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SUMMARY
Three-dimensional (3D) data processing has applications in solving complex tasks such as object
recognition, environment modeling, and robotic mapping and localization. Because using raw 3D
data without preprocessing is very time-consuming, extraction of geometric features that describe
the environment concisely is essential. In this sense, a plane can be a suitable geometric feature due
to its simplicity of extraction and the abundance in indoor environments. This paper presents an
online incremental plane extraction method using line segments for indoor environments. Our data
collection system is based on a “nodding” laser scanner, so we exploit the incremental nature of its
data acquisition in which physical rotation and 3D data processing are conducted in parallel. Line
segments defined by two end points become supporting elements that comprise a plane, so a large
proportion of scan points can be ignored once the line segments are extracted from each scan slice.
This elimination of points reduces the algorithm complexity and computation time. Experiments
with the tens of complete scan data sets which were acquired from a typical indoor environment
demonstrated that our method was at least three times faster than the state-of-the-art methods.
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1. Introduction
For robotic 3D mapping using point cloud data, structured features, such as cylinders, spheres, planes,
or unstructured surface features can be used.1 These normally represent floors, walls, hallways, or
pillars that the robot can easily detect using a 3D sensing system. Because regular structures mainly
consist of planar surfaces, planes are most useful in 3D mapping of typical indoor environments
owing to their abundance.2–6 Thus, rapid, efficient extraction of planes from a raw 3D point cloud is
an essential capability for indoor robots.

To obtain dense 3D point cloud data, a 3D scanning system based on a rotating laser scanner has
been widely used.2,7–11 This system has been used for several applications, including teleoperation,8

mobile manipulation,12 3D mapping and exploration,2 and ego-motion estimation.10 A typical system
consists of a laser scanner that acquires 2D scan data and an actuator that controls the scanner’s
orientation. By continuous synchronized manipulation (moving and scanning), it generates accurate
3D point cloud data13 that consist of tens of thousands to millions of scan points. One of its advantages
is its long detection range in the lateral and vertical directions, because the scan angle and actuator
tilt angle are both usually >180◦. Another advantage is that we can easily control the number of
acquired scan points, by adjusting the resolution of the laser and actuator.

By exploiting these advantages of the 3D scanning system, we have developed an incremental 3D
plane extraction method for modeling an indoor environment. A laser scanner is mounted on a mobile
robot and scans the environment incrementally in synchrony with the actuator movement. Planes
are identified in three steps: (i) 2D line segments are extracted from each scan slice, then clustered
according to their orientation. The line segment extraction process corresponds to voxel grid filtering
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to reduce the number of scan points accessed,14 (ii) the planes are extracted from the cluster of line
segments by using M-estimator Sample Consensus (MSAC),15 refined further by considering the
uncertainty of each scan point, and (iii) the extracted planes are split and merged online depending
on plane fitting error. The main contribution of our algorithm is embodied in the following three
characteristics:

� Because scan data are acquired incrementally, the core algorithm can be run in parallel with the
physical operation of the laser scanner and the actuator, so no additional running time is needed,
because the entire plane extraction process is completed with the final scan step.

� Because only the end points of line segments are considered when extracting a plane, the number
of scan points that are actually accessed can be greatly reduced (to < 5% of all scan points)

� The proposed method is scalable to large environments. The processing time is linearly proportional
to the number of total line segments, so the size of the environment does not affect the algorithm
complexity.

2. Related Work
Although various methods have been proposed for plane extraction, Random Sample Consensus
(RANSAC) is the most widely used,16 especially to find inlier points that constitute a plane. First, it
selects N points randomly and fits a plane to them. If the fitting error is below a user-defined tolerance,
it accepts this fit. Otherwise, RANSAC is repeated with another random sample until a suitable fit is
found or a certain number of iterations has been performed.

RANSAC and iterative closest point (ICP)-based optimization techniques have been combined to
extract planes.17 A randomly-selected point and its two neighboring points are used to calculate an
initial plane hypothesis, and then all inlier points are projected onto the plane. The projected and inlier
points are matched using ICP, and rotation and translation (R, t) are found by calculating refined
plane parameters. Here, the ICP method replaces iterative random sample selection and plane fitting,
thus reducing the time required to estimate the plane. However, the ICP is also an iterative process
and may get trapped in local minima.

A divide-and-conquer strategy has been used to extract local planes within a short time by reducing
the spatial size; the local planes are merged using a region-growing technique. 3D point cloud data
were first decomposed into small cubic cells having a fixed volume.4 Then, in each cell, a best-fitting
plane was extracted by RANSAC. To merge similar planes, region-growing was applied to the entire
set of small planes by using normal vectors and proximity between several neighborhood planes. This
approach can extract planes very quickly in one cubic cell, but decomposition of 3D space requires
extra memory and the complexity of the algorithm depends on the number of the cells. Filtered
normal estimation and voxel growing was used in ref. [18]; this approach searches the neighborhood
in a constant time, and therefore differs from region-growing. In ref. [19], RANSAC, minimum
description length, and region growing were all integrated to extract planes from noisy 3D point
cloud data. Octree splitting and merging is another divide-and-conquer method in which complete
data are continuously divided into subnodes.20 At each subnode, the best-fit plane is calculated by
solving a least-square problem. However, these approaches have scalability problem similar to the
method in ref. [4].

For robotic mapping, planar features are used to generate simple 3D models;21,22 planes are
extracted by region growing or an expectation maximization (EM) paradigm. The results provide
textured 3D indoor models but require several minutes and complete datasets. Therefore, the plane
extraction algorithm should be run offline.

Randomized Hough Transform (RHT) with a novel accumulator design has been developed to
extract planes from 3D point clouds.23 However, to reduce computation time, this method needs the
number of cells in an accumulator as prior information; this requirement implies that the method can
be affected by the structure of the environment. Another state-of-the-art method based on region-
growing method24 exploits the neighborhood relation of pixels in range images, but the method cannot
be directly applied to raw 3D point cloud.

