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Introduction

Neurocysticercosis (NCC) is a human disease which arises when larvae of the cestode Taenia
solium infect the central nervous system (CNS) (Mahanty and Garcia, 2010). The most com-
mon symptom of this infection is the development of epileptic seizures, which occurs in 70-
90% of symptomatic NCC cases (Carpio and Romo, 2014). As such, NCC is thought to be the
leading cause of acquired epilepsy. Epilepsy affects 50 million people worldwide with about
80% of cases in the developing world, constituting a critical global health concern. NCC is typ-
ically prevalent in developing countries, but with increasing migration from - and travel to -
endemic countries, it is steadily becoming a global phenomenon (Burneo and Cavazos, 2014;
Carpio and Romo, 2014). This is concerning as NCC not only impacts heavily on the quality
of life of those infected, but also presents a significant drain on medical and economic
resources (Roman et al., 2000; Bhattarai et al, 2011).

Despite the global impact of NCC, there is still much that is uncertain about the disorder.
Precisely how, for example, cerebral infection with T. solium relates to the development of sei-
zures remains unclear. Furthermore, there exists a need for additional therapeutic options for
patients with epilepsy secondary to NCC, as many of these patients suffer from seizures that
are refractory to currently available treatment (Burneo and Cavazos, 2014; Carpio and Romo,
2014; Mahanty et al., 2015). The study of NCC also represents a unique opportunity for under-
standing how neuroinflammatory processes contribute to the development of seizures more
generally (Nash et al., 2015). As such, it is essential that we continue to develop new ways
in which to study this disease. In this review, we explore the various model systems used to
study NCC. We critically evaluate their relative strengths and weaknesses and summarize
how they have contributed to our current understanding of disease processes. Finally, we dis-
cuss the potential for novel research strategies, which could enable progress in understanding
pathogenic mechanisms in NCC.

A brief background on NCC
Taenia solium life cycle: how does NCC come about?

The adult worm of T. solium is found in the small intestine of Homo sapiens, the only known
definitive host of T. solium (White, 2000) (Fig. 1). These worms can produce up to 2 00 000
and 400000 infectious oncospheres (eggs) per day, which are excreted in the human feces
(White, 2000). If infected feces are ingested by a pig, the oncospheres become activated/mature
in the presence of bile salts and intestinal enzymes, and force their way through the gut wall
and into the bloodstream (White, 2000). At blood vessel terminations, the activated onco-
© Cambridge University Press 2018 spheres lodge in muscle, nervous, subcutaneous and ocular tissue (White, 2000). There,
each mature oncosphere evolves into a vesicular larva with an invaginated scolex (also
known as a cysticercus) over a period of weeks or months (White, 2000). These cysticerci
CAMBRID GE have a lifespan of a few years (White, 2000). If pork meat containing a viable cysticercus is
UNIVERSITY PRESS ingested by a human, the scolex of the cysticercus evaginates in the small intestine (due to
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Fig. 1. Schematic representation illustrating the life cycle of Taenia solium and the process which results in human infection and neurocysticercosis.

a change in osmotic pressure), and attaches to the intestinal wall.
Here the larva develops once more into an adult worm (White,
2000) (see Fig. 1).

NCC occurs when humans accidentally ingest the oncospheres
of T. solium (Carpio, 2002). This may occur via food or water in
areas where water sources are contaminated by human feces, or
via accidental ingestion of tiny amounts of the feces of an adult
tapeworm carrier in the household (Flisser, 1994). Oncospheres
are also activated in the human gut as they would be in the pig
gut, and are able to penetrate the gut wall and pass into the blood-
stream (Carpio, 2002). The activated oncospheres may then lodge
in muscle, ocular, subcutaneous or nervous tissue, with nervous
system infection being of the greatest clinical concern (Carpio,
2002).

