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ABSTRACT

Premium settlement and calculation of reserves and capital requirements are
typically based on worst- or just bad-case assumptions on interest rates, mor-
tality rates, and other transition rates between states defined according to the in-
surance benefits. If interest and transition rates are chosen independently from
each other, the worst choice, i.e. the combination of interest rates and transi-
tion rates that maximizes the reserve, can be found by dynamic programming.
Here, we generalize this idea by choosing the interest and transition rates from
a set that allows for mutual dependence. In general, finding the worst case is
much more complicated in this situation, but we characterize a set of relatively
tractable problems and present a series of examples from this set. Our approach
with mutual dependence is relevant e.g. for internal models in Solvency II.
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1. INTRODUCTION

Safe-side calculations play two important roles in the mathematics of life insur-
ance. First, traditional with-profit life insurance products are based on a settle-
ment of the payments in accordance with a safe-side equivalence principle. Here,
the term “safe-side” reflects that the resulting premiums should be high enough
to cover the benefits in essentially all realistic economic–demographic scenar-
ios. Second, when evaluating the future payments for accounting and solvency
purposes, safe-side calculations also play a role depending on the accounting
and solvency regime. Before notions such as market-consistency and risk-based
capital entered into the vocabulary of the actuary, managing a life insurance
portfolio was easier. The safe-side assumptions used for calculation of the pre-
miums at the initiation of the contract were typically also used throughout the
term of the contract in order to calculate (meant-to-be) safe-side reserves for the
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balance sheet. These book values were then essentially multiplied by a constant
in order to calculate the buffer capital required for a business to be solvent.
Thus, safe-side calculations for premium calculation and reserving were indis-
tinguishable.

However, during the last decades, the market, the economists, academia
and forces inside the actuarial community have shaken these grounds by point-
ing at deficiencies. How should the financial market evaluate and the manage-
ment steer the insurance business in a real-economic environment with artificial
(book) quantities from the balance sheets as the only input? How should a re-
quired capital calculation essentially based on the expectation principle ever be
able to measure the real creditworthiness of a risky business? These questions
called for a sophistication of the safe-side calculation in connection with pre-
mium settlement, accounting and solvency, respectively. Safe-side calculation
in connection with premium settlement is still an important issue, but isolated
to the initiation of the contract as being a part of the contract design. The role
of safe-side calculations in accounting is uncertain. It is exactly the very hiding
of reserves resulting from safe-side calculations which market-consistent valu-
ation is supposed to prevent. However, safe-side calculations may still appear
in accounting since (1) the premium calculation basis may play a direct role in
future payments, e.g. in the calculation of surrender values, and (2) (somewhat)
safe-side calculations have still to be used to produce risk margins on top of the
best estimates.

Safe-side and bad-case scenarios are commonly used in the actuarial prac-
tice with the same meaning and are understood as prudential or conservative
scenarios to be adopted when choosing the first-order basis for pricing and (tra-
ditional) reserving. Conversely, stress scenarios and worst-case scenarios do not
in the actuarial practice refer to pricing or reserving but to capital allocation for
solvency purposes, resilience testing, etc. Actually, this is where the use of sce-
narios appears to have a strong future ahead, cf. Genest et al. (2009), Goovaerts
et al. (2011) and McNeil and Smith (2012). The so-called Solvency II Standard
Formula, which will be the future reference for the calculation of solvency cap-
ital requirements (SCRs), is methodically based on stress scenarios. Its concept
emanates from the Basel accords, where stress tests are applied for market and
credit risk capital requirements. The regulatory frameworks of both Solvency II
and Basel II require to base the riskmeasurement on the value-at-risk approach.
Studer (1997, 1999) showed that there is a strong relationship between the value-
at-risk and the stress scenario concept, proving that certain worst-case scenarios
yield conservative bounds for the value-at-risk. The strong link between stress
testing and the risk measure value-at-risk was also emphasized by Berkowitz
(2000). Whether one needs a bad-case or worst-case scenario depends of course
on the purpose of the scenario. Althoughwe do have solvency purposes inmind,
our results are not limited to such an application. And since, from a mathemat-
ical point of view, the concepts are qualitatively equivalent, we do not carefully
distinguish between the scenario terminology “safe-side”, “bad-case”, “worst-
case” or “stress”. All in all, safe-side calculations still play important roles that
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are delicately integrated across the calculation of premium, reserves and capital
requirements. A great advantage of safe-side, worst-case and stress scenarios
is that they are easy to understand also for non-mathematicians. While their
derivation, which includes solving an optimization problem, can be tricky, the
result can be easily interpreted.

