
Math. Proc. Camb. Phil. Soc. (2013), 154, 465–479 c© Cambridge Philosophical Society 2013

doi:10.1017/S0305004113000066

First published online 7 February 2013

465

Local conical dimensions for measures

BY DE–JUN FENG

The Chinese University of Hong Kong, Shatin, Hong Kong.
e-mail: djfeng@math.cuhk.edu.hk

ANTTI KÄENMÄKI
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Abstract

We study the decay of μ(B(x, r)�C)/μ(B(x, r)) as r ↓ 0 for different kinds of measures
μ on R

n and various cones C around x . As an application, we provide sufficient conditions
that imply that the local dimensions can be calculated via cones almost everywhere.

1. Introduction and notation

Let μ be a measure on R
n and let C(x) ⊂ R

n be a cone with a vertex at x ∈ R
n . Our

motivation for this paper stems from the following question: for what types of cones and
under what assumptions on the measure do we have

lim sup
r↓0

log μ
(
B(x, r) � C(x)

)
log r

= lim sup
r↓0

log μ
(
B(x, r)

)
log r

, (1·1)

lim inf
r↓0

log μ
(
B(x, r) � C(x)

)
log r

= lim inf
r↓0

log μ
(
B(x, r)

)
log r

, (1·2)

for μ-almost all points x ∈ R
n? Here the right-hand sides of (1·1) and (1·2) are denoted

by dimloc (μ, x) and dimloc (μ, x), and they are the upper and lower local dimensions of the
measure μ at x ∈ R

n , respectively.
We prove that if C is a cone with opening angle at least π , then (1·1) and (1·2) hold for

all measures μ and for μ-almost all x ∈ R
n . Moreover, (1·2) holds also for cones with small

opening angle at μ-almost all points where dimloc (μ, x) is large. We construct an example
to show that the analogy of (1·1) fails for narrow cones. Finally, we prove that (1·1) and (1·2)
are true for any purely unrectifiable self-similar measure on a self-similar set satisfying the
open set condition. Most of the results are obtained as corollaries to more general theorems
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describing the speed of decay of

μ
(
B(x, r) � C(x)

)
μ

(
B(x, r)

) (1·3)

as r ↓ 0. In geometric measure theory, it has been of great interest to determine when the
(upper and lower) limits of (1·3) are zero (resp. positive) at μ-almost all points. The results
obtained so far have connections and applications to rectifiability and porosity problems, see
e.g. [2, 6, 8, 20, 23, 24] for some classical results. For more recent results and references,
see [19, 25, 26, 27, 33, 34] for lower densities and connections to upper porosity and [3,
12–15, 31] for upper conical density results. We remark that if dimloc (μ, x) = dimloc (μ, x)

for μ-almost all points, then (1·2) follows from the previously known upper conical density
estimates (cf. [3, 13]).

We finish this introduction by fixing some notation. We let B(x, r) denote the closed ball
centered at x ∈ R

n with radius r > 0. Let n ∈ N, m ∈ {0, . . . , n − 1}, and G(n, n − m)

be the space of all (n − m)-dimensional linear subspaces of R
n . The unit sphere of R

n is
denoted by Sn−1. For x ∈ R

n , θ ∈ Sn−1, V ∈ G(n, n − m), and 0 � α � 1, we set

H(x, θ, α) = {y ∈ R
n : (y − x) · θ > α|y − x |},

X (x, V, α) = {y ∈ R
n : dist (y − x, V ) < α|y − x |}.

If α is small, then the cone X (x, V, α) is a narrow cone around the translated plane
V whereas H(x, θ, α) is almost a half-space. We write H(x, θ) for the open half-space
H(x, θ, 0).

We will exclusively work with nontrivial Borel regular (outer) measures defined on all
subsets of R

n so that bounded sets have finite measure. For simplicity, we call them just
measures. The support of a measure μ, denoted by spt (μ), is the smallest closed subset of
R

n with full μ-measure.
Self-similar sets will be referred to frequently. The following notation is used in connec-

tion with such sets; cf. [17]. Let κ � 2 and assume that for each i ∈ {1, . . . , κ} there is a
mapping fi : R

n → R
n and a constant 0 < ri < 1 so that | fi (x) − fi (y)| = ri |x − y| for

all x, y ∈ R
n . The unique nonempty compact set E satisfying E = ⋃κ

i=1 fi (E) is called
self-similar. We say that the open set condition holds for { fi }κ

i=1 if there exists a nonempty
open set V ⊂ R

n such that
⋃κ

i=1 fi(V ) ⊂ V with this union disjoint.
Let � = {1, . . . , κ}N, �n = {1, . . . , κ}n , and �∗ = {∅} �

⋃
n∈N

�n . Denote by |i| the
length of a word i ∈ �∗ ��, and set i|n = i1 · · · in if |i| � n. Let π : � → E be the natural
projection defined by the following relation

{π(i)} =
⋂
n∈N

fi|n (E), i ∈ �.

