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Turbulence governed by the Navier–Stokes equations shows a tendency to evolve
towards a state in which the nonlinearity is diminished. In fully developed turbulence,
this tendency can be measured by comparing the variance of the nonlinear term
to the variance of the same quantity measured in a Gaussian field with the same
energy distribution. In order to study this phenomenon at high Reynolds numbers, a
version of the direct interaction approximation is used to obtain a closed expression
for the statistical average of the mean-square nonlinearity. The wavenumber spectrum
of the mean-square nonlinear term is evaluated and its scaling in the inertial range
is investigated as a function of the Reynolds number. Its scaling is dominated by the
sweeping by the energetic scales, but this sweeping is weaker than predicted by a
random sweeping estimate. At inertial range scales, the depletion of nonlinearity as a
function of the wavenumber is observed to be constant. At large scales it is observed
that the mean-square nonlinearity is larger than its Gaussian estimate, which is shown
to be related to the non-Gaussianity of the Reynolds-stress fluctuations at these scales.
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1. Introduction
Kraichnan & Panda (1988), observed that in turbulent flows the variance of the

nonlinear term in the Navier–Stokes equations is on average smaller than would be
expected from a Gaussian estimate. More precisely, if one constructs a flow field
consisting of random statistically independent Fourier modes exhibiting the same
energy spectrum as the turbulent flow considered, the variance of the nonlinear term
will be larger than for the original field. This depletion of nonlinearity is the result
of a self-organization process of the turbulent flow, a process which is, itself, due to
the nonlinear term in the Navier–Stokes equations. Kraichnan and Panda’s study was
motivated by the possible importance of velocity–vorticity alignment in turbulent flows,
which they showed to be one expression of a more general, underlying property of
nonlinear systems. We consider that this general property, the depletion of nonlinearity,
is an important feature of turbulent flows, since the nonlinearity of the Navier–Stokes
equations is the heart of the turbulence problem.
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The nonlinear term of the Navier–Stokes equations is a vector and its mean value
is zero in isotropic turbulence. An obvious question to ask is then: how strong are the
fluctuations of the nonlinear term and how strong is its depletion? These questions will
be addressed in the present investigation. Furthermore, we will address the following
questions with respect to this phenomenon: how does the depletion of nonlinearity
vary as a function of the Reynolds number? Does this depletion of nonlinearity
manifest itself in the inertial range? What are the physical consequences of this
depletion?

In order to answer these questions we focus on the nonlinearity spectrum, which
we will define below. This spectrum measures the strength of the fluctuations of the
nonlinear term as a function of scale, just like the energy spectrum does for the
strength of velocity fluctuations. Whereas the characterization of the energy spectrum
has received an enormous amount of attention in the field of turbulence research, only
very few investigations consider the nonlinearity spectrum. To the best of the authors’
knowledge, only the work by Chen et al. (1989), Nelkin & Tabor (1990) and Ishihara
et al. (2003) considered this quantity. Chen et al. (1989) performed low-resolution
direct numerical simulations and compared their results with the direct interaction
approximation (DIA). No information was obtained on the inertial range behaviour
of this quantity since the Reynolds number was too low in their simulations. Higher
Reynolds numbers could in principle be obtained by using the DIA, but physically
incorrect behaviour is observed in the inertial range dynamics of the original, Eulerian
DIA (Kraichnan 1964). Nelkin & Tabor (1990) considered only the scaling of the
potential part of the advection term, assuming that the full nonlinear term scales as its
potential part. Only the high-resolution simulations by Ishihara et al. (2003) give an
idea on the inertial range scaling of several fourth-order spectra.

In the present work we use a version of DIA in which the time correlations are
modified in order to yield results which are in agreement with Kolmogorov’s inertial
range phenomenology. This approach allows us to investigate the strength of the
nonlinearity and its scaling properties in high-Reynolds-number turbulence.