One of the first systematic, probabilistic modeling frameworks of stress test-
ing was given by Studer (1997, 1999), who defined stress scenarios as scenarios
that maximize the loss of a market portfolio with respect to some trust region.
By assuming that the risk factors have a multivariate normal distribution, his
trust regions have an ellipsoidal shape.

Closely related to stress testing is the so-called worst-case risk measurement,
where the worst case of some risk measure is calculated if only partial informa-
tion on the distribution of the future loss is available, see for example Laeven
(2009) and Kaas et al. (2009). In a recent paper, Goovaerts et al. (2011) study
a general form of this problem, maximizing an integral with respect to a set of
measures expressing incomplete probabilistic information. With the objective
function being an integral, they solve a linear problem. In contrast, our paper
deals with a nonlinear objective function.

Another concept for the definition of stress scenarios uses the probabilis-
tic concept of half-space trimming, see for example Kupiec (1998), Aragons
et al. (2001) and Alexander and Sheedy (2008). McNeil and Smith (2012) ex-
tend that concept to quite general multivariate stress scenarios. They establish
theoretical properties when the risk factors can be assumed to have a linear effect
on the net assets of an insurer. Interestingly, the stress scenarios of McNeil and
Smith (2012) directly correspond to a value-at-risk. In our paper, the future loss
is a nonlinear mapping of the risk factors, and we obtain upper bounds on the
value-at-risk instead.

Christiansen and Denuit (2010) calculate worst-case mortality rates for clas-
sical life insurance policies, but interactions with interest rates or lapse rates are
not taken into account. Li and Szimayer (2011) calculate worst-case mortality
rates for unit-linked life insurance contracts. An advantage of their model is
that the worst-case mortality rate may depend on past capital gains. A similar
model is used in Li and Szimayer (2010) for the study of surrender guarantees
in unit-linked life insurances. The surrender rate takes the role of the mortal-
ity and may vary between an upper and a lower bound, while the mortality
rate itself is fixed. The worst-case scenarios of Li and Szimayer (2010, 2011)
are adapted stochastic process, whereas we aim to find deterministic worst-case
scenarios, which are completely known at time zero. In practice, the determin-
istic approach is typically used for first-order calculation and it appears, e.g.,
in the Standard Formula of Solvency II. Christiansen (2010, 2011) calculates
deterministic worst-case scenarios for multistate policies with several transition
rates. The focus is on biometrical parameters only and interest rates are fixed.
We want to solve simultaneously for worst-case biometrical parameters and in-
terest rates. In Christiansen (2010, 2011), the biometrical intensities fluctuate
independently without interactions. However, it may be natural to impose some
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dependence, first, mutually between the intensities and, second, maybe even be-
tween the intensities and the interest rates. What we mean by this dependence is
made clear in some motivating examples following the introduction.

2. MOTIVATING EXAMPLES

In order to ground the ideas, we consider two small examples of a three-state
model for a life insurance contract. They serve to illustrate the “usual” ap-
proach, how this approach can be improved by realistic dependence modeling,
and the challenges arising from such an enhancement.

