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Abstract

In this study, we designed a localization and obstacle avoidance system for humanoid robots in the
Federation of International Robot-soccer Association (FIRA) HuroCup united soccer competition event.
The localization is implemented by using grid points, gait, and steps to determine the positions of each
robot. To increase the localization accuracy and eliminate the accumulated distance errors resulting from
step counting, the localization is augmented with image pattern matching using a system model. The
system also enables the robot to determine the ball’s position on the field using a color model of the
ball. Moreover, to avoid obstacles, the robots calculate the obstacle distance using data extracted from
real-time images and determine a suitable direction for movement. With the integration of this accurate
self-localization algorithm, ball identification scheme, and obstacle avoidance system, the robot team is
capable of accomplishing the necessary tasks for a FIRA soccer game.

1 Introduction

RoboCup and FIRA are the leading and most diverse competitions for intelligent robots. In the humanoid
league FIRA HuroCup competition, each robot must self-localize its position on the field and avoid obsta-
cles to autonomously kick the ball to the goal, either by itself or by the help of its teammates. Therefore,
a method to determine the robots’ positions and avoid obstacles is important for this competition. The
FIRA field size is approximately 6 m × 5 m (child sized), bordered by a 5-cm-wide white line, and its
surface is covered by green carpet, as shown in Figure 1.

In the humanoid robot competition, researchers (Chiang et al. 2011, 2013) have applied stereo vision
systems to enable a robot to self-localize its position. However, if a stereo vision system is not available
for a humanoid robot, the self-localization scheme may not work as well. Some studies (Merke et al.
2004; Menegatti et al. 2006, Minakata et al. 2008) used the geometry of the field, such as the goalpost
locations, in an object recognition scheme (Chiang et al. 2010; Awaludin et al. 2013), or the white lines
to calculate the position of the robot. However, goalposts have not been available in the RoboCup since
2009 and are not available in the HuroCup. As the white lines provide information regarding the field,
Chiang et al. (2014) proposed a white-line pattern-matching localization method for a middle-sized robot
soccer game.

The white-line data from each soccer field image obtained by the robot are matched with simulated
models pre-built in the database to obtain localization results. However, the white lines on the field
may not be complete, and there are many similar points in the database. Thus, errors may be caused by
white-line patterns extracted from the image, and the localization results will lead the robot to the wrong
position. Owing to these limits as well as low reliability, localization with only white-line patterns is not
suitable for actual competitions. In particular, since the robots typically face the goalposts while moving

https://doi.org/10.1017/S0269888919000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888919000110
https://orcid.org/0000-0002-2830-5792
https://doi.org/10.1017/S0269888919000110


2 S.-Y. CH I ANG AND J.-H. L U

Figure 1 Field of the FIRA HuroCup united soccer competition

Figure 2 Regions in which white-line information is available

parallel to the borderlines, the white line is available only at certain locations, as shown in Figure 2. The
areas marked in red indicate regions in which the white lines can be applied for the robot to self-localize.
Rodriguez et al. (2018) proposed an edge detector followed by probabilistic Hough line detection to find
the white line to self-localize the robot. Therefore, the white-line information plays a vital role in the
soccer competition for the robot.

Since the gait and step of a humanoid robot can be used to determine how far a robot has moved,
we designed an algorithm to integrate the gait, step, and vision system to self-localize the robot’s posi-
tion. The integrated vision system is based on pattern recognition by pre-built models in the database
to enhance the reliability and enable real-time processing. Furthermore, an obstacle avoidance and ball
identification scheme was designed to enable the robot to move through the field and complete the tasks
necessary for the united soccer competition. The remainder of this paper is structured as follows. The
hardware and gait pattern are described in Section 2. The localization, obstacle avoidance, and ball iden-
tification algorithms are proposed in Section 3. The experimental results are presented in Section 4, and
the paper is concluded in Section 5.