2. Inertial range scaling of the nonlinearity spectrum

We consider the case of a unit density, incompressible, isotropic, fully developed
turbulent flow governed by

∂u(x, t)

∂t
+ u(x, t) ·∇u(x, t)=−∇p(x, t)+ ν1u(x, t)+ f (x, t) (2.1)

∇ ·u(x, t)= 0 (2.2)

with u the velocity, p the pressure, ν the viscosity and f an isotropic forcing term,
confined to the largest scales of the flow. The quantities u, p and f are a function of
space x and time t. The time dependence will be omitted in the following, except for
quantities which depend on two or more time instants. The Fourier transform of the
velocity will be indicated by u(k), and its evolution is given by[

∂

∂t
+ νk2

]
ui(k)= Ni(k)+ fi(k), (2.3a)

Ni(k)=− i
2

Pijm(k)
∫∫

δ(k− p− q)uj(p)um(q) dp dq (2.3b)
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in which the pressure is eliminated using relation (2.2) and where Pijm(k) is given by

Pijm(k)= kjδim + kmδij − 2
kikjkm

k2
. (2.4)

For a more careful treatment see Batchelor (1953).
The energy spectrum is

E(k)= 2πk2〈ui(k)ui(−k)〉, (2.5)

where the brackets indicate an ensemble average. The spectrum is defined such that∫
E(k) dk = 1

2
〈|u(x)|2〉 ≡ 1

2
U2 (2.6)

with k = |k|. We define the wavenumber spectrum of the mean-square nonlinearity

w(k)= 4πk2〈Ni(k)Ni(−k)〉, (2.7)

so that ∫
w(k) dk = 〈|u(x) ·∇u(x)+∇p(x)|2〉 ≡ N2. (2.8)

In the following w(k) will be called the nonlinearity spectrum. The spectra E(k)
and w(k) represent the distribution over scales of the kinetic energy and the mean-
square nonlinearity, respectively. Omitting possible internal intermittency corrections,
the kinetic energy spectrum in statistically stationary high-Reynolds-number isotropic
turbulence scales at large k as (Kolmogorov (1941), hereafter referred to as K41)

E(k)= ε2/3k−5/3f (kη) (2.9)

with ε the mean dissipation rate, η = ν3/4ε−1/4. Here and throughout f (x) denotes a
dimensionless function independent of the Reynolds number, not necessarily the same
whenever it appears. If one assumes that in the inertial range the nonlinearity spectrum
is likewise determined by the dissipation rate and the wavenumber, one would obtain
the scaling

w(k)= ε4/3k−1/3f (kη). (2.10)

This is shown not to be the case and it will be shown that the scaling of w(k) is more
closely given by

w(k)= U2ε2/3k1/3f (kη), (2.11)

where the large-scale velocity U is defined in expression (2.6). This scaling implies, by
integration of the latter expression up to kη ≡ 2π/η, that the mean-square nonlinearity
varies as

N2 ∼ R2
λ, (2.12)

for asymptotically high Reynolds numbers (Rλ is the Taylor-scale Reynolds number). It
will furthermore be shown that N2/(N2)

G tends to a non-unity value, independent of
the Reynolds number. This implies that not only w(k), but also its Gaussian estimate
scales as

wG(k)= U2ε2/3k1/3f (kη), (2.13)
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where wG(k) is the nonlinearity spectrum computed from the same velocity field,
assuming independence of the Fourier modes.

In the following we will try to establish the scaling expressions (2.11), (2.12) and
(2.13), and we will show how non-Gaussian effects influence this scaling. In order
to show clear scaling ranges, high Reynolds numbers are needed. We derive a DIA
expression for the nonlinearity spectrum, which we simplify to obtain an expression
of the eddy-damped quasi-normal Markovian (EDQNM) type. This derivation is
presented in § 3. The resulting expression for the nonlinearity spectrum and its
Gaussian estimate are functionals of the energy spectrum, wavenumber and viscosity
only,

w(k)= F[E(k), k, ν] (2.14a)
wG(k)= F[E(k), k], (2.14b)

that is, once we prescribe the energy spectrum and the Reynolds number, we can
evaluate w(k) and wG(k). In § 4 we will perform a numerical integration of the
EDQNM closure of the Lin equation for the energy spectrum. The hereby obtained
energy spectrum is then used to evaluate w(k), wG(k),

∫
w(k) dk and

∫
wG(k) dk,

and the dependence of these quantities on the wavenumber and Reynolds number is
investigated. In § 5 the large-scale behaviour of the nonlinearity spectrum and its link
with the Reynolds-stress fluctuation spectrum is discussed.

