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Abstract.—Gastropods often show signs of unsuccessful attacks by durophagous predators in the form of
healed scars in their shells. As such, fossil gastropods can be taken as providing a record of predation through
geological time. However, interpreting the number of such scars has proved to be problematic—Would a low
number of scars mean a low rate of attack or a high rate of success, for example? Here we develop a model of
population dynamics among individuals exposed to predation, including both lethal and nonlethal attacks.
Using this model, we calculate the equilibrium distributions of ages and healed scars in the population and
among fossilized specimens, based on the assumption that predation is independent of age or scar number.
Based on these results,we formally show that the rates of attack and success cannot be disambiguatedwithout
further information about population structure. Nevertheless, by making the assumptions that the non-dur-
ophagous predatory death rate is both constant and low, we show that it is possible to use relatively small
assemblages of gastropods to produce accurate estimates of both attack and success rates, if the overall
death rate can be estimated. We consider likely violations of the assumptions in our model and what sort
of information would be required to solve this problem in these more general cases. However, it is not
easy to extract the relevant information from the fossil record: a variety of important biases are likely to inter-
vene to obscure the data that gastropod assemblagesmay yield. Nonetheless, themodel provides a theoretical
framework for interpreting summary data, including for comparison between different assemblages.
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Introduction

A possible forcing role of predation in evolu-
tion has become an important theme in recent
discussions of major evolutionary radiations—
a viewpoint with an ancient pedigree cham-
pioned by Vermeij (e.g., Stanley 1973; Vermeij
1993; Bengtson 2002; Hull 2017; Bicknell and
Paterson 2018). Notable examples of faunal
turnovers or radiations where predation has
been considered to be of particular importance
include the growth of scleritized organisms
during the Cambrian explosion (Bengtson
2002; Bicknell and Paterson 2018), perhaps
related to growing sophistication of both prey
and predator (cf. Budd 2000; but see also
Budd and Mann 2018); and the so-called Meso-
zoic marine revolution, a coordinated pattern of
change in cryptic habitats and defensive struc-
tures seen in, for example, mollusks that is par-
ticularly clear from the Cretaceous onward and
that seems to have built on changes from as far

back as the Devonian (Vermeij 1977; Signor and
Brett 1984; Harper 2006). Conversely, the rela-
tionship between predator and prey has been
shown to be more complex than a simple
“arm’s race,” both in theoretical and inferential
terms (e.g., Abrams 1989; Leighton 2002). Irre-
spective of this centrality of predation in under-
standing how faunal changes take place,
however, little direct evidence is available
from which levels of predation through time
can be estimated, partly because victims of suc-
cessful predation rarely survive to leave a fossil
record. This failure of fossil survival is neverthe-
less strongly dependent on mode of predation.
For example, drilling predators such as the
modern naticid gastropods may leave the shells
of their prey more or less intact apart from char-
acteristic drill holes (Carriker and Yochelson
1968), a mode of predation that has been
claimed to exist as far back as the Ediacaran per-
iod (Bengtson and Zhao 1992).
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One opportunity is presented by those
organisms that most clearly preserve evidence
of at least failed durophagous predation—the
gastropods (e.g., Alexander and Dietl 2003).
Modern-day predators on gastropods such as
decapod crustaceans have a variety of ways of
attacking their prey, such as crushing the apex
of the shell and then extracting the soft tissue
from the top, but one common approach is
so-called peeling, whereby the predator inserts
a claw into the aperture of the prey and breaks
the shell along the whorl spirally toward the
apex (Shoup 1968: Fig. 1). Thismethod of attack
is, however, relatively time-consuming, as the
prey can retreat the soft parts up toward the
apex of the shell, so that a considerable amount
of shell may need to be peeled away before the
prey can be reached. Gastropods possess con-
siderable powers of repair and regeneration,

however, as the edge of the living mantle can
rebuild the broken rim of the shell (Andrews
1935). Failed attempts at predation may thus
leave a characteristic scar on the rim of the
shell that eventually becomes incorporated
into a whorl as the gastropod continues to
grow (Fig. 1). During its lifetime, a gastropod
may survive multiple attempts of predation
that will leave a series of scars. The average
rate of unsuccessful predation on a gastropod
population may thus be estimated by the num-
ber of scars on each gastropod in a fossil popu-
lation, assuming one can estimate age from size
(see “Age–Size Relationship”; for a discussion
of the various metrics of scarring, see, e.g.,
Alexander and Dietl [2003]; Ebbestad and
Stott [2008]). This sort of record of attempted
predation can be traced far back in the fossil
record (Lindström and Peel 2005) and thus pro-
vides a potential insight into how such attacks
have evolved through time.
The importance of apertural attack on gastro-

pods may be inferred by the growing elabor-
ation of apertural defenses in gastropods
through the fossil record, such as narrowing
the aperture into a slit, thickening of the aper-
tural margin, and growth of apertural spines
(e.g., Vermeij 1983). However, the problem
that remains to be solved is to be able to esti-
mate the (unknown) rates of lethal predation
from the (known) rates of failures, and this
has proved to be challenging. While the rate
of scarring within a population has often been
taken as a proxy of intensity of the total rate
of attack (Leighton 2002; Molinaro et al. 2014;
Stafford et al. 2015), consideration of what the
fossil record is reflecting suggests that this rela-
tionship is far from certain (see, e.g., Harper
and Peck 2016). Is a population of gastropods
with few apertural scars indicative of low abso-
lute predation rates, with a low number of fail-
ures correlated with a low number of successes,
or does it indicate a high ratio of success, which
might also be expected to leave relatively few
survivors with few scars (e.g., Leighton 2002;
cf. Vermeij et al. 1981)? If snails that were suc-
cessfully predated were preserved intact and
could be identified as such, rather than being
destroyed, then the solution to the ratio
between success and failure of predation
would be trivial to solve, being merely the

