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Abstract
This paper investigates the trajectory tracking problem of uncertain robot manipulators with input saturation and
output constraints. Uncertainty and disturbance estimator (UDE) is used to tackle the model uncertainties and exter-
nal disturbances. Different from most existing methods, UDE only needs the bandwidth of the unknown plant model
for design, which makes it easy to be implemented. Nonlinear state-dependent function is employed to cope with
output constraints and a second order auxiliary system is constructed to solve the input saturation. Finally, an UDE-
based tracking controller is proposed based on the backstepping method. With the proposed control scheme, the
input saturation and the output constraints are not violated, and all signals in the closed-loop system are bounded.
The comparative simulation results of a two-link robot manipulator are utilized to validate the effectiveness and
superiority of the proposed control method.

1. Introduction
The trajectory tracking control problem of robot manipulators has been extensively studied for the past
decades, and lots of control schemes have been proposed in theory. As the robot manipulators are now
required to have more physical interaction with humans and environment, many practical engineering
problems, such as input constraints, output constraints, model uncertainties and external disturbances,
cannot be ignored. Therefore, we need to design targeted controllers to deal with these problems.

In reality, the physical parameters of the robot manipulator are not always exactly known, which will
greatly affect the control effect. Hence, many studies have been reported to solve this problem, such as
neural network (NN) control [1, 2] and fuzzy logic system (FLS) control [3, 4]. Ling et al. [3] used FLS
to approximate the dynamic uncertainties and updated FLS by updating the trace of the weight matrix
transpose multiplied by the weight matrix. Similar to model uncertainties, external disturbances can also
affect the control effect. To deal with this problem, a variety of disturbance observers (DO) have been
constructed [5, 6, 7]. Shi et al. [5] designed a novel DO that can detect external disturbances and model
uncertainties. Different from the complex designs of NN, FLS and DO, UDE is a simple designed filter,
and only the bandwidth of the unknown object is required for the filter design [8], which makes the
UDE-based control easier to be implemented and tuned. However, the above studies did not take the
constraints into account.

With the increasing of man-machine cooperation scenarios, constrained control is essential to ensure
the safety of operators. Lots of studies have been proposed to solve input constraints [9, 10, 11, 12] and
output constraints [13, 14, 15, 16]. In ref. [9], a model predictive control method for robot manipulators
based on NN was proposed, and non-quadratic cost functions were introduced to solve input constraints.
In ref. [11], a fixed-time control method based on NN was presented for robot manipulators, and the NN
was used to compensate the input dead zone. Tang et al. [13] proposed an adaptive neural tracking
controller for robot manipulators, and solved symmetric output constraints by integral barrier Lyapunov
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function (BLF). Compared with general BLF, NSDF proposed in ref. [16] is more concise and can solve
both symmetric and asymmetric output constraints. However, most of the above studies are conducted
in joint space.

Compared with the trajectory tracking control in joint space, the trajectory tracking control in task
space is more practical. At present, there are two main methods to realize the trajectory tracking control
of robot manipulators in task space. One method is to use the pseudo-inverse of the Jacobian matrix [17,
18, 19, 20, 21, 22]. Liu et al. [17] proposed an adaptive NN controller for robot manipulators with the
optimal number of hidden nodes and less computation. In ref. [18], a repetitive learning controller for
uncertain robot manipulators was designed to ensure high accuracy of tracking in task space. However,
Liu et al. [17] and Dogan et al. [18] only considered the uncertain dynamics. Liang et al. [19] designed
a TDE-based task space trajectory tracking controller for robot manipulators with uncertain kinematics
and dynamics. Another method is to utilize the dynamic regressor matrix [23, 24, 25, 26, 27]. In ref.
[24], an adaptive task space controller was proposed for robot manipulators with uncertain kinemat-
ics and dynamics, and the measurements of task space velocity and joint acceleration were avoided by
introducing filters. Hanlei Wang [25] proposed two adaptive controllers for robot manipulators to realize
the task space trajectory tracking control with uncertain kinematics and dynamics. Hu et al. [26] pre-
sented an adaptive task space trajectory tracking controller for space robot manipulators, and the model
uncertainties and external disturbances with unknown bound were both considered.

Inspired by the above research, considering the input saturation and output constraints, an UDE-based
tracking controller for uncertain robot manipulators with external disturbance is designed in task space.
The model uncertainties and external disturbance are approximated by UDE, and the input saturation
and output constraints are solved by auxiliary system and NSDF, respectively. Our proposed controller
has advantages in terms of the following aspects:

1. UDE is designed to estimate the model uncertainties and external disturbance, and only the band-
width of the unknown object is required. Furthermore, the proposed control scheme is easy to
be implemented and tuned while bringing a good robust performance.