A 3D laser scanning system that uses a nodding mechanism acquires 3D point cloud data
sequentially in a specified order. Moreover, the use of line segments can reduce the number of
scan points accessed to extract planes, thereby reducing the total computing time. In ref. [6], line
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Fig. 1. System configuration.

segments were extracted using a standard Hough transform at each scan slice, then clustered online to
reconstruct surfaces. After scanning is complete, objects are segmented by merging conglomerations
of points, lines, and surfaces into one object. Similarly, multiple planes are segmented by sequentially
extracting and clustering of line segments and are validated by using a simple image processing
algorithm.8 Finally, the ground plane is distinguished from other planes for traversability checks in
teleoperation tasks. The use of line segments and their connected components representation could
vastly reduce the search space for plane extraction stage.25

3. System

3.1. System specification
The key components of our system are a laser scanner, an actuator, and a control board (Fig. 1).
Because this system has a simple structure, it can be readily applied to mobile robots that run in
indoor or outdoor environments. The laser scanner is a Hokuyo URG-30LX which can detect objects
up to 30 m distant. The scanning range is −45◦ to 225◦, with angular resolution of 0.25◦ ; i.e., 1080
scan points when fully utilized. The scan angle can be controlled depending on the user’s needs,
especially when the number of resulting scan points is limited. The scan time of the laser scanner,
which critically affects the system performance, is 25 ms to gather all the scan points in one planer
sweep. The actuator is a Robotis Dynamixel servo.26 It operates from 12 V to 18.5 V; its maximum
torque is 5096 N × m, and minimum control angle is 0.29◦. Because its rotation angle is 0◦ to 300◦,
it can gather sufficient spatial information for our purposes. The control board is equipped with a
common AVR microcontroller and is connected to a PC via a USB 2.0 interface.

3.2. System control scheme
Generally a laser scanner can be rotated in three axes;7,27 yaw, pitch, and roll. Each axis has advantages
and disadvantages depending on how the system is used. We adopt pitching (i.e., tilting) scanning
that gathers spatial information from bottom to top, i.e., floor to ceiling. This scanning mode has been
applied in many mobile robotic applications.2,6–10 We can control the number of resulting scan points
by adjusting the angular resolution of the laser scanner and the actuator. Therefore, our system can
acquire up to 1024 × 1080 (maximum scan steps × number of scan points per scan) = 1,105,920
points. We normally operate the system with a scan angle of 180◦, a tilt angle of 1.16◦ as the unit
step, and a total of 120–155 scan steps, which amounts to a tilt range of 140◦ –180◦. This setting
yields 100,000 scan points to be processed.

The control scheme operates in two steps (Fig. 2). First, the control board sends a control command
to the actuator, which then moves to the designated angle. Second, the control board triggers the laser
scanner to acquire scan points counterclockwise. The scanning time is 25 ms, including the time
required for physical spin and data conversion. Therefore, the scanning time affects mainly the time
efficiency of the proposed system. The control board continuously synchronizes the behavior of
the actuator and laser scanner. Thus, the system requires at least 25 ms per control cycle, and this
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Fig. 2. Schematic of the control scheme. Physical tilting and algorithm implementation can be performed in
parallel.

Table I. Plane extraction procedure.

Plane Extraction

1: � = ∅ //initial plane
2: � = ∅ //initial line cluster
3: while tilt step k is not final step do
4: �k = acquire scan points ()
5: �k = extract line segments (Sk)
6: � = assign existing planes (�k , �)
7: � = line clustering (�k , �)
8: � = plane fitting (�, �) //performed every 5 scan steps
9: � = split and merge (�, �) // performed every 7 scan steps

10: � = fit remaining lines (�, �) // performed every5 scan steps
11: endwhile
12: return �

requirement cannot be reduced any further. However, we use parallel processing to avoid the need
for any additional time to run our core algorithm.

Suppose that we can process all the scan points acquired from the 0th to the (k − 1) th scan step
while the sensor gathers the kth set of spatial information. The system then requires no additional time
to process the acquired data and finishes the entire procedure as soon as actuator tilting is completed.
To realize this assumption, two questions should be considered. (i) Can the system process tens of
thousands of scan points within the given time? During the first few scan steps, a small number of scan
points is acquired, but the number increases linearly as the number of scan steps increases. (ii) After
the full scan is completed, is any additional postprocessing required to refine the resulting planes?
This depends on whether the proposed method includes refinement of interim results. Therefore, we
need to greatly reduce the number of scan points that are accessed for plane extraction and also use
an iterative split-and-merge scheme to process interim plane extraction results.

4. Plane Extraction from Line Segments
The first use of line segments for segmenting a 3D point cloud data6 was a generalized version for
surface detection, polygon generation, and 3D object segmentation done online and offline. However,
our algorithm is specialized for plane extraction to obtain plane parameters online, and includes more
sophisticated stages such as online refinement of resulting planes and an iterative split and merge
step.

The proposed plane extraction method (Table I) is based on two propositions. (i) A line segment
and its related parameters can be defined by only two points (p1 = (x1, y1), p2 = (x2, y2)); the
parameters of line slope-intercept equation y = mx + b; can be obtained as m = (y2 – y1)/(x2 – x1),
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b = yi – mxi . (ii) A plane P contains an infinite number of line segments and can be defined by only
two line segments on the plane. A plane can be parameterized as

n̂p − d = 0, (1)

where n̂ = (nx, ny, nz) is a unit normal vector, and d is the distance from the origin. An infinite
number of points p on P satisfy Eq. (1), any two of them define a line segment on P. Similarly, we
can choose an infinite set of such paired points on the plane.

Consequently, we can draw potential planes from a finite collection of line segments that are
defined by only two end points. This approach can reduce the number of scan points that are accessed
to extract planes because all the intermediate scan points in the line segment can be excluded. Also,
a line segment is extracted not from a 3D point cloud by exhaustive search but from 2D scan points
acquired in the same scan slice, therefore the line is always extracted within a very short time (in our
case, ≤1 ms).

Our system gathers spatial information sequentially from bottom to top. At each scan step, we
first perform line extraction and then determine whether the extracted line belongs to one of the
existing planes. Next, we identify the remaining line segments that do not belong to any existing
plane, and cluster them according to their orientation. If the size of each cluster exceeds a threshold
Nc, iterative plane fitting is performed using MSAC. By MSAC fitting, we obtain inlier line segments
comprising the plane, and further refinement performs nonlinear least-squares fitting by considering
the uncertainty of each scan point. Based on the fitting error, the plane is split into two or more
subplanes such that the fitting error of each plane is smaller than a threshold ef . If any two planes
are coplanar, they are merged. This manipulation of the resulting planes is called split-and-merge
and enables the system to refine the final results. Finally, unfitted lines in the line cluster are checked
again to determine whether they can be fitted to existing planes.

Our method has two advantages. The first is that no additional time is required to run core
algorithms because they are run online and in parallel with physical operation of the actuator and
laser scanner. The other is that it can extract a piecewise plane from a gently curved surface owing to
the presence of line segments on such a surface.