FIGURE 1. Example of a large healed injury (scar) in the
buccinid Neptunea angulata from the Pliocene–Pleistocene
RedCrag of East Anglia (from the Phillip Cambridge collec-
tion in the Sedgwick Museum, Cambridge, UK). Scale bar,
1 cm.
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inverse of the average number of failed preda-
tion scars on each snail that ultimately died
from predation. However, in general, it is
hard to show that a particular fossil shell was
actually damaged during lethal predation.
While it is possible to find modern shells that
appear to have been lethally damaged by pre-
dation (Vermeij 1982), these clear-cut examples
seem rare in the fossil record (J. S. Peel personal
communication 2010), or at least difficult to
identify as such. The problem is thus that the
preserved shells represent a biased subset of
the total population, with those that died
from (destructive) predation essentially ex-
cluded from the record. The question then
becomes: Is there enough information pre-
served in the shells in the fossil record, with
their record of survived attacks, to deduce the
structure of the entire population, including
the ones no longer preserved?
While various authors have indicated some

of the potential problems involved in making
direct inferences about predation rates from
the fossil record, this discussion has been ham-
pered by the lack of an explicit model that
relates scar frequency to predation rates. One
recent paper (Ishikawa et al. 2018) considers a
formal mathematical approach for the case of
drilling predation. They too focused on pos-
sible ambiguity between rates of attack and
success in previous empirical analyses and
built a model to resolve this ambiguity from
fossil data. The key difference between their
approach and ours outlined here is that
instances of successful predation by drilling
leaves shells available to be fossilized, whereas
peeling predation occludes successfully pre-
dated specimens from the fossil record.
Another mathematical model developed for
an analogous problem is provided by Schoener
(1979), who modeled healed injuries in lizard
tails. Here, we present a explicit model for the
case of durophagous predation and show
both the consequences of that model in terms
of the likely observable data and the inverse
problem of identifying predation rates from
such data. We derive a full distribution for the
age and scar distribution in an idealized living
population under a range of possible scenarios,
and then relate this distribution to the possible
observations that can be made from the fossil

record. We consider the likely selection biases
and data occlusions that are likely in the fossil
record, and we additionally discuss a range of
more qualitative deviations from our model
(and from standard assumptions made else-
where) resulting from complexities of preda-
tion and population dynamics in reality. This
extends significantly upon the results of Scho-
ener (1979), who derived expressions only for
the proportion of individuals with at least one
injury, and considered a limited set of possible
deviations from an idealized model.

A General Model of Scar Production

An assemblage of fossil snails is created by
an interaction of two sets of processes: eco-
logical processes that affect the living snails,
and biostratinomic processes that affect the
dead ones. These can together be considered
to be composed of destructive and nondestructive
processes. Destructive processes encompass
successful predation that destroys the shell,
and biostratinomic processes such as breakage,
dissolution, and so on that remove dead shells
from the record. The recovered fossil record
thus lacks snails that were destroyed by either
of these processes. We make the initial assump-
tion here that biostratinomic processes are non-
selective, that is, that dead shells all have an
equal chance of being fossilized. After the
model is presented, we consider the case of
when this is not the case (as indeed seems likely
[Cooper et al. 2006]). Nondestructive processes
include: failed attacks (which leave scars but do
not destroy the shell); death from nonpredatory
causes (e.g., starvation); and death from preda-
tion or other biological processes that do not
destroy the shell (e.g., drilling predation or
important predators such as asteroids that
remove the prey without affecting the shell
[Carter 1968; Feder 1963]; death from disease,
parasitism, etc). In the following, “predation”
refers only to durophagous predation that
leaves a scar if unsuccessful (for the signifi-
cance of this simplification, see discussion
below), and thus necessarily neglects predation
by, for example, asteroids. We note that both
failed and successful attacks are likely to have
been carried out by a variety of different preda-
tors (e.g., Birkeland 1974; Sih et al. 1998), so that
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our model treats the effects of all scarring pre-
dators in aggregrate.
In our model, we consider a population of

snails, each of which is characterized by its
age and the number of healed scars it possesses.
Within this population, we denote the number
of snails of age a, with marksm at time t asN(a,
m, t). This population changes over time as a
result of various processes. Snails are attacked
at a rate R per unit time, independent of time,
age, or current number of scars. A proportion,
ρ, of these attacks are successful, again inde-
pendent of time, age, or scar number. Snails
also die of nonpredative causes at a rate d(a),
which may depend on the age of the snail
(e.g., by senescence). The effect of these pro-
cesses on the fate of the snails is illustrated in
Figure 2. Over a short time window, there are
four possible outcomes for a focal individual:
(1) successful predation leading to death and
thus destruction of the shell, at a rate Rρ; (2)
unsuccessful predation leading to the formation

of a scar, at a rate R(1− ρ); (3) death from non-
predatory causes, leading to potential preser-
vation of the shell in the record, at a rate d(a);
and (4) the snail ages without being attacked
or dying of any other cause, at rate 1− d(a)−
R. Therefore, over some short interval of time
Δt the dynamics of the population can be
described by the following master equation.

N(a+Dt,m,t+Dt)=N(a,m,t)(1−d(a)Dt−RDt)

+N(a,m−1,t)R(1−r)Dt,

(1)

where the first term on the right-hand side
represents all snails that previously had m
scars and were neither predated nor died of
nonpredatory causes, and the second term
represents those that previously had m− 1
scars and faced an unsuccessful predatory
attack. These are the only two ways in which
a snail may have m scars at the subsequent
time point (see Fig. 2).
Ignoring the number of scars, the number of

snails of age a is determined by the proportion
of younger snails surviving both predatory and
nonpredatory possibilities of dying. The pro-
portion of snails of age a that will make it to
the age of a + Δt is 1− d(a)Δt− RρΔt; that is,
those that are neither successfully predated
(rate Rρ) or suffer a nonpredatory death (rate
d(a)). Hence, we can formulate a second master
equation for the age distribution:

N(a+ Dt, t+ Dt);
∑1
m=0

N(a+ Dt,m, t+ Dt)

= N(a, t)(1− d(a)Dt− RrDt).
(2)

The first line of this equation expresses the fact
that the total number of snails of a given age
must always equal the sum of those with that
age with each possible number of scars.

Steady-State Solution.—In a steady-state
solution, N(a, m, t) does not vary with t:
N(a,m, t) ; N(a,m)∀ a,m, t. Using this
assumption, we can derive a solution for the
steady-state population. Taking equation (1),

FIGURE 2. A conceptual plot of number of survived preda-
tion scars (m) against time (t), showing possible fates for
three snails A, B, and C of varying ages aA, aB, and aC at
time t = 0. Attacks are marked with an “X.” Snails can sur-
vive periods without attacks (horizontal colored branches)
or survive attacks (vertical colored branches). Death can
come from successful attack (vertical black branches termi-
nated with black bar) or from nonpredatory causes (hori-
zontal black branches terminated by black bar). At every
point in the grid, there are two recent possibilities for hav-
ing arrived there: either surviving from t− 1 with or with-
out scarring. The exception is provided for points along
m = 0, where only arrival without scarring is possible.
Snail C survived the time period under question.
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we have:

N a+ Dt,m( ) = N a,m( ) 1− d a( )Dt− RDt( )[
+N a,m− 1( )R 1− r

( )]
Dt.

