
Formality conjecture for minimal surfaces of
Kodaira dimension 0

Ruggero Bandiera, Marco Manetti and Francesco Meazzini

Compositio Math. 157 (2021), 215–235.

doi:10.1112/S0010437X20007605

https://doi.org/10.1112/S0010437X20007605 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007605
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1112/S0010437X20007605&domain=pdf
https://doi.org/10.1112/S0010437X20007605


Compositio Math. 157 (2021) 215–235
doi:10.1112/S0010437X20007605

Formality conjecture for minimal surfaces of
Kodaira dimension 0
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Abstract

Let F be a polystable sheaf on a smooth minimal projective surface of Kodaira
dimension 0. Then the differential graded (DG) Lie algebra R Hom(F ,F) of derived
endomorphisms of F is formal. The proof is based on the study of equivariant L∞
minimal models of DG Lie algebras equipped with a cyclic structure of degree 2 which
is non-degenerate in cohomology, and does not rely (even for K3 surfaces) on previous
results on the same subject.

1. Introduction

The main goal of this paper is to provide an elementary proof of the following theorem, which
extends an analogous result for K3 surfaces [BZ18].

Theorem 1.1 (= Theorem 5.3). Let X be a smooth minimal projective surface of Kodaira

dimension 0, and consider a polystable sheaf F on X. Then the differential graded (DG) Lie

algebra RHomX(F ,F) is formal.

Moduli spaces of coherent sheaves on K3 surfaces and Abelian surfaces have been intensively
studied in recent decades. Among the reasons for the interest in these objects there is certainly
the fact due to Mukai that the smooth locus of the moduli space inherits a holomorphic sym-
plectic structure from the symplectic form on the surface [Muk84]. In particular, provided that
such a moduli space is smooth and projective, it yields an example of an irreducible holomor-
phic symplectic manifold. In general the moduli space is singular at a point corresponding to a
strictly semistable sheaf; these singularities arise either when the Mukai vector is not primitive
or when the polarization on the surface is not general (i.e. it lies on a wall with respect to the
walls and chambers decomposition of the ample cone [KLS06, Yos01]). Nevertheless, in some
cases there exist symplectic resolutions, which have been investigated for moduli spaces with
general polarization and non-primitive Mukai vector. First, O’Grady found two new examples of
irreducible holomorphic symplectic manifolds [O’Gr99, O’Gr03] by exhibiting symplectic resolu-
tions of moduli spaces of sheaves on a K3 surface and on an Abelian surface. A few years later
Kaledin, Lehn and Sorger showed that, other than the ones in O’Grady’s examples, such moduli
spaces do not admit symplectic resolutions [KLS06].

More recently, in [AS18] Arbarello and Saccà turned their attention to the case of a K3
surface with a non-general polarization and Mukai vector (0, c1, χ). The corresponding moduli
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space admits a symplectic resolution, given by moving the polarization (hence changing the
notion of stability) into a chamber, and they give a local description of the moduli space around
the singularity in terms of a suitable Nakajima quiver variety.

By general deformation theory, an easy description of an analytic neighborhood around a
singular point [F ] in the moduli space corresponding to a given (possibly non-general) polar-
ization can be deduced from the formality of the derived endomorphisms of the sheaf F on the
surface X. We now briefly recall the main steps that led to the so-called Kaledin–Lehn formality
conjecture. It is well known that the base space of the formal semiuniversal deformation of [F ]
is the scheme-theoretic fiber of the Kuranishi map

k : ̂Ext1X(F ,F)→ Ext2X(F ,F)0 = ker(Tr: Ext2X(F ,F)→ H2(X,OX) ∼= C)

which can be chosen to be G-equivariant (see, for example, [AS18, BMM20, Rim80]) with respect
to the action of the automorphisms group modulo the action of the scalars: G = Aut(F)/C∗.
Often it is definitely not trivial to compute the null-fiber of the Kuranishi map; on the other hand.
its quadratic part k2 is nothing more than the Yoneda pairing, so that in general it is much easier
to understand k−1

2 (0) instead of k−1(0). In [KL07], Kaledin and Lehn essentially conjectured that
for a polystable sheaf on a K3 surface the Kuranishi map is quadratic, namely k−1

2 (0) ∼= k−1(0).
If this condition is satisfied then the moduli space, locally around [F ], is isomorphic to the
geometric invariant theory quotient k−1

2 (0)�G.
In their original paper Kaledin and Lehn gave a first example motivating and inspiring

the future work on the subject. The conjecture was then proven in full generality by Yoshioka
[Yos17], and partially by Arbarello and Saccà [AS18]. Let us make a few remarks before con-
tinuing. First, recall that to any (homotopy class of a) DG Lie algebra there is associated a
deformation functor (see, for example, [Man09, Man20]), which in turn provides a Kuranishi
map via the Maurer–Cartan equation. Moreover, if the DG Lie algebra L is formal (i.e. it is
quasi-isomorphic to its cohomology) then the associated Kuranishi space k−1(0) is the null-fiber
of the cup product in cohomology H1(L)→ H2(L). Hence, by showing the formality of the DG
Lie algebra R Hom(F ,F) one also proves the quadraticity of the Kuranishi map. Notice that
since our approach involves techniques of L∞-algebras we investigate derived endomorphisms as
a DG Lie algebra, while the papers [KL07, BZ18] consider R Hom(F ,F) as an associative DG
algebra and also Kaledin’s refinement of the Massey products works in the associative setting
[Kal07]. It is important to point out that the formality in the associative case is a stronger state-
ment, but on the other hand the DG Lie formality is the one needed for applications to moduli
spaces.

It is worth mentioning that formality is in general much stronger and harder to prove than
the quadraticity property; from the point of view of derived algebraic geometry this can be
easily understood since formality implies that the derived moduli space is locally quadratic.
Nevertheless, formality of R Hom(F ,F) has been conjectured for polystable sheaves again by
Kaledin and Lehn in [KL07], it has been studied in some cases by Zhang [Zha12], and finally
completely solved by Budur and Zhang [BZ18] who proved that the conjecture holds true for
any polystable sheaf using results about strong uniqueness of DG enhancements.

It is interesting to notice that all of the above-cited formality results actually rely on the
famous result due to Kaledin about formality in families [Kal07, Lun10]. Even if the vanishing
of Massey products does not guarantee the formality of a DG algebra A (see, for example,
[HS79]), Kaledin determined a refinement of them defining the so-called Kaledin class in a
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certain (reduced) Hochschild homology group depending on A. Furthermore, he proved that the
variation of such a class in a suitable family of DG algebras A → S over an irreducible base S

glues to a global section of a certain obstruction bundle ObS defined on S. It follows that if ObS

does not admit non-trivial global sections then all the fibers As are formal [Kal07, Theorem 4.3].
Applying Kaledin’s result and twistor spaces, in the paper [KL07] Kaledin and Lehn first

obtained the formality of RHom(F ,F) for sheaves of the form F = I⊕n
Z , where IZ denotes the

ideal sheaf of some zero-dimensional closed subscheme Z. Later, Zhang showed that Kaledin’s
theorem may be applied to polystable sheaves with some constraints on the ranks of the cor-
responding stable summands [Zha12, Proposition 1.3], hence enlarging the class of polystable
sheaves for which the formality conjecture holds. Eventually in [BZ18] Budur and Zhang estab-
lished a very interesting result, namely that the formality of derived endomorphisms of any
object in Db(X) is preserved under derived equivalences; hence the formality conjecture follows
since by [Yos09] any polystable sheaf can be mapped via a Fourier–Mukai transform to another
polystable sheaf satisfying the hypothesis of [Zha12, Proposition 3.1].

In our recent paper [BMM20], we proved that for a sheaf F whose automorphisms group is
reductive (e.g. for any F polystable), the quadraticity of the Kuranishi map and the formality of
the DG Lie algebra R Hom(F ,F) are in fact equivalent conditions; our proof has the advantage
of relaxing the hypothesis on the surface which no longer needs to be a K3. This provides further
evidence of the formality conjecture without involving powerful methods of DG category theory,
but instead relying on the work of Yoshioka [Yos17] and of Arbarello and Saccà [AS18]. Actually,
both the papers [AS18, Yos17] base their proofs of the quadraticity property on the fundamental
work [Zha12], hence again Kaledin’s theorem [Kal07] seems to be essential.