In the first example, we illustrate what we mean by dependence between dif-
ferent intensities. We consider a disability model consisting of three states, a =
“active”, i = “disabled” and d = “dead”. We let μad and μid be the transi-
tion rates from a and i to d, respectively. Correspondingly, we let bad and bid
be the sums paid out upon these transitions. In the classical Thiele differential
equations characterizing the statewise reserves Va and Vi for the states a and
i , respectively, appear the so-called death risk premium rates paid out of the
reserves, namely

μad(t) (bad(t) − Va(t)) ,

μid(t) (bid(t) − Vi (t)) ,
(2.1)

respectively. The death risk premium rate is a product of the mortality rate
and the loss upon death, the so-called sum at (death) risk. In order to find
some “bad-case” (i.e. stressful or “expensive”) intensities, one usually looks at
these two risk premium rates separately. If, for example, bad(t) > Va(t), which
means that the insurance company experiences a loss upon death, then death
is stressful and a “high” mortality intensity μad is a “bad-case”. We conclude
that, from a set of possible/admissible intensities M = [μ

ad
, μad ], we should

choose μad as the “worst-case”. Here and in the following, we use intuitive
overlines and underlines in order to mark upper and lower bounds. For the
death intensity in state “disabled”, a similar argument leads to the conclusion
that if bid(t) < Vi (t), then a “low” mortality intensity is a “bad case” and
from a set M = [μ

id
, μid ] we should choose μ

id
as “worst-case”. The condi-

tions bad(t) > Va(t) and bid(t) < Vi (t) are recognized in the usual sum at risk
sign check for a “safe-side basis”, namely that, for example, a safe-side intensity
μ∗
ad(t) should be chosen such that

sign(μ∗
ad(t) − μad(t)) = sign(bad(t) − Va(t)), (2.2)

see Norberg (1999, formula (3.8)). In (2.2), we see that the spread between the
intensities depends on the reserve. In turn, the reserve depends on the intensities.
Thus, the intensities and the reserves should in principle be calculated simulta-
neously. A complete study of this is found in Christiansen (2010).
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The conclusions above correspond to choosing a bad combination of μad
and μid in a rectangular set M = [μ

ad
, μad ] × [μ

id
, μid ]. But what happens

if the tuple (μad , μid) is to be chosen from a non-rectangular set? One could,
for example, rule out extreme “opposite” combinations like the above scenario
(μad , μid

), since this may be an unrealistic combination from a socio-biological
point of view. Natural shapes of M (at least to think of) could be an ellipsoid or
simply a line. A line could come from a constraint like, e.g., μid ≡ μad + d for
some fixed addend d. What is then a “bad” μad? If bad(t) > Va(t) and bid(t) >

Vi (t), it is clear from the arguments of above that
(
μad , μad + d

)
is the worst

choice in M. But what is the worst choice if bad(t) > Va(t) and bid(t) < Vi (t)?
In the second example, we illustrate what we mean by dependence between

intensities and interest rates. We consider a surrender model consisting of three
states, a = “alive and in force”, s = “surrender” and d = “dead”. In the dif-
ferential equation characterizing the statewise reserve for the state a appears an
interest rate term minus the surrender risk premium rate, namely

ϕ Va(t) − μas(t) (bas(t) − Va(t)) .

Here, ϕ is the interest rate. In order to find a “bad” basis, one usually looks at the
two terms separately. If Va(t) > 0, which is usually the case, a low interest rate is
“bad”, and in the set of possible/admissible interest ratesMϕ = [ϕ, ϕ] we should
choose ϕ. Similar to the disability model in the first example, a “bad case” μas
depends on the sign of bas(t) − Va(t), and from the set Mas = [μ

as
, μas ] we

choose μ
as

if bas(t) < Va(t) and μas if bas(t) > Va(t). To have a surrender sum
larger than the reserve may sound unrealistic. However, note that the surrender
value may be related — or even equal — to a different (and, possibly, larger)
reserve, based on a different technical basis, than the “bad-case” reserve Va(t)
we wish to calculate.