Our method has a disadvantage when a plane is far from the origin, where a dense cluster of scan
points cannot be acquired. In this region, plane extraction may fail because the sparseness of the 3D
points means that sufficient line segments cannot be extracted.

4.1. Line segment extraction
4.1.1. Clustering of scan points. Line extraction (Table II) begins by clustering scan points. At scan
step k, we acquire a set Sk = {pk

i |i = 1, . . . , Nk
s } of scan points, where Nk

s is the number of scan
points. Each scan point pk

i is described by its range and bearing (ρk
i , θ

k
i ), where ρk

i is the distance to
a sensed object, and θk

i denotes the angle w.r.t. the x-axis in the sensor frame. Hence, the point can
be converted to pk

i = (ρk
i cos θk

i , ρk
i sin θk

i ) in 2D Cartesian coordinates. To extract a line segment
from these raw scan points, several line extraction algorithms have been proposed, such as RANSAC-
based, Hough-transform-based, and EM-based methods.28 However, all of these methods analyze a
dense set of raw scan points directly without preprocessing, and therefore have higher computational
costs than ours, which performs preprocessing by segmenting of the raw scan points.

As a preprocessing step, we first detect breakpoints, i.e., discontinuities in the sequence of raw
measurements. Most breakpoint detection algorithms examine the distance between two consecutive
points pi , pi−1 (we omit the scan step index k for brevity),

‖pi − pi−1‖ < Do, (2)

where Do is a predefined threshold. If Eq. (2) is satisfied, pi and pi−1 are considered to be in the
same cluster; otherwise, pi and pi−1 are considered breakpoints, where pi is assumed to be the first
element of a new cluster. Therefore, to achieve correct clustering of scan points, Do must be selected
carefully. Because Do should depend on the scan distance ρi−1, an intuitive method of determining
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Table II. Line segment extraction.

extract line segments (
∑k)

1: �k =∅
2: for i=2 to Nk

s //scan point clustering
3: find breakpoint using ‖pi − pi−1‖ < Do

4: if found, create new cluster Qnew

5: else Q = Q ∪ {pi}
6: endfor
7: for i=1 to Nq //splitting clusters
8: split cluster Qi into several subclusters until the criterion is met
9: endfor

10: for i=|�k | to 1 //merging clusters
11: find best matched cluster Qj by collinearity and proximity
12: if found
13: Qnew = Qi ⊕ Qj, Lk = Lk ∪ {Qnew}
14: else Lk = Lk ∪ {Qi}
15: endfor
16: for i=|�k | to 1 //remove unavailable line segments
17: check availability of line segment by length and # scan points
18: if not available, Lk = Lk − {

λk
i

}
19: endfor
20: return �k

Fig. 3. (a) Splitting clusters. (b) Definition of a line segment in 2D space. White circles: intermediate points
comprising the line segment; they are considered only when counting γi and are removed from the line segment
properties.

Do has been proposed:29

‖pi − pi−1‖ < Do = ρi−1 · sin(
φ)/sin(λu − 
φ) + 3σd, (3)

where 
φ is the sensor resolution and λu is chosen on the basis of user experience. The term 3σd is
added to account for noise associated with ρi when pi is close to the sensor frame origin. Quantitative
determination of λ is an unresolved problem, but in mobile robot applications λu = 10◦ has been
reported to be satisfactory.

4.1.2. Splitting clusters using iterative end-point fitting and merging line segments. Suppose that
the scan point clustering step yields a total of Nq clusters W = {Qi |i = 1, . . . , Nq}. These clusters
should be further processed by dividing them into several line segments. To do this, we adopt iterative
end-point fitting (IEPF),30 which has been used in many vision and robotics applications.11,29,31 This
algorithm recursively splits cluster Qi into two subsets Q1

i , Q
2
i until a validation criterion is satisfied

(Fig. 3a). First, the initial line li is constructed by connecting the two end points of the cluster. Next,
all scan points pj ∈ Qi are tested against hj > ho, where ho is a predefined threshold. Then, Qi is
divided into two subclusters at the point having maximum hj among those points that satisfy hj > ho.
This process is iterated until no new subclusters can be created. Each resulting cluster is likely to be
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Fig. 4. Representation of 3D line segments after 3D conversion.

a potential line segment λi = {p1
i , p2

i , di, αi, ni} belonging to a certain plane, where p1
i , p2

i are two
end points, di and αi are the line parameters, and ni is the number of scan points that compose the
line segment (Fig. 3b). All the intermediate points in the cluster are neglected thereafter and hence
are never accessed again. After extracting line segments, we perform a merging process to combine
short line fragments:

|αi − αj | < αo ∧ ∥∥p2
i − p1

j

∥∥ < do. (4)

These conditions check for collinearity and proximity between two line segments. The individual
short line segment may not be effective for the detection of salient planes, whereas connecting two
or more similar line segments greatly increases the effectiveness of plane detection.

Unexpected short line segments can be extracted on an uneven surface; we eliminate these by
removing segments that are less than a threshold Lmin long, or that have too few scan points:

∥∥p1
i − p2

i

∥∥ < Lmin ∨ ni < Ne. (5)

4.1.3. 3D Conversion of 2D line segments. At scan step k, we have Nk
l potential line segments in 2D

space. Because a line segment is defined by two end points, we need to convert only these points to
3D space (Fig. 4). The conversion equations are:

x = ρ cos θ,

y = ρ sin θ · cos
(
ϕ − π

2

)
+ dl cos ϕ, (6)

z = ρ sin θ · sin
(
ϕ − π

2

)
+ dl sin ϕ,

where ρ and θ are the range and bearing measurements, respectively, of the laser scanner, ϕ is the
pitch angle, and dl is the distance between the pitch axis and the laser scanner. Then, a line segment
is defined in 3D space again:

λk
i = {

uk
i , vk

i , δk
i

}
, (7)

where uk
i , vk

i are the two end points, and δk
i is a unit vector that indicates the direction of the line

segment, which is defined by (uk
i − vk

i )/‖uk
i − vk

i ‖.