(3)

From equation (2) we also have:

N(a+ Dt) = N(a)(1− d(a)Dt− RrDt). (4)

From the above equations, we can determine
the evolution of the conditional probability
P(m|a), that a snail of age a has m scars:

P m|a+ Dt( )
= N a+ Dt,m( )/N a+ Dt( )

= N a,m( ) 1− d a( )Dt− RDt( )+N a,m− 1( )R 1− r
( )[ ]

Dt
N a( ) 1− d a( )Dt− RrDt

( )
= P m|a( ) 1− R 1− r

( )
Dt

( )
+ P m− 1|a( )R 1− r

( )
Dt+O Dt2

( )
,

(5)

where O(Δt2) stands for terms of order Δt2 that
can be neglected as Δt � 0. Taking the limit as
Δt→ 0, we therefore have:

dP(m|a)
da

= R(1− r)[P(m− 1|a)− P(m|a)]. (6)

Solution of this differential equation (see
Appendix) reveals that P(m|a) therefore follows
a Poisson distribution with mean R(1− ρ)a:

P(m|a) = (R(1− r)a)mexp(−R(1− r)a)
m!

. (7)

If we assume that the fossilization and collec-
tion processes are not biased with respect to
scar number, we can expect that the distribution
of scars with age in the population of fossil
shells will be the same as in the living popula-
tion, that is:

Pf (m|a) = P(m|a). (8)

Twokey insights can be gleaned from this result.
First, the distribution of the number of scars as a
function of age (in both living and fossil assem-
blages) depends entirely on the predation

parameters R and ρ and excludes factors related
to the nonpredatory death rate.We can therefore
make inferences about R and ρ from this infor-
mation without a detailed understanding of
the life table of the gastropod species.
The second insight, however, is that this Pois-

son distribution of unsuccessful attacks per
unit time depends solely on the product R(1−
ρ), which we label Ω. This implies that infer-
ences based on the age-dependent scarring
alone can never reveal a unique combination
of R and ρ that best fits the available data.
Instead, inferences will identify an optimal
value of R(1 − ρ), and thus a contour in the R,
ρ parameter space.Without further information
or assumptions, no further disambiguation is
possible. This result confirms the intuition of
some previous workers (e.g., Leighton 2002)
that a high number of scars per year of life
can only ambiguously indicate high predation
rates or low success rates. Our Ω broadly corre-
sponds to the λ of Kosloski et al. (2017). Note
that, like Ω, the λ of Kosloski et al. (2017) thus
corresponds only to R(1− ρ) and not to preda-
tion pressure itself, Rρ.
To proceed further, then, it is necessary to

also examine the distribution of shell ages. To
do so, we need to consider the nonpredatory
death rate, d(a). Various models for death
rates for different ages exist (Caddy 1991).
These include (broadly): increasing death
rates through age; decreasing death rates
through age; and constant death rates through
age. The first model characterizes organisms
such as mayflies and high-income humans,
and seems intuitively most likely. However,
many marine organisms, including gastropods
(e.g., Suzuki et al. 2002; Perron 1986), do not
appear to exhibit this sort of mortality, but
rather appear to have a constant death rate
throughout most of their lives. The exception,
in gastropods as in all marine invertebrates,
especially those with planktotrophic larvae,
would be extremely high mortality in their
earliest months (Rumrill 1990; Perron 1983;
Gosselin and Qian 1997), probably largely
through predation. For the purposes of our
study, however, the mortality rates of such
young snails can be disregarded, as they are
essentially invisible in the fossil record. Con-
stant death rates from all causes after this
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early period would imply that marine inverte-
brates do not seem to show senescence (i.e.,
they rarely die from “old age” [Britton andMor-
ton 1994]). It should be noted that if overall
mortality is constant through age, then both
death from predation and from nonpredation
are also likely to be constant. If not, then
increase in one would have to be balanced by
decrease in another, and it is hard to think of
a theoretical reason for this. Thus, although
one might expect that invertebrates become
more resistant to predation as they grow (see
age refuges, below), a body of empirical evi-
dence suggests that at least some maintain con-
stant death rates throughout their lives (see,
e.g., the red abalone, Haliotis rubescens, and
other examples in Jones et al. [2014]).

Modeling Attack and Success Rates with a
Constant Nonpredatory Death Rate

The age distribution in the population can be
determined from equation (4). Taking the limit
as Δt→ 0, we arrive at a simple differential
equation, whose solution, if d(a) is constant,
specifies an exponential distribution of ages:

dP(a)
da

= 1− d− Rr

⇒ P(a) = (Rr+ d)exp(−(Rr+ d)a).
(9)

For d(a) to be constant (but of significant size)
implies that the distribution of ages in the fossil
shells, Pf(a), is the same as in the living popula-
tion, as nonpredatory death samples these
shells into the pool of potential fossils in a
unbiased fashion.

Pf (a) = P(a) = (Rr+ d)exp(−(Rr+ d)a). (10)

Given both this age distribution of fossil shells
(eq. 10) and the distribution of scars condi-
tioned on age (e.g., eq. 8), we can also derive
the distribution of scars in the fossil (or living)
population as a whole, Pf(m):

Pf (m) =
∫1
0
Pf (m|a)Pf (a)da

= (Rr+ d)
R+ d

R(1− r)
R+ d

( )m

.

(11)

That is,m is geometrically distributed with rate
(Rr+ d)
R+ d

.

We have thus derived a model that describes
the distribution of ages and scars in a fossil
assemblage, conditioned on known values of
the parameters R, ρ, and d. How are these
values to be estimated? Imagine we are pre-
sented with a data set of N shells, each of
which has a recorded age, ai, and number of
scars, mi, i∈ 1…N. From our model, we can
define a log-likelihood function L(R, r, d), the
(log-)probability of generating these observa-
tions from our model with a specific choice of
parameters:

L R,r,d
( )= logP a1,m1,a2,m2 ...aN,mN|R,r

( )
=
∑N
i=1

logP mi|ai,R,r
( )+logP ai|R,r

( )
=
∑N
i=1

− R+d( )ai+milog R 1−r
( )

ai
( )

+log Rr+d
( )−log mi!( ).

(12)
Maximizing this function with respect to the
model parameters yields the following relation-
ships between the maximum-likelihood esti-
mators (see Appendix for derivation):

R̂(1− r̂) = V̂ =
∑N

i=1 mi∑N
i=1 ai

, (13)

R̂r̂+ d̂ = N∑N
i=1 ai

. (14)

With these two simultaneous equations
alone we cannot disambiguate the three
model parameters. Instead, we can infer two
distinct quantities: the rate of unsuccessful
attacks, R(1− ρ), and the total mortality rate,
Rρ + d. In particular, without further informa-
tion, we cannot infer what proportion of overall
mortality is caused by predation. However, by
making reasonable assumptions regarding this
proportion, we can make further progress
toward identifying R and ρ, as we show in the
next section.
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Limits on d(a) and R when d(a) Is Constant.—
Because d(a) is unknown but assumed to be
constant, further deductions about the limits
of R, ρ, and d can bemade. Adding the two esti-
mator equations (13) and (14) together gives:

R̂+ d̂ =
∑N

i=1 mi +N∑N
i=1 ai

. (15)

In other words, the scar distribution with age
adds certain constraints on d and R, even
when d is unknown. In general, as setting d =

0 implies that R̂ =
∑N

i=1 mi +N∑N
i=1 ai

and setting

ρ = 0 implies that R̂ =
∑N

i=1 mi∑N
i=1 ai

, the possible

range both in R and d is
N∑N
i=1 ai

, irrespective

of the number of scars. The limited range of
possible values of R and ρ is shown by the
shaded portion of Figure 3.