3. Gaussian estimate and closure expression for the nonlinearity spectrum
3.1. Gaussian estimate of the mean-square nonlinearity: random sweeping

Evaluating w(k), as defined by (2.7) assuming independence of the Fourier modes
yields the Gaussian estimate (cf. Chen et al. 1989),

wG(k)= k3

∫∫
1

a(k, p, q)E(p)E(q)
dp dq

pq
. (3.1)

The symbol 1 indicates the domain in the pq-plane in which k, p, q can form a
triangle (in other words |p− q|6 k 6 |p+ q|), the quantity a(k, p, q) is given by

a(k, p, q)= 1
2(1− xyz− 2y2z2) (3.2)

and x, y, z are

x=−piqi/(pq) (3.3a)
y= kiqi/(kq) (3.3b)
z= kipi/(kp). (3.3c)

The Gaussian estimate of the nonlinearity spectrum is thus completely determined
once the energy spectrum is given. Considering expression (3.1) in some detail, and
in particular the quantity a(k, p, q), it is observed that the integral is dominated by
triad interactions in which k ≈ p� q and k ≈ q� p. For instance, when k ≈ q� p,
x ≈ z ≈ 0 and y ≈ 1, so that a(k, p, q) is not zero, and contributions from the
infrared range will determine the integral. This allows us to obtain the following
approximation,

wG(k)∼ k2E(k)
∫

E(p) dp (3.4)
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which, assuming K41 scaling, yields

wG(k)∼ U2ε2/3k1/3. (3.5)

We can thus analytically establish the scaling for wG(k). Note that a simple
dimensional analysis, based on the observation that the nonlinear transfer is dominated
by sweeping, and proportional to the spectrum of the Eulerian velocity gradient,
k2E(k) gives the same expression (3.5). This analysis (which is a formulation
of Tennekes’ random sweeping estimate (Tennekes 1975)) implicitly assumes
independence of the Fourier modes at different scales and is thus equivalent to the
Gaussian estimate. In a true turbulent field in which the modes are not independent,
this analysis is not a priori satisfied, and how the dependence between Fourier modes
will alter this scaling, i.e. how the cumulant contributions to w(k) scale, will be
considered in the following section.

3.2. DIA for the mean-square nonlinearity
DIA (Kraichnan 1959) allows us to investigate the influence of the inter-dependence
of the Fourier modes in a turbulent flow under the assumption that the individual
coupling between the triads is weak. The collective influence of the coupling of all
triads together is however not necessarily weak and DIA can consider systems which
are far from Gaussianity. The results obtained by the original, Eulerian, DIA are
not invariant under random Galilean transformations, which is not in agreement with
the physics of a turbulent flow. This manifests itself by the fact that the Eulerian
DIA yields an energy spectrum which is not in agreement with Kolmogorov’s scaling
phenomenology (2.9). In order to cure this, DIA can be formulated in Lagrangian
coordinates (Kraichnan 1964). The resulting set of equations (Kraichnan 1965) is
complicated (see Kaneda (1981) for a more tractable variant of Lagrangian DIA) and
depends on the entire history of the flow. Our approach to analyse the effects of
dependence of the modes avoids these problems, since we start from Eulerian DIA
and explicitly model the time dependence of the Fourier modes (Kraichnan 1971). The
correlation time that we will use in the time-correlation functions is chosen such that
the results are consistent with Kolmogorov’s scaling arguments.

A straightforward way to derive the closure expression for the mean-square
nonlinearity is by using the generalized Langevin model for DIA (Kraichnan 1970;
Leith 1971). This approach was also described by Chen et al. (1989) and we used
this approach to derive a closed expression for the mean-square advection term in Bos,
Rubinstein & Fang (2012). The DIA Langevin model is given by[

∂

∂t
+ νk2

]
ui(k, t)= qi(k, t)−

∫ t

0
η(k, t, s)ui(k, s) ds (3.6)

= qi(k, t)− di(k, t) (3.7)

with

qi(k, t)=− i
2

Pijm(k)
∫
δ(k− p− q)ζj(p, t)ζm(q, t) dp dq (3.8)

di =
∫ t

0
η(k, t, s)ui(k, s) ds (3.9)

η(k, t, s)= 1
2

∫
1

kp2b(k, p, q)G(p, t, s)E(q, t, s)
dp

p

dq

q
, (3.10)
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where ζi(k, t) is an independent Gaussian random variable with the same two-time
correlation function as ui,