2. NSDF is designed to deal with the output constraints. Compared with BLF, using NSDF can
avoid the employment of piecewise BLF when output constraints are transformed from symmetry
to asymmetric.

3. Combined with NSDF and UDE, a novel task space tracking controller is first proposed for
uncertain robot manipulators with input saturation and output constraints. Compared with most
existing UDE-based controllers for robot manipulators without input saturation and output
constraints [28, 29, 30, 31, 32], the proposed control scheme has more extensive applications.

The rest of this paper is organized as follows. Section 2 gives the problem formulation. UDE-
based tracking control design, stability analysis and selection of parameters are presented in Section 3.
Section 4 provides comparative simulation results and analysis. Section 5 concludes the study.

Notation: Throughout this paper, (.)−1 denotes the inverse of a matrix, (.)+ denotes the pseudo-inverse
of a matrix. (.)T denotes transposition of a vector or a matrix. ‖.‖ denotes the two-norm, ‖.‖F denotes
the f-norm. “∗” denotes convolution operation. L(.) denotes Laplace transform operator. L−1(.) denotes
the inverse Laplace transform operator.

2. Problem Formulation
The dynamic model of an uncertain n-link rigid robot manipulator with input saturation can be described
as [5, 6]

(M0(q) + �M0(q))q̈ + (C0(q, q̇) + �C0(q, q̇))q̇ + (G0(q) + �G0(q)) = U(τ ) + τd (1)

where q, q̇, q̈ ∈ Rn are the link position, velocity, and acceleration vectors, respectively. M0(q) ∈ Rn×n is
the inertia matrix, which is symmetric positive definite. C0(q) ∈ Rn×n is the Coriolis and centripetal force
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matrix. G0(q) ∈ Rn is the gravity vector. �M0(q), �C0(q, q̇) and �G0(q) denote the modeling errors. τ =
[τ1, . . . , τn]T ∈ Rn is the input torque. τd = [τd1, . . . , τdn]T ∈ Rn denotes the bounded external disturbance.
U(τ ) = [U(τ1), . . . , U(τn)]T ∈ Rn is the input saturation function vector, which can be expressed as

U(τi) =
⎧⎨
⎩

sign(τi)Umi, |τi| ≥ Umi

τi, |τi| < Umi

, i = 1, . . . , n (2)

where sign(.) is the standard sign function and Umi is a known constant bound of U(τi).
Let D = τd − �M0(q)q̈ − �C0(q, q̇)q̇ − �G0(q) ∈ Rn denotes the model uncertainties and bounded

external disturbances, (1) can be rewritten as

M0(q)q̈ + C0(q, q̇)q̇ + G0(q) = U(τ ) + D (3)

In task space, let x, ẋ, ẍ ∈ Rm denote the robot end-effector position, velocity, and acceleration vectors,
respectively. Task space and joint space can be connected by

ẋ = Jq̇ (4)

where J ∈ Rm×n is the jacobian matrix.
Combining (3) and (4), the task space dynamic model of an uncertain n-link rigid robot manipulator

is obtained:

Mx(x)ẍ + Cx(x, ẋ)ẋ + Gx(x) = J+TU(τ ) + Dx (5)

where Mx = J+TM0J+, Cx = J+T(C0 − M0J+J̇)J+, Gx = J+TG0 and Dx = J+TD.
For system (5), there are some properties as follows:

Property 1. The inertia matrix Mx is symmetric positive definite.

Property 2. The matrix Ṁx − 2Cx is skew symmetric.

Choosing x1 = x, x2 = ẋ, system (5) is converted to⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2

ẋ2 = M−1
x (J+TU(τ ) + Dx − Cxx2 − Gx)

y = x1

(6)

where y = [y1, . . . , ym]T is the system output.
For system (6), the control objective is to design an UDE-Based controller which can guarantee: the

output y can track the given output yd precisely, the control input does not violate input saturation and
the output constraints are not violated, that is, yi(t) ∈ [yi(t) ∈ R: − Fi1(t) ≤ yi(t) ≤ Fi2(t)], i = 1, . . . , m,
where Fi1(t) and Fi2(t) are constraint functions.

To achieve the control objective, the following assumptions should be satisfied:

Assumption 1. The jacobian matrix is nonsingular.

Assumption 2. The constraint functions Fi1(t) and Fi2(t) are positive, and their kth derivatives (k = 0,1,2)
are bounded and continuous.

