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Vortex reconnection under Biot–Savart evolution is investigated geometrically and
numerically using a tent model consisting of vortex filaments initially in the form
of two tilted hyperbolic branches; the vortices are antiparallel at their points of
nearest approach. It is shown that the tips of these vortices approach each other,
accelerating as they do so to form a finite-time singularity at the apex of the tent.
The minimum separation of the vortices and the maximum velocity and axial strain
rate exhibit nearly self-similar Leray scaling, but the exponents of the velocity and
strain rate deviate slightly from their respective self-similar values of −1/2 and
−1; this deviation is associated with the appearance of distinct minima of curvature
leading to cusp structures at the tips. The writhe and twist of each vortex are both
zero at all times up to the instant of reconnection. By way of validation of the
model, the structure of the eigenvalues and eigenvectors of the rate-of-strain tensor is
investigated: it is shown that the second eigenvalue λ2 has dipole structure around the
vortex filaments. At the tips, it is observed that λ2 is positive and the corresponding
eigenvector is tangent to the filament, implying persistent stretching of the vortex.
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1. Introduction

As a fundamental process in both classical and quantum turbulence, vortex
reconnection has been intensively studied over recent decades (see, for example, Kida
& Takaoka 1994). Inspired by the recent experiment of Kleckner & Irvine (2013)
on the dynamics of a trefoil-knot vortex, we have considered a linearised model
in which two skewed Burgers-type vortices are driven together by an axisymmetric
straining velocity field (Kimura & Moffatt 2014). Within the limitations of that model,
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we demonstrated that the time scale of reconnection is independent of kinematic
viscosity ν in the limit ν→ 0 and that the initial helicity associated with the skewed
configuration decays to zero during the reconnection process.

To elucidate the nonlinear effect of vortex–vortex interaction on the reconnection
process, we then investigated the evolution of a vortex filament in the form of a figure
of eight (an 8 nearly flattened on a plane), using a Biot–Savart model (Kimura &
Moffatt 2017, hereafter KM17). In this, the closed loop of the filament was discretised
into piecewise linear segments, and the velocity of each segment was calculated by
evaluating the Biot–Savart integral as a sum of the interactions from all other
segments (the cutoff method). While the ring sections of the figure-of-eight vortex
move in opposite directions, the central sections first deform to a nearly antiparallel
configuration and ultimately collide, producing a pair of cusps in the process. By
systematically varying the number of segments, we controlled the numerical resolution
and showed that the minimum separation of the colliding cusps scales as (tc − t)1/2,
where tc is the estimated collision time. We verified also that the scalings of the
maximum velocity and the axial stretching rate at the cusps are very close to
(tc − t)−1/2 and (tc − t)−1, respectively. These are the scalings first obtained by Leray
(1934) for possible self-similar solutions of the Navier–Stokes equations.

Scrutiny of the vortex configuration just before the instant of reconnection tc
suggests that there may exist a universal geometric configuration leading up to,
and even during, the vortex reconnection process. We suggested this in KM17, in
conformity with de Waele & Aarts (1994), who argued that a symmetric pyramid
(or tent) structure, with a range of apex angle depending on initial conditions,
is invariably formed before reconnection. (We note, however, that Tebbs, Youd
& Barenghi (2011) have argued, on the basis of the Gross–Pitaevskii equation,
that there may be other routes to reconnection.) In § 2 of the present paper, we
investigate the approach further, starting with two initially tilted hyperbolic vortex
filaments; this provides a simple representation of vortex reconnection, revealing
some of the geometric properties involved. Two movies showing the approach to
the reconnection singularity may be found in the supplementary movies available at
https://doi.org/10.1017/jfm.2017.769.

There is much current interest in vortex reconnection in superfluid helium,
usually studied through the Gross–Pitaevskii equation. Reconnection events have
been experimentally detected, notably by Bewley et al. (2008) and Fonda et al.
(2014). A variety of reconnection events have also been very recently detected in
a Bose–Einstein condensate (Serafini et al. 2017). Experimental techniques in these
contexts are developing rapidly, and provide added motivation for the present study.