The present paper aims to prove the formality conjecture for polystable sheaves on a smooth
minimal projective surface of Kodaira dimension 0. Examples of such surfaces include projective
K3 surfaces, Enriques surfaces, bielliptic surfaces and Abelian surfaces [BHPV04, Bea94]. One
of the main innovations of our proof is that we translate the problem into a purely algebraic
statement (see Theorem 3.8) about the formality of DG Lie algebras endowed with some addi-
tional structure (see Definition 3.6), which will be proved using only elementary techniques of
(strong homotopic) DG Lie algebras. In particular, perhaps surprisingly, in the case of K3 and
Abelian surfaces our proof of the formality conjecture only requires a basic knowledge of L∞
algebras and is self-contained, meaning that it does not involve either Kaledin’s result about
formality in families or the geometric situations considered by Zhang in [Zha12]. As pointed out
by one of the referees, it is similar in spirit to Neisendorfer and Miller’s proof of the fact that
any six-dimensional simply connected Poincaré duality space is formal [NM78].

The plan of the paper is as follows. In § 2 we fix notation and briefly summarize the results
needed in the rest of the paper about formality and L∞ algebras. In § 3 we introduce the notion
of quasi-cyclic DG Lie algebras and discuss examples arising from geometric situations: a DG Lie
algebra (L, d, [−,−]) with finite-dimensional cohomology equipped with a degree −n symmetric
bilinear form (−,−) : L�2 → K[−n] is called quasi-cyclic of degree n provided that

(dx, y) = (−1)|x|+1(x, dy), ([x, y], z) = (x, [y, z]), ∀x, y, z ∈ L,

and the form induced in cohomology (−,−) : H(L)�2 → K[−n] is non-degenerate.
The typical example of a quasi-cyclic DG Lie algebra of degree n is given by the Dolbeault

resolution L = A0,∗
X (Hom(E , E)) of the sheaf of endomorphisms of a locally free sheaf E on an

n-dimensional manifold X equipped with a nowhere vanishing holomorphic volume form ωX ,

217

https://doi.org/10.1112/S0010437X20007605 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007605


R. Bandiera, M. Manetti and F. Meazzini

with the pairing (f, g) =
∫
X ωX ∧ Tr(fg); see Example 3.7. A similar construction can be also

performed when E is replaced by any coherent sheaf; see § 5.
Then § 4 is entirely devoted to the proof of our main algebraic result.

Theorem 1.2 (= Theorem 3.8). Let (L, d, [−,−], (−,−)) be a quasi-cyclic DG Lie algebra of

degree n � 2. Assume that there exists a splitting L = H ⊕ d(K)⊕K such that:

(i) H i = 0 for i < 0 (and hence also H i = 0 for i > n);

(ii) H0 ⊂ L0 is closed with respect to the bracket [−,−];
(iii) H i, Ki ⊂ Li are H0-submodules (with respect to the adjoint action) for all i > 0.

Then the DG Lie algebra (L, d, [−,−]) is formal.

Finally, in § 5 we discuss the applications to moduli spaces of sheaves on minimal projective
surfaces of Kodaira dimension 0. We will first prove the formality conjecture for polystable
sheaves on K3 and Abelian surfaces as an immediate consequence of Theorem 1.2, where the
polystability assumption ensures the existence of the splitting with the required properties.

Then we will extend the formality result to polystable sheaves on surfaces with torsion
canonical bundle. Here the idea is to use the cyclic covering trick in order to construct the DG
Lie algebra RHomX(F ,F) as a subalgebra of a suitable quasi-cyclic DG Lie algebra satisfying
the assumptions of Theorem 1.2 and then use the formality transfer theorem due to the second
named author [Man15, Theorem 3.4].

2. Review of formality and minimal models of DG Lie algebras

We work over a field K of characteristic 0 for the algebraic part and over the field C of complex
numbers for the geometric applications. Every complex of vector spaces is intended as a cochain
complex.

By definition a DG Lie algebra L is formal if it is quasi-isomorphic to its cohomology DG
Lie algebra H∗(L), equipped with the trivial differential and the induced bracket. In order to
avoid possible mistakes, it is useful to keep in mind that not every DG Lie algebra is formal and
that if L is formal, then in general there does not exist any direct quasi-isomorphism of DG Lie
algebras H∗(L)→ L. However, since the category of DG Lie algebras admits a model structure
where the fibrations (respectively, the weak equivalences) are the surjective maps (respectively,
the quasi-isomorphisms) it follows that a DG Lie algebra L is formal if and only if there exists
a span of surjective quasi-isomorphisms of DG Lie algebras L←−M −→ H∗(L).

Since two DG Lie algebras are quasi-isomorphic if and only if they are weak equivalent as
L∞ algebras, we also have that a DG Lie algebra L is formal if and only if there exist an L∞
algebra H and a span of L∞ weak equivalences

L←−− H −−→ H∗(L). (2.1)

We assume that the reader is familiar with the notion and basic properties of L∞ algebras;
see, for example, [Get09, Kon03, LM95, LS93, Man20]. For the reader’s convenience and to fix
the sign convention, we briefly recall here the definition of L∞ algebra in the version used for
the explicit computations that we shall perform in § 4.

Let V be a graded vector space. Given homogeneous vectors v1, . . . , vn of V and a permutation
σ of {1, . . . , n}, we denote by χ(σ; v1, . . . , vn) = ±1 the antisymmetric Koszul sign, defined by
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the relation

vσ(1) ∧ · · · ∧ vσ(n) = χ(σ; v1, . . . , vn) v1 ∧ · · · ∧ vn

in the nth exterior power V ∧n. We shall simply write χ(σ) instead of χ(σ; v1, . . . , vn) when the
vectors v1, . . . , vn are clear from the context. For instance, if σ is the transposition exchanging
1 and 2 we have χ(σ) = −(−1)|v1| |v2| where |v| denotes the degree of the homogeneous vector v.
Notice that if every vi has odd degree, then χ(σ) = 1 for every σ.

Because of the universal property of wedge powers, we shall constantly interpret every linear
map V ∧p →W as a graded skew-symmetric p-linear map V × · · · × V →W .

Definition 2.1. An L∞ algebra is the data of a graded vector space V together with a sequence
of (multi)linear maps {· · · }n : V ∧n → V , n � 1, such that for every n:

(i) {· · · }n has degree 2− n;
(ii) for every v1, . . . , vn ∈ V homogeneous,

n∑
k=1

(−1)n−k
∑

σ∈S(k,n−k)

χ(σ) {{vσ(1), . . . , vσ(k)}k, vσ(k+1), . . . , vσ(n)}n−k+1 = 0, (2.2)

where S(k, n− k) = {σ ∈ Sn | σ(i) < σ(i + 1), ∀ i 
= k} is the set of (k, n− k)-shuffles.

In the above definition we used the sign convention of [Get09, Kon03, Man20], while in [LM95,
LS93] the maps {· · · }k differ by the sign (−1)k(k−1)/2. Every DG Lie algebra (L, d, [−,−]) is an
L∞ algebra where {·}1 = d, {· ·}2 = [−,−] and {· · · }n = 0 for every n > 2. If {·}1 = 0 the L∞
algebra is called minimal.

There exists a general notion of L∞ morphism (see, for example, [Man20]), but for simplicity
of exposition we only recall here the case of morphisms from an L∞ algebra to a DG Lie algebra;
this particular case will be sufficient for our purposes.

Definition 2.2. Let (V, {·}1, {· ·}2, {· · · }3, . . .) be an L∞ algebra and (L, d, [−,−]) a DG Lie
algebra. An L∞ morphism g : V → L is a sequence of maps gn : V ∧n → L, n � 1, with gn of
degree 1− n such that, for every n and every v1, . . . , vn ∈ V homogeneous, we have

1
2

n−1∑
p=1

∑
σ∈S(p,n−p)

χ(σ)(−1)(1−n+p)(|vσ(1)|+···+|vσ(p)|−p)[gp(vσ(1), . . . , vσ(p)), gn−p(vσ(p+1), . . . , vσ(n))]

+ dgn(v1, . . . , vn) =
n∑

k=1

(−1)n−k
∑

σ∈S(k,n−k)

χ(σ)gn−k+1({vσ(1), . . . , vσ(k)}k, . . . , vσ(n)).