We also denote by Ei = fi(E) = π([i]) the projection of a cylinder set [i] = {ij : j ∈
�}, where i ∈ �∗. Here fi = fi1 ◦ · · · ◦ fin for i = i1 · · · in ∈ �n .

A measure ν on � obtained from a probability vector (p1, . . . , pκ) by setting ν([i]) =
pi = pi1 · · · pin for all i ∈ �n is called a Bernoulli measure on �, and its projection
μ = ν ◦ π−1 under the mapping π is said to be a self-similar measure. If t � 0 is such that∑κ

i=1 r t
i = 1, then the self-similar measure obtained from (r t

1, . . . , r t
κ) is called the natural

measure on E . It is well known that if the open set condition holds for { fi }κ
i=1, then the

natural measure is comparable to Ht |E , where Ht is the t-dimensional Hausdorff measure.
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2. Dimension of general measures on large cones

The main result in this section is the following theorem.

THEOREM 2·1. Let f : (0, 1) → R be an increasing function such that∫ 1

0

f (t)

t
dt < ∞ (2·1)

and let μ be a measure on R
n.

(1) If θ ∈ Sn−1, then

lim inf
r↓0

μ
(
B(x, r) \ H(x, θ)

)
f (r)μ

(
B(x, r)

) � 1

for μ-almost all x ∈ R
n.

(2) If 0 < α � 1, then

lim inf
r↓0

inf
θ∈Sn−1

μ
(
B(x, r) \ H(x, θ, α)

)
f (r)μ

(
B(x, r)

) � 1

for μ-almost all x ∈ R
n.

As a corollary, we obtain the local dimension formula for large cones that was mentioned
in the introduction.

COROLLARY 2·2. Suppose μ is a measure on R
n. If θ ∈ Sn−1, then

dimloc (μ, x) = lim sup
r↓0

log μ
(
B(x, r) \ H(x, θ)

)
log r

,

dimloc (μ, x) = lim inf
r↓0

log μ
(
B(x, r) \ H(x, θ)

)
log r

for μ-almost all x ∈ R
n. Moreover, if 0 < α � 1, then

dimloc (μ, x) = lim sup
r↓0

sup
θ∈Sn−1

log μ
(
B(x, r) \ H(x, θ, α)

)
log r

,

dimloc (μ, x) = lim inf
r↓0

sup
θ∈Sn−1

log μ
(
B(x, r) \ H(x, θ, α)

)
log r

for μ-almost all x ∈ R
n.

Remark 2·3. (1) If s > 1, then the function f (t) = | log t |−s satisfies the condition (2·1).
Observe also that the condition (2·1) is equivalent to

∑∞
i=1 f (2−i ) < ∞.

(2) The condition (2·1) is sharp in the sense that if
∫ 1

0 t−1 f (t)dt = ∞, then there is a
measure μ on R such that

lim inf
r↓0

μ([x, x + r ])
f (r)μ([x − r, x + r ]) = 0

for μ-almost all x ∈ R. This is proved in Proposition 2·5.
(3) For each 0 < α � 1, let c = c(n, α) > 0 be the constant from Lemma 2·4(2) below.

Observe that one can read explicit expressions for c(n, α) from the proof of the lemma and
we can assume that α 
→ c(n, α) is increasing. If α(t) > 0 is an increasing function with
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lim t↓0 α(t) = 0, then for any measure μ on R
n and for μ-almost all x ,

lim inf
r↓0

inf
θ∈Sn−1

μ
(
B(x, r) \ H(x, θ, α(r))

)
f (r)μ

(
B(x, r)

)
provided that f satisfies

∫ 1
0 t−1c(n, α(t))−1 f (t)dt < ∞. This slightly sharper form of (2)

follows directly from the proof of Theorem 2·1.
(4) Compactness of Sn−1 implies that Theorem 2·1(2) is equivalent to the claim that for

μ-almost all x ∈ R
n we have

lim inf
r↓0

μ
(
B(x, r) \ H(x, θ, α)

)
f (r)μ

(
B(x, r)

) � 1

simultaneously for all θ ∈ Sn−1.
(5) It is clear that in Theorem 2·1(2) the cones H(x, θ, α) cannot be replaced by H(x, θ).

For example, consider the length measure on a circle.
(6) In the view of Corollary 2·2, local dimensions of μ on R can be calculated from

half balls for μ-almost all points. Falconer [7] has shown that for the natural measure μ

on the middle-third Cantor set C ⊂ R, the exceptional set {x ∈ R : dimloc (μ, x) <

lim sup r↓0 log μ([x, x + r ])/ log r} can have as large Hausdorff dimension as C . However,
any self-similar measure μ on C satisfies dimloc (μ, x) = lim inf r↓0 log μ([x, x + r ])/ log r
except for at most countably many points; see Proposition 2·6. For the natural measure, this
is shown in [7].

Before proving Theorem 2·1, we exhibit a covering lemma suitable for our purposes. Its
proof is based on a simple geometric argument (cf. [3, theorem 3·1]).