In the classical fluid context, the Biot–Savart model can survive only for so long as
the vortex cores (finite in reality) are not significantly deformed by the local straining
process. For this reason the rate-of-strain tensor in the neighbourhood of the vortex
tips plays a crucial role; we investigate its structure in § 3.

2. Tent model

Figure 1 shows two blowup projections of the centre part of the figure-of-eight
vortex at the estimated reconnection time t = 0.330772, with the number n of
discretised segments (and so of nodes) equal to 215

= 32 768. The projection on the
yz-plane (right) suggests rather strongly that the central sections are hyperbolic in
shape. If however we look at the projection on the xy-plane (left), we see that the
two branches of the hyperbola are not on a single plane but on planes symmetrically
tilted at an angle θ , say, to the horizontal.
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FIGURE 1. Blowup projections of the vortex configuration at the estimated reconnection
time t= 0.330772 for the figure-of-eight vortex (Kimura & Moffatt 2017).

Based on these observations, we propose the following parametrised curves for the
branches of a ‘tilted hyperbola’, with circulations Γ1 and Γ2 (= −Γ1), as the initial
condition for a new ‘tent model’ of vortex-filament reconnection:

Γ1 :

x(p, t)= c cosh p cos θ
y(p, t)= (c/m) sinh p
z(p, t)=−c cosh p sin θ

Γ2 :

x(p, t)=−c cosh p cos θ
y(p, t)= (c/m) sinh p
z(p, t)=−c cosh p sin θ

(−∞< p<∞).

(2.1a,b)
These expressions are obtained by first parametrising a hyperbola x2

−m2y2
= c2 and

then imposing tilts symmetrically from the horizontal plane through angles ±θ ; we
may describe the resulting curve as a ‘tilted hyperbola’ of two branches. We shall
allow for time dependence of the length scale of the interaction region c. Note that
the arclength s(p) on either branch measured from p = 0 is given by |dx/ds| = 1 =
|dx/dp| |dp/ds|, so that

s(p)=
c
m

∫ p

0
(cosh2 q+m2 sinh2 q)1/2 dq. (2.2)

The radius of curvature at the tip of the hyperbola (p= 0) is R0= c/m2. Taking kR0
as a characteristic length scale for suitable choice of k, we may non-dimensionalise
with respect to this scale. We have adopted values c = 0.1, m = 0.35 in the
computations described below. This corresponds to the choice k= (0.35)2/0.1≈ 1.225,
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XY
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FIGURE 2. (a) Schematic view of the tent model. (b) Initial velocity vectors at points
on Γ1 and Γ2 for m= 0.35, c= 0.1 and θ = π/4 in the xz-plane; pink vectors are total
velocity v1 + v2, and purple the self-velocity v1.

and to an angle 2 cot−1 α ≈ 141◦ between the asymptotes of the hyperbola. If m and
c are varied, then details (e.g. the singularity time tc) change, but the results are
qualitatively stable. As regards θ , we adopt the value θ =π/4; there are good reasons
for this choice, as will emerge in § 3 below.

The Biot–Savart model is based on the Euler equations and, without viscosity or
any other regularisation mechanisms, the solution diverges at t = tc when the tips of
the vortices collide and the curvature and velocity become infinite at the apex of the
tent. If viscosity or any other regularisation mechanism is present, then the formation
of a singularity may be averted and smooth reconnection can then presumably occur.

The tent model, as sketched in figure 2, can be continued to the post-reconnection
situation on the assumption that the vortices simply exchange pairs on the edges
of the tent at the moment of reconnection. Then two new vortices are located
on the complementary surfaces of the tent. These new vortices are so oriented
that they move apart, and the simplest assumption is that they ultimately recede
on these complementary surfaces. Actually, the post-reconnection situation is in
practice complicated by the fact that Kelvin waves are generated at the moment of
reconnection and then propagate down the two vortices (Fonda et al. 2014). Ignoring
this complication, with τ = t − tc, and writing the vorticity field (2.1) before the
singularity (τ < 0) as ω(x, y, z, τ ), then this simplest assumption would imply that
the vorticity field after the singularity (τ > 0) is obtained by reversing the sign of ω
and rotating the configuration through π/2 about the z-axis, i.e. for τ > 0,

ω(x, y, z, τ )=−ω(y,−x, z,−τ). (2.3)

The post-singularity tilted hyperbola may be said to be ‘conjugate’ to the pre-
singularity tilted hyperbola. In the post-singularity situation, the change of sign of
vorticity at the tips is what makes the vortices recede down the sloping faces of
the tent. We note that the Euler equations admit the symmetry u(x, τ )=−u(x,−τ),
ω(x, τ ) = −ω(x, −τ); here, this symmetry is observed, but with the additional
instantaneous rotation of the configuration through π/2 about the z-axis at the
singularity time τ = 0. Under time reversal, the whole process is simply reversed.