Estimation of Mortality Rates.—It is worth
noting that estimation of overall mortality
rates, as per equation (14), is a well-studied
and complex problem in its own right. Notori-
ously, in natural populations, this problem has

been exacerbated by modern fishing (see, e.g.,
Kenchington 2014), one of the few biases that
does not affect the fossil record. One simple
and classical approach has been to use the Hoe-
nig estimator (Hoenig 1983). This method takes
the view that, as all individuals in a population
must essentially have died by the time of the
oldest specimen, then determining the age of
such a specimen will allow estimation of the
death rate, and thus proposes a relationship of
the form:

ln(R̂r̂+ d̂) = a+ bln(amax), (16)

where amax is the maximum age. α and β are
two constants determined by Hoenig from
published longevity data sets for mollusks to
be 1.23 and −0.832 respectively. For example,
if the age of the oldest specimen is 15 years,
then R̂r̂+ d̂ = 0.36. Within a given data set,
this estimator naturally emerges as a case of
ordinal statistics; because the ages of specimens
are exponentially distributed (assuming con-
stant mortality), the expected age of the oldest
specimen is given by considering the expected
value of the largest of N exponential random
variables, each with mean 1/(Rρ + d ), giving
the relationship:

E(amax) = HN/(Rr+ d), (17)

whereHN = ∑N
i=1 1/i is theNth harmonic num-

ber. Hence, the theoretical expectation for the
Hoenig estimator is:

ln(R̂r̂+ d̂) = lnHN − ln(amax). (18)

A Simplified Scenario with Negligible and
Constant Nonpredatory Death Rate

Given the difficulties with estimating d, it is
nevertheless possible with the above result to
make further progress with the problem if one
is willing to make another simplifying assump-
tion, that is, that most invertebrates eventually
die from predation (e.g., Britton and Morton
1994; for a case involving vertebrates, see, e.g.,
Linnell et al. [1995]). There are, of course,
some exceptions, such as the mass deaths of

FIGURE 3. Example plot of inferred contour of Ω≡R(1− ρ)
as a function of R and ρ from our simulated data set of 100
shells. Dashed lines give the 95% confidence intervals. The
black circle shows values of R and ρ when d = 0, and the
gray box indicates the possible ranges of R and ρ (including
confidence intervals) when d is constant.
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some cephalopods after spawning (Rocha et al.
2001) and certain disease-related catastrophic
mass deaths (e.g., Lessios 1988; Fey et al.
2015), but it could be argued that these
represent the exception rather than the rule
(Britton and Morton 1994). Classical experi-
ments that aim to exclude the effects of preda-
tion tend to suggest that predation plays an
important role in structuring communities
(and thus that it is an important source of
death; e.g., Reise 1977). Here, then, we consider
the case that a constant d(a) (i.e., the nonpreda-
tory death rate) might always be small com-
pared with the death rate from predation, that
is, Rr ≫ d(a) ; d∀ a. It should be noted that,
in this instance, the fate of the individuals that
made it into the fossil record would be highly
unusual, as those individuals would represent
the small number of snails that died nonpreda-
tory deaths. The assumption that d(a) is con-
stant implies that the age structure of the
fossils would again faithfully reflect that of
the living population but would be controlled
almost entirely by predation, following equa-
tion (19):

Pf (a) = Rrexp(−Rra). (19)

The distribution of scars in both the living and
fossil populations will follow a geometric dis-
tribution, as in equation (11). However, if d≪
Rρ, the rate of the geometric distribution sim-

plifies to
(Rr+ d)
R+ d

≃ r, with the straightforward

corollary that the proportion of shells with at
least one scar is 1− ρ. Hence, and somewhat
counterintuitively, the scar distribution would
depend only on the success rate of predation
and not on the attack rate of predation. This
important result shows that for cases of over-
whelming destructive predation as cause of
death, the proportion of scarred snails in the
fossil population (a statistic often collected)
can be used to estimate the success rate of pre-
dation, without having to explicitly consider
the distribution of ages of the preserved speci-
mens. However, it should be noted that such
an estimate will only be accurate if the fossils
examined are not size (and thus age) biased.
For example, if many small shells happen to

be missing from the sample, then (as they are
less likely to be scarred than larger, older
shells), the proportion of scarred shells in the
sample will be higher than in the unbiased
population, leading to an underestimate of ρ.
Given that biased samples are likely to be
biased in this direction (see below), analysis of
such would at least set a lower limit to ρ.
Are the assumptions behind this simplified

model reasonable? A constant death rate after
the juvenile stage has often been argued for
(e.g., Perron 1983; Brey 1999). Whether or not
predation is overwhelmingly dominant is less
clear, but in studies of Conus pennaceus, for
example, Perron (1983) showed or argued that
both our conditions, of constant adult death
rates (ca. 42% per year in his study) and over-
whelming death from predation were likely to
pertain, as empty shells were rare in his assem-
blages (cf. Britton and Morton 1994). Interest-
ingly, he also showed that 46.7% of adults
showed at least one trace of an unsuccessful
attack, which would imply a success rate of
attack of about 53.3%, and thus an overall rate
of attack of ca. 0.79 per year per snail. We
employ these numbers in the following section
as an example. Nevertheless, even if predation
per se is an important control on population
structure, it seems unlikely that predation
from peeling would be dominant over all
other forms of death. This is an important cav-
eat to be entered in consideration of the simpli-
fied model below.

A Simulated Demonstration

To demonstrate the process of making infer-
ences from real data sets, we outline the proced-
ure on a simulated sample of 100 fossil shells,
with parameters ρ = 0.533 and R = 0.79 (illustra-
tive parameter values calculated from Perron
[1983], as above). Simulated data were gener-
ated by randomly sampling 100 ages from the
exponential distribution specified in equation
(19), and then sampling the number of scars
for each specimen, conditioned on the simu-
lated age, from the Poisson distribution speci-
fied in equation (8). The code used can be
found in Supplementary File 1. Our simulated
data set is summarized in the histograms in
Figure 4.
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To perform the inference, we need to define a
log-likelihood function: the log-probability of
generating the observed data from the model,
conditioned on putative values of the para-
meters R and ρ. Let a1, a2, …aN be the recorded
ages of theN fossil shells (hereN = 100) andm1,
m2, …, mN be the corresponding number of
scars. Then the log-likelihood function L(R, r)
is:

L R,r
( )= logP(a1,m1,a2,m2 . . .aN,mN|R,r)

=
∑N
i=1

logP mi|ai,R,r
( )+ logP ai|R,r

( )
=
∑N
i=1

−Rai+milog R 1− r
( )

ai
( )

+ log Rr
( )− log mi!( ).