LEMMA 2·4. Suppose that μ is a measure on R
n, A ⊂ R

n is a bounded set, 0 < R < ∞,
and R � rx � 2R for all x ∈ A.

(1) If θ ∈ Sn−1, then there exists a finite set F ⊂ A so that the collection {B(x, rx)}x∈F is
pairwise disjoint and ∑

x∈F

μ
(
B(x, rx) \ H(x, θ)

)
� cμ(A),

where c = c(n) > 0 is a constant that depends only on n.
(2) If θx ∈ Sn−1 for all x ∈ A and 0 < α � 1, then there exists a finite set F ⊂ A so that

the collection {B(x, rx)}x∈F is pairwise disjoint and∑
x∈F

μ
(
B(x, rx) \ H(x, θx , α)

)
� cμ(A),

where c = c(n, α) > 0 is a constant that depends only on n and α.

Proof. (1) Let {B(x, R/4)}x∈F0 be a maximal packing of A. Thus F0 ⊂ A is a finite set
and A ⊂ ⋃

x∈F0
B(x, R/2). A simple volume argument implies that there exists a positive

constant C = C(n) so that for each y ∈ R
n , the ball B(y, 5R) intersects at most C balls

B(x, 5R) with x ∈ F0. This in turn implies that we may decompose F0 into C subsets
such that the points in each subset have mutual distance at least 5R. For some F1 in this
decomposition, it then follows that

μ

(
A �

( ⋃
x∈F1

B(x, R/2)
))

� μ(A)/C

and |x − y| � 5R for all x, y ∈ F1 with x � y.
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For x ∈ F1, let t = sup {y · θ : y ∈ A � B(x, R/2)}. If yn ∈ A � B(x, R/2) so that
yn ·θ → t as n → ∞, then it follows that μ

(
A�B(x, R/2)\H(yn, θ)

) → μ
(

A�B(x, R/2)
)
.

Recall that H(yn, θ) is an open half-space. In particular, this implies that we can pick yx ∈
A � B(x, R/2) for which

μ
(
B(x, R/2) \ H(yx , θ)

)
� 1

2
μ

(
A � B(x, R/2)

)
.

Let F = {yx : x ∈ F1}. Since the collection {B(yx , ryx )}x∈F1 is pairwise disjoint, we arrive
at ∑

x∈F

μ
(
B(x, rx) \ H(x, θ)

)
�

∑
x∈F1

μ
(
B(x, R/2) \ H(yx , θ)

)

� 1

2

∑
x∈F1

μ
(

A � B(x, R/2)
)

= 1

2
μ

(
A �

( ⋃
x∈F1

B(x, R/2)
))

� μ(A)/(2C)

finishing the proof of (1).
(2) Choose � = �(α) > 0 so that H(0, θ, α) ⊂ H(0, ζ ) for all ζ ∈ Sn−1 and θ ∈

Sn−1 � B(ζ, �). Since Sn−1 is compact, we find M = M(n, �) ∈ N and ζ1, . . . , ζM ∈ Sn−1

such that Sn−1 ⊂ ⋃M
j=1 B(ζ j , �). Thus there is j0 ∈ {1, . . . , M} so that μ(A′) � μ(A)/M ,

where A′ = {x ∈ A : θx ∈ B(ζ j0, �)}. Observe that

B(x, rx) \ H(x, θx , α) ⊃ B(x, rx) \ H(x, ζ j0)

for all x ∈ A′. Applying now (1) to the set A′ and ζ j0 ∈ Sn−1 yields the claim.

Proof of Theorem 2·1. Without loss of generality we may assume that μ has bounded
support. Let θ ∈ Sn−1 and define

Ai =
{

x ∈ R
n : μ

(
B(x, rx) \ H(x, θ)

)
f
(
rx

)
μ

(
B(x, rx)

) < 1 for some 2−i−1 � rx < 2−i

}

for all i ∈ N. Applying Lemma 2·4(1), we find finite sets Fi ⊂ Ai such that
{B(x, rx)}x∈Fi are pairwise disjoint and

∑
x∈Fi

μ
(
B(x, rx) \ H(x, θ)

)
� cμ(Ai ), where

c = c(n) > 0 is the constant from Lemma 2·4(1). Together with the definition of Ai this
implies

μ(Ai ) � c−1
∑
x∈Fi

μ
(
B(x, rx) \ H(x, θ)

)
� c−1μ(Rn) f (2−i ).

Since
∑∞

i=1 f (2−i ) < ∞, we have
∑∞

i=1 μ(Ai ) < ∞. The first claim is now proved since
μ-almost all x ∈ R

n belong to only finitely many sets Ai by the Borel–Cantelli lemma.
The second claim is proved in the same way by considering

Ai = {
x ∈ R

n : μ
(
B(x, rx) \ H(x, θ, α)

)
< f

(
rx

)
μ

(
B(x, rx)

)
for some 2−i−1 � rx < 2−i and θ ∈ Sn−1

}
,

and using Lemma 2·4(2).