E(k, t, t′)= 2πk2〈ui(k, t)ui(−k, t′)〉 = 2πk2〈ζi(k, t)ζi(−k, t′)〉. (3.11)

Here G(k, t, s) is the response function (or Green’s function) and b(k, p, q) =
(p/k)(xy + z3). The term di is the damping term of the Langevin equation, where
the damping is due to nonlinear scrambling, or eddy damping, and viscous effects.
Since (3.6) is a linear function of ui, it can be inverted, giving

ui(k, t)=
∫ t

0
G(k, t, s)qi(k, s) ds. (3.12)

The spectrum of the mean-square nonlinearity is given by the square of the right-
hand side of (3.6),

w(k, t)= 4πk2〈|qi(k, t)− di(k, t)|2〉. (3.13)

The different terms that appear are then

〈|qi(k, t)|2〉 = 1
4

Pijm(k)Piln(k)
∫
δk−p−qδk−p′−q′〈ζj(p, t)ζm(q, t)

× ζl(−p′, t)ζn(−q′, t)〉 dp′ dq′ dp dq (3.14)

〈|di(k, t)|2〉 =
∫ t

0

∫ t

0
η(k, t, s)η(k, t, s′)〈ui(k, s)ui(−k, s′)〉 ds′ ds (3.15)

〈qi(k, t)d∗i (k, t)〉 = qi(k, t)
∫ t

0
η(k, t, s)ui(k, s) ds. (3.16)

The first term can be simplified by using the rules for Gaussian quantities, leading to

〈|qi(k, t)|2〉 = wG(k)

4πk2
(3.17)

with wG(k) given by (3.1). The second term is directly closed. The last term can be
closed by using expression (3.12), yielding

〈qi(k, t)d∗i (k, t)〉 =
∫ t

0

∫ s

0
η(k, t, s)G(k, s, s′)〈qi(k, t)qi(−k, s′)〉 ds′ ds. (3.18)

The resulting expression for w(k) is then

w(k)= wG(k)+ 1
2

∫ t

0

∫ t

0

∫
1

∫
1′

bb′k2p2p′2G(p, t, s)G(p′, t, s′)E(q, t, s)

×E(q′, t, s′)E(k, s, s′)
dp′ dq′

p′q′
dp dq

pq
ds′ ds

−
∫ t

0

∫ s

0

∫
1

∫
1′

bb′k4p2G(p, t, s′)G(k, s, s′)E(q, t, s)

×E(q′, t, s′)E(p′, t, s′)
dp′ dq′

p′q′
dp dq

pq
ds′ ds (3.19)

with b = b(k, p, q) and b′ = b(k, p′, q′). This expression, which is a function of the
response function and the energy spectrum only, is closed within the DIA formalism.
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3.3. Single-time expressions
As was discussed in the beginning of § 3.2, DIA is a two-time theory which is not
compatible with Kolmogorov phenomenology. In order to obtain a single-time model
that is compatible, we introduce simplifying assumptions, which are now discussed.

First, to simplify expression (3.19) we assume an exponential Lagrangian
decorrelation of the Fourier modes, with a wavenumber-dependent characteristic
correlation time which needs to be defined. We will use the following expressions

G(k, t, s)= e−η(k)(t−s)H(t − s) (3.20a)
E(k, t, s)= E(k)[G(k, t, s)+ G(k, s, t)], (3.20b)

which assumes that the fluctuation-dissipation theorem holds for the Lagrangian
velocity fluctuations. Substituting these expressions into (3.19), one obtains, using
(p, q)↔ (p′, q′) symmetry,

w(k)= wG(k)+
∫
1

∫
1′

bb′k4p2p′2E(q)E(q′, t)Ξ(k, p, q, p′, q′)

×
[

E(k)

k2
− E(p′)

p′2

]
dp′ dq′

p′q′
dp dq

pq
, (3.21)

with

Ξ(k, p, q, p′, q′)=
∫ t

0

∫ s

0
G(p, t, s)G(p′, t, s′)G(q, t, s)G(q′, t, s′)G(k, s, s′) ds ds. (3.22)

We have written (3.21) in a form from which it is directly observed that the cumulant
part vanishes in thermal equilibrium, when E(k) ∼ k2, independent of the form of
Ξ(k, p, q, p′, q′), as was also shown for the passive scalar case in Bos et al. (2012).
Some qualitative predictions can also be obtained from this expression. If the integral
in the inertial range is dominated by interactions in which p′ < k, the cumulant
contribution will be negative. Logically, for the smallest wavenumbers k the integral
cannot be dominated by p′ < k, so that interactions with p′ > k must determine the
integral. For these interactions the cumulant contribution is positive. It will be seen in
the following that these qualitative predictions are indeed in agreement with the results
of the numerical integration of expression (3.21).