NCC disease progression and manifestation in humans

Following initial infection and the establishment of cysticerci in
the brain parenchyma, sub-arachnoid space or ventricles, there
is usually a lengthy period (months to years) in which the host
shows little to no immune or inflammatory response to the infec-
tion and experiences no clinical symptoms (White, 2000). This
may be because the viable cysticerci employ various immune
modulatory mechanisms to remain largely unaffected by the
host immune system (White, 2000). Viable cysticerci are also
referred to as being in the vesicular stage (White, 2000). At
some point, however, the cysts appear to lose their ability to con-
trol the host immune response and the cyst wall and fluid become
infiltrated by host inflammatory cells. This is termed the colloidal
phase. Thereafter the cyst cavity collapses and the host response
progresses to surrounding the cyst with fibrosis, resiulting in the
granular-nodular phase. Together, cysts in the colloidal or granu-
lar-nodular phase are often termed as transitional phase cysts.
Eventually the entire cyst is replaced with fibrosis and calcifies
and is then said to be in the calcific stage (White, 2000).

https://doi.org/10.1017/50031182018001932 Published online by Cambridge University Press

Manifestations of NCC are often studied and described in ref-
erence to the stage of the cyst (White, 2000; Fleury et al., 2016;
Gonzales et al., 2016) (see Fig. 2). Cyst stages are largely deter-
mined using imaging techniques such as computed tomography
(CT) and magnetic resonance imaging (MRI) scans, as well as
post-mortem brain dissections (Carpio and Romo, 2014). A sys-
tematic review of the prevalence of different clinical manifestation
of NCC reports seizures or epilepsy as the most common symp-
tom, followed by headaches, intracranial hypertension, hydro-
cephalus and meningitis (Carabin et al., 2011). Seizures occur
more commonly in patients with calcified cysts, although this
symptom of NCC is still prevalent in those with transitional/active
cysts. Intracranial hypertension, hydrocephalus and meningitis
seem to be much more common in patients with transitional/
active cysts (see Fig. 2). There are numerous other, extremely var-
ied, symptoms secondary to NCC that have been reported (Patel
et al., 2006; Mahanty and Garcia, 2010; Peon et al., 2016). This
diversity in symptoms has been attributed to the diversity in
cyst antigens, numbers, stages, positions in the nervous system
and the level of inflammation induced (Yakoleff-Greenhouse
et al., 1982; Fleury et al., 2004).

Studying NCC disease processes in humans

NCC is most commonly studied in patients with the disease, that
is, in vivo in humans naturally infected with T. solium larvae.
These studies frequently make use of imaging techniques, such
as CT and MRI. Such images have then been used in conjunction
with clinical presentation of the disease in order to start disentan-
gling what it is that underlies symptom development in NCC.
Such studies have provided many valuable insights including
that the presence of vesicular cysts may contribute to a patient
remaining asymptomatic, even when other stages of cyst are pre-
sent (Prasad et al., 2008); that patients with calcified parenchymal
cysts appear to be more susceptible to depressive symptoms (Leon
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Fig. 2. Key differences in clinical, molecular and immune characteristics associated with Taenia solium cysts in neurocysticercosis [ photographs sourced, with per-

mission, from Carpio and Romo (2014)].

et al., 2015); that some cysts which appear to be inactive on an
MRI scan are actually surrounded by gliosis, which may contrib-
ute to seizure recurrence (Pradhan et al., 2000); and that the best
drug regimens vary for different NCC presentations (Garcia et al.,
2014; Zhao et al., 2016; Del Brutto et al., 2006).

Another common way of studying disease processes in
humans is through the analysis of blood serum or cerebrospinal
fluid samples from NCC patients. Such studies have revealed pro-
teins that appear to be specific to active, symptomatic NCC
(Chung et al.,, 1999; Ferrer et al., 2005); that T. solium larvae
appear to induce a regulatory T-cell response in the host, which
creates an environment favourable to their survival (Arce-Sillas
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et al., 2016); and that there appear to be certain genetic poly-
morphisms associated with individuals who have symptomatic
vs asymptomatic NCC (Verma et al., 2010).

More rarely, researchers may obtain brain tissue samples from
NCC patients that undergo neurosurgical procedures as a part of
their standard clinical care (Restrepo et al., 1998; Robinson et al.,
2012). One such study has reported that substance P (a neuropep-
tide involved in neuropathic inflammation and possibly seizure
induction) is prevalent in cells adjacent to NCC granulomas,
but not in areas distant from granulomas, nor in brain tissue
from individuals without NCC (Robinson et al., 2012). Another
examined the cellular and molecular immune response
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surrounding cysts and reported that there are at least four distinct
types of immune responses in NCC (Restrepo et al., 1998).