An L∞ morphism g as in Definition 2.2 is called a weak equivalence or a quasi-isomorphism
if g1 : (V, {·}1)→ (L, d) is a quasi-isomorphism of cochain complexes.

By homotopy classification of L∞ algebras [Kon03], for every DG Lie algebra L there exist a
minimal L∞ algebra H and an L∞ weak equivalence ı : H → L. The algebra H is called the L∞
minimal model of L and it is unique up to isomorphism, while the L∞ morphism i is unique up
to homotopy. By homological perturbation theory, every splitting of the complex (L, d) induces
canonically a morphism ı : H → L as above.

Recall that a splitting of (L, d) is a direct sum decomposition L = H ⊕ d(K)⊕K such that
H, K are graded vector subspaces of L and the restrictions of the differential d to H and K are
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respectively zero and injective; see [Wei94, § 1.4]. In particular, d(L) = d(K), Z(L) = H ⊕ d(K)
and the natural map H → H∗(L) is an isomorphism of graded vector spaces. Denoting by ↪→
and � the inclusions and the projections given by the splitting L = H ⊕ d(K)⊕K, we define
the maps

ı1 : H ↪→ L, π : L � H, h : L � d(K) −d−1−−−→ K ↪→ L,

that satisfy the contraction identities

dı1 = 0, πd = 0, πı1 = idH , dh + hd = ı1π − idL, hı1 = 0, πh = 0, h2 = 0.

Then a minimal L∞ algebra (H, 0, {· ·}2, {· · · }3, . . .) and an extension of ı1 to an L∞ quasi-
isomorphism ı : H → L are defined by the recursive equations

ıp(ξ1, . . . , ξp) =
1
2

p−1∑
k=1

∑
σ∈S(k,p−k)

χ(σ)(−1)α(σ)h[ık(ξσ(1), . . .), ıp−k(. . . , ξσ(p))], p � 2, (2.3)

{ξ1, . . . , ξp}p =
1
2

p−1∑
k=1

∑
σ∈S(k,p−k)

χ(σ)(−1)α(σ)π[ık(ξσ(1), . . .), ıp−k(. . . , ξσ(p))], p � 2, (2.4)

where

α(σ) = (1− p + k)
(

k +
k∑

i=1

|ξσ(i)|
)

.

Notice that for every ξ, η ∈ H we have

ı2(ξ, η) = h[ı1(ξ), ı1(η)], {ξ, η}2 = π[ı1(ξ), ı1(η)],

the integer α(σ) is even for p = 2 and χ(σ)(−1)α(σ) = 1 if |ξi| is odd for every i. Formulas (2.3)
and (2.4) are well known and essentially date back to Kadeishvili’s paper [Kad82]: the choice
of signs comes from standard décalage isomorphisms applied to the explicit formulas used in
[BM18, Theorem 3.7] and [Man20].

In [Man15] the second named author proved a series of formality criteria for DG Lie alge-
bras. As a consequence of these criteria we have the following formality transfer theorem,
where H∗

CE(A, B) denotes the Chevalley–Eilenberg cohomology of the graded Lie algebra A

with coefficient in the A-module B.

Theorem 2.3 [Man15, Theorem 3.4]. Let f : M → L be a morphism of DG Lie algebras.

Assume that

(i) L is formal;

(ii) the induced map f : H2
CE(H∗(M), H∗(M))→ H2

CE(H∗(M), H∗(L)) is injective.

Then M is also formal. In particular, if L is formal, f is injective and f(M) is a direct summand

of L as M -module, then M is also formal.

It should be noted that for L = 0 the above theorem reduces to the classical criterion for
intrinsic formality of graded Lie algebras.
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3. Cyclic and quasi-cyclic DG Lie algebras

The general notion of cyclic (DG) algebra [GK95] specialized to DG Lie algebras gives the
following definition; see also [LS12].

Definition 3.1. Let n be an integer. A cyclic DG Lie algebra (L, d, [−,−], (−,−)) of degree n

is a finite-dimensional DG Lie algebra (L, d, [−,−]) equipped with a degree −n non-degenerate
graded symmetric bilinear form (−,−) : L�2 → K[−n] such that

(dx, y) = (−1)|x|+1(x, dy), ([x, y], z) = (x, [y, z]), ∀x, y, z ∈ L.

The condition (dx, y) = ±(x, dy) implies in particular that d(L)⊥ = ker(d); since L is finite-
dimensional we have d(L) = ker(d)⊥, and this implies that also the induced bilinear form in the
cohomology H∗(L) is non-degenerate.

Example 3.2 (Symplectic representations). Let (V, ω) be a finite-dimensional symplectic vector
space and let g be a finite-dimensional Lie algebra. Recall that a left action

g× V → V, (g, v) �→ gv,

is called symplectic if for every v, w ∈ V and every g ∈ g we have

ω(gv, w) + ω(v, gw) = 0.

There exists a natural correspondence between (isomorphism classes of) symplectic representa-
tions and (isomorphism classes of) cyclic DG Lie algebras of degree 2 with trivial differential and
without elements of negative degree: given a symplectic action as above, consider the graded Lie
algebra L = H(L) = L0 ⊕ L1 ⊕ L2 whose cyclic Lie structure is defined as follows.

(i) L0 = g, L1 = V , and L2 = g∨ = HomK(g, K).
(ii) The Lie bracket is defined by

– [g, v] = gv for every g ∈ L0, v ∈ L1,
– [v, w] : h �→ ω(hv, w) for every v, w ∈ L1, h ∈ g,
– [g, y] : h �→ y([h, g]g) for every g, h ∈ g, y ∈ g∨.

(iii) The pairing is defined by
– (−,−) : L0 × L2 → K is the natural pairing,
– (v, w) = ω(v, w) for every v, w ∈ L1.

The relations below easily follow from the above conditions:

(h, [g, y]L) = ([h, g]g, y) for every h, g ∈ L0, y ∈ L2,

(g, [v, w]L) = ω(gv, w) = ω([g, v]L, w) for every g ∈ L0, v, w ∈ L1.

Moreover, the equalities

ω(gv, w) + ω(v, gw) = (gv, w)− ω(gw, v) = ([g, v]L, w)− (g, [v, w]L), for every g ∈ g, v, w ∈ L1,

show that the symplectic condition ω(gv, w) + ω(v, gw) = 0 is equivalent to the cyclicity condition
(g, [v, w]) = ([g, v], w). The proof that the data (L, 0, [−,−], (−,−)) defined above provides an
example of a cyclic DG Lie algebra of degree 2 is now straightforward.
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Notice that the Maurer–Cartan functional 1
2 [v, v] coincides by definition with the moment

map μ : V → g∨ of the symplectic representation.

Example 3.3. Consider the following complex of vector spaces in degrees 0,1,2:

L : Span(a, b) d−→ Span(x, y, p, db) d−→ Span(z, dp)

equipped with the bilinear form (−,−) : L�2 → K[−2], where the only nontrivial products
between basis vectors are

(x, y) = −(y, x) = −1, (db, p) = −(p, db) = −1, (a, z) = (z, a) = 1, (b, dp) = (dp, b) = 1.

Next consider the bracket [−,−] : L∧2 → L, where the only nontrivial brackets between basis
vectors are

[a, x] = db, [a, p] = y, [x, x] = dp, [p, x] = z, [b, x] = y.

The next proposition summarizes the properties or the above example that are relevant for this
paper.

Proposition 3.4. In the above setup:

(i) L is a cyclic DG Lie algebra of degree 2;

(ii) L is not a formal DG Lie algebra;

(iii) there does not exist any splitting L = H ⊕ d(K)⊕K such that [H0, H1] ⊂ H1.