2 Hardware and gait pattern

The humanoid robot used in this study was ROBOTIS DARwIn-OP 2 (Dynamic Anthropomorphic Robot
with Intelligence–Open Platform), as shown in Figure 3. This type of robot is 45.5 cm tall, which is
within the required range of 40–90 cm for the child-sized humanoid RoboCup competition. The robot
operates using a 1.6-GHz Intel Atom Z530 (32 bit) on-board 4-GB flash SSD, with 20 actuators, 3-axis
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Figure 3 DARwIn-OP servomotor numbering and positions

gyroscopes, a 3-axis accelerometer, and a webcam in the head. The camera is the only sensor provided
in the humanoid robot to avoid obstacles in the environment.

The foot trajectory of a humanoid robot can be expressed by the superposition of the motion com-
ponent and balance component on three axes (Ha et al. 2011), as defined in Equation (1). Whereas
the balance component remains activated during the entire walking period, the motion component is
restrained during the double-support phase (DSP). This step utilizes the parameters of amplitude a, angu-
lar velocity ω, phase shift b, offset c, and DSP ratio r and the variable A represents the movement for
the three axes, X, Y , and Z. With these parameters, we can express the balance component as shown in
Equation (2) and the motion component as given in Equation (3).

Atotal =Amove +Abal, (1)

Abal = abal sin(ωbalt+ bbal) + cbal, (2)

Amove =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

amove
[
0, rT

4

)
amove sin (ωmovet+ bmove)

[
rT
4 , T

2 − rT
4

)
−amove

[
T
2 − rT

4 , T
2 + rT

4

)
amove sin (ωmove (t− rT/2) + bmove)

[
T
2 − rT

4 , T − rT
4

)
amove

[
T − rT

4 , T
)

(3)

where r = 0.25, amove_x = 30, amove_z = 30, abal_x = 10, abal_y = 20, and abal_z = 3.
The foot trajectories of the robot for one step are plotted in Figures 4(a)–(c) to represent the total

parameter defined in Equation (1) in X-, Y-, and Z-axis, respectively.
We used the foot trajectory along the X- and Y-axes for each step to calculate the moving distance in

the X (left) and Y (forward) grids, resulting in a relationship between the steps and the moving distance
of the robot, as shown in Figures 5(a) and (b). Linear approximation equations, plotted by red lines, are
used to estimate the moving distance of the robot along the X- and Y-axes.

3 Localization and obstacle avoidance system

3.1 Localization by counting steps

To obtain the position of the robot, the 5 m× 6 m field is partitioned as a 50× 60 grid with 10 cm× 10 cm
squares, as shown in Figure 6. For example, the robot moves from one position to another, with a mov-
ing distance of d. The moving distance d and the angle θ obtained from the gyroscope are applied in
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Figure 4 Total foot trajectory of a robot for one step

Equation (4) to obtain the corresponding grid coordinates in the X and Y directions of the field. The X(t)
and Y(t) coordinates are rounded to the nearest integer.

X(t) = X(t− 1) + [
dx/10+ 0.5

]
, X(t) ∈ {0, · · · , 50},

Y(t) = Y(t− 1) + [
dy/10+ 0.5

]
, Y(t) ∈ {0, · · · , 60}. (4)

where dx= d cos(θ), dy= d sin(θ).

3.2 Localization by image pattern match with a system model

Since errors may arise in the accumulated moving distance, the self-localization algorithm employs the
image pattern matching with a system model to adjust the position of the robot. For the robot image, a
connected-component labeling operation (He et al. 2009) is used to distinguish the white lines, the ball,
and the obstacles by assigning a unique label to each maximally connected region of foreground pixels.