Human NCC is also studied in vitro utilizing normal, healthy
cell culture lines of nervous system immune cells, or extracted and
cultured immune cells from NCC infected patients. Such cell cul-
tures have been utilized in conjunction with T. solium extracts to
study immune responses in NCC (Uddin et al., 2005, 2010; Amit
et al., 2011). Notable discoveries include that cysts treated with
anti-parasitic agents elicit greater chemokine secretion in mono-
cytes than those left untreated (Uddin et al., 2010); that astrocytes
play a key role in the inflammatory response to certain T. solium
larval elements (Uddin et al., 2005); that healthy human mono-
cytes respond differently to T. solium brain cysts than to T. solium
muscle cysts from pigs (Uddin et al., 2010); and that different cyst
elements (scolex, membrane or fluid) elicit different responses in
both monocytes and lymphocytes (Uddin et al., 2010; Amit et al,
2011).

Challenges to NCC research in humans and the necessity for
animal models

A major challenge for the study of NCC in humans is that the dis-
ease can only be studied as it occurs naturally. This means that
there are large numbers of variables which cannot be controlled
for in human studies, making it hard to isolate conditions
which lead to symptom onset. Additionally, when patients present
with symptomatic NCC, there exists an ethical obligation to start
treatment as soon as possible, which also obstructs the under-
standing of the disease processes underlying symptom develop-
ment (Cardona et al., 1999). Study of the disease in humans is
costly, as the only definitive diagnostic techniques are MRI or
CT scans, which are typically not available in endemic areas
with the highest prevalence rates. In addition, the large variability
in human pathology and symptom presentation means that large
sample sizes are required to obtain statistical significance.
Longitudinal studies in humans are also challenging due to the
lengthy time course of the disease, both in terms of symptom
onset and progression of the cysts (Cardona et al., 1999).

Studies using human tissue are also limited, as most rely on
specimens that are collected using only minimally invasive proce-
dures such as the collection of blood samples. Beyond that, sam-
ples of brain tissue or cerebrospinal fluid can only be sourced in
cases where these are sampled out of clinical or diagnostic need.
This is fairly rare, making it difficult to obtain large sample sizes
(Cardona et al., 1999). Taken together, these challenges greatly
limit the exploration of the cellular and molecular processes
underlying disease progression in NCC.

Animal models of NCC offer the potential to overcome many
of these limitations: they allow for the experimental infection of
animals in a controlled environment and for the study of disease
progression both with and without treatment interventions. They
are often much more cost-effective, as definitive infection can be
confirmed post-mortem without neuroimaging, and smaller sam-
ple sizes can be used due to the controlled experimental environ-
ment. They facilitate longitudinal studies, as the time course of
disease, especially in smaller animals, is much shorter and can
be accelerated experimentally. Most importantly, animal models
allow for unrestricted access to brain tissue and cerebrospinal
fluid, thereby enabling more extensive cellular and molecular
exploration. Although animal models have great utility in the
study of disease processes in NCC, one should always bear in
mind that findings from animal studies may not necessarily
extrapolate to the human condition, as no animal model can
fully recapitulate the human disease state.

In the section that follows, we review existing models of NCC,
whilst describing their specific strengths and weaknesses.
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Parasites utilized in animal model systems of
neurocysticerosis

Model systems for studying NCC typically consist of two compo-
nents: a cestode species and a host organism. In this review, we
will discuss model systems involving three different cestode
species.

Taenia solium

Taenia solium (T. solium) is the ‘gold standard’ organism in the
study of NCC, as it is the cestode responsible for pathology in
humans. Further, the genome of T. solium has recently been
sequenced, allowing for the use of powerful genetic tools (Tsai
et al., 2013). However, T. solium has numerous practical limita-
tions for use within the laboratory setting. It is highly infectious
to humans and its experimental use requires strict biosafety mea-
sures. It is also challenging to obtain T. solium larvae, and
extremely hard to maintain a steady experimental supply of the
larvae. Larvae (or cysticerci) can be obtained in three ways: they
can be harvested directly from a naturally or experimentally
infected pig; they can be produced experimentally by feeding
oncospheres [obtained from gravid proglottids in the stool of
infected human patients, or from experimentally infected,
immunosuppressed, chinchillas or hamsters (Arora et al., 2017)]
to a host in which they will be activated and develop naturally
into cysticerci (Nguekam et al., 2003); or they can be produced
by activating oncospheres in vitro and then injecting the activated
oncospheres into the brain to develop into cysts (Liu ef al., 2002;
Verastegui et al., 2015). Taenia solium may also not be infectious
to animals utilized in animal models, thus requiring direct intra-
cranial application, but the larvae of T. solium are large, and may
displace most of the brain tissue in small animals.