Proof. The first item is a tedious but straightforward computation. For the second item we
observe that the triple Massey power of x is non-trivial since dp = [x, x] and [p, x] = z. The third
item is clear since for every splitting there exists α ∈ K such that x + αdb ∈ H1 and therefore
[a, x + αdb] = [a, x] = db 
∈ H1. �

Example 3.5. Consider the following complex of vector spaces in degrees 1,2:

L : Span(a, b) d−→ Span(x, db)

equipped with the closed bilinear form (−,−) : L�2 → K[−3], where the only non-trivial products
between basis vectors are (a, x) = (b, db) = 1. Next consider the bracket [−,−] : L∧2 → L, where
the only non-trivial brackets between basis vectors are [a, a] = db, [a, b] = x. The same argument
used in the proof of Proposition 3.4 shows that L is a cyclic non-formal DG Lie algebra of
degree 3.

It is useful to enlarge the class of cyclic DG Lie algebras by removing the assumption that L

is finite-dimensional, which is not satisfied in most geometrical situations. The same weakening
of assumption was considered by Kontsevich [Kon94] in the associative case.

Definition 3.6. A quasi-cyclic DG Lie algebra (L, d, [−,−], (−,−)) of degree n is a DG Lie
algebra (L, d, [−,−]) with finite-dimensional cohomology, together with a degree −n symmetric
bilinear form (−,−) : L�2 → K[−n] which satisfies

(dx, y) = (−1)|x|+1(x, dy), ([x, y], z) = (x, [y, z]), ∀x, y, z ∈ L,

and such that the induced form (−,−) : H(L)�2 → K[−n] is non-degenerate.
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If (L, d, [−,−], (−,−)) is a quasi-cyclic DG Lie algebra then its cohomology H∗(L) is naturally
endowed with a structure of cyclic graded Lie algebra of the same degree.

Example 3.7 (Vector bundles on manifolds with trivial canonical bundle). Let E be a locally free
sheaf of a smooth complex projective manifold X of dimension n with trivial canonical bundle,
and denote by ωX be a holomorphic volume form. Then the Dolbeault complex

L = A0,∗
X (Hom(E , E))

of the sheaf of endomorphisms of E is a quasi-cyclic DG Lie algebra of degree n, where

(f, g) =
∫

X
ωX ∧ Tr(fg).

We have H i(L) = Exti
X(E , E) and by Serre duality the induced pairing

(−,−) : Exti
X(E , E)× Extn−i

X (E , E)→ C

is non-degenerate. In § 5 we extend this construction to coherent sheaves.

We are now ready to state one of the main results of this paper, namely a sufficient condition
for formality of quasi-cyclic DG Lie algebras of degree at most 2.

Theorem 3.8. Let (L, d, [−,−], (−,−)) be a quasi-cyclic DG Lie algebra of degree n � 2.

Assume that there exists a splitting L = H ⊕ d(K)⊕K such that:

(i) H i = 0 for i < 0 (and hence also H i = 0 for i > n);

(ii) H0 ⊂ L0 is closed with respect to the bracket [−,−];
(iii) H i, Ki ⊂ Li are H0-submodules (with respect to the adjoint action) for all i > 0.

Then the DG Lie algebra (L, d, [−,−]) is formal.

For n � 0 the above theorem is trivial since H i = 0 for every i > 0 and then the embedding
H0 → L is a quasi-isomorphism of DG Lie algebras. The next section will be entirely devoted
to the (long) proof in the case n = 2, whose first step also provides a complete proof for n = 1.
Examples 3.5 and 3.3 show that formality fails if either n > 2 or without the assumption (iii),
even for cyclic DG Lie algebras.

4. Proof of Theorem 3.8

Let (L, d, [−,−], (−,−)) be as in Theorem 3.8. If A, B are two subsets of L we shall write
A ⊥ B if (x, y) = 0 for every x ∈ A, y ∈ B. For instance, it follows immediately from the relation
(dx, y) = (−1)|x|+1(x, dy) that d(K) ⊥ d(K) and H ⊥ d(K).

Lemma 4.1. Up to a possible restriction to a quasi-isomorphic DG Lie subalgebra of L we may

assume that the splitting L = H ⊕ d(K)⊕K satisfies the following conditions:

(i) H i = 0 for i < 0;

(ii) H0 ⊂ L0 is closed with respect to the bracket [−,−];
(iii) H i, Ki ⊂ Li are H0-submodules (with respect to the adjoint action) for all i ∈ Z;

(iv) H ⊥ K.
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Proof. Since H i = 0 for every i < 0 the DG Lie subalgebra

H0 ⊕ (H1 ⊕K1)⊕ (H2 ⊕ d(K1)⊕K2)⊕ · · ·

is quasi-cyclic and quasi-isomorphic to L. This proves that, up to a possible restriction to a
quasi-isomorphic DG Lie subalgebra, it is not restrictive to assume the validity of condition (iii).
Next, for every integer i consider the vector subspace

Ci = {x ∈ H i ⊕Ki | (x, y) = 0 ∀ y ∈ Hn−i}.

Since (−,−) : H i ×Hn−i → K is a perfect pairing, the map

H i ⊕ Ci → H i ⊕Ki

(h1, h2, k) �→ (h1 − h2, k)

is an isomorphism. If x ∈ Ci and a ∈ H0, then [a, x] ∈ H i ⊕Ki; for every y ∈ Hn−i we have
(y, [a, x]) = ([y, a], x) = 0 and therefore [a, x] ∈ Ci. Finally, replacing Ki with Ci, we may assume
H ⊥ K.

For later use it should be pointed out that the non-degeneracy of (−,−) : H�2 → K

immediately implies

x ∈ K ⊕ d(K) ⇐⇒ (x, y) = 0 for every y ∈ H. (4.1)

�

From now on we assume that (L, d, [−,−], (−,−)) is a quasi-cyclic DG Lie algebra of degree
n � 2 equipped with a splitting L = H ⊕ d(K)⊕K satisfying the conditions of Lemma 4.1. The
fist step is to use such a splitting in order to produce a minimal L∞ model of L. Following the
recipe described in § 2, we introduce the maps

ı1 : H ↪→ L, π : L � H, h : L � d(K) −d−1−−−→ K ↪→ L

that satisfy the relations

(ı1(x), ı1(y)) = (x, y), (h(l), ı1(x)) = 0, (π(l), x) = (l, ı1(x)), ∀x, y ∈ H, l ∈ L.

The first one is obvious and the second one follows from the orthogonality condition H ⊥ K.
Since Im(ı1) = H, Im(h) = K and H ⊥ d(K)⊕K, the first two imply the third:

(π(l), x) = (ı1π(l), ı1(x)) = ((idL +dh + hd)(l), ı1(x)) = (l, ı1(x)).

The maps ı1, π, h induce via homotopy transfer a minimal L∞-algebra structure on H,
together with an L∞ quasi-isomorphism ı : H(L)→ L of L∞-algebras with linear part ı1.
The quadratic components are given by

ı2(ξ1, ξ2) = h[ı(ξ1), ı(ξ2)], {ξ1, ξ2}2 = π[ı(ξ1), ı(ξ2)] ,
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while the higher brackets {· · · }p : H∧p → H[2− p] and the higher Taylor coefficients ıp : H∧p →
L[1− p], p � 2, are explicitly (and recursively) defined by

ıp(ξ1, . . . , ξp) =
1
2

p−1∑
k=1

∑
σ∈S(k,p−k)

±h[ık(ξσ(1), . . .), ıp−k(. . . , ξσ(p))], (4.2)

{ξ1, . . . , ξp}p =
1
2

p−1∑
k=1

∑
σ∈S(k,p−k)

±π[ık(ξσ(1), . . .), ıp−k(. . . , ξσ(p))], (4.3)

where ± is the appropriate Koszul sign described explicitly in (2.3) and (2.4). These signs will
simplify in our specific case, for instance ±1 = +1 whenever ξi ∈ H1 for every i, and we do not
need to make them explicit.

Notice that {a, b}2 = [a, b] for a, b ∈ H0 and under the natural isomorphism H ∼= H∗(L),
the quadratic bracket {x, y}2 = π[ı1(x), ı1(y)] on H is just the bracket induced by [−,−] in
cohomology.