Assumption 3. The desired signal yd(t) = [yd1(t), . . . , ydm(t)]T and its jth derivatives (j = 1,2) are
bounded. Futhermore, for any Fi1(t) and Fi2(t), there exist some positive constants Si1 and Si2 and func-
tions Yi1(t) and Yi2(t) satisfying Si1 ≤ Fi1(t) − Yi1(t) and Si2 ≤ Fi2(t) − Yi2(t) such that −Fi1(t) < −Yi1(t) ≤
ydi(t) ≤ Yi2(t) < Fi2(t), i = 1, . . . , m.

Remark 1. Assumption 1 is commonly used in task space tracking control of robot manipulators [33,
34, 35]. Assumption 2 is often used in studies that use NSDF to solve output or state constraints [16,
36, 37]. Assumption 3 is a common assumption about the desired signal in literature that considers
time-varying output or state constraints [36, 38, 39, 40].
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3. UDE-Based Control Design
3.1. Control design
In this section, an UDE-based tracking controller is designed for uncertain robot manipulators with input
saturation and output constraints. This section is divided into three steps. In step 1, we combine NSDF
and backstepping method to derive the virtual control law α1 and auxiliary variable η1. In step 2, the
control law τ and auxiliary variable η2 are derived by combining UDE and backstepping method, and
the stability of robot manipulator is proved by Lyapunov method. In step 3, we construct an auxiliary
system using η1 and η2, and the stability of the auxiliary system is proved by Lyapunov method.

Step1: To solve the output constraints, two NSDF vectors ζ = [ζ1, . . . , ζm]T and ζd = [ζd1, . . . , ζdm]T

are defined as follows:

ζi = K
yi(t)

(Fi1(t) + yi(t))(Fi2(t) − yi(t))
, i = 1, . . . , m (7)

ζdi = K
ydi(t)

(Fi1(t) + ydi(t))(Fi2(t) − ydi(t))
, i = 1, . . . , m (8)

where K is a positive constant.

Remark 2. For the initial value yi(0) ∈ [yi(t) ∈ R: − Fi1(t) ≤ yi(t) ≤ Fi2(t)], we can obtain: ζi → ±∞
if and only if yi(t) → −Fi1(t) or yi(t) → Fi2(t). In other words, the problem of satisfying the output
constraints is transformed into the problem of ensuring the boundness of ζi for all t ≥ 0.

Define e1 = ζ − ζd and v1 = e1 − η1 and consider the Lyapunov function V1 = 1
2
vT

1 v1. The time
derivative of V1 is:

V̇1 = vT
1 (ζ̇ − ζ̇d − η̇1) (9)

Taking the time derivative of each term in ζ and ζd based on (7) and (8), we get

ζ̇i = μ1iẏ + μ2i, i = 1, . . . , m (10)

ζ̇di = μd1iẏd + μd2i, i = 1, . . . , m (11)

where

μ1i = K
Fi1(t)Fi2(t) + yi(t)2

(Fi1(t) + yi(t))2(Fi2(t) − yi(t))2
(12)

μ2i = K
(Ḟi1(t)Fi2(t) + Fi1(t)Ḟi2(t) + (Ḟi2(t) − Ḟi1(t))yi(t))yi(t)

(Fi1(t) + yi(t))2(Fi2(t) − yi(t))2
(13)

μd1i = K
Fi1(t)Fi2(t) + ydi(t)2

(Fi1(t) + ydi(t))2(Fi2(t) − ydi(t))2
(14)

μd2i = K
(Ḟi1(t)Fi2(t) + Fi1(t)Ḟi2(t) + (Ḟi2(t) − Ḟi1(t))ydi(t))ydi(t)

(Fi1(t) + ydi(t))2(Fi2(t) − ydi(t))2
(15)

Then we can obtain the time derivative of ζ and ζd as follows:

ζ̇ = μ1ẏ(t) + μ2 (16)

ζ̇d = μd1ẏd(t) + μd2 (17)

where μ1 = diag[μ11, . . . , μ1m] ∈ Rm×m, μ2 = [μ21, . . . , μ2m]T ∈ Rm, μd1 = diag[μd11, . . . , μd1m] ∈ Rm×m,
μd2 = [μd21, . . . , μd2m]T ∈ Rm.
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Substituting (6), (16) and (17) into (9), we have

V̇1 = vT
1 (μ1ẏ + μ2 − μd1ẏd − μd2 − η̇1)

= vT
1 (μ1ẋ1 + μ2 − μd1ẏd − μd2 − η̇1)

= vT
1 (μ1x2 + μ2 − μd1ẏd − μd2 − η̇1) (18)

Defining e2 = x2 − α1 and v2 = e2 − η2, (18) can be further transformed as

V̇1 = vT
1 (μ1(v2 + η2 + α1) + μ2 − μd1ẏd − μd2 − η̇1) (19)