The following proposition verifies the sharpness of the integrability condition in
Theorem 2·1.
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PROPOSITION 2·5. Let C ⊂ [0, 1] be the middle-third Cantor set and μ = Ht |C , where
t = dimH (C) = log 2/ log 3. If f : (0, 1) → R is an increasing function such that∫ 1

0

f (t)

t
dt = ∞, (2·2)

then

lim inf
r↓0

μ([x, x + r ])
f (r)μ([x − r, x + r ]) = 0 (2·3)

for μ-almost all x ∈ C.

Proof. The proof is deduced from the classical result of Erdős and Révész [4] on the
longest length of consecutive zeros appearing in a random sequence of digits.

If f1(x) = x/3 and f2(x) = x/3 + 2/3 are the mappings that generate C , then in the
projection mapping π : {1, 2}N → C the symbol 1 corresponds to “left” and 2 to “right”.
Given i = i1i2 · · · ∈ {1, 2}N, let 
n(i) be the number of consecutive 2’s in i appearing after
i|n = i1 · · · in ∈ {1, 2}n . Then, for x = π(i), we have

μ([x, x + 3−n]) � 2−
n(i)μ([x − 3−n, x + 3−n]). (2·4)

Let (an) be a sequence of positive integers. The behavior of 
n(i) was characterized by
Erdős and Révész [4]. They showed that for ν-almost every i ∈ {1, 2}N,


n(i) > an infinitely often (2·5)

if and only if
∑∞

n=1 2−an = ∞. Here the projection of u is the natural measure. Since (2·2)
implies

∑∞
n=1 f (3−n) = ∞, we apply (2·5) with an = − log 2 f (3−n). Hence, combining

this with (2·4), it follows that for μ-almost all x = π(i),

μ([x, x + 3−n]) � 2−
n(i)μ([x − 3−n, x + 3−n]) � f (3−n)μ([x − 3−n, x + 3−n])
for infinitely many n.

We finish this section by verifying the claim in Remark 2·3(6).

PROPOSITION 2·6. If μ is a self-similar measure on the middle-third Cantor set C, then

dimloc (μ, x) = lim inf
r↓0

log μ([x, x + r ])
log r

(2·6)

except for at most countably many points x ∈ R.

Proof. Relying on the geometric structure of C , it is not hard to check that

dimloc

(
μ, π(i)

) = lim inf
n→∞

log μ(Ei|n )
log 3−n

(2·7)

for all i ∈ {1, 2}N. Now assume that i is a element in {1, 2}N so that the digits 1 and 2 both
appear infinitely many times in i. We show below that (2·6) holds for x = π(i).

According to the above assumption, i is of the form

1m1 2m2−m1 1m3−m2 2m4−m3 · · · or 2m1 1m2−m1 2m3−m2 1m4−m3 · · ·
where (mk)

∞
k=1 is an increasing sequence of natural numbers. Observe that the mapping

n 
→ − log μ(Ei|n )/n is monotone on each block [mk + 1, mk+1]. Hence

min
mk<n�mk+1

−1

n
log μ(Ei|n ) = min

{
− 1

mk + 1
log μ(Ei|mk +1), −

1

mk+1
log μ(Ei|mk+1

)

}
.
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It follows that we find a subsequence (n�) from

m1 + 1, m2, m2 + 1, m3, . . . , mk + 1, mk+1, . . .

so that in�+1 � in�
and

lim
�→∞

log μ(Ei|n�
)

log 3−n�
= lim inf

n→∞
log μ(Ei|n )

log 3−n
.

The desired equality (2·6) follows now from (2·7) since μ([π(i), 3−(n�−1)]) is comparable
to μ(Ei|n�

) for all � ∈ N. (We remark that μ([π(i), 3−n�]) might not be comparable to
μ(Ei|n�

).)

3. Dimension of general measures on narrow cones

The arguments in this section are based on the standard techniques used to obtain conical
density estimates for purely unrectifiable measures. We refer to [23, section 15] for the basic
properties of rectifiable sets.

For x ∈ R
n , V ∈ G(n, n −m), 0 � α � 1, and β � 1, we define a twisted cone by setting

Xβ(x, V, α) = {y ∈ R
n : dist (y − x, V ) < α|y − x |β}.

The following lemma is needed also in section 4. We denote the packing dimension of a set
A ⊂ R

n by dimp (A).

LEMMA 3·1. Let μ be a measure on R
n, A ⊂ R

n, V ∈ G(n, n−m), θ ∈ Sn−1, 0 < α � 1,
β � 1, and r > 0. If

μ
(
B(x, r) � Xβ(x, V, α) \ H(x, θ, α)

) = 0

for μ-almost all x ∈ A, then A � spt (μ) is contained in a countable union of images of
1/β-Hölder continuous maps A � V ⊥ → R

n and thus, dimp (A � spt (μ)) � βm, where
extrm dim p denotes the packing dimension. Furthermore, if β = 1, then A � spt (μ) is
m-rectifiable.