Lemma 4.2. In the above setup, for every p � 2 and every g ∈ H0 we have

ıp(g, . . .) = 0, {g, . . .}p+1 = 0.

Proof. If g ∈ H0, then [ı1(g), ı1(ξ)] ∈ H ⊂ Ker(h) for all ξ ∈ H, since H is an H0-submodule of
L, thus ı2(g, ξ) = 0 for all g ∈ H0 and ξ ∈ H. In general, by formulas (4.2), (4.3) and induction
on p, for all p � 2, g ∈ H0 and ξ1, . . . , ξp ∈ H, we have

{ξ1, . . . , ξp, g}p+1 = ±π[ıp(ξ1, . . . , ξp), ı1(g)], ıp+1(ξ1, . . . , ξp, g) = ±h[ıp(ξ1, . . . , ξp), ı1(g)].

Finally, notice that for p � 2 we have Im(ıp) ⊂ K ⊂ Ker(h)
⋂

Ker(π), and that K is by hypothesis
an H0-submodule of L. This implies that [ıp(ξ1, . . . , ξp), ı1(g)] ∈ K and therefore

{ξ1, . . . , ξp, g}p+1 = ıp+1(ξ1, . . . , ξp, g) = 0. �

Lemma 4.2 provides a complete proof of formality for n = 1, since H i = 0 for every i 
= 0, 1
and therefore for degree reasons {· · · }p+1 = 0 for every p � 2. From now on we assume that the
degree of the quasi-cyclic DG Lie algebra L of Theorem 3.8 is equal to n = 2.

Lemma 4.3. In the above situation, for every ξ1, . . . , ξp ∈ H1, p � 3, we have

π[ıp(ξ1, . . . , ξp−1), ı1(ξp)] = 0, (4.4)

{ξ1, . . . , ξp}p =
1
2

p−2∑
k=2

∑
σ∈S(k,p−k)

π[ık(ξσ(1), . . .), ıp−k(. . . , ξσ(p))], (4.5)

and therefore {ξ1, ξ2, ξ3}3 = 0 for every ξ1, ξ2, ξ3 ∈ H1.

Proof. It is sufficient to prove (4.4). We first note that the image of ı1 is contained in H and
the image of ıj is contained in K for every j > 1. Moreover, we can rewrite (4.1) in the form
π(x) = 0 if and only if (x, y) = 0 for every y ∈ H: now it is sufficient to observe that for any
g ∈ H0, x ∈ H1 and y ∈ K1 we have (g, [x, y]) = ([g, x], y) = 0 since H1 is an H0-module and
K1 is orthogonal to H1. �
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For degree reasons, Lemma 4.2 implies that for p � 2 we have {ξ1, . . . , ξp+1}p+1 = 0 unless
ξ1, . . . , ξp+1 ∈ H1, and then by Lemma 4.3 we have {· · · }3 ≡ 0. However, it should be noted that
in general the higher brackets {· · · }p will not vanish for p � 4 and therefore the proof of Theorem
3.8 is still very far from concluded.

Notation. From now on we shall denote by g the Lie algebra (H0, {−,−}).

Now we notice that item (iii) in the hypotheses of Lemma 4.1 implies that the maps ı : H → L,
π : L→ H and h : L→ L[−1] are equivariant with respect to the induced g-module structures.

Since ı = (ı1, ı2, . . .) is a morphism of L∞ algebras we have

p∑
k=1

∑
σ∈S(p+2−k,k−1)

±ık({ξσ(1), . . .}p+2−k, . . . , ξσ(p+1))

= ±dıp+1(ξ1, . . . , ξp+1) +
1
2

p∑
j=1

∑
σ∈S(j,p+1−j)

±[ıj(ξσ(1), . . .), ıp+1−j(. . . , ξσ(p+1))],

and taking p � 2, ξ1, . . . , ξp ∈ H1, ξp+1 = g ∈ g, by Lemma 4.2 the above expression reduces to

[ıp(ξ1, . . . , ξp), ı1(g)] = ıp({ξ1, g}2, . . . , ξp) + · · ·+ ıp(ξ1, . . . , {ξp, g}2). (4.6)

Notice that formula (4.6) is also trivially satisfied for p = 1. For later use it is useful to
introduce, for every 0 < j < p, the function

Ip
j : (H1)�j ⊗ (H1)�p−j → K, Ip

j (ξ1, . . . , ξp) = (ıj(ξ1, . . . , ξj), ıp−j(ξj+1, . . . , ξp)).

Then for every 0 < j < p, ξ1, . . . , ξp ∈ H1 and g ∈ g, we have

p∑
i=1

Ip
j (ξ1, . . . , {ξi, g}2, . . . , ξp) = 0. (4.7)

The proof of (4.7) is an immediate consequence of (4.6) together with the identity ([l1, ı1(g)], l2) +
(l1, [l2, ı1(g)]) = 0 for all g ∈ g, l1, l2 ∈ L1. Moreover, the orthogonality condition H ⊥ K implies
that for every p � 2 we have Ip+1

1 = Ip+1
p = 0.

Notation. We denote by {−,−} : H∗(L)∧2 → H∗(L) the Lie bracket induced by the bracket
[−,−] : L∧2 → L on L. We have already observed that via the natural identification H = H∗(L)
we have {−,−} = {· ·}2 and it is straightforward to check that it continues to satisfy the condition
({x, y}, z) = (x, {y, z}) for all x, y, z ∈ H∗(L).

By homotopy classification of DG Lie and L∞ algebras, in order to prove the formality of L

it is enough to exhibit an L∞ isomorphism

f : (H, 0, {−,−}, 0, {· · · }4, {· · · }5, . . .)→ (H∗(L), 0, {−,−}, 0, 0, . . .)

between H with the transferred L∞ algebra structure and H∗(L) with the induced graded Lie
algebra structure. Denoting by fp : H∧p → H[1− p] the Taylor coefficients of f , the necessary
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relations these have to satisfy in order for f to be an L∞ morphism read

p∑
k=1

∑
σ∈S(p+2−k,k−1)

±fk({ξσ(1), . . .}, . . . , ξσ(p+1))

=
1
2

p∑
j=1

∑
σ∈S(j,p+1−j)

±{fj(ξσ(1), . . .), fp+1−j(. . . , ξσ(p+1))} (4.8)

for all p � 2 and ξ1, . . . , ξp+1 ∈ H. If these are satisfied, for f to be an isomorphism of L∞ algebras
it is necessary and sufficient that its linear part f1 : H → H is an isomorphism of graded spaces.
We look for an L∞ isomorphism f as above such that moreover f1 = idH and fp(ξ1, . . . , ξp) = 0
for p � 2 unless p � 3 and ξ1, . . . , ξp ∈ H1. With these hypotheses, many of the previous relations
(4.8) become trivial, and the only non-trivial ones we are left to verify are

{
fp

(
ξ1, . . . , ξp

)
, g

}
= fp

({
ξ1, g

}
, . . . , ξp

)
+ · · ·+ fp

(
ξ1, . . . ,

{
ξp, g

})
, (4.9)

{
ξ1, . . . , ξp+1

}
p+1

=
1
2

p∑
j=1

∑
σ∈S(j,p+1−j)

{
fj(ξσ(1), . . .), fp+1−j(. . . , ξσ(p+1))

}
, (4.10)

for all p � 2, ξ1, . . . , ξp+1 ∈ H1 and g ∈ g (as in the case of transfer formulas, Koszul signs have
disappeared since |ξ1| = · · · = |ξp+1| = 1). Since f2 = 0 by definition and we already know that
{· · · }3 = 0, relations (4.9) and (4.10) are trivially satisfied for p = 2.

For every p � 3 and every 1 < j < p, we define recursively the linear maps

fp : (H1)�p → H1, F p+1
j : (H1)�j ⊗ (H1)�p−j+1 → K,

by the formulas

F p+1
j (ξ1, . . . , ξp+1) = (fj(ξ1, . . . , ξj), fp−j+1(ξj+1, . . . , ξp+1)), (4.11)

(
fp(ξ1, . . . , ξp), ξp+1

)
=

1
2

p−1∑
j=2

∑
σ∈S(j,p−j)

(Ip+1
j − F p+1

j )(ξσ(1), . . . , ξσ(p), ξp+1), (4.12)

for all ξ1, . . . , ξp+1 ∈ H1. The validity of (4.9) is proved in the following lemma.