(20)
Maximizing L(R, r) with respect to changes in
R and ρ we obtain the following maximum-
likelihood parameter estimates (see Appendix):

R̂= N +∑N
i=1 mi∑N

i=1 ai
,

r̂= N

N +∑N
i=1 mi

,

(21)

with the following asymptotic expressions for
the standard errors in these estimates (see
Appendix):

sR̂ =
R̂���������������∑N

i=1(mi + 1)
√ ,

sr̂ = r̂
��������
(1− r̂)

√ ���
N

√ .

(22)

In the case of the simulated data shown in
Figure 4, we have the following summary statis-
tics: N = 100,

∑N
i=1 mi = 87,

∑N
i=1 ai = 235.84,

giving parameter estimates (with 95% confidence
intervals) of: R̂ = 0.79+ 0.11, r̂ = 0.53+ 0.07,
in close agreement with the original parameters
used.
How reliable are these estimators? We cre-

ated 1 million simulated data sets of 100 shells
from our model and performed the above
inference procedure on each, recording the
maximum-likelihood estimates of R and ρ.
The results of this test are presented in Figure 5,
showing the joint andmarginal distributions of
R̂ and r̂. These results show that the inferred
values are centered on the true parameter
values, that estimates of both R and ρ are nor-
mally distributed and typically lie within 0.1
of the true value, and that errors in the two esti-
mates are independent of each other.
What could we deduce from these numbers

if we assumed that d was constant but
unknown? As N = 100,

∑N
i=1 mi = 87 and∑N

i=1 ai = 235.84, from equation (15), we can
see that the estimates of R = 0.79 (and thus ρ =
0.53) in our example when d = 0 are therefore
maximum values. Similarly, even if ρ implaus-
ibly = 0, R cannot be below the limit set by the
number of scars per shell, that is, 0.36; and
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thus, d cannot be more than 0.43. The limits set
by constant d are indicated in Figure 3.

Modeling when the Model Assumptions Are
Violated

Wehave considered scenarios where d is con-
stant and small, and where d is constant but
unknown. Furthermore, in the development
of our model, we have made several assump-
tions about parameter dependencies that are
open to question. We examine some of the pos-
sible violations of these assumptions and their
likely consequences in this section. In general,
violations of the model assumptions lead to
great uncertainty in expected outcomes unless
the form of the violation is well characterized.
The model we have described assumes that ρ

and R are independent of both snail age and
number of preexisting scars (i.e., the indivi-
dual’s past experience of predation). Here we
will consider two further scenarios. The first
is that R and/or ρ are no longer constant, but
insteadmay depend on a and/orm. Such viola-
tions include so-called size refuges and snail
resistance to predation being weakened by pre-
vious, unsuccessful attacks. Second, we con-
sider the possibility that the nonpredatory
death rate is both large and age dependent. If
the form of these dependencies is known, our
model could be reformulated to account for
them. However, given that ourmodel is already
generally underdetermined by the likely avail-
able data, as illustrated in the examples above,
it is unlikely that any precise age dependence
on predatory or nonpredatory effects can be
inferred directly from observations. It should
also be noted that previous analyses, made
without a generative model, have implicitly
made an assumption of age-independent pre-
dation by not modeling the effect of size
refuges; our model simply makes this explicit.
However, it will be instructive to consider the
effect of each violation in terms of the qualita-
tive effects on the likely observable data.
After discussing these two scenarios, we will

then explore what analyses are appropriate
when the age structure of the fossil assemblage
does not align with that of the living. This may
result through collection bias or via the scen-
arios discussed earlier.

Size Refuges.—Prey species can attempt to
reduce predation pressure in a variety of
ways, especially through use of refuges—
adapting habitats or behaviors that allow
them to at least partly evade their predators
(e.g., Sih 1987; Ray and Stoner 1994; Wang
and Wang 2012). One way of achieving this is
by attaining a large size (Paine 1976; Vermeij
1976; Chase 1999; Schindler et al. 1994) that is
beyond the handling capacity of a particular
predator (e.g., a particular crab may not be
able to manipulate or break a very large gastro-
pod shell). Indeed, such effects have been
investigated in the fossil record (e.g., Harper
et al. 2009). However, as discussed by Harper
et al. (2009), the effects of size refuges are poten-
tially complex. Experimental evidence shows
that predators are indeed typically prey-size
selective (e.g., Paine 1976; Harding 2003)
Nevertheless, larger individuals of a particular
prey species may be vulnerable to larger mem-
bers of a predator species, or indeed to different
predators (Birkeland 1974). Furthermore, the
refuge may be achieved by being attacked less
often, or being less vulnerable to attack. In
terms of our model then, size refuges might
conceivably create a dependence of either R
and/or ρ upon the size of the individual, and
thus indirectly upon the age of the snail, thus
violating the assumptions made earlier. These
new dependencies may be of two varieties:
decreasing attack rates, R, with increasing
age, and/or decreasing success rates, ρ. If R
decreases, then the rate at which large snails
both die and accumulate scars will decrease,
leading to an overabundance of large, relatively
unscarred individuals in the population. This
would increase the summed age of specimens,
while decreasing the summed scars, creating a
lower apparent rate of unsuccessful predations.
However, if ρ decreases, then the rate of death
for large snails will decrease via the replace-
ment of lethal attacks with nonlethal, scarring
attacks. Overall the rate of unsuccessful preda-
tion will increase, increasing the ratio in equa-
tion (21). It is likely, however, simply from the
overall population structure, that the propor-
tion of gastropods in a particular population
that manage to reach a size refuge is likely to
be low. This, combined with what will presum-
ably be a differential effect of predation
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protection, implies that the effect of size refuges
on our model is likely to be small.

Scar Weakening.—Another possible effect on
scar distribution might be that previously
scarred individuals are more vulnerable to
either future attack or future death from preda-
tion, that is, that R and/or ρ are dependent on
m. In principle, if scarred individuals are more
vulnerable to death from predation, then one
would expect a lower number of scarred shells
in the preserved assemblage, and heavily
scarred individuals would be particularly
underrepresented. In addition, as large shells
are more likely to be scarred than small ones,
one would expect a preferential removal of
large shells. Naturally this perturbation
would affect the estimators in, for example,
equation (21). However, once again, in the
absence of a clear model of what effect these
vulnerabilities would have, it is likely to be
very difficult to detect their influence in a typ-
ical assemblage. It should be noted that the
experimental evidence available does not sup-
port the view that the shell itself is weakened
by scarring (Blundon and Vermeij 1983).