Proof. The proof is essentially identical to that of [23, lemma 15·13]. One just has to
notice that if x, y ∈ A � spt (μ) such that |y − x | < r and | proj V ⊥(y − x)| < α|y − x |β ,
then not only y ∈ B(x, r) � Xβ(x, V, α) � H(x, θ, α) but also x ∈ B(y, r) � Xβ(y, V, α) \
H(y, θ, α). Here proj V ⊥ denotes orthogonal projection onto the orthogonal complement of
V . Thus | proj V ⊥(y − x)| � α|y − x |β and (proj V ⊥ |A)−1 is the desired mapping.

For the lower local dimension in twisted cones, we have the following estimate.

THEOREM 3·2. If μ is a measure on R
n, V ∈ G(n, n − m), 0 < α � 1 and β � 1, then

lim inf
r↓0

log μ
(
B(x, r) � Xβ(x, V, α)

)
log r

� m(β − 1) + dimloc (μ, x)

for μ-almost all x with dimloc (μ, x) > βm.

Proof. Assume to the contrary that there are r0 > 0, β < γ < n/m, βm < s � n, and a
Borel set E ⊂ R

n with μ(E) > 0 such that dimloc (μ, x) < s and

μ
(
B(x, r) � Xβ(x, V, α)

)
< rm(γ−1)+s (3·1)
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xy
V

Fig. A. The choice rγ−β < 4−β guarantees that C(x) is contained in the union of Xβ(x, V, α) and
Xβ(y, V, α) illustrated by the solid curves in the picture.

for all x ∈ E and 0 < r < r0.
Since μ-almost all points of E are density points (for example, see [23, corollary 2·14])

and dimloc (μ, x) < s for all x ∈ E , there are x0 ∈ E and arbitrary small 0 < r < r0 so that

μ
(
E � B(x0, r)

)
> 2s−m+1 · 16n · 10m · α−mrs . (3·2)

Fix such a radius so that r γ−β < 4−β .
For each x ∈ E � B(x0, r/2), we define

h(x) = sup {|y − x | : y ∈ E � B(x0, r) � X γ (x, V, α)}.
Since we have dimloc (μ|E , x) > βm for μ-almost every x ∈ E , Lemma 3·1 implies that
μ|E

(
B(x, r/2) � Xβ(x, V, α)

)
> 0, and, consequently, 0 < h(x) < 2r for μ-almost all

x ∈ E � B(x0, r/2).
Moreover, by a simple geometric argument, we find that for

C(x) = B(x0, r) � proj −1
V ⊥

(
proj V ⊥ B(x, αh(x)γ )

)
we have

C(x) ⊂ (
B(x, 4h(x)) � Xβ(x, V, α)

)
�

(
B(y, 4h(x)) � Xβ(y, V, α)

)
(3·3)

for some y ∈ E � B(x0, r) � X γ (x, V, α); see Figure A and recall the proofs of [23, lemma
15·14] and [12, theorem 8].

By the 5r -covering theorem, we find a countable collection of pairwise disjoint balls
{proj V ⊥ B(xi , αh(xi)

γ /5)}i with xi ∈ E � B(x0, r) so that⋃
h(x)>0

proj V ⊥ B
(
x, αh(x)γ

) ⊂
⋃

i

proj V ⊥ B
(
xi , αh(xi)

γ
)
.

Observe that we have∑
i

2mαmh(xi )
γ m/5m =

∑
i

Hm
(
proj V ⊥ B(xi , αh(xi)

γ /5)
)

� Hm
(
proj V ⊥ B(x0, 2r)

) = 2m(2r)m

and μ
(
E � B(x0, r)

)
�

∑
i μ

(
C(xi)

)
, where Hm is the Hausdorff measure normalized so

that the m-dimensional unit ball has measure 1. Combining these estimates with (3·3), (3·1),
the fact that h(xi)

s−m � (2r)s−m and recalling that s � n, gives

μ
(
E � B(x0, r)

)
�

∑
i

μ
(
C(xi)

)
� 2 · 4γ m+s−m

∑
i

h(xi)
γ m+s−m
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� 2 · 16n
∑

i

h(xi )
s−mh(xi )

γ m < 2s−m+1 · 16n · 10mα−mrs,

a contradiction to (3·2).

Remark 3·3. The upper bound of Theorem 3·2 is seen to be sharp by considering Haus-
dorff measures on V ⊥ × C , for self-similar Cantor sets C ⊂ V .

For ordinary cones we get the following stronger result. This should be compared to
Theorem 3·2 when β ↓ 1. We formulate the result for purely unrectifiable measures to cover
also the case dimloc (μ, x) = m. A measure μ on R

n is called purely m-unrectifiable if
μ(A) = 0 for all m-rectifiable sets A ⊂ R

n . Observe that μ restricted to the set {x ∈ R
n :

dimloc (μ, x) > m} is purely m-unrectifiable.