Lemma 4.4. In the above situation, for every p � 2, every 1 < j < p, every ξ1, . . . , ξp+1 ∈ H1

and every g ∈ g, we have

p∑
i=1

fp(ξ1, . . . , {ξi, g}, . . . , ξp) = {fp(ξ1, . . . , ξp), g}, (4.13)

p+1∑
i=1

F p+1
j (ξ1, . . . , {ξi, g}, . . . , ξp+1) = 0. (4.14)
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Proof. The above formula are trivially satisfied for p = 2, since f2 = 0 and (4.14) is empty.
Assuming (4.13) valid for all integers smaller than p, we have

p+1∑
i=1

F p+1
j (ξ1, . . . , {ξi, g}, . . . , ξp+1)

= ({fj(ξ1, . . . , ξj), g}, fp−j−1(ξ1, . . . , ξj)) + (fj(ξ1, . . . , ξj), {fp−j−1(ξ1, . . . , ξj), g}) = 0,

where the second equality follows from the cyclic condition ({x, g}, y) + (x, {y, g}) = 0 for all
g ∈ g and x, y ∈ H1. For the same reason we have

({
fp(ξ1, . . . , ξp), g

}
, ξp+1

)
= −(

fp(ξ1, . . . , ξp),
{
ξp+1, g

})
=

(
− 1

2

) p−1∑
j=2

∑
σ∈S(j,p−j)

(Ip+1
j − F p+1

j )
(
ξσ(1), . . . , ξσ(p),

{
ξp+1, g

})

=
1
2

p∑
i=1

p−1∑
j=2

∑
σ∈S(j,p−j)

(Ip+1
j − F p+1

j )
(
ξσ(1), . . . ,

{
ξσ(i), g

}
, . . . , ξp+1

)

=
p∑

h=1

(
fp(ξ1, . . . , {ξh, g}, . . . , ξp), ξp+1

)
,

where in the second and fourth equalities we have used the defining formula (4.12), while the
third equality is a consequence of (4.7) and (4.14). Since (−,−) is non-degenerate in H1, the
formula

({
fp(ξ1, . . . , ξp), g

}
, ξp+1

)
=

p∑
h=1

(
fp(ξ1, . . . , {ξh, g}, . . . , ξp), ξp+1

)

is completely equivalent to (4.13). �

Finally, we prove (4.10), or equivalently that

2
({

ξ1, . . . , ξp+1

}
p+1

, g
)

=
p∑

j=1

∑
σ∈S(j,p+1−j)

({
fj(ξσ(1), . . .), fp+1−j(. . . , ξσ(p+1))

}
, g

)
,

for every ξ1, . . . , ξp+1 ∈ H1 and g ∈ g. By (4.5) we have

2
({

ξ1, . . . , ξp+1

}
p+1

, g
)

=
p−1∑
j=2

∑
σ∈S(j,p+1−j)

(
π
[
ıj

(
ξσ(1), . . .

)
, ıp+1−j

(
. . . , ξσ(p+1)

)]
, g

)

=
p−1∑
j=2

∑
σ∈S(j,p+1−j)

([
ıj

(
ξσ(1), . . .

)
, ıp+1−j

(
. . . , ξσ(p+1)

)]
, ı1(g)

)
.
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By using the cyclic relation ([l1, l2], l3) = (l1, [l2, l3]), ∀ l1, l2, l3 ∈ L, and (4.6) we get

2
({

ξ1, . . . , ξp+1

}
p+1

, g
)

=
p−1∑
j=2

∑
σ∈S(j,p+1−j)

(
ıj

(
ξσ(1), . . .

)
, [ıp+1−j

(
. . . , ξσ(p+1)

)
, ı(g)]

)

=
p−1∑
j=2

∑
σ∈S(j,p−j,1)

(
ıj

(
ξσ(1), . . .

)
, ıp+1−j

(
. . . , ξσ(p),

{
ξσ(p+1), g

}))

=
p−1∑
j=2

∑
σ∈S(j,p−j,1)

Ip+1
j

(
ξσ(1), . . . , ξσ(p),

{
ξσ(p+1), g

})
,

where S(j, p− j, 1) is the set of permutations σ of 1, . . . , p + 1 such that

σ(1) < · · · < σ(j), σ(j + 1) < · · · < σ(p).

On the other hand,
p∑

j=1

∑
σ∈S(j,p+1−j)

({
fj(ξσ(1), . . .), fp+1−j(. . . , ξσ(p+1))

}
, g

)

=
p∑

j=1

∑
σ∈S(j,p+1−j)

(
fj(ξσ(1), . . .), {fp+1−j(. . . , ξσ(p+1)), g}

)

=
p−1∑
j=2

∑
σ∈S(j,p−j,1)

(
fj(ξσ(1), . . .), {fp+1−j(. . . , ξσ(p+1)), g}

)

+
∑

σ∈S(p,1)

(
fp

(
ξσ(1), . . . , ξσ(p)

)
,
{
ξσ(p+1), g

})
.

Reasoning as before and using the already proved (4.9), we have
p∑

j=1

∑
σ∈S(j,p+1−j)

({
fj(ξσ(1), . . .), fp+1−j(. . . , ξσ(p+1))

}
, g

)

=
p−1∑
j=2

∑
σ∈S(j,p−j,1)

(
fj

(
ξσ(1), . . .

)
, fp+1−j

(
. . . , ξσ(p),

{
ξσ(p+1), g

}))

+
∑

σ∈S(p,1)

(
fp

(
ξσ(1), . . . , ξσ(p)

)
,
{
ξσ(p+1), g

})

=
p−1∑
j=2

∑
σ∈S(j,p−j,1)

F p+1
j

(
ξσ(1), . . . , ξσ(p),

{
ξσ(p+1), g

})

+
∑

σ∈S(p,1)

(
fp

(
ξσ(1), . . . , ξσ(p)

)
,
{
ξσ(p+1), g

})

=
p−1∑
j=2

∑
σ∈S(j,p−j,1)

Ip+1
j

(
ξσ(1), . . . , ξσ(p),

{
ξσ(p+1), g

})
,
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where in the last equality we used the recursive definition (4.12) of fp. The proof of Theorem
3.8 is now complete.

Corollary 4.5. Let (L, d, [−,−], (−,−)) be a quasi-cyclic DG Lie algebra of degree 2 with

H i(L) = 0 for every i 
= 0, 1, 2. Assume that there exists a Lie subalgebra H0 ⊂ Z0(L) such

that:

(i) the projection Z0(L)→ H0(L) induces an isomorphism H0 � H0(L);
(ii) Li is a completely reducible H0-module (with respect to the adjoint action) for all i.

Then the DG Lie algebra (L, d, [−,−]) is formal.

Proof. Construct a splitting by choosing for every i 
= 0 a direct sum decomposition Zi(L) =
Bi(L)⊕H i of H0-modules and then, for every i, a direct sum decomposition Li = Zi(L)⊕Ki

of H0-modules. This splitting satisfies the conditions of Theorem 3.8. �

5. Derived endomorphisms and their formality

For every coherent sheaf F on a smooth complex projective manifold X there is a well-defined
homotopy class of DG Lie algebras denoted by RHomX(F ,F) and called, with a little abuse
of language, the DG Lie algebra of derived endomorphisms of F . There exist several possible
(quasi-isomorphic) representatives for RHomX(F ,F), and we refer to [Mea18] for an explicit
and concrete description of many of them. The importance of the DG Lie algebra of derived
endomorphisms relies on the fact that it controls the deformation theory of F in the usual way
via Maurer–Cartan equation modulus gauge action; cf. [AS18, BZ18, IM19, Mea18]. Moreover,
H i(RHomX(F ,F)) = Exti(F ,F) for every i.