Taenia crassiceps

Taenia crassiceps (T. crassiceps) is the most commonly utilized
model organism for T. solium. The two cestodes are closely
related, belonging to the same genus, and have been shown to
have significant antigenic similarity (Larralde et al, 1989;
Sciutto et al., 1990). Taenia crassiceps very rarely infect humans,
making it a reasonably safe laboratory model, not requiring exten-
sive biosafety measures (Willms and Zurabian, 2010). This is par-
ticularly the case for the ORF strain of T. crassiceps, which has
entirely lost the ability to infect a definitive host and mature
into adult worms, meaning that it does not present an infection
risk to animals (Willms and Zurabian, 2010). A major advantage
of T. crassiceps as a model organism for T. solium is that T. cras-
siceps larvae are able to rapidly asexually divide by budding in the
intermediate host (usually mice), providing a simple way to main-
tain a steady experimental supply of the organism (Stringer et al.,
2003; Willms and Zurabian, 2010). The larvae are also able to sur-
vive for several weeks in in vitro culture.

The use of T. crassiceps as a model organism in the study of
NCC also has its limitations. The definitive hosts for T. crassiceps
are carnivores, most often wild canines (Willms and Zurabian,
2010), whilst that of T. solium is humans (see Fig. 3). Taenia cras-
siceps larvae are usually hosted by rodents and small moles
(Willms and Zurabian, 2010), whilst pigs host larval T. solium
(see Fig. 3). As a result, there must exist differences in the antigens
and species-specific immune responses induced by the two organ-
isms (Sciutto et al., 2011). Another concern when utilizing T. cras-
siceps is that it has been found that many of the strains undergo
morphological and genetic changes when they are maintained via
serial intraperitoneal inoculation in mice, which may affect their
immunogenicity and increase their dissimilarity to T. solium
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larvae (Zurabian et al., 2008; Willms and Zurabian, 2010). Lastly,
T. crassiceps are difficult to use where intracranial inoculation of
small model animals is desired (e.g. mice), as the cysticerci dis-
place most of the brain tissue (Alvarez et al., 2010).

Mesocestoides corti

Mesocestoides corti (M. corti) is thought to infect anthropods as
the initial host, small mammals, birds, reptiles and amphibians
in the larval form, and carnivores, such as dogs and cats, as an
adult worm (Crosbie et al, 2000) (see Fig. 3). Mesocestoides
corti is not known to infect humans, making it a safe laboratory
model not requiring extensive biosafety measures. Mesocestoides
corti asexually divides both as cysticerci in the intermediate host
(Alvarez et al., 2010) and as adult worms in the definitive host
(Schmidt and Todd, 1978). The larvae have also been shown to
be able to survive and divide under the right in vitro culturing
conditions (Voge and Coulombe, 1966; Vendelova et al., 2016).
A colony of M. corti can therefore be experimentally produced
and maintained with relative ease (Schmidt and Todd, 1978).
Mesocestoides corti is closely related to T. solium, but is not of
the same genus, which means that it may have greater antigenic
difference to T. solium than does T. crassiceps (Alvarez et al.,
2010). A major advantage of M. corti is that the cysticerci are sig-
nificantly smaller than those of T. solium and T. crassiceps, which
makes it easier to use for intracranial inoculation of small model
animals such as rodents (Alvarez et al., 2010). However, unlike T.
solium and T. crassiceps, M. corti has not been known to infect the
CNS of any of its hosts during its natural cycle, which means that
intracranial injection by the experimenter is the only way in which
M. corti can enter the CNS (Alvarez et al., 2010).