However, these conclusions hold only if (ϕ, μas) is chosen from the rectan-
gular setM= [ϕ, ϕ]× [μ

as
, μas ]. What happens if this set is not rectangular? An

interest rate-dependent surrender intensity is not unrealistic and has been sug-
gested in several connections, e.g., De Giovanni (2010). The usual perception
is that the surrender intensity increases with the interest rate, see De Giovanni
(2010). This means that there are some combinations of the interest rate and
the surrender intensity in the rectangular set which should be ruled out. Again,
we can imagine an M formed as an ellipsoid or simply a line. What is now the
worst-case combination of ϕ and μas in M?

The principal idea of this paper is to answer questions such as the ones posed
in these two motivating examples.

3. MODELING AND VALUATION OF LIFE INSURANCE POLICIES

Consider an insurance policy that is driven by a jump process X(t), t ≥ 0, with
finite state space S, transition space J ⊂ {( j, k) ∈ S2 | j �= k}, and deterministic
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starting value. We write x for the age of the policyholder at time zero (the be-
ginning of the contract period) and ωx for the residual limiting lifetime for the
policyholder at time zero. The cash-flows of the contract are described by the
following functions:

1. The lump sum b jk(t) is payable upon a transition from j to k at time t. We
assume that the functions b jk, ( j, k) ∈ J, have bounded variation on [0, ωx].

2. The function Bj (t) gives the accumulated annuity benefits minus accumu-
lated premiums for sojourns in j during [0, t]. We assume that the Bj , j ∈ S,
have bounded variation on [0, ωx] and are right-continuous.

We write v(s, t) = v(s, t; φ) for the stochastic present value at time s of a unit
payable at time t > s. Following the notion of Norberg (1999), we assume that
the sample paths are absolutely continuous such that we have a representation
of the form

v(s, t; φ) = e− ∫ ts φ(u) du,

with φ being some stochastic interest intensity. As Norberg (1999) points out,
apart from the absolute continuity of the paths, no particular specification of
the distribution of v(s, t; φ) is needed. The possible distributions are countless.
In particular, for any given (risky) asset portfolio combined with any fixed fi-
nite time grid, there exists a distribution of φ, such that the finite dimensional
distributions of v and the inverse portfolio return coincide on that grid. There-
fore, φ can be thought of as a fairly general representation of portfolio re-
turn. Furthermore, let there be a matrix-valued stochastic process ν(t), t ≥ 0,
with diagonal values ν j j (t) = −∑k:k �= j ν jk(t) and such that, conditional on
ν = μ ∈ LS×S

1 ([0, ωx]), the jump process X is Markovian with transition inten-
sity matrix μ. That means that the conditional distribution L(X | ν = μ) of X
is completely determined by a so-called transition probability matrix

p(s, t; μ)
a.s.=
(
P(Xt = k | Xs = j, ν = μ)

)
( j,k)∈S2

, 0 ≤ s ≤ t ≤ ωx,

that is the unique solution of the Kolmogorov forward equation

d
dt
p(s, t; μ) = p(s, t; μ) μ(t), s ≤ t,

with starting values p(s, s) = I for all s. The interest intensity φ and the process
ν form a stochastic valuation basis (φ, ν), which we here think of as the “true”
basis that is not known a priori. As the elements of ν are completely determined
by νJ(t) := (ν jk(t)) j �=k and ν j j = −∑k:k �= j ν jk, from now on we will also write
(φ, νJ) for the stochastic valuation basis. The aim of the present paper is to iden-
tify a deterministic valuation basis (ϕ, μJ) ∈ L1+|J|

1 ([0, ωx]) that is conservative
in some sense.