4.1.4. Assigning extracted line segments to existing planes. At the end of the line extraction stage,
each resulting 3D line segment is assigned to one of the existing planes, if possible (Table III). The
association rules for determining whether line segment λk

i belongs to a plane �j : n̂j p − dj = 0 are
based on proximity and orthogonality constraints: the minimum distance between the plane and the
two end points of the line segment should be shorter than a threshold and the direction vector of the
line segment and the normal vector of the plane should be orthogonal. That is, the inner product of
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Table III. Assigning line segments to existing planes.

assign existing planes (�k , �)

1: for i=|�k | to 1
2: find the best matched plane �j using proximity and orthogonality
3: if found, �j = �j ∪ {λk

i }, Lk = Lk − {λk
i }

4: endfor
5: return �

Table IV. Line segment clustering.

line clustering (�k , �)

1: for i=|�k | to 1
2: find the best matched cluster Xj using directional vector
3: if found,
4: Cj = Cj ∪ {λk

i }
5: δ̄

′
m = τ 
δk

j + (1 − τ )δ̄m //update average directional vector
6: else create a new cluster, Cnew = Cnew ∪ {λk

i }, Y = Y ∪ {Cnew}
7: Lk = Lk − {λk

i }
8: endfor
9: return �

the two vectors should be nearly zero:

Dij = min
(∣∣n̂j uk

i − d
∣∣/∥∥n̂j

∥∥2
,
∣∣n̂j vk

i − d
∣∣/‖n̂j‖2

)
< Dm∣∣n̂j · δk

i

∣∣ < εo

, (8)

where Dm and εo represent the degrees of proximity and orthogonality, respectively. Therefore, the
ith line segment is part of the jth plane if Dij has a minimum value over all j. This step reduces
unnecessary clustering of line segments by first assigning them to existing planes.

4.2. Clustering
The extracted line segments are clustered incrementally according to their direction vectors
(Table IV). We have a set of line segment clusters Y = ∪Nc

i=1Ci = {Ni, λ
1:Ni

i , δ̄i}, where Nc is the
total number of clusters constructed so far, Ni is the number of line segments contained in the ith
cluster, and δ̄i is the average direction vector of the ith cluster. The only criterion used to associate a
line segment λk

j and a cluster Ci is the inner product of two direction vectors, δk
j and δ̄i :

∣∣δk
j · δ̄i

∣∣ > δc, (9)

where δc is a predefined threshold. The line segment λk
j then belongs to the cluster Cm, that has the

maximum inner product with λk
j . Then, δ̄i can be recalculated by a simple moving average (SMA):

δ̄
′
m = (

Nmδ̄m + δk
j

)
/(Nm + 1). (10)

Although SMA usually works, it may not if the direction vector changes with increasing scan step,
even though the line segments lie in the same plane (Fig. 5a). To solve this problem, we have two
alternatives, a linearly weighted moving average (LWMA) and an exponentially weighted moving
average (EWMA). Both apply higher weights to recently added line segments than to those added
earlier. In LWMA, the weights decrease linearly:

δ̄
′
m = (

(Nm + 1)δk
j + NmδNm

m + · · · + 2δ2
m + δ1

m

)
/ ((Nm + 1) + Nm + · · · + 2 + 1) . (11)
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Fig. 5. Line segment clustering results. Region enclosed by thick black lines corresponds to a side wall; each
cluster has its own color. (a) Clustering by SMA (eight clusters). (b) Clustering by LWMA (six clusters). (c)
Clustering by EWMA (one cluster).

Fig. 6. Plane fitting with three line segments using RANSAC. Six end points from three line segments compose
a plane, which is then evaluated by calculating the fitting error. The number of RANSAC iterations is linearly
proportional to the number of line segments.

Table V. Plane fitting.

plane fitting (�, �)

1: for i=|� | to 1
2: do
3: generate Np plane hypotheses from Ciusing MSAC
4: choose best fitting plane �j which has lowest cost
5: if �j is available, refine the plane parameter by nonlinear optimization
6: P = P ∪ {�j }
7: plane extraction flag=TRUE
8: else plane extraction flag=FALSE
9: while plane extraction flag=TRUE

10: endfor
11: return �

This process can reduce the number of clusters, but several may still exist in the same plane
(Fig. 5b). In EWMA, the weights decrease exponentially:

δ̄
′
m = τ �δk

j + (1 − τ )δ̄m, (12)

where 0 ≤ τ ≤ 1 represents the degree of weigh decay. EWMA yields the desired result (Fig. 5c). If
the line segment does not belong to an existing cluster, we use it as the first member of a new cluster.

4.3. Plane fitting
Plane extraction is divided into an initial plane fitting that uses MSAC and a refinement that uses
nonlinear least squares (Table V). In the first step, for each cluster, a plane is segmented by randomly
selecting three line segments in the local region (Fig. 6). This local selection of line segments is used
to consider the local distribution of planes; i.e., several planes can exist in one cluster. After extracting
potential planes, the plane parameter can be refined by considering the uncertainty of each end point
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that comprises the plane. This process uses iterative nonlinear optimization to further reduce the plane
fitting error.

4.3.1. Initial fitting using MSAC. The previous stages yielded a set of line segment clusters
Y = ∪Nc

i=1Ci = {Ni, λ
1:Ni

i , δ̄i}. Planes are extracted on a per-cluster basis, so line segments contained
in different clusters are not chosen simultaneously. This constraint significantly reduces the
computational cost by reducing the candidate search space (Fig. 6). First, we select the jth line
segment λ

j

i in the ith cluster; to construct the candidate plane, we also select the two line segments

λ
jα

i , λ
jβ

i that are closest and second-closest to λ
j

i . In this case, closeness is defined as the inverse of
the distance between the midpoints of the two line segments. The six end points of the three selected
line segments then construct a candidate plane �j−jα−jβ

: n̂p − d = 0, where the plane parameters
n̂ amd d are determined by solving the following homogeneous linear system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n̂uj

i − d

n̂vj

i − d

...

n̂ujβ

i − d

n̂vjβ

i − d
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

nx

ny

nz

d

⎤
⎥⎦ = A · x = 0 (13)

subject to ‖x1:3‖2 = 1,

where the constraint is added to reject the trivial solution x = 0. This system is overconstrained, so
instead of an exact solution, it yields an approximate one that minimizes the sum of squared errors
over all variables under white Gaussian noise added to each end point. The numerically-best way to
solve Eq. (13) is to use singular value decomposition on matrix A; this process factors the matrix into
a diagonal matrix D and two orthogonal matrices U and V (i.e., A = UDVT ). Then, the least-squares
solution is given by the last column of V, which corresponds to the smallest diagonal entry of D.