THEOREM 3·4. If μ is a measure on R
n and 0 < α � 1, then

dimloc (μ, x) = lim inf
r↓0

sup
V ∈G(n,n−m)

log μ
(
B(x, r) � X (x, V, α)

)
log r

for μ-almost all x ∈ R
n with dimloc (μ, x) � m provided that μ is purely m-unrectifiable.

Proof. By a simple compactness argument (see [3, remark 4·4]) it suffices to show the
claim for a fixed V ∈ G(n, n−m). After this observation, the proof continues as in Theorem
3·2.

Remark 3·5. (1) Observe that for μ-almost all x ∈ R
n with

dimloc (μ, x) = dimloc (μ, x) > m,

the claim of Theorem 3·4 follows from [13, theorem 5·1], and, in fact, we may replace the
cone X (x, V, α) by a non-symmetric cone X (x, V, α) \ H(x, θ, α) and take the supremum
over all V ∈ G(n, n − m) and θ ∈ Sn−1. We do not know whether Theorem 3·4 holds for
non-symmetric cones in general.

(2) Recall from [3, example 5·5], that for � ∈ G(2, 1), there is a measure μ on R
2 so that

μ is purely 1-unrectifiable and for every 0 < α < 1

lim
r↓0

μ
(
B(x, r) � X (x, �, α)

)
μ

(
B(x, r)

) = 0

for μ-almost all x ∈ R
2. It is therefore interesting to ask if it is possible to obtain finer

information on the ratio μ
(
B(x, r)� X (x, V, α)

)
/μ

(
B(x, r)

)
for arbitrary small r > 0. See

also Proposition 3·6.

If the dimension of a measure is small it is often the case that the upper (resp. lower) limit
of log μ

(
B(x, r) � X (x, V, α)

)
/ log r is strictly larger than the upper (resp. lower) local

dimension of μ at x . For example, this is the case when spt (μ) is contained in a rectifiable
curve. Perhaps surprisingly, this behaviour is possible also if the local dimension of the
measure is large.

Besides exhibiting the above phenomenon, the example in the following proposition
shows that Theorem 3·4 cannot hold for the upper local dimension. The observation that
lower conical dimensions are often more regular (or less “multifractal”) than the upper ones
was already noted in the one dimensional situation by Falconer [7]; see Remark 2·3(6).
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Fig. B. The operation (1) used in the proof of Proposition 3·6 is illustrated in the left and the operation (2)
in the right.

PROPOSITION 3·6. If � ∈ G(n, 1) and 0 < α < 1, then for every 1 < s < t < 2 there is
a measure μ on R

2 such that dimloc (μ, x) = s and

lim sup
r↓0

log μ
(
B(x, r) � X (x, �, α)

)
log r

= s
t − 1

s − 1
> t = dimloc (μ, x)

for μ-almost all x ∈ R
2.

Proof. We may assume that � is the y-axis. Let us denote the side-length of a square Q
by |Q|. In this proof, all the squares have sides parallel to the coordinate axes. We construct
the measure μ using the mass distribution principle and the following two operations:

(1) suppose Q ⊂ R
2 is a square with |Q| � 1 and μ(Q) � |Q|t . Let n be the integer such

that n−1 � (|Q|−tμ(Q))1/(2−t) < n. Divide Q into n2 subsquares of side-length |Q|/n
and assign a measure μ(Q)/n2 to each of these subsquares;

(2) suppose Q ⊂ R
2 is a square with |Q| � 1 and μ(Q) � |Q|s . Let n be the integer

such that n − 1 � (|Q|s/μ(Q))1/(s−1) < n. Divide Q into n2 subsquares of side-length
|Q|/n and assign a measure μ(Q)/n to the subsquares in the bottom row and measure
0 to others.

We construct μ by first applying the operation (1) with Q = [0, 1] × [0, 1] and μ(Q) = 1.
Then we apply the operation (2) for each of the 4 subsquares of side-length 1/2 and the
operation (1) for the squares in their bottom row. We continue by applying the operation
(2) for the chosen squares, the operation (1) for the squares in their bottom row, and so on.
See Figure B. It is easy to see that for the resulting measure, we have dimloc (μ, x) = t and
dimloc (μ, x) = s for all x ∈ spt (μ).

To show the claim on the conical dimension, observe first that for x ∈ spt (μ), the function
r 
→ log μ

(
B(x, r) � X (x, �, α)

)
/ log r obtains its local maxima at values r ≈ |Q|, where

Q is a square obtained as a result of the operation (1). Let Q be a square for which we apply
the operation (2), n ∈ N as in (2), and let x ∈ spt (μ) � Q. Then B(x, |Q|/2) � X (x, �, α)

intersects at most constant many squares Q ′ in the bottom row of the n-adic subsquares of
Q as well as the bottom row squares in the neighbours of Q. Thus the estimate

log μ(Q ′)
log |Q| = log 1

n μ(Q)

log |Q| � log μ(Q)1+1/(s−1)|Q|−s/(s−1)

log |Q| = s

s − 1
t − s

s − 1

implies the claim.
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4. Dimension of self-similar measures on narrow cones

Finally, we turn our attention to self-similar sets and consider measures on narrow cones
around (n − m)-planes.