Animal model systems utilized in the study of NCC
Taenia crassiceps in mice

Mice are attractive model organisms for studying NCC due to
their popularity across the life sciences. They are relatively
cheap to maintain and have a rapid breeding cycle. Most import-
antly, the relative ease of modifying the mouse genome means
that transgenic strains allowing molecular dissection of immuno-
logical and neurological pathways are now widely available.
NCC has been modelled in mice by intracranially injecting T.
crassiceps larval extracts or intact early-stage larvae (Matos-silva
et al, 2012; Robinson et al, 2012; Leandro et al, 2014).
Different strains of mice show differing susceptibility to T. crassi-
ceps intracranial infection (Matos-silva et al., 2012). There has
been one report of T. crassiceps in the brain of a wild mouse
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Fig. 3. The intermediate and definitive hosts of Taenia solium, Taenia
crassiceps and Mesocestoides corti.

(Kroeze and Freeman, 1982), which is suggestive that further
experimentation on the oral administration of T. crassiceps onco-
spheres in mice (perhaps using immunocompromised indivi-
duals) may have potential for the development of a model
somewhat more congruent to the condition in humans. One
strength of this model is that intracranial injection of peritoneal
granulomas can produce seizures in the host (Robinson et al.,
2012), although it is not known whether these seizures could per-
sist chronically.

Intracranial administration of T. crassiceps in mice has
provided some valuable insights: one study has shown that early-
stage granuloma extracts containing substance P may be respon-
sible for seizure activity; another has shown this model results in
encephalitis closely resembling that in human NCC; and a third
has shown that Taenia larvae in the brain are highly adaptable
when faced with adverse conditions (Matos-silva et al., 2012;
Robinson et al., 2012; Leandro et al., 2014).

Mesocestoides corti in mice

Mesocestoides corti (M. corti) can be utilized in conjunction with
cultured mouse primary microglia to explore helminth-associated
immunomodulation. One study utilizing this model system eluci-
dated an immunosuppressive mechanism that may help to
explain the delay in the onset of neuroinflammation seen in
human NCC (Sun et al., 2014). More commonly, however, M.
corti larvae are administered intracranially in mice (as they do
not migrate to the CNS if administered orally) to model human
NCC (Cardona et al, 1999, 2003; Cardona and Teale, 2002;
Alvarez and Teale, 2007; Alvarez et al., 2010). This model presents
with an initial relative lack of immune responsiveness, which is
thought may be useful as a comparative model for the study of
asymptomatic NCC (Cardona et al., 1999). Thus far no seizures
have been reported in this model system of NCC, but it has pro-
vided much insight into potential mechanisms that dictate the
severity of inflammation, blood-brain barrier breakdown, parasite
burden and neuronal pathology (Cardona et al, 1999, 2003;
Cardona and Teale, 2002; Alvarez and Teale, 2006, 2007).

Taenia crassiceps in rats

Extracts of T. crassiceps larvae have been administered intracrani-
ally in rats, but to date no studies have been performed where
intact oncospheres/cysts are injected. Studies using this model
have shown that the intracranial administration of early-stage
granulomal extracts can induce seizures in the host (Stringer
et al., 2003; Robinson et al, 2012). This is a very promising
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finding in terms of its potential use in the study of seizures sec-
ondary to NCC. It should be noted, however, that these studies
are limited by the fact that the granulomas were produced periph-
erally in mice, and immune responses differ in different hosts, as
well as peripherally as compared with the CNS, so the content of
these granulomas may not be reflective of brain cysts. Brain activ-
ity was monitored acutely in these studies, so it is not yet known
whether recurrent seizures would present in these rats.

Taenia solium in rats

Taenia solium does not naturally infect rodents, and as such very
little research has been done using the T. solium-rat combination.
In one study, however, activated oncospheres were intracranially
injected into rats, and these were found to form cysts in roughly
half of the rats after about 4 months (Verastegui et al., 2015).
Importantly, infection is much more successful in younger rats.
The authors report that this model presents with many NCC
characteristics typical of human infection and that 9% of infected
rats present with chronic seizures (Verastegui et al, 2015).
Although this is not a very efficient model of epilepsy secondary
to NCC, the induction of chronic seizures is intriguing, and it
may be worth exploring whether this model could be optimized
for seizure occurrence. The study further revealed diverse cyst dis-
tribution and immunopathology, similar to what is observed in
humans. A major advantage of this model over other rodent mod-
els is the use of the parasite responsible for human disease.