Once the hypothesis �j−jα−jβ
is generated, we determine its cost as follows:15

υ =
Ni∑
i=1

μ
(
e2
i

)
(14)

μ
(
e2
i

) =
{

e2
i e2

i < T 2

T 2 e2
i > T 2 ,

where T is the threshold for inliers and ei = |n̂pi − d|/‖n̂‖, which is simply the distance between the
point pi and the plane. We generate Np plane hypotheses, score each hypothesis, and finally choose
the best-fitting plane that has the lowest cost. This process is performed iteratively until no new
possible plane can be extracted; the algorithm then moves to the next cluster. This initial plane fitting
assumes that all the relevant points have equal uncertainty; however, the uncertainty model of actual
3D points may be different according to their position; i.e., the end points of a line segment do not
all have the same Gaussian uncertainty. Therefore, we can refine the plane parameters by considering
the uncertainty of each scan point to improve the fit (Fig. 7).

4.3.2. Uncertainty modeling of scan points. A raw measurement of a single scan point p is represented
by (ρ, θ, ϕ) and converted to 3D Cartesian coordinates by using Eq. (6). Thus, the noise added to
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Fig. 7. Examples of line fitting using isotropic and nonisotropic uncertainty. (a) When uncertainty is isotropic,
line parameters can be calculated by minimizing the average distance between points and lines. (b) When
uncertainty is nonisotropic, appropriate uncertainty modeling of each point is used to update the estimated line
(dotted line) toward minimizing the average Mahalanobis distance between points and lines. Similarly, a plane
fitting can be improved by considering each point’s uncertainty.

Fig. 8. (a) Line segment extraction in corridor. Each 3D line segment is represented by a different color. (b)
Representation of uncertainty of line segments’ end points in (a).

the raw measurement (ρ, θ, ϕ) is propagated to 3D space according to an error propagation rule5

Cp = JCr
pJT,

Cr
p =

⎡
⎣ρ2σ 2

ρ 0 0
0 σ 2

θ 0
0 0 σ 2

ϕ

⎤
⎦, (15)

J =

⎡
⎢⎢⎣

∂x
∂ρ

∂x
∂θ

∂x
∂ϕ

∂y

∂ρ

∂y

∂θ

∂y

∂ϕ

∂z
∂ρ

∂z
∂θ

∂z
∂ϕ

⎤
⎥⎥⎦ =

⎡
⎣ cos θ −ρ sin θ 0

sin θ sin ϕ ρ cos θ sin ϕ ρ sin θ cos ϕ − dl sin ϕ

sin θ cos ϕ −ρ cos θ cos ϕ ρ sin θ sin ϕ + dl cos ϕ

⎤
⎦,

where Cr
p is the covariance matrix of the raw measurements. The uncertainty of r is modeled as

proportional to the squared distance, and those of q and j are modeled as constant. Because our
algorithm uses line segments, we need not calculate the uncertainty of all scan points, but only that
of the two end points of line segments (Fig. 8). This greatly reduces the computation time.

4.3.3. Derivation of refined plane fitting. Suppose that we have a target plane � : n̂p − d = 0 and
N fitting points p1:N , where each point has a covariance matrix Cpi

. Our goal is to minimize the error
function, which represents the average squared Mahalanobis distance

E = 1

N

N∑
i=1

(
pi − p�⊥

i

)T
C−1

pi

(
pi − p�⊥

i

)
, (16)
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where p�⊥
i is the perpendicular foot of pi to the plane �. Equation (16) can be further manipulated

so that it is represented by only plane parameters and fitting points (Appendix A),

E(x) = 1

N

N∑
i=1

[(
(n̂pi − d)n̂

)
/‖n̂‖2]T

C−1
pi

[(
(n̂pi − d)n̂

)
/‖n̂‖2] = 1

N

N∑
i=1

n̄T
i C−1

pi
n̄i

= 1

N

N∑
i=1

(Hi(x))2, Hi(x) = (
C−1

pi

) 1
2 n̄i , (17)

where x = [n̂T d]T is the plane parameter vector. If we assume that Cpi
is isotropic, where the diagonal

term is wi (which is normally determined as the inverse of the trace of Cpi
) and the off-diagonal is

zero, the solution becomes exactly the same as that of the weighted least-square fitting.5 If wi = 1,
the solution becomes the same as that of Eq. (13).

Because the error function (17) is nonlinear in terms of the plane parameters, we use a nonlinear
least-square method to iteratively optimize the solution. Here, we can approximate Hi(x) using the
first term of the Taylor expansion

Hi(x + δx) = Hi(x) + δn̂
∂Hi

∂n̂
(x) + δd

∂Hi

∂d
(x) + O

(|δx|2) ≈ Hi(x) + ∇Hi(x) · δx, (18)

where ∇Hi(x) = [ ∂Hi

∂n̂
∂Hi

∂d
]T is the gradient of Hi calculated at x. O(|δx|2) is a higher-order term that

can be neglected. By an iterative process, the error function E(x + δx) can be minimized with respect
to δx given a value x:

E(x + δx) = 1

N

n∑
i=1

(Hi(x + δx))2 ≈ 1

N

n∑
i=1

(Hi(x) + ∇Hi(x) · δx)2 = 1

N
|Jδx − �|2 , (19)

where

J =

⎛
⎜⎝

∂Hi (x′)
∂n̂

∂Hi (x′)
∂d

...
...

∂HN (x′)
∂n̂

∂HN (x′)
∂d

⎞
⎟⎠

x′=x

, � = −

⎛
⎜⎝

Hi(x′)
...

HN (x′)

⎞
⎟⎠

x′=x

∂Hi(x′)
∂n̂

= (
C−1

pi

) 1
2
[((

pi n̂T + (n̂pi − d)I
) ‖n̂‖2 − 2(n̂pi − d)n̂n̂T)

/‖n̂‖4]T
,

∂Hi(x′)
∂d

= − (
C−1

pi

) 1
2 .

Therefore, we can minimize Eq. (17) by setting Jδx = �, yielding :

δx = (JTJ)−1JT� = J∗�, (20)

where J
∗

indicates a pseudoinverse of J. By evaluating Eq. (19) using an iterative gradient descent
method (Table VI), we obtain the final plane parameters. The iterative gradient descent method can
find a global minimum if an initial guess x0 is provided within a reasonable region. In our case, this
is met by Eq. (13).

4.4. Splitting and merging planes
So far, we have a set of planes P = ∪N�

i=1�i = {n̂i , di, λ
1:Ni

i }, and they can be refined by being
split and merged again (Table VII). First, planes that have average fitting error E�i

greater than the
2σ -boundary (i.e., E�i

> 22; Eq. (16)) are split into two or more planes until E�i
< 4. Actually,

E�i
of the plane cannot be > 4 at the moment of construction because we reject such hypotheses;

however, we later add line segments to the plane gradually, so E�i
is likely to be >4 at some point.
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Table VI. Nonlinear optimization of plane parameters.