Working out the integrals, we find

Ξ(k, p, q, p′, q′)= 1
Apqp′q′ − Bkp′q′

[
1− e−Bkp′q′ t

Bkp′q′
− 1− e−Apqp′q′ t

Apqp′q′

]
(3.23)

Apqp′q′ = ηp + ηq + ηp′ + ηq′ (3.24)
Bkp′q′ = ηk + ηp′ + ηq′ . (3.25)

Note that for long times this expression simplifies to

Ξ(k, p, q, p′, q′)= 1
Apqp′q′Bkp′q′

. (3.26)

In this expression we need to define the eddy damping frequency η−1
k . We will use

a response frequency which is compatible with a k−5/3 inertial range and with a
dominant viscous contribution at large wavenumbers,

ηk = λ
√∫ k

0
s2E(s) ds+ νk2. (3.27)
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FIGURE 1. (Colour online) Energy spectrum, normalized by Kolmogorov variables
Ẽ(k)= E(k)/(ε1/4ν5/4).

The constant λ is chosen as 0.5. In a long K41 inertial range ηk is proportional
to ε1/3k2/3. This choice for the eddy damping is common in the EDQNM model,
where the damping can be chosen freely. A more sophisticated closure is the test
field model (Kraichnan 1971) or the Lagrangian Markovianized field approximation
(LMFA) closure (Bos & Bertoglio 2013), where the damping is determined self-
consistently by solving an additional equation for an advected test field. It is expected
that the use of these closures to determine the damping will not qualitatively change
the results, since the inertial range behaviour of ηk is qualitatively similar.

4. Results for the mean-square nonlinearity
4.1. EDQNM results for the energy spectrum

We use here an energy spectrum obtained using the EDQNM model (Orszag 1970),
and details on the method and discretization can be found in Bos et al. (2012). The
velocity field is forced at the largest scales, and the energy spectrum is evaluated
once a steady state is obtained. The energy spectra for 17 < Rλ < 4 × 104 are shown
in figure 1. Using Kolmogorov variables (length and time scales constructed using
the dissipation rate ε and viscosity ν), the spectra collapse perfectly in the inertial
and dissipation range. We can only distinguish between the different spectra in their
forcing range.

4.2. Reynolds number dependence and Gaussianity of the mean-square nonlinearity

In figure 2, the mean-square nonlinearity and its Gaussian estimate, computed from
expressions (3.21) and (3.1), are shown as a function of the Reynolds number. Both N2

and (N2)
G increase proportional to R2

λ. In figure 2(b), it is shown that the ratio between
the two quantities tends to a constant value, which is approximately 0.65 for large Rλ,
a value which is rapidly approached for Rλ > 100. This value is of the same order
as observed in simulations of low-Reynolds-number decaying turbulence (Kraichnan &
Panda 1988).
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FIGURE 2. (Colour online) (a) Mean-square nonlinearity N2 and its Gaussian estimate
(N2)

G as a function of the Reynolds number. (b) Depletion of nonlinearity, quantified by
αNL = N2/(N2)

G, as a function of the Reynolds number.
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FIGURE 3. (Colour online) (a) Nonlinearity spectrum normalized by sweeping variables,
w̃(k) = w(k)/(U2ε3/4ν−1/4). Inset: normalized Gaussian nonlinearity spectrum w̃G(k).
(b) Spectrum of the nonlinear term divided by its Gaussian estimate.