This proposed model is consistent with the conclusion of de Waele & Aarts (1994)
that a tent structure is formed by vortices as a universal route to reconnection; the
asymptotes of our tilted hyperbola correspond to the edges of the tent and the vortices
tend to the asymptotes, while the tips of the vortices approach the summit if c→ 0
as t→ tc. A similar model, but with different parametrisation, has been discussed by
Boué et al. (2013).
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Substituting (2.1) into the Biot–Savart integral (as applied to vortex filaments, here
with dx= x′(s) ds= x′(p) dp),

u(q)=−
Γ

4π

∫
∞

−∞

(x(q)− x(p))∧ x′(p) dp
|x(q)− x(p)|3

, (2.4)

we obtain the velocity at q on Γ1 induced by Γ1 (its ‘self-velocity’) as

v1(q)=
Γ1

16πmc

∫
∞

−∞

(sin θ, 0, cos θ) dp
sinh 1

2(p− q)[sinh2 1
2(p+ q)+m−2 cosh2 1

2(p+ q)]3/2
, (2.5)

and the velocity induced on Γ1 by Γ2 (the ‘induced velocity’) as

v2(q)=
Γ2

16πmc

×

∫
∞

−∞

(sin θ sinh2 1
2 (p− q),m sin θ cos θ sinh p cosh q, cos θ cosh2 1

2 (p+ q)) dp

[sinh2 1
2 (p− q)((cos2 θ +m−2) cosh2 1

2 (p+ q)+ sin2 θ sinh2 1
2 (p+ q))+ cos2 θ cosh2 1

2 (p+ q)]3/2
.

(2.6)

The singularity in v1(q) at p= q is regularised through the cutoff method used below.
We may verify that this self-induced contribution is in the binormal direction on Γ1
and perpendicular to the plane containing Γ1 (figure 2).

For the evolution of Γ1 and Γ2, we employ a method similar to that used by KM17.
At t= 0, the initial positions (2.1) of Γ1 and Γ2 are discretised and stretched by the
double exponential formula,

pi = sinh
(π

2
sinh(ih)

)
(i=−N, . . . ,−1, 0, 1, . . . ,N). (2.7)

The velocity is evaluated at each point on Γ1 and Γ2 with a five-point finite-difference
scheme with uneven grid points for the first derivatives. Figure 3 shows the positions
of Γ1 and Γ2 with the velocity vectors at points near the centre part at (a) t=0.449646
and (b) t= 0.449716. (The total number of nodes here is n= 19 202.) At t= 0.449646,
the velocity vectors change continuously along Γ1 and Γ2. At t= 0.449716, however,
these vectors are discontinuous at the centre point while new continuous sets of
vectors form on parts of the reconnecting vortices. Two movies showing the velocity
distribution on each vortex as the singularity is approached may be found in the
supplementary material. (Similar behaviour was observed in the evolution of the
figure-of-eight vortex (KM17).)

With the tent model, we find almost the same scaling properties as with the figure-
of-eight vortex. Figure 4 summarises the scaling of the minimum distance Dmin, the
maximum velocity Vmax and the maximum axial strain rate σmax≡ t · du/ds (where t is
the unit tangent vector) as functions of tc − t in log–log scale. Dmin shows (tc − t)1/2
scaling, and Vmax and σmax show scaling close to (tc− t)−1/2 and (tc− t)−1, respectively,
i.e. close to Leray scaling. But if we look closely at the scaling of Vmax and σmax,
the magnitudes of the exponents are seen to be slightly above 1/2 and 1, respectively,
showing slight deviation from self-similar behaviour. We note that a |tc− t|−1/2 scaling
for Dmin has been found both before and after the reconnection event by Zuccher
et al. (2012) (different scalings have, however, been reported by Hussain & Duraisamy
(2011) and by Rorai et al. (2016)).

