulations showed that clustering and reduced mixing occurred for small Stokes
numbers, while for larger St particles occupied the entire space.

Therefore, these preliminary results for the variance of concentration not only
demonstrate the differences between passive and inertial particles for the same
statistics studied in detail by Lackey & Sotiropoulos (2006) but also pose important
questions regarding the dependence of stirring rates on particle parameters. Further
analyses, however, are required to establish the actual inertial effects on stirring rates
and to determine the evidence of particle clustering in the flows inside the container.
A systematic investigation of the dependence on the parameters that control stirring
rates and the depositional regime described in the previous section will be reported
in future communications.

Finally we should mention that for the particles with the highest settling velocity
(vs = 0.001) in figure 10, significant deposition occurs within the simulated time
interval. For this reason the variance of concentration is seen to decay initially, but its
magnitude increases slowly with time as particles start depositing and accumulating
on the bottom lid.

6. Conclusions
We carried out simulations of the inertial particle dynamics in the three-dimensional

flow in a cylindrical container with exactly counter-rotating lids. We described
separately the motion of particles in the invariant and mixing regions of the flow
in terms of different values of the non-dimensional particle diameters and Froude
numbers, which can also be expressed collectively in terms of a non-dimensional
settling velocity, to account for the effects of inertia and gravity, respectively. We
have shown using Poincaré maps that for the range of studied parameters, the
uniform flow field inside invariant regions constitute strong barriers to transport,
trapping heavy particles for long periods of time as has been observed in previous
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theoretical (McLaughlin 1988) and experimental investigations (Wereley et al. 2002;
Abatan et al. 2006). Larger particle diameters, and in consequence larger Stokes
numbers, set the conditions to increase stirring rates in these regions by allowing
particles to escape.

The Lagrangian averaging technique (Mezić & Wiggins 1999; Mezić & Sotiropoulos
2002) was utilized to investigate the passive particle dynamics in the vicinity of the
invariant toroidal regions in the flow. We identified for the first time a complex
distribution of periodic orbits nested and folded near the tori boundaries. The
same technique was applied to study inertial particle trajectories, demonstrating
that invariant regions of the flow persist for inertial particles as well. Inside both
the tori and the folded structures around them that contain periodic orbits, particles
remain trapped for long periods of time, following closely the trajectories observed
for passive particles for the simulated range of parameters.

Inertial particles are capable of remaining trapped in the tori and surrounding
complex Lagrangian structures. However, inertial effects do have a profound impact
on the extent of the invariant core and the structure of the dynamics in its vicinity.
Small increments of the particle diameter were shown to reduce considerably the area
occupied by the tori in the Lagrangian maps, and major changes can occur in the
spatial distribution of the exterior islands that persist for all the simulations with
large and small St .

For the range of parameters studied in this investigation, the Stokes number is
critical to characterize the behaviour of particles in the toroidal invariant regions. On
the other hand, the gravity term characterized by the Froude number only establishes
the magnitude of the perturbation that can help the particles to escape. It is important
to note that the parameter values were mainly selected to maintain a realistic range
of St and Fr for the specific gravity and non-dimensional particle diameters chosen,
such that the governing equations of the particles (3.6) and the one-way coupling
assumptions remain valid.

Multiple aspects of the Lagrangian particle dynamics for the passive and inertial
cases that we uncover in the present investigation will require further research,
particularly the characteristics of the newly discovered flow regions that appear as
intricate folds near the tori boundaries. Numerical and experimental studies might be
needed to understand the flow dynamics in these regions and to parameterize their
spatial distribution in terms of Re and AR and the diameter d and Fr in the inertial
particle case.

In the chaotically advected region of the flow, the gravitational force has a
preponderant role in the particle dynamics, overcoming inertia for small values
of the Froude number leading to particle deposition. The competition between the
inertial and gravity forces can produce a fractal sedimentation regime represented by
the devil’s staircase, with a fractal dimension very close to 0.87, which has also been
found in other dissipative dynamical systems. The non-dimensional settling velocity
defined in terms of St and Fr appears to be the relevant parameter defining the size
of the phase-space window within which this striking fractal sedimentation regime
emerges for a given Reynolds number.

The intermittent settling of particles observed in the fractal sedimentation process
has also been shown to occur in other chaotically advected flows such as in the
emptying process of steady vortex breakdown bubbles in confined flows (Sotiropoulos
et al. 2001). In the case of vortex breakdown bubbles, however, the fractal emptying
mechanism was observed for passive particles exiting from a chaotically advected sub-
region of the flow (the interior of a perturbed vortex breakdown bubble). Furthermore,
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for this case the fractal dimension of the devil’s staircase was not ‘universal’ but was
found to depend on the Reynolds number of the flow.

The effects of inertia on the stirring rate of the flow were quantified using the
variance of concentration σ 2

c (t), which was the same statistic employed by Lackey &
Sotiropoulos (2006) to quantify the stirring rate of passive particles in the same flow.
We computed σ 2

c (t) for passive and inertial particles at Re =500, which is the Reynolds
number with the largest stirring rate for passive particles (Lackey & Sotiropoulos
2006). The stirring rate for inertial particles was found to be slower than the passive
particle case. Further analyses are required to determine if this phenomenon can be
attributed to the inhomogeneity produced by particle clustering due to inertia, as
observed in unsteady random flows (Squires & Eaton 1991; Bec 2005).

Future research will also focus in the effects that chaotic advection can have
on sediment transport and deposition in flows driven by slowly varying vortical
structures, to determine the influence of the flow dynamics in sedimentation and
depositional patterns in nature. Since large-scale two-dimensional flows driven by
tides in coastal regions can experience stretching and folding of trajectories for
passive particles (Ridderinkhof & Zimmerman 1992), future work will seek to connect
these phenomena with the dynamics of inertial particles and sedimentary deposition
in geophysical flows. Even though sedimentation is probably the result of multiple
physical processes, the relation between chaotically advected flows and sedimentation
processes in nature can shed further insights into the fractal characteristics of sediment
accumulation observed by Sadler (1981, 1999) in stratigraphic records.

This work was supported by NSF grants EAR-0120914 (as part of the National
Center for Earth-Surface Dynamics) and EAR-0738726. C. E. has also been partially
supported by Fondecyt grant 11080032. Computational resources were provided by the
University of Minnesota Supercomputing Institute. We thank the anonymous referee
who pointed out equation (5.1) and the insightful connection between sedimentation
times and Lagrangian average maps.
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