Taenia solium in pigs

The study of T. solium NCC in pigs often involves the utilization
of pigs reared for agricultural purposes that have naturally
acquired the infection. Pigs can also be experimentally infected
by oral administration of T. solium eggs to induce NCC, with
between 20 and 100% of pigs dosed with high numbers of eggs
developing NCC (de Aluja et al., 1996; Santamaria et al., 2002;
Nguekam et al., 2003). Older pigs appear to be more resistant
to infection than younger pigs (Santamaria et al, 2002).
Recently, a new model of pig NCC was developed whereby acti-
vated T. solium oncospheres are surgically implanted into the sub-
arachnoid space (Fleury et al., 2015). All infected pigs developed
brain cysts, although at very low infection efficiencies (Fleury
et al., 2015). This model surprisingly did not result in any neuro-
logical signs (Fleury et al., 2015).

The pig model system of NCC has been extremely useful in
characterizing immunopathological and proteomic changes in
response to T. solium in the brain, both in the normal course of
disease and after a vaccination or treatment protocol. Significant
overlap between human and pig reactions has been found
(Molinari et al., 1983; Sikasunge et al, 2009; Guerra-Giraldez
et al, 2013; Singh et al, 2013; Mahanty et al, 2015;
Christensen et al., 2016; Navarrete-Perea et al., 2017). A recent
study reports severe seizures in naturally infected pigs, which
could be extremely valuable in aiding progress towards under-
standing the most common symptomatic presentation in NCC
(Trevisan et al., 2016). The pigs that presented with seizures in
this study were much older than the others in the sample
group, suggesting that a longer infection/experimental period
may be necessary for neurological symptoms to present
(Trevisan et al., 2016). NCC in pigs also presents with great vari-
ation in the infection characteristics and antibody response, which
suggests that porcine models may be able, to some extent, to
recapitulate the great variation in pathology and disease progres-
sion that is observed in infected humans (Prasad et al., 2006;
Saenz et al., 2008).
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Limitations of the pig-T. solium model system includes that
this model can prove very time and resource intensive, with T.
solium cysts taking as long as 350 days to form in pigs (de
Aluja et al., 1996), pig handlers requiring training and larger ani-
mals requiring more resources to feed and keep (de Aluja et al.,
1996; Arora et al., 2017).

Taenia solium in rhesus monkeys

Primate studies of neurological conditions are rare due to the sig-
nificant ethical (Greene et al., 2005) and legal (Fox, 2009) impli-
cations of using primates for research purposes. Many countries
have laws in place either preventing primate research or restricting
their use to cases where all other options have been exhausted or
found unsuitable (Greene et al., 2005; Fox, 2009).

Taenia solium has, however, been reported to infect several
non-human primates in its larval form, although this is consid-
ered an ‘accidental infection’ since T. solium does not require
infection of non-human primates to complete its life cycle
(Kuntz, 1973; Johnston et al., 2016). NCC can be reliably induced
in rhesus monkeys by feeding them large doses of activated T.
solium oncospheres. The infected monkeys present with seizures
and clinical symptoms very similar to those in humans within a
matter of days, and if not treated may eventually die from the
infection (Saleque et al, 1988; Chowdhury et al, 2014).
Symptom presentation is delayed and attenuated in monkeys
receiving smaller numbers of oncospheres, which may more
closely resemble the human condition (Chowdhury et al., 2014).
It is interesting to note that symptom onset could be induced
within a matter of days, in contrast to a study reporting a case
of naturally acquired NCC in an 8-year-old rhesus monkey,
which presented with no symptoms (Johnston et al, 2016).
This could be explained by the high dosage of oncospheres
used in the experimental studies and serves as a reminder of
the importance of dose in eliciting disease phenotypes in models
of NCC.

Future roles for animal model systems in the study of NCC

Due to the remaining uncertainty surrounding disease mechan-
isms in NCC and the limitations of studying the disease in
humans, there is a need for continued exploration and improve-
ment of animal models that recapitulate the human disease pro-
cess. Table 1 summarizes the respective utility of currently
available model systems used in NCC research and highlights
the fact that there still exist many areas that remain unexplored.