Nonlinear optimization (J, �, emin, imax)

1: x0 ←Choose an initial solution
2: while E(xi) > emin and i<imax

3: δxi = J∗(xi)�(xi)
4: xi ← xi = xi + δxi

5: E(xi+1) = E(xi + δxi) = |J(xi)δxi − �(xi)|2
6: i = i+1
7: endwhile
8: return x

Table VII. Split-and-merge process.

split and merge (�, �)

1: for i=|�| to 1 //split plane
2: if E�i

is beyond the 2σ -boundary
3: Ri = {∀λj ∈ �i}
4: P s

i =plane fitting (Ri , ∅)
5: Lr

i = {∀λj /∈ �s
i }

6: � = line clustering (Lr
i , �)//reclustering of unfitted line segments

7: P = � ∪ �s
i − {�i}

8: endfor
9: for i=|�| to 1 //merge plane

10: find best matched plane �j by collaterality and pairwise proximity
11: if found
12: �new

i = �i ⊕ �j, � = � ∪ {
�new

i

} − {
�i ∪ �j

}
13: endfor
14: return �

The plane split is implemented by iterative refitting of line segments, so it is a repetition of the
procedure in Section 4.3; the only difference is that the line segments are selected from those in �i ,
rather than from those in the cluster. Once the plane is split into smaller planes, the remaining unfitted
line segments originally contained in �i are reclustered using the clustering step in Section 4.2.

After the splitting step, plane merge is conducted over two similar planes, �i and �j , where the
similarity is defined in terms of collaterality and pairwise proximity. The collaterality is verified by
the inner product of the two planes’ normal vectors,

∣∣n̂i · n̂j

∣∣ > νo, (21)

where νo is a predefined threshold. The pairwise proximity is based on the distance between the two
planes; however, it cannot be defined in practice if they are not exactly parallel. Therefore, in this
case, we arbitrarily define the distance as

δ�ij
= max

[
max

(∣∣n̂ipλk
j
− di

∣∣/‖n̂i‖), max
(∣∣n̂j pλl

i
− dj

∣∣/∥∥n̂j

∥∥)]
, ∀ k, l , (22)

where pλk
j

is the end point of the kth line segment contained in �j . Thus, the plane pair �i − �j that
has a minimum distance is then merged.

5. Experiments
Our scanning system was mounted on a mobile platform remotely operated by manual control
(Fig. 9). We constructed the INDOOR dataset. The system configuration was set according to the
environmental characteristics (Table VIII). We assume that an indoor environment includes many
planes; hence, we set the actuator tilt resolution to one quarter of its maximum. We wrote the proposed
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Fig. 9. Nodding laser scanner system mounted on our mobile platform.

Table VIII. Specifications of INDOOR data set.

INDOOR

Actuator tilt angle 160◦
Tilt resolution 1.16◦
Laser scan angle 0∼180◦
Scan resolution 0.25◦
# Scan points per scan 98,777
Complete scanning time (ms) 3.4
# Scans 70
Memory used (MB) 31

algorithm using Microsoft visual C++ 2008 and ran it on three computer systems: (A) desktop with
2.66-GHz clock speed (quad core) and 3 GB RAM, (B) laptop with 2.2-GHz (dual core) clock speed
and 2 GB RAM, and (C) laptop with 2.53-GHz clock speed (single core) and 3 GB RAM.

5.1. Application to indoor environments

5.1.1. Representation of extracted planes. We collected the INDOOR dataset in the LG research
building at POSTECH (Appendix B). This building is a typical building with planar floors, ceilings,
and walls. Among 66 scans we selected four scans, acquired at different positions, based on their
representativeness of indoor structure. In a typical corridor environment (Figs. 10–12), four main
planes were detected: floor, ceiling, and side walls. Near doors, we also extracted minor planes
consisting of very short line segments. Each environment included an unfitted line cluster that
includes line segments that could represent a plane, but this plane was not supported by a sufficient
number of line segments. If these very minor plane candidates must still be captured, we can adjust
the minimum number of line segments for supporting a plane, but this adjustment may result in
erroneous plane extraction. The user settings determine whether or not only very salient planes are
extracted. In Fig. 12, two separate planes appear on the right; these seem to indicate erroneous plane
segmentation. In fact, the surface described is one that curves gently, so our algorithm automatically
divided it into two planar surfaces because a 2D curve can be represented by piecewise line segments
and so a continuous surface can be represented by piecewise planes. A plane extracted from such a
curved surface shows a rather large fitting error compared to that of a planar surface, but this error
is still within the 2s-boundary, which is a reasonable error threshold. In Fig. 13, the workspace is
approximately 20 m × 25 m, and we could even extract planes that were far from the laser scanner.

5.1.2. Data access ratio. To measure the degree of data reduction, we defined a data access ratio

DAR(%) = # accessed scan points

# total scan points
× 100 = 2 × # line segments

# total scan points
× 100. (23)
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Fig. 10. (a) Raw 3D point cloud. (b) Extracted line segments. (c) Plane extraction result.
(d) Unfitted line segments. Number of line segments in (b) equals the sum of those in (c) and (d). Different
planes are represented by different colors; grid is 2 m × 2 m. (e) Real environment.

Table IX. Statistics for INDOOR dataset.

Scan

Measure 5 13 39 63

# Total lines 652 920 1,000 1,941
# Fitted lines 589 847 910 1,652
# Unfitted lines 63 73 90 289
# S/Ma process 42 56 21 0
# Planes 7 10 12 37
Avg. fitting error 0.864 0.685 0.543 0.387
DAR (%) 1.32 1.86 2.02 3.93
Tproc(A)b (ms) 171.6 202.3 240.7 378.2
Tproc(B) (ms) 280.6 340.2 380.45 621.2
Tproc(C) (ms) 735.0 932.8 995.0 1,629.8

aS/M: Split-and-merge; bTproc(A): Processing time on system A.

Huge numbers of scan points are acquired during full 3D scanning, but the algorithm discards
most of them to reduce the processing time. In our algorithm, only a small fraction of scan points
is repeatedly accessed to fit the plane. In all experiments, DAR < 5% for the INDOOR dataset
(Table IX). We also measured the processing time on the three computer systems described above.
The algorithm running time never exceeds the actuator moving time or the data acquisition time (i.e.,
3.4 s); thus, the proposed method is suitable for an online real-time system. The processing time was
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Fig. 11. Descriptions are the same as in Fig. 10.