Let B(s; X, φ) be the present value at time s of future benefits, net of future
premiums. Since future payments between insurer and policyholder depend on ν
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only via the state process X, the present value B does not have ν as an argument.
For a fixed process of future net cash-flows, the prospective reserve at time s in
state i conditional on (φ, νJ) = (ϕ, μJ) is defined by

Vi (s; ϕ, μ) = E
(
B(s; X, φ)

∣∣ (Xs, φ, ν) = (i, ϕ, μ)
)
.

Since we know that conditional on ν = μ the jump process X is a Markovian
process with transition intensity matrix μ, we almost surely have

Vi (s; ϕ, μ) =
∑
j∈S

∫
(s,ωx]

v(s, t; ϕ) pi j (s, t; μ) dBj (t)

+
∑

( j,k)∈J

∫ ωx

s
v(s, t; ϕ) b jk(t) pi j (s, t; μ) μ jk(t) dt.

(3.1)

The family of prospective reservesVi (s; ϕ, μ), i ∈ S, s ∈ [0, ωx], can be obtained
as the unique solution of Thiele’s integral equation system

Vi (s; ϕ, μ) = Bi (ωx) − Bi (s) −
∫ ωx

s
Vi (t; ϕ, μ) ϕ(t) dt

+
∑
j : j �=i

∫ ωx

s
Ri j (t; ϕ, μ) μi j (t) dt, (3.2)

with starting values Vi (ωx; ϕ, μ) = 0 for all i ∈ S, where

Ri j (t; ϕ, μ) := bi j (t) + Vj (t; ϕ, μ) − Vi (t; ϕ, μ)

is the so-called sum at risk associated with a possible transition from state i to
state j at time t. In the following, we will write Vi (t), Ri j (t), pi j (s, t), and v(s, t)
instead ofVi (t; ϕ, μ), Ri j (t; ϕ, μ), pi j (s, t; μ), and v(s, t; ϕ)when it is clear from
the context which valuation basis (ϕ, μ) we are referring to.

Proposition 3.1. Let (ϕ, μ) and (ϕ̃, μ̃) be two valuation bases and let Vi (s) and
Ṽi (s) be the corresponding prospective reserves. For all i ∈ S and s ≥ 0, we have

Ṽi (s) − Vi (s) =
∫ ωx

s

( ∑
( j,k)∈J

v(s, t) pi j (s, t) R̃jk(t)
(
μ̃ jk(t) − μ jk(t)

)

−
∑
j∈S

v(s, t) pi j (s, t) Ṽj (t)
(
ϕ̃(t) − ϕ(t)

))
dt.

(3.3)
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Proof. By applying Thiele’s integral equation system (3.2), we get an integral
equation system for the differences Ṽi (s) − Vi (s),

Ṽi (s) − Vi (s) = Ci (ωx) − Ci (s) −
∫ ωx

s

(
Ṽi (t) − Vi (t)

)
ϕ(t) dt

+
∑
j : j �=i

∫ ωx

s

((
Ṽj (t) − Vj (t)

)− (Ṽi (t) − Vi (t)
))

μi j (t) dt

with starting values Ṽi (ωx) − Vi (ωx) = 0, i ∈ S, where the right-continuous
functions Ci are (uniquely) defined by

Ci (ωx) − Ci (s) = −
∫ ωx

s
Ṽi (t)

(
ϕ̃(t) − ϕ(t)

)
dt

+
∑
j : j �=i

∫ ωx

s
R̃i j (t)

(
μ̃i j (t) − μi j (t)

)
dt.

The Ci are known in the actuarial literature as “statewise contributions to sur-
plus”. Our new integral equation system for the differences Wi (s) := Ṽi (s) −
Vi (s),

Wi (s) = Ci (ωx) − Ci (s) −
∫ ωx

s
Wi (t) ϕ(t) dt

+
∑
j : j �=i

∫ ωx

s

(
Wj (t) − Wi (t)

)
μi j (t) dt,

can be interpreted as a Thiele integral equation system for a policy with cumu-
lative annuity benefits Ci and no transition benefits. It has the unique solution

Wi (s) =
∑
j∈S

∫
(s,ωx]

v(s, t) pi j (s, t) dCj (t).