The virtual control law α1 and auxiliary variable η1 are chosen as

α1 = μ−1
1 ( − c1e1 + μd1ẏd − μ2 + μd2) (20)

η̇1 = −c1η1 + μ1η2 (21)

where c1 is a design constant.
Substituting (20) and (21) into (19) results in

V̇1 = −c1vT
1 v1 + vT

2 μ
T
1 v1 (22)

Step2: Considering the Lyapunov function V2 = V1 + 1
2
vT

2 v2 and taking its time derivative based on
(6) and (22), we have

V̇2 = V̇1 + vT
2 (ė2 − η̇2)

= −c1vT
1 v1 + vT

2 μ
T
1 v1 + vT

2 (ẋ2 − α̇1 − η̇2)

= −c1vT
1 v1 + vT

2 (μT
1 v1 + M−1

x (J+TU(τ ) + Dx − Cxx2 − Gx) − α̇1 − η̇2) (23)

where the model uncertainties and external disturbance Dx is unknown. According to (6), Dx can be
denoted as

Dx = Mxẋ2 + Cxx2 + Gx − J+TU(τ ) (24)

which shows that the unkown Dx can be obtained from the known system dynamics and control signal.
However, in order not to have the inputs cancel out, (24) can not be subtituted to (23) directly. Assuming
that the frequency range of a signal is limited, the signal can be estimated using a filter with appropriate
bandwidth information, then the procedure of UDE-based control design given in ref. [8] is adopted to
handle the uncertainty so that a control law is derived. Assume that Gf (s) = diag[Gf 1(s), . . . , Gfm(s)] ∈
Rm×m is a strictly proper stable filter with the unity gain and zero phase shift over the spectrum of Dx and
zero gain elsewhere. Then, Dx can be estimated by

D̂x =L−1(Gf (s)) ∗ Dx

=L−1(Gf (s)) ∗ (Mxẋ2 + Cxx2 + Gx − J+TU(τ )) (25)

where D̂x is the estimate of Dx. The estimation error D̃x is defined as follows:

D̃x = Dx − D̂x (26)

According to (25) and (26), the laplace transform of D̃x is represented as

D̃x(s) = Dx(s) − D̂x(s)

= Dx(s)(I − Gf (s)) (27)

where D̃x(s), Dx(s) and D̂x(s) denote the Laplace transform of D̃x, Dx and D̂x, respectively. Taking the
inverse Laplace transform of (27), there is

D̃x = Dx ∗ (I − Gf (s)) (28)

https://doi.org/10.1017/S0263574722000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000479


3656 Yuxiang Wu et al.

Since Dx is bounded and the UDE filter Gf (s) is designed close to unity over the spectrum of Dx, the
estimation error D̃x is bounded according to (28). Hence, it is reasonably assumed that∥∥D̃x

∥∥≤ δ1 (29)

where δ1 is a positive scalar. Then we can further obtain that D̂x is bounded based on (26).
According to ref. [8], Gf (s) = diag[Gf 1(s), . . . , Gfm(s)] is chosen as a first-order low-pass filter.

Gf (s) = diag

[
1

T1s + 1
, . . . ,

1

Tms + 1

]
(30)

where 1/Ti, i = 1, . . . , m denote the bandwidth of 1/(Tis + 1). Although this will cause some error in
the estimation, the steady-state estimation error is always zero because Gf (0) = I. The amplitude gain
of the filter is

|Gfi(jw)| = 1√
T2

i w2 + 1
∈ (0, 1), i = 1, . . . , m (31)

where w is the frequency of the input signal to the filter.

Remark 3. Let �u = U(τ ) − τ and J+T�u = J+TU(τ ) − J+Tτ , there exists a positive constant δ2 which
satisfies

∥∥J+T�u
∥∥≤ δ2 according to ref. [41].

According to Remark 3, (23) and (25) can be rewritten as

V̇2 = −c1vT
1 v1 + vT

2 (μT
1 v1 + M−1

x (J+Tτ + J+T�u + Dx − Cxx2 − Gx) − α̇1 − η̇2) (32)

D̂x =L−1(Gf (s)) ∗ (Mxẋ2 + Cxx2 + Gx − J+Tτ − J+T�u)

=L−1(Gf (s)) ∗ (Mxẋ2 + Cxx2 + Gx − J+Tτ ) −L−1(Gf (s)) ∗ (J+T�u) (33)

The control law τ is selected as

J+Tτ = Cxx2 + Gx + Mx(α̇1 − μT
1 e1 − c2e2) −

(
vT

2 M−1
x

)T

2r2
1

−L−1(Gf (s)) ∗ (Mxẋ2 + Cxx2 + Gx − J+Tτ )

(34)
where c2 and r1 are design constants.