4.3. Scaling of the nonlinearity spectrum

In figure 3(a), we show the nonlinearity spectra normalized by ‘sweeping variables’

w̃(k)= w(k)/(U2ε3/4ν−1/4). (4.1)

We observe that the spectra collapse at the high wavenumbers, even though the
superposition is not as perfect as for the energy spectra (figure 1). However, to a
good approximation, the spectra scale as

w(k)∼ U2ε2/3k1/3f (kη) (4.2)

with f (kη) a function which tends to a constant in the inertial range and which
rapidly decays in the dissipation range. Our simulations do thus confirm that both w(k)
and wG(k) scale proportional to U2ε2/3k1/3 in the inertial range. A clear power-law
scaling proportional to k1/3 appears, however, only at relatively high Reynolds number.
For moderate and low Reynolds numbers the power law is steeper, i.e. the power-
law exponent is larger than 1/3. The inherent non-local character of the sweeping
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contribution to the nonlinear term might be behind the slow convergence to an
asymptotic inertial range scaling.

In figure 3(b), we plot the ratio of the nonlinearity spectrum to its Gaussian estimate,
w(k)/wG(k). This representation shows directly how the nonlinearity spectrum is
affected at different scales by the cumulant contributions. It is observed that the
nonlinearity spectrum is super-Gaussian in the forced scales. Here and in the following
by sub- or super-Gaussian we mean that the value of a quantity in the turbulent flow
is smaller or larger, respectively, than its value in the Gaussian reference field. In
the inertial range a constant depletion of nonlinearity is observed. This implies that
at these scales the cumulant spectrum scales exactly like the Gaussian spectrum as a
function of wavenumber. In the dissipation range the cumulant contribution becomes
more strongly negative, leading to a more important depletion of nonlinearity in these
scales. In the far dissipation range the spectrum of the nonlinear term shows negative
values for high Reynolds numbers. This non-realizable behaviour for kη > 2 might
be due to the numerical integration of the expressions, or to the procedure we used
to obtain single-time expressions, which does not guarantee the preservation of the
realizability property of the Eulerian DIA.

At the inertial range scales the depletion of nonlinearity is thus approximately
constant and the statistics for the mean-square nonlinearity are sub-Gaussian. The fact
that the mean-square nonlinearity is weaker than its Gaussian estimate indicates that
the effect of random sweeping is reduced, and suggests a certain order at these scales.
How the amount of order is determined, i.e. what determines the level of depletion
of nonlinearity, is currently under investigation. The super-Gaussian behaviour in the
large scales will be addressed in the following section.

5. Fluctuations of the Reynolds stress and super-Gaussian behaviour of the
large-scale nonlinearity fluctuations

Using DIA techniques, expressions can be derived for the cumulant contributions
to all sorts of correlations at arbitrary order. Some details on the procedure are
given by Chen et al. (1989). It was shown that, whereas the cumulant contributions
to the mean-square nonlinearity spectrum are non-zero within the DIA framework,
fourth-order vorticity correlations, dissipation rate fluctuations and pressure-gradient
fluctuations are all Gaussian according to DIA, which seems to be in disagreement
with observations from direct numerical simulations. The precise reason for this is still
not clear at present. In addition to the expression for the mean-square nonlinearity, we
derived expressions for the cumulants to the correlations

Tijij(k)= 4πk2

∫
δ(k− p− q)δ(k− p′ − q′)

×〈ui(p)uj(q)ui(−p′)uj(−q′)〉 dp dq dp′ dq′ (5.1)

and

Tiijj(k)= 4πk2

∫
δ(k− p− q)δ(k− p′ − q′)

×〈ui(p)ui(q)uj(−p′)uj(−q′)〉 dp dq dp′ dq′. (5.2)

The first of these two expressions is the Reynolds stress fluctuation spectrum, which
gives a measure for the fluctuations of the Reynolds stress at various scales. The
second, Tiijj(k), is the energy-fluctuation spectrum, which measures the fluctuations of
the kinetic energy at various scales. After some long but straightforward algebra, one
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obtains that

TC
iijj(k)= 0, (5.3a)

TC
ijij(k)=

2
k2

wC(k), (5.3b)

where the superscript C indicates that we consider the cumulant part of the spectrum.
The cumulant part of the nonlinearity spectrum wC(k) is given by the second and third
line of expression (3.19). This shows that according to DIA the energy fluctuation
spectrum is given by its Gaussian estimate, whereas the Reynolds-stress fluctuation
spectrum is not. It also shows that the non-Gaussian part of Tijij(k) is related, in a
simple way, to the nonlinearity spectrum.