In the next step, if the robot is approximately within the red dotted regions shown in Figure 2, indicat-
ing that white-line information is available for the robot, then the white-line pattern-matching algorithm
is used to localize the robot’s position. As the field is divided into regions of 10 cm × 10 cm, for each
region in the system model, we calculate the distance between the first white-line pixel to the bottom for
all 320 scan lines from an image composed of 320 × 240 pixels, as shown in Figure 7. At grid point
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Figure 5 Relationship between steps and distances for X- and Y-axis

Figure 6 Grid with a 50 × 60 mesh in the X-and Y-axes for self-localization of the robot

Figure 7 A total of 320 scan lines are applied to calculate the distance from the first white-line pixel to the bottom
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Figure 8 Comparison of the range of the system model line and the estimated robot position

PM in Equation (5) for the simulated system model is the ith column and jth row of the grid point, and
[D0, D1, D2 , · · · , D319] are the vector distances from the first white pixels to the bottom for scan line
0, 1, · · · , 319, respectively.

PM(Xi, Yj) = Pi, j(D0, D1, D2 , · · · , D319) (5)

We assume that the robot image of the field acquired by the camera corresponds to the location of PO.
Then, the distances from the first white pixels to the bottom for all 320 scan lines are as follows, as shown
in Equation (6):

PO(X, Y) = P(d0, d1, d2 , · · · , d319), (6)

In Equation (6), d0, d1, · · · , d319 are the distances (pixels) from the first white-line pixel to the bottom
for scan line 0, 1, · · · , 319. Then, the errors for the image positions with respect to PM(Xi, Yj) for all grid
points (Xi, Yj) are defined by Equation (7).

Ei, j = ∣∣Pi, j(D0,D1,D2, · · · ,D319) − P(d0, d1, d2, · · · , d319)
∣∣ (7)

=
(

319∑
k=0

|Dk − dk|
)

.

The white-line data for each soccer field image captured by the robot are extracted and matched to sim-
ulated models in the database to obtain localization results. The location with the minimum error Ei,j
between the simulated model and the real field marks is the image location result PI(X, Y), as shown in
Equation (8).

PI(X, Y) =min Ei, j, (8)

where i and j are the ith column and jth row of the grid point, respectively.
To eliminate the accumulated distance error, the system model and the estimated coordinates of the

robot within a range of 20 cm × 20 cm are compared in four directions (Chiang et al. 2016), as shown in
Figure 8. Let us assume that the estimated position of the robot is within the black spot. We then use the
white-line pattern on the red lines to compare the white-line pattern observed by the robot to adjust
the robot position. The position with the minimum error in Equation (8) is identified as the location of
the robot.

3.3 Ball detection scheme

To detect the ball in soccer, the robot must have a ball identification scheme. For the ball, we used
a yellow model, as shown in Figure 9. In the united soccer competition, a tennis ball is utilized for
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Figure 9 Ball color model

Figure 10 Relationship of the ball image pixel size versus distance to the robot

child-sized robots, and the relationship for the ball image pixel size versus distance to the robot is plotted
in Figure 10. The robot uses the webcam to search for a specific model color to identify the ball and
estimate its distance.

As the position of the ball is variable, we used the relative coordinates and the angle between the ball
and the robot to represent the position, where the field goal is fixed at a 90-degree position, as shown in
Figure 11. The robot moves around to search for the ball’s position, and the relative coordinates and the
angle between the ball and the robot may vary as the robot moves, as shown in Figure 12. For example,
if the ball position is in the upper-right quadrant of the robot, we obtain the angle θm, which is the angle
from the line joining the two field goals to the line connecting the robot and the ball, and S, which is the
distance between the robot and the ball. Then, the ball position is calculated from the relationship shown
in Figure 12. We assume that φ is the angle that the robot has turned from facing the field goal to facing
the ball. We then obtain the coordinate of the ball from Equation (9), as shown in Figure 12, where the
robot has a turning angle φ and position (X, Y).

θm = 90◦ − ϕ, ball is in first quadrat,

θm = ϕ − 90◦, ball is in second quadrat,

θm = 270◦ − ϕ, ball is in third quadrat,

θm = ϕ − 270◦, ball is in fourth quadrat.