Solving (34), we can further obtain

τ = JT

(
L−1((I − Gf (s))−1) ∗

(
Cxx2 + Gx + Mx(α̇1 − μT

1 e1 − c2e2) −
(
vT

2 M−1
x

)T

2r2
1

))

− JT(L−1((I − Gf (s))−1Gf (s)) ∗ (Mxẋ2 + Cxx2 + Gx)) (35)

The auxiliary variable η2 is selected as

η̇2 = −c2η2 − μT
1 η1 + M−1

x J+T�u + M−1
x L−1(Gf (s)) ∗ ( − J+T�u) (36)

Combining (32), (33), (35) and (36), we have

V̇2 = −c1vT
1 v1 − c2vT

2 v2 + vT
2 M−1

x D̃x − vT
2 M−1

x

(
vT

2 M−1
x

)T

2r2
1

(37)

According to Young’s inequality, there is

vT
2 M−1

x D̃x ≤ vT
2 M−1

x

(
vT

2 M−1
x

)T

2r2
1

+ r2
1D̃T

x D̃x

2

≤ vT
2 M−1

x

(
vT

2 M−1
x

)T

2r2
1

+ r2
1δ

2
1

2
(38)
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Combined with (38), (37) becomes

V̇2 ≤ −c1vT
1 v1 − c2vT

2 v2 + r2
1δ

2
1

2
(39)

Defining ρ1 = 2min {c1, c2} and λ1 = r2
1δ2

1
2

, we can further get

V̇2 ≤ −ρ1V2 + λ1 (40)

Solving (40), we can obtain that

0 ≤ V2(t) ≤ λ1

ρ1

+
(

V2(0) − λ1

ρ1

)
e−ρ1t (41)

where V2(0) is the initial value of V2(t). Based on (41), we can further get

limt→∞V2(t) ≤ λ1

ρ1

(42)

Step3: To solve the input saturation, an auxiliary system has been set up:{
η̇1 = −c1η1 + μ1η2

η̇2 = −c2η2 − μT
1 η1 + M−1

x J+T�u + M−1
x L−1(Gf (s)) ∗ ( − J+T�u)

(43)

In order to prove the stability of system (43), a Lyapunov function Va = 1
2
(ηT

1 η1 + ηT
2 η2) is considered.

Taking the time derivative of Va, we have

V̇a = ηT
1 ( − c1η1 + μ1η2) + ηT

2 ( − c2η2 − μT
1 η1 + M−1

x + M−1
x L−1(Gf (s)) ∗ ( − J+T�u))

= −c1η
T
1 η1 − c2η

T
2 η2 + ηT

2 M−1
x J+T�u + ηT

2 M−1
x L−1(Gf (s)) ∗ ( − J+T�u) (44)

Using Young’s inequality, we have

ηT
2 M−1

x J+T�u ≤ ηT
2 η2

2
+ (M−1

x J+T�u)T(M−1
x J+T�u)

2
(45)

ηT
2 M−1

x L−1(Gf (s)) ∗ ( − J+T�u) ≤ ηT
2 η2

2
+ (M−1

x L−1(Gf (s)) ∗ ( − J+T�u))T(M−1
x L−1(Gf (s)) ∗ ( − J+T�u))

2
(46)

Combined with (45) and (46), (44) becomes

V̇a ≤ −c1η
T
1 η1 − (c2 − 1)ηT

2 η2 + (M−1
x J+T�u)T(M−1

x J+T�u)

2

+ (M−1
x L−1(Gf (s)) ∗ ( − J+T�u))T(M−1

x L−1(Gf (s)) ∗ ( − J+T�u))

2
(47)

According to cauchy inequality, for any matrix P ∈ Rm×n and vector Q ∈ Rn, the following inequality
holds:

(PQ)T(PQ) ≤ ‖P‖2
F ‖Q‖2 (48)

According to (48), we have

(M−1
x J+T�u)T(M−1

x J+T�u) ≤ ∥∥M−1
x

∥∥2

F

∥∥J+T�u
∥∥2

≤ δ2
2δ

2
3 (49)

(M−1
x L−1(Gf (s)) ∗ ( − J+T�u))T(M−1

x L−1(Gf (s)) ∗ ( − J+T�u)) ≤ ∥∥M−1
x

∥∥2

F

∥∥L−1(Gf (s)) ∗ ( − J+T�u)
∥∥2

≤ δ2
3δ

2
4 (50)

https://doi.org/10.1017/S0263574722000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000479


3658 Yuxiang Wu et al.

where δ2 is the upper bound of
∥∥J+T�u

∥∥, δ3 is the upper bound of
∥∥M−1

x

∥∥
F

and δ4 is the upper bound
of
∥∥L−1(Gf (s)) ∗ ( − J+T�u)

∥∥. L−1(Gf (s)) ∗ ( − J+T�u) is bounded because J+T�u is bounded and the
amplitude gain of filter (31) is bounded.