Fig. 12. Descriptions are the same as in Fig. 10.

linearly proportional to the number of line segments irrespective of the test computer used (Fig. 14);
the only difference was in the slope, which is related to the system’s parallel processing power. This
linear characteristic will be further discussed in Section 5.2.2.

5.1.3. Stepwise analysis. We also examined four statistics on a step-by-step basis. The number of
fitted lines showed a continual increase owing to sequential line acquisition (Fig. 15a); the stair-
shaped graph occurred due to the periodical plane extraction process (i.e., one per five scan steps).
The number of unfitted lines showed peaks every five steps due to repetition of data acquisition and
plane extraction (Fig. 15b): the rising edge corresponds to continuous data acquisition, whereas the
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Fig. 13. Descriptions are the same as in Fig. 10.

Fig. 14. Processing time on computer systems A, B, C (described in the text) was linearly proportional to the
number of line segments. Slopes and intercepts decrease as the parallel processing power increases.

falling edge indicates abrupt execution of plane extraction. The number of planes extracted increased
overall, but decreased occasionally as a result of plane merging (Fig. 15c). The average fitting error
eventually decreased to within the 2σ -boundary although it temporarily increased to 3.2, because the
split-and-merge process was triggered (Fig. 15d). As a result, planes having a fitting error >2 were
split and then reorganized into small planes with lower fitting errors.

5.2. Time and complexity analysis

5.2.1. Time analysis. To measure the total processing time, several sets of scan data were acquired
from the same position but under different data acquisition conditions (Table X). All of the following
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Fig. 15. (a) Number of fitted line segments versus tilt step. (b) Number of unfitted line segments. (c) Number of
planes extracted. (d) Fitting error (average Mahalanobis distance between points and plane).

Fig. 16. Total processing time versus number of (a) line segments and (b) scan points.

Table X. Data acquisition conditions.

1 2 3 4 5 6 7 8

Tilt angle 130 130 140 160 150 160 130 150
Tilt resolution 2.32 1.16 1.16 1.16 0.58 0.58 0.29 0.29
Scan angle 0∼180 0∼180 0∼180 −20∼200 −10∼190 −20∼200 0∼180 −10∼190
Scan resolution 0.5 0.5 0.25 0.25 0.25 0.25 0.25 0.25

# scan points 20,216 40,071 86,520 120,697 205,857 241,394 320,214 410,913
# Total lines 397 779 1,139 1,508 2,558 2,972 4,320 5,045
DAR (%) 3.93 3.89 2.63 2.50 2.49 2.46 2.69 2.46
Processing time (ms) 68.9 127.4 293.9 411.7 630.1 914.6 1502.2 1883.6

experiments were performed on computer A, and we considered only the pure algorithm running time
excluding the data acquisition time. The processing time increased linearly with the number L of line
segments; therefore our method has complexity of O(L) (Fig. 16a). Once a plane is extracted from
a line cluster, we rarely need to access the constituent lines again except during the split-and-merge
process; therefore, we must process only newly-acquired lines. The processing time was also linearly
proportional to the number of scan points (Fig. 16b), but this is not always true; this is easily validated
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Fig. 17. Elapsed time of each phase versus scan step.

Fig. 18. Average elapsed time of each phase.

by inspecting Fig. 14, in which the sets of scan data all have the same number of points (98,777)
but different numbers of line segments. Usually the number of line segments depends on how many
planes exist in the scanned environment.

We also measured the elapsed time of each phase versus the scan steps using the 63rd set of scan data
(Fig. 17). The plane fitting and assign existing planes steps took most of the time. The plane fitting
process is iterative, so it naturally requires more time than do other phases; assign existing planes
also took considerable time because it contains plane fitting as an internal process (plane fitting is
triggered whenever 10 new line segments are added to the existing plane). The extract line segment
process defines the line segment properties (i.e., covariance matrix calculation of each end point and
direction vector), which requires the inverse of the covariance matrix. If we consider only pure line
extraction, the time is reduced to approximately 0.5 ms. Next, we measured the average elapsed time
of each phase (Fig. 18). Plane fitting, split and merge, and fit remaining lines are occasional phases,
so the average elapsed time was calculated only when these phases were performed. The maximum
total elapsed time never exceeded 10 ms, which is less than the scanning time (25 ms in typical
settings), so our system could run without time delay.

5.2.2. Complexity analysis. Our algorithm is incremental and based on line segments. Thus, the
complexity of each phase can be represented by the number Lk of line segments at step k (Table XI).
The only exception is that the complexity of extract line segments, which uses the split-and-merge
scheme in conjunction with IEPF, was represented by the number of scan points nk , because this
phase is based on raw 3D points. After this phase, all the complexities are represented by Lk , Ck ,
Pk , ck,l, and pk,l, where Ck and Pk are the numbers of line clusters and extracted planes up to step
k, and ck,l and pk,l are the numbers of line segments in certain line clusters and planes. We can
further approximate the complexity of each phase by assuming that an arbitrary limited environment
has a finite set of planes, which is true for indoor environments. Therefore, for all k, the following
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Table XI. Analysis of complexity of the proposed method.

Complexity Approximation

extract line segments O(nk log nk) O(n̄ log n̄)
assign existing planes O(LkPk) O(LkP̄ )
line clustering O(LkCk) O(LkC̄)
plane fitting O(ck,lCk) O(c̄C̄)
split and merge O(pk,lPk + (Pk)2) O(p̄P̄ + P̄ 2)
fit remaining lines O(ck,lCkPk) O(c̄C̄P̄ )
Total N/A O(L̄T )

Fig. 19. Planes used for accuracy test.

inequalities hold: Ck ≤ C̄, Pk ≤ P̄ , ck,l ≤ c̄, pk,l ≤ p̄. The number of scan points nk at step k is also
bounded by n̄. The total complexity can be calculated by summing all the complexities, resulting
in O(U

∑N
k=1 Lk), where U denotes a constant term resulting from the summing of all unnecessary

upper bounds, and N is the total number of tilt steps. By the same assumption, we can set the upper
bound of Lk as L̄; thus, the total complexity reduces to O(UNL̄) ∼= O(NL̄) ∼= O(L̄T ), where L̄T is
the total number of line segments. This linear complexity is demonstrated in Figs. 14 and 16a, which
show a linear increase in processing time with increasing L̄T .