One aspect of the disease that may be useful consider when
designing model systems is that the disease state in humans
involves a mismatch between the host and the parasite stage.
Humans are not natural hosts for the larval life stage of T. solium
(Fig. 1). Therefore, it may be worth considering using or creating
model systems where this mismatch is replicated. Inducing NCC
using T. crassiceps or M. corti in animals that usually act as the
definitive host for these parasites (such as cats or dogs - see
Fig. 3), for example. Reports exist of CNS infections by T. crassi-
ceps and T. solium occurring naturally in cats or dogs, and
although seizures are not amongst the neurological symptoms
reported in these cases, they provide an encouraging precedent
for experimental models in these animals (Rogers et al., 1989;
Crosbie et al., 2000; Wiinschmann et al., 2003; Jull et al., 2012).
By recreating the host-parasite stage mismatch, models in canines
offer a potential new avenue for NCC research, although this
would need to be weighed against the ethical and cultural con-
cerns of using these animals for research purposes.

Another potential avenue of exploration towards the expansion
of animal model systems is the use of novel model parasites.
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Taenia taeniaeformis, for example, has been used to experimen-
tally induce cysticercosis in rodents and been shown to have sig-
nificant antigenic similarity to T. solium (Shukla et al., 2008; Preet
and Prakash, 2011). Further, another species of Taenia, Taenia
serialis, has been reported to cause cerebral cysticercosis in cats,
and as such may also be an interesting experimental parasite to
explore (Jull et al., 2012; Orioles et al., 2014).

There currently exists a paucity of model systems that result in
the development of seizures, and even fewer that result in recur-
rent seizures (refer to Table 1). One way in which research into
this aspect of NCC could be relatively easily expanded is through
the use of in vitro/ex vivo models using neural tissue, such as acute
or organotypic brain slices (De Simoni and Yu, 2006). Whilst
these model systems lack many key components necessary for
fully recapitulating the disorder (e.g. adaptive immunity), brain
slice models do allow for unprecedented experimental and
molecular access to the tissue in ways that are difficult or impos-
sible to accomplish in vivo. The expansion and optimization of in
vivo animal models, that result in seizures would also be extremely
valuable. Such a rodent model would be particularly well received,
as experimental tools for observing and manipulating neural cir-
cuits and seizure activity in rodents have progressed remarkably
over the past two decades. For example, wireless telemetry now
enables chronic (>3 months) EEG recordings in freely moving
mice and rats, which can document the development of seizures
over time (Wykes ef al, 2012); and transgenic mouse lines can
selectively knockout immunological pathways (Ndlovu and
Brombacher, 2014) or allow in vivo calcium imaging to better
understand circuit-level changes which result in seizures
(Madisen et al., 2010). Any animal model of NCC which results
in recurrent seizures would have additional worth as a general
inflammatory model of epilepsy, for which reliable animal models
are still lacking (Nash et al., 2015).

Whilst genetically altered mice are an underutilized resource in
the study of NCC, there is also much potential for the development
of molecular tools for modifying the genomes of model parasites.
There is one research group who, for example, are developing a
‘reporter’ strain of T. crassiceps where larvae express fluorescent
proteins (Moguel ef al., 2015). This could prove valuable for track-
ing the parasites in vivo. Further, genetic knock-out cestode strains
could help isolate parasite functions that are crucial for disease pro-
gression, and thereby help elucidate the mechanisms of disease.

Conclusion

NCC is an important global health challenge that is still poorly
understood. Whilst the study of NCC in patients has provided
important insights into the disease, there exist innate limitations
that can only be overcome through the use and continued devel-
opment of animal models. Model systems utilizing T. solium, T.
crassiceps and M. corti in mice, rats, pigs and even rhesus mon-
keys have generated invaluable knowledge on disease mechanisms
in NCC. However, there is a great need for animal models of NCC
which result in seizures and epilepsy. New rodent model systems
of NCC would allow researchers to take advantage of the latest
technological advances to explore the disease at unprecedented
molecular and cellular detail. We believe that there is still huge
potential that could be realized in animal model systems, and
that this represents the key to ultimately unlocking a definitive
understanding - and treatment of NCC.
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