Substituting (49) and (50) into (47) yileds

V̇a ≤ −c1η
T
1 η1 − (c2 − 1)ηT

2 η2

+
∥∥M−1

x

∥∥2

F

∥∥J+T�u
∥∥2

2

+
∥∥M−1

x

∥∥2

F

∥∥L−1(Gf (s)) ∗ (J+T�u)
∥∥2

2

≤ −c1η
T
1 η1 − (c2 − 1)ηT

2 η2 + (δ2
2 + δ2

4)δ2
3

2
(51)

Defining ρ2 = 2min {c1, (c2 − 1)} and λ2 = (δ2
2 + δ2

4)δ2
3

2
, we can further get

V̇a ≤ −ρ2Va + λ2 (52)

Solving the inequality (52), we have

0 ≤ Va(t) ≤ λ2

ρ2

+
(

Va(0) − λ2

ρ2

)
e−ρ2t (53)

where Va(0) is the initial value of Va(t). Based on (53), we can further get

limt→∞Va(t) ≤ λ2

ρ2

(54)

3.2. Stability analysis

Theorem 1. Considering the robot manipulator (1) under Assumptions 1, 2 and 3, the virtual control
law (20), the auxiliary system (43) and the proposed UDE-based control law (35) can guarantee that the
output constraints are not violated, all signals in the closed-loop system are bounded and the tracking
error converges to a small neighborhood around zero.

Proof of Theorem 1: The proof is divided into two parts. One part proves that all signals in the
closed-loop system are bounded and the output constraints are not violated. The other part proves that
the tracking error converges to a small neighborhood around zero.

Part 1: The formula (41) and (53) can be scaled to

0 ≤ V2(t) ≤ λ1

ρ1

+ V2(0)e−ρ1t (55)

0 ≤ Va(t) ≤ λ2

ρ2

+ Va(0)e−ρ2t (56)

which mean that for t ≥ max
{

0, 1
ρ1

ln
(

V2(0)ρ1
λ1

)}
, the signals v1 and v2 will remain within the compact

sets 
v1 and 
v2 , respectively, defined by:


v1 :=
{

v1 ∈ Rm| ‖v1‖ ≤ 2

√
λ1

ρ1

}
(57)


v2 :=
{

v2 ∈ Rm| ‖v2‖ ≤ 2

√
λ1

ρ1

}
(58)
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similarly, for t ≥ max
{

0, 1
ρ2

ln
(

Va(0)ρ2
λ2

)}
, the signals η1 and η2 will remain within the compact sets 
η1

and 
η2 , respectively, defined by:


η1 :=
{

η1 ∈ Rm| ‖η1‖ ≤ 2

√
λ2

ρ2

}
(59)


η2 :=
{

η2 ∈ Rm| ‖η2‖ ≤ 2

√
λ2

ρ2

}
(60)

Because v1, v2, η1 and η2 are bounded, e1 = v1 + η1 and e2 = v2 + η2 are bounded. According to
Assumption 3 and (8), ζd is bounded. Then we can further derive that ζ = e1 + ζd is bounded. Based
on (7) and the boundness of ζ , the system output y is bounded and the output constraints are not vio-
lated. Due to Assumption 2 and the boundness of yi and ydi, it is obvious that μ1, μ2, μd1 and μd2 are
bounded from (12) to (15). Furthermore, the boundness of α1 is guaranteed from (20). Then we can
derive that x2 = e2 + α1 is bounded. Finally, τ is bounded based on (35). All signals in the closed-loop
system are bounded.

Part 2: Next we discuss the tracking error e3 = y − yd = [e31, . . . , e3m]T . According to (7), (8) and
e1 = ζ − ζd, the i th element of e1 can be described as

e1i = K
yi(t)

(Fi1(t) + yi(t))(Fi2(t) − yi(t))
− K

ydi(t)

(Fi1(t) + ydi(t))(Fi2(t) − ydi(t))
, i = 1, .., m (61)

Let ε1 = (Fi1(t) + yi(t))(Fi2(t) − yi(t))(Fi1(t) + ydi(t))(Fi2(t) − ydi(t)) and ε2 = Fi1(t)Fi2(t) + yi(t)ydi(t),
(61) can be expressed as

ε1e1i = Kε2e3i (62)

where ε1 and ε2 are positive and bounded based on Assumptions 2 and 3. Defining ε = ε1/(Kε2), (62)
can be rewritten as

εe1i = e3i (63)

Taking the absolute of (63), we can further get

|e3i| ≤ ε̄|e1i|
≤ ε̄ ‖e1‖
≤ ε̄( ‖v1‖ + ‖η1‖ ) (64)

where ε̄ is the upper bound of ε.