Variable Nonpredatory Death Rates.—We now
wish to consider the case in which the preda-
tory death rate is neither small nor constant. If
d(a) varies with age, then fossils will be
recruited preferentially from snails of ages
that have higher rates of death from causes
other than durophagy, because all fossils
must originate from non-durophagous deaths
(cf. Rigby 1958; Hallam 1967). In addition, the
age structure of the living population also
depends on the integral of the nonpredatory
death rate through age:

Pf (a)/ d(a)exp(−Rra)exp −
∫a
0
d(a′)da′

( )
. (23)

If we had perfect knowledge of the nonpreda-
tory death rate d(a), then inference of R and ρ
would remain possible. Unfortunately, without
simplifying assumptions, full knowledge of d
(a) is generally lacking, both in terms of its mag-
nitude and age dependence, even in living
populations, and its inference from fossil ones
seems implausible. Thus, in the case in which
d(a) is assumed to vary in an unknown way,

we are forced to conclude that the age distribu-
tion of fossil shells can give us no useful infor-
mation about the values of R and ρ. However,
we can still make inferences on the basis of
the conditional scar distribution, Pf(m|a).
Recall (eq. 8) that this distribution does not
depend on the nonpredatory death rate, and
thus is independent of any variations within
it, or uncertainty as to its value.
As noted previously, the distribution Pf(m|a)

depends solely on the combination of para-
meters Ω≡ R(1− ρ). From this observation, it
is clear that we can only hope to infer this com-
bined value, and will not be able to disambigu-
ate R and ρ. By defining and maximizing a
log-likelihood based on equation (8) (see
Appendix), we show that we retrieve the fol-
lowing estimator and standard error:

V̂ =
∑N

i=1 mi∑N
i=1 ai

(24)

sV = V̂���������∑N
i=1 mi

√ . (25)

We show the result of applying this estimator to
the same simulated data set used earlier, but
with no assumptions about d in Figure 3.
Here we can see that the estimator (and asso-
ciated standard error) defines a contour band
in the R and ρ space that contains the values
of R and ρ used to generate the data.

Comparison of Predation Parameters without
Knowledge of Age Structure

Suppose that the age–size relationship (ASR)
of a particular gastropod is unknown, but that
two different assemblages are available for
study, which can be assumed to have the
unknown ASR. Application of the estimators
derived earlier, and thus estimation of the rela-
tive values of R and ρ, depends on our ability to
determine the relative ages of different snails.
What can we still infer, then? We consider
first the simple case, wherein there is an
unknown linear ASR: a = k × l, where l is the
shell length. In this case, we can immediately
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estimate the ratio of Ω≡ R(1− ρ) in the two
populations:

V̂A

V̂B

=
∑

A m
∑

B a∑
B m

∑
A a

=
∑

A m
∑

B l∑
B m

∑
A l

, (26)

where the subscripts of the summations indi-
cate the assemblage over which ages, scars, or
lengths are to be summed. This can give us an
estimate of the relative rates of nonlethal preda-
tion in the two populations, if not their absolute
magnitudes in terms of specific time units. If,
furthermore, either R or ρ were known to be
the same across the two populations, this
could give an estimate for the relative values
of the other predation parameter.
What can we do if we do not know the form

of the ASR with enough precision to estimate
the relative ages of snails with confidence? In
this case, the relative estimation above would
no longer be possible. With a suitable data set
we can nonetheless ask a simpler question:
Are the predation parameters that generated
the two assemblages the same? Consider the
following procedure: for every shell in assem-
blage A, find a shell of matching size (within
some tolerance) in assemblage B, discarding
shells that cannot be matched. If Ω is the same
for each population, the number of scars on
each of two matching shells should come
from the same Poisson distribution with an
unknown mean (eq. 8). Therefore, the shell
with the most scars should be from assemblage
Awith probability q = 0.5 (discarding instances
in which the number of scars are the same).
Aggregating over many such pairings, we can
perform a binomial significance test for the
null hypothesis H0:q = 0.5. If either R or ρ
were known to be the same between the two
populations, then such a comparison of Ω
would equate to a comparison of the nonfixed
predation parameter.

Practical Problems

We have derived a set of equations that
allows us to relate scar and age frequency in
fossil populations to important parameters
that are governed by predation and success
rates and have shown that these can even be

disambiguated under certain assumptions.
However, various practical problems in extract-
ing useful data from fossils are likely to hinder
the unbiased reconstruction of these parameters.

Age–Size Relationship.—The most obvious
problem with the general and constant d mod-
els presented earlier is that they depend on age
as an important parameter, but this cannot be
directly observed in the fossil record: typically,
it must be inferred from size. The relationship
between size and age in organisms is an often
complex one and cannot easily be established,
especially in an extinct taxon. Various methods
have been used to age living gastropods (e.g.,
opercular growth rings [Ilano et al. 2004;
Miranda et al. 2008]; statolith variation or elem-
ent variation in the shell [Richardson et al.
2005]; or stable isotope variation [e.g., Wefer
and Berger 1991; Purton and Brasier 1997;
reviewed in Ivany 2012]), but these are not
always applicable to fossil examples. If there
is a strong nonlinear relationship between size
and age, then the size distribution of a fossil
population will not be indicative of the age dis-
tribution, and even if death rates are constant,
unusual fossil size distributionsmay thus result
(Rigby 1958). Gastropods, like most organisms,
show slowing rates of growth as they age, until
eventually they will grow very little even as
time marches on. Needless to say, if size cannot
reliably be translated into age, then fossil data
cannot be brought to bear on the inference pro-
blems we discuss, except in the simple case of
small constant d, where ρ (but not R) can be
inferred.

Preexisting Data Sets.—Another issue that
arises is that our model relies on measurements
of the actual number of scars in individuals and
their age (or at least size). Typically, however,
data have been collected at a much lower reso-
lution than this, for example consisting simply
of what proportion of snails in a collection
show signs of predation, or further dividing
shells into simple size classes (see Alexander
and Dietl [2003] for a discussion of how such
data can be collected, and Harper et al. [2009]
for a notable exception). While it would be pos-
sible to generate expressions for both of these
data sets from our equations (with suitable defi-
nitions for small and large), this would further
reduce the resolving power of our approach.
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Another problem with preexisting data sets
is that any sort of collection is likely to show col-
lection bias if it has not been specifically bulk
collected (Powell and Kowaleski [2002]; or per-
haps target sampled in the sense of Ottens et al.
[2012]) to avoid such bias. Notable biases
include preferential collection of larger, perfect
(i.e., unscarred) or more interesting (i.e., more
scarred) specimens. Measurements of both
age and scar distributions would obviously be
adversely affected by these biases.