⎡
⎢⎢⎣
b1x
b2x
b3x
b4x

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

sin(θm)

− sin(θm)

− sin(θm)

sin(θm)

⎤
⎥⎥⎦ S+ X,

⎡
⎢⎢⎣
b1y
b2y
b3y
b4y

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

cos(θm)

cos(θm)

− cos(θm)

− cos(θm)

⎤
⎥⎥⎦ S+ Y, (9)

where (bix, biy) is the ball position in the ith quadrant, i = 1, . . . , 4.
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Figure 11 Coordinate and angle

Figure 12 Ball position at different coordinates

3.4 Obstacle avoidance system

An obstacle avoidance technique was proposed by Chiang (2016). For this method, the image is trans-
formed into a binary image, where obstacles are indicated as black pixels. Then, image preprocessing
techniques, such as dilation and elution, are applied, and the image is reduced to a 32× 24 grid of 10× 10
pixel squares (Hsia et al. 2012). The depth vector D is defined in Equation (10) as a 1 × 32-dimensional
vector, where each dimension is the distance from the first obstacle’s location to the bottom-row location
for one column.
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Figure 13 Focus area and the distances of the obstacle, dy and dx

D= [d1, d2, · · · , d32], (10)

where di is the distance from the first black grid location to the bottom row for the ith column.
To prevent the robot from hitting the obstacle, the focus area in front of the robot, as shown in

Figure 13, is defined in Equation (11).

F= [
f1, f2, · · ·, f32

]
, (11)

where

fi =
⎧⎨
⎩i, 1≤ i≤ 16

33− i, 16< i≤ 32

To verify whether an obstacle is within the focus area, the vector V is defined in Equation (12). If V is
not equal to 0, the obstacle is within the focus area; thus, the robot should move.

V = [v1, v2, · · · , v32] , (12)

Weighting factors are defined in Equations (13) and (14) to determine the direction in which the robot
should move. IfWL is greater than WR, the robot will move to the left, and the boundary point xb will be
set to be the farthest right point, 319. Otherwise, the robot will move to the right, and the boundary point
xb will be set to be the farthest left point, 0. The boundary point xb is defined in Equation (15).

WR =
∑32

i=1
(33− i) × vi (13)

WL =
∑32

i=1
i× vi (14)

xb =
{
0, WL ≤WR

319, WL >WR

(15)

To obtain the minimal distance from the robot to the obstacle, we have the boundary distance in the Y
direction, dy, defined in Equation (16) as the shortest distance among the values in vector D. The distance
dx defined in Equation (18) is the distance from the center point of the obstacle xc, defined in Equation
(17), to the boundary point xb in the X direction. The dy and dx curves shown in Figure 13 present the
minimum distance of the obstacle in the vertical direction and the distance from the center of the obstacle
to the horizontal boundary, respectively. These two parameters are used in the fuzzy logic control system
to determine the movement of the robot for obstacle avoidance.

dy =min{di} (16)

xc =
(∑n

i=1
xi
)

/n, (xi, yi) ∈ A (17)

Here, A is a region in which obstacles are within the focus area, and n grids are assumed in the focus
area.

dx = |xc − xb| (18)

https://doi.org/10.1017/S0269888919000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888919000110


10 S.-Y. CH I ANG AND J.-H. L U

Table 1 Positioning by counting steps

Localization grid in
Exp. 1 (cm) Exp. 2 (cm) Exp. 3 (cm) Exp. 4 (cm) Exp. 5 (cm) X direction

10 13 10 10 11 1
26 20 21 21 22 2
38 30 31 36 35 3
41 43 47 48 45 4
55 57 59 58 57 5
60 62 66 66 61 6
77 73 77 73 73 7
81 89 85 82 85 8
91 92 95 97 94 9

Figure 14 Five test points to verify the localization method based on step counting

The fuzzy rule is used to modify the speed (forward) and turning (horizontal) movement of the robot,
based on the distances dx and dy for obstacle avoidance based on a vision system.

4 Experimental results

In this section, experiments are reported for localization based on the step and distance relationship and
for localization based on white-line pattern matching to verify the performance of the proposed localiza-
tion scheme. The obstacle avoidance and ball identification schemes are integrated as a ball tracing and
kicking motion.