Since the notion of quasi-cyclic DG Lie algebra is not stable under general quasi-
isomorphisms, in view of a possible application of Theorem 3.8 it is useful to consider the
Dolbeault representatives for RHomX(F ,F). Consider a finite locally free resolution E∗ =
{· · · E−1 → E0} → F and denote by

Hom∗
OX

(E∗, E∗) =
⊕

d

Homd
OX

(E∗, E∗) =
⊕

d

⊕
p

HomOX

(Ep, Ed+p
)

the (DG) sheaf of endomorphisms of E∗. Then Hom∗
OX

(E∗, E∗) is a sheaf of DG Lie algebras
over X. It is important to notice that the bracket [f, g] = fg − (−1)|f | |g|gf is OX -bilinear and
therefore it can be extended naturally to Dolbeault’s resolution

L = A0,∗
X (Hom∗

OX
(E∗, E∗)) =

⊕
p,q,r

A0,p
X (HomOX

(Eq, Er)),

where A0,p
X (G) denotes the space of global differential forms of type (0, q) with values in the locally

free sheaf G. Similarly, the usual trace map (see, for example, [IM19] and references therein)

Tr: Hom∗
OX

(E∗, E∗)→ OX , Tr(f) =
∑

i

(−1)i Tr(f i
i ), where f =

∑
i,j

f j
i , f j

i : E i → Ej ,

is a morphism of sheaves of DG Lie algebras, and extends to a morphism of DG Lie algebras

Tr: L = A0,∗
X (Hom∗

OX
(E∗, E∗))→ A0,∗

X .
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Since the bracket on A0,∗
X is trivial we have

Tr([f, g]) = 0, Tr(df) = ∂̄ Tr(f),

for every f, g ∈ L, and this immediately implies that Tr([f, g]h) = Tr(f [h, g]) for every f, g, h ∈ L.
If ω is a non-trivial section of the canonical bundle of X, the graded symmetric bilinear form

(−,−) : L�2 → C[−dim X], (f, g) =
∫

X
ω ∧ Tr(fg), (5.1)

is a cyclic bilinear form, where this means that it satisfies the conditions (df, g) + (−1)|f |(f, dg) =
0 and ([f, g], h) = (f, [g, h]). Finally, if ω is a holomorphic volume form, by Serre duality the above
bilinear form is non-degenerate in cohomology and therefore (L, (−,−)) is a quasi-cyclic DG Lie
algebra of degree dimX.

From now on we consider only coherent sheaves on projective surfaces with torsion canonical
bundle. According to the Enriques–Kodaira classification of surfaces (see, for example, [BHPV04,
Bea94]), a smooth projective surface has torsion canonical bundle K if and only if it is minimal
of Kodaira dimension 0. According to the values of irregularity q and geometric genus pg, these
surfaces are classified into four (non-empty) distinguished classes:

– projective K3 surfaces, with q = 0, pg = 1 and K = 0;
– Enriques surfaces, with q = 0, pg = 0 and 2K = 0;
– bielliptic surfaces, with q = 1, pg = 0 and nK = 0 for some n = 2, 3, 4, 6;
– Abelian surfaces, with q = 2, pg = 1 and K = 0.

We are now ready to prove the Kaledin–Lehn formality conjecture for the above surfaces,
namely that RHomX(F ,F) is formal whenever F is polystable with respect to any (possibly
non-generic) polarization; see, for example, [HL10, Chapter 1]. It is useful and instructive to give
first a separate proof for the cases of K3 and Abelian surfaces.

Theorem 5.1. Let X be a complex projective surface with trivial canonical bundle and let F
be a coherent sheaf on X. If the group of automorphisms of F is linearly reductive (e.g. if F is

polystable), then the DG Lie algebra RHomX(F ,F) is formal.

Proof. Let us denote by G the linearly reductive group of automorphisms of F . Since X is smooth
projective it is not difficult to see that there exists a G-equivariant finite locally free resolution
E∗ = {0→ E−2 → E−1 → E0} → F ; a detailed proof is given, for instance, in [BMM20]. We claim
that the DG Lie algebra L = A0,∗

X (Hom∗
OX

(E∗, E∗)) satisfies the condition of Theorem 3.8, when
equipped with the cyclic non-degenerate structure (5.1).

Assume for the moment that the induced action of G on Li is rational for every i; since
the action of G commutes with the differential of the resolution E∗. we have a natural inclusion
G ⊂ Z0(L) and we can take H0 = TIdG ⊂ Z0(L) ⊂ L0 as the Lie algebra of G. Then, since G is
assumed to be linearly reductive we may extend H0 to a G-equivariant splitting of L that clearly
satisfies the hypotheses of Theorem 3.8.

It remains to be shown that Li is a rational representation of G for every i. This follows
immediately from the results of [BMM20], and we give here only a sketch of the proof. The key
point is that if G acts on a coherent sheaf G then, for every open affine subset U , the space G(U)
is a rational finitely supported representation of G [BMM20, Lemma 3.5]. Recall that a repre-
sentation is finitely supported if it is isomorphic to a finite direct sum

⊕n
i=1 Hi ⊗Wi, for some
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irreducible rational (hence finite-dimensional) representations Hi and some trivial representations
Wi; every subrepresentation and every quotient of a rational finitely supported representation
remains finitely supported [BMM20, Lemma 2.7 and Remark 2.8].

Let X =
⋃

j Uj be a finite open affine cover such that E∗ is free over Uj for every j. Then
Γ
(
Uj ,Hom∗

OX
(E∗, E∗)) is rational and finitely supported for every j, therefore

L ⊂
⊕

j

A0,∗
Uj

(Hom∗
OX

(E∗, E∗)) ⊂⊕
j

A0,∗
Uj
⊗C Γ

(
Uj ,Hom∗

OX
(E∗, E∗))

is also a rational finitely supported representation of G. �

Let us now return to our initial situation, namely with F a polystable sheaf on a smooth
projective surface X with torsion canonical bundle KX = Ω2

X . We denote by n be the smallest
positive integer such that K⊗n

X � OX (we already know that n = 1, 2, 3, 4, 6).
Every choice of an isomorphism K⊗n

X
�−→ OX induces naturally a structure of commutative

OX -algebra on the locally free sheaf of rank n,

C := OX ⊕KX ⊕K⊗2
X ⊕ · · · ⊕K⊗n−1

X .

Since KX is a torsion line bundle we have that F ⊗ C is also polystable.
Let E∗ = {· · · E−1 → E0} → F be any finite locally free resolution. Then E∗ ⊗ C is a finite

locally free resolution of F ⊗ C. Moreover,

Hom∗
OX

(E∗ ⊗ C, E∗ ⊗ C) =
n−1⊕
i,j=0

Hom∗
OX

(E∗ ⊗K⊗i
X , E∗ ⊗K⊗j

X

)
,

and every direct summand is a Hom∗
OX

(E∗, E∗)-module via the adjoint action. The trace map
extends naturally to a morphism of sheaves

T̃r : Hom∗
OX

(E∗ ⊗ C, E∗ ⊗ C)→ C,
with components

T̃r : Hom∗
OX

(E∗ ⊗K⊗i
X , E∗ ⊗K⊗j

X

)
= Hom∗

OX

(E∗, E∗)⊗K⊗j−i
X

Tr⊗ Id−−−−→ K⊗j−i
X .

The DG Lie algebra L = A0,∗
X (Hom∗

OX
(E∗ ⊗ C, E∗ ⊗ C)) is quasi-cyclic of degree 2, when equipped

with the pairing

(f, g) =
∫

X
pKT̃r(fg),

where pK : A0,∗
X (C)→ A0,2

X (KX) = A2,2
X is the projection. In fact, for every 0 � i, j < n the above

pairing induces the Serre duality isomorphism

Exth
X

(F ⊗K⊗i
X ,F ⊗K⊗j

X

) � Ext2−h
X

(F ⊗K⊗j
X ,F ⊗K⊗i+1

X

)∨
so that it is non-degenerate in cohomology.

Lemma 5.2. In the above situation there exists a finite locally free resolution E∗ → F such

that every endomorphism of F ⊗ C lifts canonically to an endomorphism of the complex

E∗ ⊗ C.

232

https://doi.org/10.1112/S0010437X20007605 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007605


Formality conjecture for minimal surfaces

Proof. By assumption F is a pure coherent sheaf that is a direct sum of stable sheaves with the
same reduced Hilbert polynomial:

F = F1 ⊕ · · · ⊕ Fn.