Biostratinomic Processes.—Fossil assem-
blages, even when collected in bulk or other-
wise (Ottens et al. 2012) to avoid collection
bias, still show various types of preservation
biases (Kidwell 2002). These include (nonex-
haustively): preferential preservation of larger,
more robust individuals; hydrodynamic sort-
ing through transport (Molinaro et al. 2013;
Chattopadhyay et al. 2013a,b) and nonuniform
sampling of living populations (e.g., fossiliza-
tion of organisms where young and adults
live in different environments), with the gen-
eral tendency being to remove smaller speci-
mens from the record, as shown by Cooper
et al. (2006). Museum collections, suffering
from both biostratinomic and collection bias,
are likely to be particularly unrepresentative.
This bias suggests that it may prove profitable
to consider only the larger sizes in an assem-
blage when performing the inferences we dem-
onstrate herein, and to condition our estimators
on having excluded specimens below a certain
size.
Another issue would be time averaging of

assemblages (Kidwell et al. 1991; Kidwell
2002), but the effect of this will partly depend
on whether or not the populations being
recruited from were steady state or not (see
below). If populations were steady state but
noisy, however, time averaging might have
the effect of making the parameter estimations
from particular assemblages more representa-
tive of the overall predation pressure on the
parent living ones (for a useful discussion of
collection bias and averaging, see Cadée et al.
[1997]).
Finally, the confounding effects of other

organisms should not be neglected. For
example, it seems that postmortem attack of
shells by crabs is common, either because

they mistakenly think the shells might be occu-
pied or because the shells are occupied, for
example, by hermit crabs (Walker and Yamada
1993). In addition, hermit crabs from the early
Jurassic onward are likely to exert significant
controls on shell-frequency distributions by
preferentially concentrating shells of their pre-
ferred size (see e.g., Shimoyama 1985; Walker
1989). Furthermore, as commented on earlier,
many predators (especially the asteroids) do
not leave clear traces of their attacks, successful
or otherwise (Carter 1968). The complex effects
of multiple predators, either on the snails or
each other, can unfortunately only be treated
in aggregrate in our method.

Nonstationary Populations and Events.—So
far, we have considered living populations in
a steady state, at least relative to the timescale
of the fossil record: for a given assemblage,
population size and structure and rates of pre-
dation remain steady. However, we know that
populations are often highly unstable through
time, including predictable predator–prey pat-
terns of population oscillations (cf. Leighton
2002). The effect of these sorts of fluctuations
on the fossil record will partly depend on the
timescale of fossilization relative to them. For
example, an obrutional deposit that provides
a snapshot of the living and dead populations
at a particular time will relate in a different
way to an assemblage that slowly formed in a
low sedimentation rate environment.

Empirical Studies

We wish finally to comment briefly on the
empirical studies by various authors that have
examined the numbers of scars in living gastro-
pod populations in different environmental
conditions (e.g., Cadée et al. 1997; Schmidt
1989; Molinaro et al. 2014; Stafford et al.
2015). One notable feature of all these studies
is the high degree of variation of scar frequency
between different microhabitats; other features,
such as potential evidence for size refuges (i.e.,
larger shells being less vulnerable to attack;
Vermeij 1982; Schmidt 1989; Harper et al.
2009), are less consistently attested to. In any
case, it should be noted that assessment of rela-
tive rates of scarring in different size classes is
problematic without an explicit ASR model.
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Nevertheless, a series of studies have shown
that scar frequency, asmeasured by the propor-
tion of snails with at least one scar, seems to
track predator frequency, with the conclusion
being drawn that, in general, scar frequency
can be taken as a proxy of predation intensity
(our R) and thus predation mortality (our Rρ):
Stafford et al. (2015); Molinaro et al. (2014);
Cadée et al. (1997). For example, the data set
of Molinaro et al. (2014) shows that more snails
in calmer, sheltered environments tend to have
at least one scar compared with those in more
exposed environments, and the authors relate
this to the greater densities of predators (in
this case, crabs) in the former environment. If
wemake the assumption of both small and con-
stant d, then these data seem to suggest that ρ is
not the controlling variable, contrary to our
model. However, it might be that in an environ-
ment with many predators, any particular
attacker is more likely to be disturbed by a com-
petitor or (indeed) its own predator. If wemake
the assumption that d(a) is constant but of
unknown size, then the proportion of snails
with at least one scar in a population is given

by 1− (Rr+ d)
R+ d

(from eq. 11). Our model

shows that when only R is varying from site
to site, one would indeed expect to see more
scars in snails from sites with higher attack
rates. However, the rate of scarring derived
from this equation can vary with any of d, ρ, or
R, suggesting that varying attack rates might
not be the only possible explanation for these
data. For example, if the snails living in a calmer
environment had on average a lower rate of non-
predatory death compared with those in more
exposed environments, then one expect them
to accumulate more scars too. The weak inverse
correlation that Molinaro et al. (2014) demon-
strate between amount of scarring and body
size would be consistent with this view. In gen-
eral, then, ourmodel provides a theoretical back-
ground against which to interpret summary
field data and offers pathways toward under-
standing the meaning of the data more fully.

Discussion

Our model provides a theoretical approach
to estimating rates of predation and predation

success that goes considerably beyond previ-
ous theoretical treatments of the subject.
Such a model is necessary for relating obser-
vations in the fossil record to inferred under-
lying processes such as predation. However,
our model shows that in practice, predation
and predation success rates cannot be fully
disambiguated, except under specific assump-
tions of constant and low rates of nonpreda-
tory death, which do however have some
empirical support. Even in such circum-
stances, the vagaries of the fossilization and
collection processes would make estimation
of the parameters of interest unreliable with-
out further assumptions. The model we have
used and the obstacles we discuss clarify the
sorts of data and their associated biases that
would need to be considered to in fact draw
reliable inferences about the evolution of pre-
dation through time from healed scars in
gastropods.
Despite these somewhat pessimistic conclu-

sions, our model points toward various lines
of future research that may help improve pro-
spects of predation rate estimation. These
include: comparing fossil assemblages of liv-
ing taxa with live populations (e.g., Shi-
moyama [1985] or recently extinct taxa with
their close living relatives; see Cooper et al.
[2006]); comparing different living or fossil
assemblages where we have reason to believe
that many factors have remained the same
between them (e.g., two or more populations
where predation success is thought to be the
same; here changes in scar numbers would
thus be indicative of changes in attack rate.
For a detailed discussion of such standardiza-
tion procedures see Dietl and Kosloski [2013]
and Kosloski et al. [2017]); incorporation of
absolute age estimates into size data (e.g.,
from stable isotope fluctuations [Purton and
Brasier 1997]); bulk or targeted collection of
specimens to eliminate collection bias and
explicit modeling of population predatory–
prey or other nonstationary models with
respect to fossilization regimes. In other
words, consideration of the long-standing
problem of estimating predation rates through
time illuminates many of the classical pro-
blems associated with inference of life pro-
cesses from the fossil record in general.
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Appendix

Derivation of Poisson Distribution for P(m|
a).—From the main text, recall that the process
of scar acquisition with age follows the follow-
ing master equation:

dP(m|a)
da

= R(1− r)[P(m− 1|a)− P(m|a)].
(A.1)

Consider the following generating equation

F(z) =
∑1

m=−1
zmP(m|a). (A.2)
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From this definition, we have the following
identities:

dF
da

=
∑1

m=−1
zm

dP(m|a)
da

, (A.3)

zF =
∑1

m=−1
zmP(m− 1|a). (A.4)

Combining these identities, we can rewrite
equation (A.1) as:

dF
da

= R(1− r)(z− 1)F, (A.5)

with the elementary solution:

F = exp(R(1− r)(z− 1)a). (A.6)

To retrieve the probability distribution, we note
that:

P(m|a) = dmF
dzm

|z=0

= (R(1− r)a)mexp(−R(1− r)a)
m!