This deviation is evident in the appearance of inflection points on the filaments
and a consequent tendency to form cusps (KM17) as the singularity is approached.
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FIGURE 3. Tent-model configuration and velocity vectors at points on the vortices Γ1 and
Γ2 (m= 0.35, c= 0.1, θ =π/4, n= 19 202); (a) t= 0.449646; (b) t= 0.449716.

Figure 5 shows (a) the xz-projections and (b) the yz-projections of the tip part of the
vortices at times close to the singularity (with n = 19 202). The scaling exponent of
the axial stretching is larger than the Leray exponent, implying a faster velocity in the
z-direction at the tips, causing the appearance of inflection points and leading towards
the cusped structure. The xz-projection also shows that the tips gradually leave the
planes defined by the remote parts of the vortices. This means that the vortex filaments
develop non-zero torsion near the tips,

τ =
x′′′ · (x′ ∧ x′′)

(x′ ∧ x′′) · (x′ ∧ x′′)
, (2.8)

where the prime signifies d/dp.
Figure 6 shows the curvature κ(s, t) and torsion τ(s, t) of either vortex filament as

functions of arclength s, at times t near to the singularity time tc. The curvature is
symmetric about s = 0, with no zero, therefore no three-dimensional (3D) inflection
point. We have verified that the maximum curvature (at the tip) scales as (tc − t)−µ,
where µ = 0.6027. This is somewhat greater than the value 1/2 that might be
expected; we have no explanation for this at present, but again, it is an indication
of the departure from Leray self-similarity. The inflection point observed in figure 5
is merely one on the two-dimensional (2D) projection of the curve on the xz-plane.
This does show up, however, in figure 6(a) as a very distinct minimum of curvature
which collapses towards the singularity point as t→ tc. Figure 6(b) shows the torsion
τ(s, t), which is antisymmetric about s = 0 and has very pronounced peaks at the
location of the curvature minima. These results are consistent with results obtained
by Villois, Proment & Krstulovic (2017) on the basis of the Gross–Pitaevskii model.

Two important properties of a deformed filament are its writhe Wr(t) and twist
Tw(t) (Moffatt & Ricca 1992), and we know that in this case, for each tilted hyperbola,
Wr + Tw = const. = 0, since Wr = Tw = 0 initially. The twist Tw(t) is proportional
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FIGURE 4. Scaling of (a) the minimum distance Dmin, (b) the maximum velocity Vmax,
(c) the maximum axial strain rate σmax ≡ t(s) · du(s)/ds as a function of tc − t in log–log
scale; results of three resolutions, n= 4802, 9602, 19 202 are compared (m= 0.35, c= 0.1,
θ =π/4).

to the integral of the torsion τ(s, t) along the complete length of the filament, and
this remains zero for all t > 0 by virtue of the antisymmetry in s. This implies that
Wr(t)= 0 also for all t> 0, consistent with the interpretation of writhe as the average
over all projections of the (signed) number of self-crossings of the curve: the tilted
hyperbola is increasingly bent upwards from its original plane, but is not twisted about
the z-direction, and therefore exhibits no self-crossings from any angle of projection.

3. Strain around the vortices

During the reconnection process, the vortices are subject to the local velocity
gradient ∇v, and the vortex cores, finite in reality, are inevitably deformed by the
straining action. The nature of the deformation is determined by the eigenvalues
λ1 > λ2 > λ3 (λ1 + λ2 + λ3 = 0) of the rate-of-strain tensor e= (∇v+ (∇v)T)/2. From
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FIGURE 5. Projections of the tip part near tc for n = 19 202; (a) xz-projections;
(b) yz-projections.
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FIGURE 6. (a) Curvature κ(s, t) and (b) torsion τ(s, t) of Γ1 as functions of arclength s,
at times t near to the singularity time tc (m= 0.35, c= 0.1, θ =π/4, n= 4802).

the Biot–Savart integral (2.4), the deformation tensor at x is

∂uj(x)
∂xi
=
Γ

4π

∫ [
3(xi − xi(p))[(x− x(p))∧ dx(p)]j

|x− x(p)|5
+ εijk

dxk(p)
|x− x(p)|3

]
, (i, j, k= 1, 2, 3),

(3.1)
where εijk is the Levi–Civita symbol.