4.1 Localization by counting steps

The experiment is initiated from the bottom line of the field to evaluate the accuracy of the localization
method based on counting steps, and the results are shown in Table 1. The counting steps can provide a
reasonable accuracy for localization within a distance of 90 cm.

Next, five test points located beyond 90 cm, as shown in Figure 14, are applied to evaluate the local-
ization method based on counting steps. The robot started from the center of the defense area and walked
to the test points, with the results listed in Table 2. The error is determined using the grid coordinates
defined in Section 2.2. The results showed that the localization error for closer positions, that is, test
points 4 and 5, corresponds to approximately one grid distance for the X-axis and two grid distances for
the Y-axis. However, the error accumulates as the robot walks to farther positions, that is, test points
1 and 2, with errors of approximately two grid distances for the X-axis and five grid distances for the
Y-axis. These results demonstrate that the localization method based on step counting works well only
for test points close to the starting point, while greater distances result in a high accumulated error.
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Table 2 Positioning by step counting

Localization in Robot location in Localization error in
Test point (X,’Y) coordinate (X,’Y) coordinate (X,’Y) coordinate

1 30, 45 28, 40 −2, −5
2 10, 45 12, 40 2, −5
3 25, 30 25, 28 0, −2
4 30, 15 31, 13 1, −2
5 10, 15 11, 13 1, −2

Figure 15 Exp. 1 for localization by image pattern matching with system model

Figure 16 Exp. 2 for localization by image pattern matching with system model

Figure 17 Exp. 3 for localization by image pattern matching with system model

4.2 Localization by image pattern match with a system model

To adjust the accumulated error caused by step counting, we also performed localization by image pattern
matching with a system model. Experiments were performed three times at different positions, as shown
in Figures 15–17. In these figures, the left image presents the position of the robot and the right image
presents the image patterns visualized by the robot. The position results are summarized in Table 3. The
image pattern matching and step counting methods were implemented as follows. The first robot position
is obtained by step counting. Then, the robot uses image pattern matching with the system model to
compare the white-line information with the pattern over 20 cm, as shown in Figure 8, to determine the
most suitable position to minimize the accumulated error. As shown in Table 3, the estimated positions
determined by image pattern matching have a smaller error than those obtained by step counting for
distances of 10–20 cm.
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Table 3 Positioning by image pattern matching

Position Error Position estimated Error for
Actual robot estimated by for step by image image pattern

position step counting counting pattern matching matching

Exp. 1 (X,Y) (Figure 15) 32, 31 32, 28 0, −3 32, 30 0, −1
Exp. 2 (X,Y) (Figure 16) 33, 30 34, 28 1, −2 34, 30 1, 0
Exp. 3 (X,Y) (Figure 17) 34, 31 34, 28 0, −3 34, 30 0, −1

Figure 18 The robot avoids the obstacles and kicks the ball to the goal

4.3 Obstacle avoidance and ball kicking scheme

To verify the obstacle avoidance and ball kicking scheme, further experiments were performed, with the
results shown in Figure 18. The robot started from the center of the defense area, as shown in Figure 18(a),
to locate the ball while avoiding obstacles on the field. As shown in Figures 18(b)–(h), the robot can avoid
obstacles while locating the ball and kicking the ball to the goal.

5 Conclusions

In this study, we designed a localization and obstacle avoidance system integrated with a ball identifi-
cation scheme for the FIRA competition. The localization is implemented by combining the grid points,
gait, and steps to determine the position of each robot. To enhance the localization accuracy and reduce
the accumulated error induced by step counting, a localization method based on image pattern matching
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with a system model is implemented. The system also enables the robot to locate the ball on the field
using a color model of the ball and avoid obstacles by calculating the obstacle distance based on data
extracted from real-time images. The proposed algorithm exhibits an error of 20 cm or less, and the
localization scheme is practical for implementation in a robot soccer competition. With the integration
of an accurate self-localization algorithm, ball identification scheme, and obstacle avoidance system, the
robots are capable of accomplishing the tasks necessary for a soccer competition.
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