, (A.7)

and hence P(m|a) is Poisson-distributed with
mean R(1− ρ)a.

Derivation of Maximum-Likelihood Estimates
for Constant d, Unbiased Age Sample.—Consider
a data set of N fossil shells, where shell i has
age ai and number of scars mi. For a model
with a constant nonpredatory death rate, we
have the following log-likelihood function for
the model parameters R (attack rate), ρ (success
probability), and d.

L(R,r,d)=
∑N
i=1

(−(R+d)ai+milog(R(1−r)ai)

+ log(Rr+d)− log(mi!))
.

(A.8)
To derive the maximum-likelihood estimators
for this model, we must maximize this
log-likelihood. First, we take the derivatives of
L with respect to R, ρ, and d:

∂L
∂R

=
∑N
i=1

−ai +mi

R
+ r

Rr+ d

( )
, (A.9)

and

∂L
∂r

=
∑N
i=1

− mi

1− r
+ R

Rr+ d

( )
, (A.10)

and

∂L
∂d

=
∑N
i=1

−ai + 1
Rr+ d

( )
. (A.11)

To maximize the likelihood, these derivatives
must be zero evaluated at the maximum-
likelihood estimate values R̂, r̂, d̂. Therefore,
from equation (A.11), we have:

∑N
i=1

−ai + 1

R̂r̂+ d̂

( )
= 0

⇒ R̂r̂+ d̂ = N∑N
i=1 ai

.

(A.12)

From equation (A.9), and substituting the pre-
vious result, we have

∑N
i=1

−ai +mi

R̂
+ r̂

R̂r̂+ d̂

( )
= 0

⇒ R̂(1− r̂) =
∑N

i=1 mi∑N
i=1 ai

.

(A.13)

Derivation of Maximum-Likelihood Estimates
and Standard Errors, for Negligible, Constant d,
Unbiased Age Sample.—Consider a data set of
N fossil shells, where shell i has age ai and num-
ber of scarsmi. For amodel with a constant non-
predatory death rate, we have the following
log-likelihood function for the model para-
meters R (attack rate), ρ (success probability).

L(R, r) =
∑N
i=1

(−Rai +milog(R(1− r)ai)

+ log(Rr)− log(mi!)). (A.14)

As above, to derive the maximum-likelihood
estimators for this model, we must maximize
this log-likelihood. First, we take the deriva-
tives of L with respect to R, ρ:

∂L
∂R

=
∑N
i=1

−ai +mi

R
+ 1

R

( )
(A.15)
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and

∂L
∂r

=
∑N
i=1

− mi

1− r
+ 1

r

( )
. (A.16)

To maximize the likelihood, these derivatives
must be zero evaluated at the maximum-
likelihood estimate values R̂, r̂. From equation
(A.11), we have

∑N
i=1

−ai +mi

R̂
+ 1

R

( )
= 0

⇒ R̂ =
∑N

i=1(mi + 1)∑N
i=1 ai

,

(A.17)

and from equation (A.16) we have:

∑N
i=1

− mi

1− r̂
+ 1

r̂

( )
= 0

⇒ r̂ = N∑N
i=1(mi + 1) .

(A.18)

To calculate standard errors for these estima-
tors, we use Laplace’s method, which supplies
the approximation:

S = s2
R sRr

sRr s2
r

[ ]
≃ −H−1

= −
∂2L
∂R2 |R̂r̂

∂2L
∂R∂r

|R̂
r̂

∂2L
∂r∂R

|R̂
r̂

∂2L
∂r2

|R̂
r̂

⎡⎢⎢⎣
⎤⎥⎥⎦

−1

(A.19)

where Σ is the covariance matrix of standard
errors. To apply this approximation, we require
the second derivatives of the log-likelihood
function:

∂2L
∂R2 = −

∑N
i=1

mi + 1
R2 , (A.20)

and:

∂2L
∂r2

=
∑N
i=1

− mi

(1− r)2
( )

− N
r2

= −r2
∑N

i=1(mi) − (1− r)2N
r2(1− r)2

= −r2
∑N

i=1(mi + 1) + 2Nr−N
r2(1− r)2

= N(−r2/r̂+ 2r− 1)
r2(1− r)2 , (A.21)

and:

∂2L
∂R∂r

= ∂2L
∂r∂R

= 0. (A.22)

Therefore:

sR = −
(
∂2L
∂R2 |R̂

r̂

)−1/2

= R̂���������������∑N
i=1(mi + 1)

√ (A.23)

sr = − ∂2L
∂r2

|R̂
r̂

( )−1/2

= r̂
��������
(1− r̂)

√ ���
N

√ .

(A.24)

Derivation of Maximum-Likelihood Estimates
for Biased Age Distribution.—Consider again a
data set of N fossil shells, where shell i has
age ai and number of scars mi. Because the
age distribution is biased, as a result of either
biased collection or fossilization (non-constant
d), we cannot use P(a) for inference, but instead
are restricted to using the conditional distribu-
tion of scar numbers, P(m|a):

P(m|a) = exp(−R(1− r)a)(R(1− r)a)m
m!

.

(A.25)
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First, we state the log-likelihood for R and ρ:

L(R, r) =
∑N
i=1

(milog(R(1− r)ai)

− R(1− r)ai − log(mi!)). (A.26)

Because this likelihood has effectively only one
parameter, Ω = R(1 − ρ), we will only be able to
make estimates of this combined quantity, leav-
ing a fundamental ambiguity between R and ρ.
Redefining the log-likelihood in terms of Ω:

L(V) =
∑N
i=1

(milog(Vai)−Vai − log(mi!)).

(A.27)

Now, taking the first derivative with respect to
Ω and setting it to zero to identify the

maximum-likelihood value:

dL(V)
dV

|V̂=
∑N
i=1

mi

V̂
− ai

( )
= 0

⇒ V̂ =
∑N

i=1 mi∑N
i=1 ai

.

(A.28)

To estimate the standard error, we take the
second derivative of the log-likelihood and
make a Laplace approximation:

d2L(V)

dV2 |V̂ = − 1
s2
V

= − 1

V̂
2

∑N
i=1

mi

⇒ sV = V̂���������∑N
i=1 mi

√ . (A.29)
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