Figure 7 shows the 3D isosurfaces of λ2 near the vortices. Two times are selected:
(a) t = 0.473200 and (b) t = 0.489820. The isosurfaces are plotted by evaluating the
nine components of (3.1) and, after symmetrising, by solving the cubic eigenvalue
equation at 2003 grid points around Γ1 and Γ2. At the earlier time, λ2 shows a dipole
structure around the vortices (figure 7a). As time advances, the positive parts of the
dipole overlap near the tips of the vortices to produce another dipole structure on the
symmetry plane x = 0 (figure 7b). Figure 8 shows the contours of λ2 on the plane
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0.070
(a) (b)

0.065

0.060

0.055

0.050

0.045

0.040

0.035

0.030

0.11010
8
6
4
2
0
–2
–4
–6
–8
–10

10
8
6
4
2
0
–2
–4
–6
–8
–10

z

x x

0.105

0.100

0.095

0.090

0.085

0.080

0.075

0.070
–0.02 –0.01 0 0.01 0.02 –0.01 0 0.01 0.02

FIGURE 8. Contours of λ2 on the plane y = 0; (a) t = 0.473200; (b) t = 0.489820
(m= 0.35, c= 0.1, θ =π/4, n= 4802).

y= 0 corresponding to figure 7; this shows details of the change around the tip. At
t= 0.473200, two tilted dipoles are observed which move along the zero level of λ2

(figure 8a). At t= 0.489820, the positive parts of the dipoles overlap at the centre of
the region. The combined dipoles squeeze the zero level of λ2 towards a cusp at the
tip while the ‘tails’ are straightened. By comparing figure 8(b) with figure 5, we may
conjecture that it is the complicated local strain structure that leads to the appearance
of inflection points and the development of cusps.

A crucial issue concerns the structure of the principal rates of strain λ1, λ2 and λ3

near the vortex tips. Table 1 shows the values of these eigenvalues and corresponding
eigenvectors e1, e2 and e3 at the tip of Γ1 at the two times corresponding to figures 7
and 8. The strain is evaluated by the total velocity produced by Γ1 and Γ2 (first three
columns) and by the induced velocity produced by Γ2 alone (last three columns). The
results may be summarised as follows:
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(i) λ1 + λ2 + λ3 = 0, as expected by virtue of incompressibility.
(ii) λ2 > 0, and e2 is in the axial direction (parallel to the y-axis); each vortex is

therefore persistently stretched at the tip.
(iii) The eigenvectors e1 and e3 are in the xz-plane and are mutually orthogonal (as

expected for a real symmetric matrix).
(iv) The rate of strain produced by Γ2 alone is dominant at the tip of Γ1, and the

magnitudes of the x and z components of e1 and e3 are nearly equal; these vectors
are therefore close to the directions z=±x.

The same results were obtained for a sequence of times up to tc, and under modest
variation of the parameters m and c, thus providing evidence for the accuracy of the
computation. We note here that the straining in the xz-plane in the neighbourhood of
the tip of Γ1 must tend to rotate the angle θ of its plane towards the value π/4 if
it is not π/4 initially. This is why we have chosen the value θ = π/4 in the initial
condition (2.1).

Direct numerical simulations (DNS) of the Euler equations by Brenner, Hormoz
& Pumir (2016) and others have provided evidence of the flattening of vortex cores
as the singularity time is approached. This must be a consequence of the positive
rate-of-strain eigenvalue (here λ1) in the plane of cross-section of the vortex core.
The Reynolds number dependence of this flattening when weak viscosity is taken into
account remains a key issue, and will require much better numerical resolution than
has so far been achieved.

In this context, it has been shown (Moffatt, Kida & Ohkitani 1994) that at very
high Reynolds number, the cross-section of a stretched Burgers-type vortex remains
nearly circular even when the straining flow is non-axisymmetric. There is therefore
the possibility here that, at sufficiently high Reynolds number beyond the reach of
present DNS, the vortex cross-sections, if assumed finite, may remain compact at
leading order. We are currently investigating this possibility.
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