According to (57), (59) and (64), for t ≥ max

{
0,

1

ρ1

ln

(
V2(0)ρ1

λ1

)
,

1

ρ2

ln

(
Va(0)ρ2

λ2

)}
, the tracking

error e3i will remain within the compact set 
e3i :


e3i :=
{

e3i ∈ R||e3i| ≤ 4ε̄

√
max

{
λ1

ρ1

,
λ2

ρ2

}}
(65)

This completes the proof of Theorem 1.

3.3. Selection of control parameters
In order to obtain good tracking performance, the selection criteria of corresponding control parameters
are given as follows:

(1) The backstepping design parameters c1, c2 can affect the convergent rate of tracking error. Large
values of c1 and c2 bring faster error convergence, but the control amplitude will increase if too large
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c1 and c2 are chosen. The design parameter r1 should be a small positive constant to guarantee good
tracking performance. In our simulation, c1, c2 and r1 are chosen as 40, 100 and 1, respectively.

(2) The design parameter K is introduced in NSDF. Increasing K value can reduce the steady-state
error, but will bring large control amplitude. In our simulation, K is chosen as 0.01.

(3) The design parameters Ti, i = 1, .., m in (30) should be selected small to ensure small estimation
error. In our simulation, T1 and T2 are chosen as 0.014.

4. Simulation
To demonstrate the effectiveness and superiority of the proposed UDE-based tracking controller,
simulation studies are carried out using a two-link rigid robot manipulator.

4.1. Simulation platform
Let the position of manipulator’s joint q = [q1, q2]T . Let mi and li be the mass and length of link i, lci be
the distance from joint i − 1 to the center of mass of inertia of link i, and Ii be the moment of inertia
of link i about axis coming out of the page passing through the center of mass of link i, i = 1, 2. The
dynamic model of the two-link robot manipulator [14] can be described as formula (1), where

M0(q) =
[

M11 M12

M21 M22

]

C0(q, q̇) =
[

C11 C12

C21 C22

]

G0(q) =
[

G11

G21

]

and

M11 = m1l2
c1 + m2(l2

1 + l2
c2 + 2l1lc2cosq2) + I1 + I2

M12 = m2(l
2
c2 + l1lc2cosq2) + I2

M21 = m2(l
2
c2 + l1lc2cosq2) + I2

M22 = m2l2
c2 + I2

C11 = −m2l1lc2q̇2sinq2

C12 = −m2l1lc2(q̇1 + q̇2)sinq2

C21 = m2l1lc2q̇1sinq2

C22 = 0

G11 = (m1lc2 + m2l1)gcosq1 + m2lc2gcos(q1 + q2)

G21 = m2lc2gcos(q1 + q2)

The model uncertainties are given as �M0(q) = −0.1M0(q), �C0(q, q̇) = −0.2C0(q, q̇), �G0(q) =
−0.1G0(q). The external disturbance is chosen as τd = [sin(t), sin(t)]T . UD = [UD1, UD2]T denotes
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Table I. Parameters of the robot.

Parameter Description Value Unit
m1 Mass of link 1 2.0 kg
m2 Mass of link 2 0.85 kg
l1 Length of link 1 0.35 m
l2 Length of link 2 0.31 m
I1 Inertia of link 1 0.06125 kgm2

I2 Inertia of link 2 0.02042 kgm2

Table II. Controller parameters.

Controllers Parameters
Proposed controller c1 = 40, c2 = 100, r1 = 1, K = 0.01, T1 = 0.014, T2 = 0.014
Adaptive NN controler K1 = diag [30, 30],K2 = diag [110,110], �1 = �2 = 80,δ1 = δ2 = 0.001,

P1 = diag [3, 3], P2 = diag [5, 5], λτ = λ1 = λ2 = 1,
β = 0.1, L = diag [6, 6], Mx = diag [4, 4]

IDCSMC k1 = 10, Kp = 100, Kd = 20, Ks = 1

model uncertainties and external disturbance. The jacobian matrix is given as follows:

J(q) =
[−l1sin(q1) − l2sin(q1 + q2) −l2sin(q1 + q2)

l1cos(q1) + l2cos(q1 + q2) l2cos(q1 + q2)

]

The robot manipulator parameters are listed in Table I.
Then system (1) can be converted to (5) based on (4). The initial position and velocity of the

robot manipulator are given as x1(0) = [0.235, 0.205]T and x2(0) = [0, 0]T . The initial state value of
auxiliary system are set to η1 = [0, 0]T and η2 = [0, 0]T . y = [y1, y2]T denotes the system output. The
desired trajectory is given as yd = [0.2sin(π t), 0.2cos(π t)]T . e3 = [e31, e32]T = y − yd denotes the tra-
jectory tracking error. The output constraint functions are selected as F11 = 0.21 − 0.03sin(π t), F12 =
0.21 + 0.03cos(π t), F21 = 0.21 − 0.03cos(π t + π/2) and F22 = 0.21 + 0.03cos(π t + π/2). The input
saturation values are chosen as Um = [Um1, Um2]T = [15, 5]T .