5.3. Comparison test
To evaluate our approach, we performed comparison tests with three methods. The first two are based
on Progressive Sample Consensus (PROSAC) which is a RANSAC-like algorithm but is faster than
RANSAC. The method PROSAC Only begins with voxel grid filtering to reduce the number of fitting
points followed by iteratively extracting the best-supported planes without normal vector information.
In contrast, PROSAC Normal, exploits normal vector information to cluster point clouds first, then
extracts planes at each cluster. These two methods were implemented with the Point Cloud Library.14

The other state-of-the-art method is RHT-based plane extraction which uses a novel accumulator
design,23 where it was compared with another state-of-the-art region growing method.24

We compared the accuracy and computation time of the four methods. To test accuracy, we
measured ground truth parameters (n, d) of 12 selected planes (Fig. 19, Table XII). The errors of
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Table XII. Ground truth and estimated parameters of each plane.

Ground truth Proposed

Plane n d n d

1 −1, 0, 0 12.6 −1.000, −0.0017, −0.0029 12.601
2 −1, 0, 0 12.28 −0.9989, −0.0442, −0.0062 12.273
3 0, 1, 0 2.58 0.0059, 0.9994, 0.03337 2.561
4 −1, 0, 0 2.11 −0.9997,0.0143, −0.0148 2.120
5 0, 1, 0 3.69 0.0040, 0.9994, 0.0327 3.700
6 1, 0, 0 1.83 0.9997, 0.0248, −0.0033 1.899
7 0, 1, 0 3.37 0.0006, 0.9988, 0.0477 3.399
8 1, 0, 0 6.34 0.9993, 0.0366, 0.0069 6.444
9 1, 0, 0 10.79 0.9997, 0.0235, 0.0025 10.842
10 1, 0, 0 21.28 1.0000, 0.0042, −0.0020 21.297
11 0, 0, 1 2 0.0009, −0.0354, 0.9993 1.992
12 0, 0, −1 0.9 0.0016, 0.0443, −0.9989 0.860

Table XIII. Comparative results.

PROSAC Only PROSAC Normal RHT Proposed
en ed en ed en ed en ed

Avg. 0.017986 0.018682 0.015565 0.021703 0.019381 0.03152 0.02176 0.032875
Std. 0.013198 0.022496 0.012123 0.023857 0.009114 0.033766 0.011078 0.029487
Max 0.059338 0.094771 0.062828 0.089116 0.039752 0.109042 0.04879 0.12192
Min 0.001414 0.000227 0 0.002799 0.001414 0.000532 0 0.00116

plane parameters are defined as:

en
ij = cos−1

(
ng

i · nij∥∥ng

i

∥∥ · ∥∥nij

∥∥
)

, ed
ij = ∣∣dg

i − dij

∣∣ , (24)

where ng

i is the ground truth normal vector and d
g

i is the distance of the ith plane in the jth experiment.
PROSAC Normal was the most accurate because normal vector information of all fitting points is
used to extract the planes; however, due to calculation of normal vectors, its computation time was
longer than the proposed and PROSAC Only method (Fig. 20, Table XIII). Although RHT showed
faster computation than the proposed method on 10 of the 66 tests, it required several seconds
to complete the analysis in several cases. This implies that speed of RHT can be affected by the
structures of the environments. Overall, the errors of plane parameters were slightly larger than those
of PROSAC Normal; however, this error increase can be seen as a trade-off between accuracy and
speed. The average computation time of the proposed method was 391 ms, so it was at least three
times faster than the other methods.

6. Conclusions
In this paper, we presented an online incremental method of extracting planes from 3D point clouds
acquired sequentially by a nodding laser scanner. To fully exploit the data acquisition characteristics,
our algorithm uses line segments as supporting elements of a plane. Line segments were extracted
sequentially from every scan slice, then clustered according to their 3D orientation. Plane extraction
was performed in each cluster using nonlinear least-square fitting; MSAC provided the initial plane
parameters to reduce the number of fitting iterations. Because the line segments were defined by only
two end points, we could reduce the number of scan points accessed to fit the plane to just twice
the number of line segments, and hence reduce the plane extraction time. During data acquisition,
planes were periodically split and merged, yielding iterative refinement of the plane parameters.
Experiments were conducted using a dataset acquired from a typical indoor environment; average
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Fig. 20. The comparison of time required to extract planes using three methods and the proposed method.

time required to process ∼100,000 scan points was <400 ms. The complexity of our algorithm was
linear to the total number of line segments. The potential advantages of our algorithm, in addition
to the short processing time, are (i) its scalability to the size of the environment and (ii) ability
to model a gently curved surface as piecewise planes. First, complexity analysis proves that our
algorithm does not depend on the environment size. Second, a curve can be modeled as piecewise
line segments during line extraction, and likewise a surface can also be modeled as piecewise planes
consisting of line segments. By using the proposed method with simple plane matching, we could also
construct a planar map of an entire indoor environment in which planes are the dominant boundaries
(Appendix B).
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Fig. 21. (a) Constructed 3D map. (b) Trajectory of raw odometry and corrected robot pose by plane matching.

Fig. 22. Integrated 3D map of LG research center in POSTECH.

Appendix A

Perpendicular foot of a point to the plane

Denote the perpendicular foot of pi to the plane � : n̂p − d = 0 by p
�⊥
i . A vector formed by

pi − p
�⊥
i is parallel with the normal vector n̂ of �, and p

�⊥
i is on the plane, so

i) pi − p
�⊥
i = kn̂, (A.1)

ii) n̂p
�⊥
i − d = 0. (A.2)

(A.1) implies p
�⊥
i = pi − kn̂; we substitute appropriately in (A.2). Some manipulation yields k =

(n̂pi − d)/‖n̂‖2; substituting appropriately into (A.1) yields pi − p
�⊥
i = (n̂pi − d) n̂/‖n̂‖2.

Appendix B
The LG research center is a four-story building composed of many orthogonal planes and some gently
curved surfaces. To map the whole building, we first extract planes at every floor using the proposed
method and a “stop-scan-go” procedure.2 Whenever the robot stops and scans the environment, the
extracted planes are matched incrementally with the already-built map. The matching of planes is
based on the plane parameters and raw odometry (Fig. 21). In this way, we can construct the map
of each floor separately, and then manually merge all the four maps (Fig. 22). The constructed map
is not exactly the same as the real environment, but we can roughly model indoor building without
using complicated SLAM algorithms.
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