THEOREM 4·1. Let μ be a self-similar measure on a self-similar set E ⊂ R
n satisfying

the open set condition. If μ is purely m-unrectifiable and 0 < α � 1, then there is 1 < s =
s(μ, n, m, α) < ∞ so that

lim inf
r↓0

inf
θ∈Sn−1

V ∈G(n,n−m)

μ
(
B(x, r) � X (x, V, α) \ H(x, θ, α)

)
| log r |−sμ

(
B(x, r)

) � 1

for μ-almost all x ∈ R
n.

Again, as a direct corollary, we obtain formulae for the local dimensions via narrow cones.

COROLLARY 4·2. Let μ be a self-similar measure on a self-similar set E ⊂ R
n satisfying

the open set condition. If μ is purely m-unrectifiable and 0 < α � 1, then

dimloc (μ, x) = lim sup
r↓0

sup
θ∈Sn−1

V ∈G(n,n−m)

log μ
(
B(x, r) � X (x, V, α) \ H(x, θ, α)

)
log r

,

dimloc (μ, x) = lim inf
r↓0

sup
θ∈Sn−1

V ∈G(n,n−m)

log μ
(
B(x, r) � X (x, V, α) \ H(x, θ, α)

)
log r

for μ-almost all x ∈ R
n.

Remark 4·3. (1) As one would expect, self-similar measures behave more regularly than
general measures; compare Corollary 4·2 to Proposition 3·6. Observe also that there is no
lower bound for the local dimension of the self-similar measure.

(2) If μ is a self-similar measure, then for μ-almost all x ∈ R
n with dimloc (μ, x) > m,

the latter claim of Corollary 4·2 follows from Feng and Hu [9, theorem 2·8] and Remark
3·5(1) even without assuming the open set condition.

(3) Mattila [22] has shown that a self-similar set E either lies on an m-dimensional affine
subspace or Ht(E � M) = 0 for every m-dimensional C1-submanifold of R

n . Here t =
dimH (E). Further generalizations of this result can be found in [1, 10, 11].

(4) By inspecting the proof of Theorem 4·1, one is easily convinced that the result holds
also for self-conformal sets.

(5) An interesting question is whether Theorem 4·1 remains true for every purely 1-
unrectifiable measure. Recall constructions presented in [3, example 5·4], [21, section 5·3],
and [29, section 5·8].

Proof of Theorem 4·1 Let f1, . . . , fκ be the defining similitudes and ν the Bernoulli
measure on � for which ν ◦ π−1. Let 0 < r1 < · · · < rκ < 1 be the contraction ratios
and p = min i∈{1,...,κ} ν([i]) > 0 the smallest Bernoulli weight. We show that there are l ∈ N

and h ∈ �l so that for each i ∈ �∗, y ∈ Eih, V ∈ G(n, n − m), and θ ∈ Sn−1, we have

Eij ⊂ X (y, V, α) \ H(y, θ, α) (4·1)

for some j ∈ �l .
By [3, remark 4·4] and the compactness of Sn−1, there are V1, . . . , VM1 ∈ G(n, n − m)

and θ1, . . . , θM2 ∈ Sn−1 such that for any V ∈ G(n, n − m) and θ ∈ Sn−1 it holds that
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X (0, Vi , α/2) ⊂ X (0, V, α) and H(0, θ, α) ⊂ H(0, θ j , α/2) for some i ∈ {1, . . . , M1} and
j ∈ {1, . . . , M2}. Now, since μ is purely m-unrectifiable, Lemma 3·1 implies that there are
x1, y1 ∈ E such that y1 ∈ X (x1, V1, α/3) \ H(x1, θ1, α/3). This in turn implies that for
some h1,j1 ∈ �∗, we have x1 ∈ Eh1 , y1 ∈ Ej1 , and Ej1 ⊂ X (y, V1, α/2) \ H(y, θ1, α/2)

for all y ∈ Eh1 . Now, repeating this argument on Eh1 , we find h2,j2 ∈ �∗ such that Eh1j2 ⊂
X (y, V1, α/2) \ H(y, θ2, α/2) for all y ∈ Eh1h2 . Continuing in this way M = M1 M2 times,
we see that choosing h = h1 · · ·hM and l = |h| it follows that for each V ∈ G(n, n − m)

and θ ∈ Sn−1, there is j ∈ �l such that Ej ⊂ X (y, V, α) \ H(y, θ, α) for all y ∈ Eh. This
verifies (4·1) for i = ∅. But as (4·1) is invariant under fi for all i ∈ �∗, it follows that
(4·1) holds true for all i ∈ �∗.