In particular, HomOX
(Fi,Fj) = 0 for every i 
= j and HomOX

(Fi,Fi) = C for every i. Consider
the following equivalence relation on the set of direct summands

Fi ∼ Fj ⇐⇒ Fi ⊗ C ∼= Fj ⊗ C.
Equivalently, Fi ∼ Fj if and only if Fi is isomorphic to Fj ⊗K⊗h for some h. Up to permutation
of indices we may assume that F1, . . . ,Fr are a set or representatives for this equivalence relation.
We may write

F =
r⊕

i=1

Fi ⊗Wi,

where every Wi is a direct sum of line bundles of type K⊗h
X . We have F ⊗ C =

⊕r
i=1Fi ⊗

C⊕wi where wi is the rank of Wi. Every non-trivial endomorphism of Fi is a scalar multiple
of the identity and then the group of automorphisms of F ⊗ C is the product of n copies of∏r

i=1 GLwi(C).
Choose r a finite locally free resolution E∗i → Fi: every endomorphism of Fi is a scalar

multiple of the identity and then lifts canonically to E∗i . It is now easy to verify that

E∗ =
r⊕

i=1

E∗j ⊗Wi

is resolution of F with the required properties. �

Theorem 5.3. In the above situation both the DG Lie algebras RHomX(F ⊗ C,F ⊗ C) and

RHomX(F ,F) are formal.

Proof. Let E → F be a resolution as in Lemma 5.2 and consider the quasi-cyclic DG Lie algebra

L = A0,∗
X (Hom∗

OX
(E∗ ⊗ C, E∗ ⊗ C))

as a representative in the homotopy class of R Hom(F ⊗ C,F ⊗ C). The same arguments used in
the proof of Theorem 5.1 imply that L is a rational and finitely supported representation of the
linearly reductive group of automorphisms of F ⊗ C.

By assumption there exists a natural inclusion of Lie algebras

HomX(F ⊗ C,F ⊗ C) � H0 ⊂ HomX(E∗ ⊗ C, E∗ ⊗ C) = Z0(L)

that induces an isomorphism H0 � H0(L). The adjoint action of HomX(F ⊗ C,F ⊗ C) on L is
induced by a rational action of a linearly reductive algebraic group, hence the action of H0 on
L is completely reducible and the formality of L follows from Corollary 4.5.

Taking

M = A0,∗
X (Hom∗

OX
(E∗, E∗))

as a representative in the homotopy class of R Hom(F ,F), we have already observed that there
exists a natural inclusion of DG Lie algebra M ⊂ L together a decomposition of L as a direct
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sum of M -modules:

L =
n−1⊕
i,j=0

A0,∗
X

(Hom∗
OX

(E∗ ⊗K⊗i
X , E∗ ⊗K⊗j

X

))
.

Now the formality of M is a direct consequence of the formality of L and of the formality transfer
theorem (Theorem 2.3). �
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AS18 E. Arbarello and G. Saccà, Singularities of moduli spaces of sheaves on K3 surfaces and
Nakajima quiver varieties, Adv. Math. 329 (2018), 649–703.

BM18 R. Bandiera and M. Manetti, Algebraic models of local period maps and Yukawa algebras, Lett.
Math. Phys. 108 (2018), 2055–2097.

BMM20 R. Bandiera, M. Manetti and F. Meazzini, Deformations of polystable sheaves on surfaces:
quadraticity implies formality, Mosc. Math. J. (2020), to appear.

BHPV04 W. Barth, K. Hulek, C. Peters and A. van de Ven, Compact complex surfaces, Ergebnisse der
Mathematik und ihrer Grenzgebiete, vol. 4, second edition (Springer, 2004).

Bea94 A. Beauville, Complex algebraic surfaces, London Mathematical Society Lecture Note Series,
vol. 68 (Cambridge University Press, 1994).

BZ18 N. Budur and Z. Zhang, Formality conjecture for K3 surfaces, Compos. Math. 155 (2018),
902–911.

Get09 E. Getzler, Lie theory for nilpotent L∞ algebras, Ann. of Math. (2) 170 (2009), 271–301.
GK95 E. Getzler and M. M. Kapranov, Cyclic operads and cyclic homology, in Geometry, topology,

and physics (International Press, Cambridge, MA, 1995), 167–201.
HS79 S. Halperin and J. Stasheff, Obstructions to homotopy equivalences, Adv. Math. 32 (1979),

233–279.
HL10 D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves (Cambridge University

Press, 2010).
IM19 D. Iacono and M. Manetti, On deformations of pairs (manifold, coherent sheaf), Canad. J.

Math. 71 (2019), 1209–1241.
Kad82 T. V. Kadeishvili, The algebraic structure in the cohomology of A(∞)-algebras, Soobshch. Akad.

Nauk Gruzin. SSR 108 (1982), 249–252 (Russian).
Kal07 D. Kaledin, Some remarks on formality in families, Mosc. Math. J. 7 (2007), 643–652.
KL07 D. Kaledin and M. Lehn, Local structure of hyperkähler singularities in O’Grady’s examples,

Mosc. Math. J. 7 (2007), 653–672.
KLS06 D. Kaledin, M. Lehn and Ch. Sorger, Singular symplectic moduli spaces, Invent. Math.

164 (2006), 591–614.
Kon94 M. Kontsevich, Feynman diagram and low dimensional topology, Proc. First Eur. Congr. Math.

(1994), 97–122.
Kon03 M. Kontsevich, Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66 (2003),

157–216.
LM95 T. Lada and M. Markl, Strongly homotopy Lie algebras, Comm. Algebra 23 (1995), 2147–2161.

234

https://doi.org/10.1112/S0010437X20007605 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007605


Formality conjecture for minimal surfaces

LS93 T. Lada and J. D. Stasheff, Introduction to sh Lie algebras for physicists, Int. J. Theor. Phys.
32 (1993), 1087–1104.

LS12 A. Lazarev and T. Schedler, Curved infinity-algebras and their characteristic classes, J. Topol.
5 (2012), 503–528.

Lun10 V. A. Lunts, Formality of DG algebras (after Kaledin), J. Algebra 323 (2010), 878–898.
Man09 M. Manetti, Differential graded Lie algebras and formal deformation theory, Algebraic Geome-

try: Seattle 2005. Proc. Sympos. Pure Math. 80 (2009), 785–810.
Man15 M. Manetti, On some formality criteria for DG-Lie algebras, J. Algebra 438 (2015), 90–118.
Man20 M. Manetti, Lie methods in deformation theory. Draft version (2020).
Mea18 F. Meazzini, A DG-enhancement of D(QCoh(X)) with applications in deformation theory,

Preprint (2018), arXiv:1808.05119.
Muk84 S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface,

Invent. Math. 77 (1984), 101–116.
NM78 J. Neisendorfer and T. Miller, Formal and coformal spaces, Illinois J. Math. 22 (1978), 565–580.
O’Gr99 K. G. O’Grady, Desingularized moduli spaces of sheaves on a K3, J. Reine Angew. Math.

512 (1999), 49–117.
O’Gr03 K. G. O’Grady, A new six-dimensional irreducible symplectic variety, J. Algebraic Geom.

12 (2003), 435–505.
Rim80 D. S. Rim, Equivariant G-structure on versal deformations, Trans. Amer. Math. Soc. 257 (1980),

217–226.
Wei94 C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced

Mathematics, vol. 38 (Cambridge University Press, 1994).
Yos01 K. Yoshioka, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001),

817–884.
Yos09 K. Yoshioka, Stability and the Fourier-Mukai transform. II, Compos. Math. 145 (2009),

112–142.
Yos17 K. Yoshioka, Fourier-Mukai duality for K3 surfaces via Bridgeland stability condition, J. Geom.

Phys. 122 (2017), 103–118.
Zha12 Z. Zhang, A note on formality and singularities of moduli spaces, Mosc. Math. J. 12 (2012),

863–879.

Ruggero Bandiera bandiera@mat.uniroma1.it

Dipartimento di Matematica Guido Castelnuovo, Università degli studi di Roma La Sapienza,
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