To further evaluate the performance of the proposed controller, we select two comparative controllers
from the literature. The adaptive NN tracking controller [41] is designed as

τx = −Mx(K2z2 + L−1ŵTφ

(
Z) + D̂ − α̇ + ϑ1 + P2ϑ2 + z2 ‖ϑ2‖2

∥∥∥M
−1

x

∥∥∥4

λ1�̂τ + ϕ

)
and the inverse dynamics control algorithm based on the chattering-free continuous sliding-mode
controller (IDCSMC) [42] is designed as

τ = M0J−1(ÿd − J̇q̇ + Kss(t)) + C0q̇ + G0 − d̂(t)

where the sliding surface vector s is defined as

s = Kd(ẏd(t) − ẏ(t)) + Kp(yd(t) − y(t))

4.2. Simulation results
In this section, we present the simulation results of the proposed controller, the adaptive NN controller
and IDCSMC. The controller parameters are listed in Table II. The simulation time is 20 s.

Figure 1 shows the curves of the system outputs y1 and y2 under the control of proposed controller,
adaptive NN controller and IDCSMC, respectively. Similarly, the curves of tracking errors e31 and e32

are shown in Fig. 2. Figure 3 shows the curves of control inputs τ1 and τ2. The curves of UDE estimation
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Figure 1. Tracking performance.

are given in Fig. 4. According to the simulation results, we can get the following conclusions. (1) All the
three controllers can ensure the system output tracks on the given trajectory. (2) The proposed control
achieves the smallest steady-state tracking error. (3) The proposed controller and adaptive NN controller
can satisfy input saturation and output constraints, but IDCSMC can’t. (4) UDE can estimate the model
uncertainties and external disturbances precisely.
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Figure 2. Tracking error.
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Figure 3. Control input.

4.3. Performance comparisons
For performance analysis, we use root mean square (RMS) and maximum (MAX) values of the sampled
tracking error e(i) for comparisons [43, 44], which are defined as

RMS(e) =
√√√√ N∑

i=1

e2(i)

N

MAX(e) = maximum(|e|)
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Table III. Performance comparisons of controllers.

RMS(e31) RMS(e32) MAX(e31),t > 2s MAX(e32),t > 2s
Proposed controller 0.007529 0.000097 0.000093 0.000186
adaptive NN controler 0.007745 0.000804 0.001423 0.001435
IDCSMC 0.010259 0.000754 0.001818 0.001677
Improvement of proposed
controller compared with
adaptive NN controller

3% 88% 93% 87%

Improvement of proposed
controller compared with
IDCSMC

27% 87% 95% 89%

where N is the number of sampled tracking error. N is chosen as 5001 and the sample time is 0.01 s.
Sampling starts at t = 0s. Table III shows the performance comparisons of three controllers. The
proposed controller achieves the smallest RMS values for both two coordinates. In particular, the per-
formance improvements in terms of RMS error for the proposed controller compared with the adaptive
NN controller and IDCSMC are 3%, 27% for e31 and 88%, 87% for e32, respectively. Also, when
t > 2s, the performance improvements in terms of MAX error for the proposed controller compared with
the adaptive NN controller and IDCSMC are 93%, 95% for e31 and 87%, 89% for e32, respectively. The
results show that the proposed control method has better robustness and tracking performance compared
with the other two controllers.

5. Conclusion
An UDE-based task space tracking controller is proposed for uncertain robot manipulators with asym-
metric time-varying output constraints and input saturation. Firstly, UDE is used to approximate the
model uncertainties and external disturbances, and only the bandwidth of the unknown plant model is
required for design. Secondly, NSDF is utilized to deal with the output constraints. Thirdly, a second
order auxility system is created to solve the input saturation. Finally, the system stability and the bound-
ness of the closed-loop signals are proved by Lyapunov stability theory. The output constraints are not
violated and the control input does not violate the input saturation. Simulation results are presented to
illustrate the effectiveness and superiority of the proposed control strategy.

In the furture, we tend to design an adaptive UDE-based controller for uncertain flexible joint robot
in task space.
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