Since, evidently, the single-point correlation 〈uiuiujuj〉 = 〈uiujuiuj〉, we must have∫
Tijij(k) dk =

∫
Tiijj(k) dk (5.4)

and, therefore, ∫
TC

ijij(k) dk =
∫

TC
iijj(k) dk = 0. (5.5)

The spectrum of the cumulant to the Reynolds-stress fluctuations TC
ijij(k) contains thus,

if it is non-zero, both positive and negative contributions, which sum up to zero
when integrated over all scales. This is comparable to the nonlinear transfer spectrum,
which also sums up to zero. According to relation (5.3) we can link the spectrum
TC

ijij(k) to the nonlinearity spectrum. We have seen (for example in figure 3) that
a negative cumulant contribution is observed in the inertial and dissipation range
scales for w(k). Thus, this also holds for k−2wC(k). This negative contribution must
be compensated for by a positive contribution in the large scales in order to satisfy
(5.5). The super-Gaussian statistics in the nonlinearity spectrum at large scales within
the DIA approach are, therefore, directly linked to the depletion of nonlinearity in
the small scales, through the relations (5.3) and (5.5), involving the Reynolds stress
fluctuation spectrum.

6. Discussion and conclusion
In the present investigation we have considered and established the wavenumber

scaling and Reynolds number scaling of the mean-square nonlinearity. It is shown that,
in the inertial and dissipation range, the nonlinearity spectrum is given by

w(k)= U2ε2/3k1/3f (kη), (6.1)

for very high Reynolds numbers. The function f (kη) tends to a constant value in
the inertial range and its value is approximately 0.8 times the value of its Gaussian
estimate. The total depletion of nonlinearity, measured by the ratio of N2 to (N2)

G, is
shown to tend to a constant value of approximately 0.65. This sub-Gaussian behaviour
of turbulence must be connected with a certain order in the flows, but how this
manifests itself in an instantaneous flow field (e.g. in terms of coherent flow structures)
cannot be inferred from the statistical considerations presented here.

The nonlinear term consists of two parts: the advection term and the
pressure gradient term. Since the pressure spectrum, Ep(k) scales approximately
as Ep(k) ∼ ε3/4k−7/3f (kη) (Gotoh & Fukayama 2001), the pressure gradient spectrum
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scales as

E∇p(k)∼ ε4/3k−1/3f (kη). (6.2)

Note, however, that this scaling appears only at relatively high Reynolds number
(Gotoh & Fukayama 2001) compared with the appearance of K41 scaling for the
energy spectrum. Considering (6.1) and (6.2) it is clear that at large Reynolds numbers
N2 is only weakly determined by the variance of the pressure gradient. The variance
of the nonlinearity is therefore dominantly determined by the advection term. The
depletion of nonlinearity implies hereby directly a depletion of the sweeping compared
with the kinematic sweeping induced by a field consisting of independent Fourier
modes. In this context we refer to the work by Chen & Kraichnan (1989), which
discusses the possibility of a reduction of sweeping in turbulence. They argue that a
complete reduction of sweeping is improbable for stochastically forced Navier–Stokes
turbulence. Their arguments are not in disagreement with the present investigation.
The interdependence of the large and small scales is affected, and the sweeping, as
estimated by purely kinematic arguments, is partially but definitely not completely
suppressed. In this light the depletion of nonlinearity can also be interpreted as
a reduction of Eulerian acceleration, suggesting a larger Eulerian coherence for
turbulence than for advection by random Fourier modes. The possible link of this
enhanced coherence with inertial range and dissipation range intermittency is not clear
at present. The super-Gaussian values of the large scales of the nonlinearity spectrum
were shown to be related to the non-Gaussianity of the Reynolds-stress-fluctuation
spectrum. The physical importance of this relation for the dynamics of turbulent flow
seems to deserve further research.

We mention here that a similar picture (large-scale super-Gaussian behaviour and
sub-Gaussian inertial range and dissipation range behaviour), was observed in the
depletion of advection (Bos et al. 2012), where the inertial range scaling of the
advection spectrum also displayed a constant reduction with respect to its Gaussian
value. An interesting perspective is the analysis of the scale distribution of the
nonlinearity in magnetohydrodynamics, a system in which it was recently shown that
the nonlinearity is also depleted (Servidio, Matthaeus & Dmitruk 2008).
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