For each i ∈ �∗, by applying (4·1) in Eikh for all k ∈ �(k−1)l , we get the estimate

μ({x ∈ Ei : μ(Ei � X (x, V, α) \ H(x, θ, α)) � γ kμ(Ei)

for some V ∈ G(n, n − m) and θ ∈ Sn−1}) � μ(Ei)(1 − μ(Eh))
k,

where γ = pl , for all k ∈ N. Let kn be the integer part of −2 log n/ log
(
1 − μ(Eh)

)
for all

n ∈ N and define

An = {
π(i) ∈ E : μ

(
Ei|n � X (x, V, α) \ H(x, θ, α)

)
� γ kn μ(Ei|n )

for some V ∈ G(n, n − m) and θ ∈ Sn−1
}
.

Since
∑∞

n=1 μ(An) = ∑∞
n=1

(
1 − μ(Eh)

)kn
< ∞ the Borel-Cantelli lemma implies that

μ-almost every x ∈ E belongs to only finitely many An . This means that for any s1 >

2 log γ / log
(
1 − μ(Eh)

)
we have

lim inf
n→∞ inf

θ∈Sn−1

V ∈G(n,n−m)

μ
(
Ei|n � X (π(i), V, α) \ H(π(i), θ, α)

)
n−s1μ

(
Ei|n

) = ∞ (4·2)

for μ-almost all i ∈ �.
Since diam (Ei|n ) � rn

κ diam (E) we have | log diam (Ei|n )| � cn for some constant c >

0. Hence n−1 in (4·2) can be replaced by | log diam (Ei|n )|−1. It remains to show that the
measure μ(Ei|n ) in (4·2) can be replaced by μ

(
B(π(i), diam (Ei|n ))

)
.

Recalling that E satisfies the open set condition, it follows from [32, theorem 2·1] (see
also [16, theorem 4·7], [18, theorem 3·3], and [28, section 3]) that there are k ∈ �∗ and
δ > 0 such that

dist (Eik, E \ Ei) > δ diam (Ei)

for all i ∈ �∗. This gives for each i ∈ �∗ and k ∈ N an estimate

μ
({

x ∈ Ei : B(x, δrk|k|
1 ) � E \ Ei ��

})
�

(
1 − μ(Ek)

)k
.

Applying Borel–Cantelli similarly as above implies that if s2 > |k| log p/ log
(
1 − μ(Ek)

)
,

then

lim inf
n→∞

μ(Ei|n )
n−s2μ

(
B(π(i), diam (Ei|n ))

) = ∞

for μ-almost every i ∈ �. Combining this with (4·2) finishes the proof.

The following proposition shows that the exponent s indeed depends on μ and that it is
not in general possible to choose s close to 1.
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f1 f2f3

f4

Fig. C. The first level of the construction of the self-similar set in Proposition 4·4.

PROPOSITION 4·4. Let 1/4 < λ < 1/3 and let E be the self-similar set induced by the
similitudes {x 
→ λx + ai }4

i=1, where a1 = (0, 0), a2 = (1 − λ, 0), a3 = ((1 − λ)/2, 0),
and a4 = ((1 − λ)/2, 1 − λ); see Figure C. Suppose 0 < p < 1/2 and μ is the self-
similar measure on E corresponding to the Bernoulli weights p1 = p2 = (1 − p)/2 and
p3 = p4 = p/2. If � is the y-axis and α = (1 − 3λ)/10, then, for a constant c > 0
independent of p, we have

lim inf
r↓0

μ
(
B(x, r) � X (x, �, α)

)
| log r |−c/pμ

(
B(x, r)

) = 0

for μ-almost all x ∈ E.

Proof. For x = π(i) ∈ E and n ∈ N denote by Zn(x) the length of the longest subword
of i|n that contains only symbols 1 and 2. Then

lim
n→∞

Zn(x)

log n
= 1

| log (1 − p)| (4·3)

for μ-almost all x ∈ E . This statement is proved by replacing log 2 in the proof of [30,
theorem 7·1] by log 1/(1−p).

Let j ∈ �n and suppose that the subword consisting of the last k symbols of j contains
only 1 and 2. Then it follows that

μ
(
Ej|n−k � X (x, �, α)

)
� 2−kμ(Ej|n−k )

for all x ∈ Ej and thus, relying on the strong separation condition, we find c1 > 0 such that
also

μ
(
B(x, c1λ

n−k) � X (x, �, α)
)

� 2−kμ
(
B(x, c1λ

n−k)
)

(4·4)

for all x ∈ Ej. From (4·3) it follows that for μ-almost every x = π(i), we find infinitely
many n ∈ N such that for j = i|n the estimate (4·4) holds with k > log n/2p. A simple
calculation then implies the claim for any choice of 0 < c < 1

2 .

Remark 4·5. Given a self-similar measure μ satisfying the assumptions of Theorem 4·1,
we can define s(μ) as the infimum of s > 1 for which the claim of Theorem 4·1 holds. In
the view of Proposition 4·4, it is natural to ask what is the relation between s(μ) and the
defining similitudes and the Bernoulli weights. This question is interesting already for the
four corner Cantor set and its natural measure.
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