To see that, follow the proof of Theorem 4.8 in Milbrodt and Stracke (1997),
but note that Wi (s) here has the integration intervals (s, ωx] instead of [s, ∞),
and that we have no transition benefits.

Another way to write Wi (s) can be found in Christiansen (2008), where a
Taylor expansion of the prospective reserve Vi (s) — seen as a mapping of the
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valuation basis (ϕ, μJ) — is developed, leading to

Wi (s) =
∫ ωx

s

( ∑
( j,k)∈J

v(s, t) pi j (s, t) Rjk(t)
(
μ̃ jk(t) − μ jk(t)

)

−
∑
j∈S

v(s, t) pi j (s, t)Vj (t)
(
ϕ̃(t) − ϕ(t)

))
dt + o(‖(ϕ̃, μ̃) − (ϕ, μ)‖)

=:
∫ ωx

s
∇(ϕ,μJ )(Vi (s))(t) · ((ϕ̃(t), μ̃J(t)) − (ϕ(t), μJ(t)))dt

+ o(‖(ϕ̃, μ̃) − (ϕ, μ)‖),
(3.4)

where ‖ · ‖ denotes the L1-norm of the maximum row sum. Christiansen (2008)
interprets the function ∇(ϕ,μJ )(Vi (s))(t) ∈ R

1+|J| as some form of generalized
gradient. In this version ofW, compared with the representation in Proposition
3.1, the sum at risk and the reserve under the integral are based on (ϕ, μJ) rather
than (ϕ̃, μ̃J), and this gives rise to the “error term” o (‖(ϕ̃, μ̃) − (ϕ, μ)‖).

Another quantity that we will need later on is the reserve at time s, condi-
tionally expected at time u < s, namely

Vi,u(s) =
∑
j∈S

pi j (u, s)Vj (s).

Lemma 3.2. The reserve Vi,u(s) uniquely solves the integral equation system

Vi,u(s) =
∑
j∈S

∫
(s,ωx]

pi j (u, t) dBj (t) −
∫ ωx

s
Vi,u(t) ϕ(t) dt

+
∑

( j,k)∈J

∫ ωx

s
b jk(t) pi j (u, t) μ jk(t) dt

(3.5)

with starting values Vi,u(ωx) = 0 for all i ∈ S and an arbitrary but fixed u.

Proof. From (3.1) and the Chapman–Kolmogorov equation, we get that

Vi,u(s) =
∫

(s,ωx]
v(s, t)

[∑
j∈S

pi j (u, t) dBj (t)
]

+
∫ ωx

s
v(s, t)

[ ∑
( j,k)∈J

b jk(t) pi j (u, t) μ jk(t)
]
dt.
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With defining

dB1(t) :=
∑
j∈S

pi j (u, t) dBj (t) +
∑

( j,k)∈J
b jk(t) pi j (u, t) μ jk(t) dt,

we can interpret s → Vi,u(s) as the prospective reserve of a one-state policy with
state space S = {1} and sojourn payments dB1(t). The corresponding Thiele
integral equation (3.2) has just the form (3.5).

Note that we always have Vi,s(s) = Vi (s).

3.1. Calculations on the safe-side

For the calculation of premiums and reserves, the insurer has to choose some
deterministic basis since the ‘‘true” basis (φ, ν) is not known a priori. In order
to set premiums and reserves on the safe-side, it is a common method to choose
a first-order valuation basis that represents some worst-case scenario from the
perspective of the insurer. In mathematical terms, we are looking for a valuation
basis (ϕ̃, μ̃) with

Vi (s; ϕ̃, μ̃) ≥ Vi (s; φ, ν) (3.6)

for all outcomes of (φ, ν). We can either aim to meet that condition for some
specified time s and state i , or we can even ask for a valuation basis that sat-
isfies this condition for all times s and all states i . The latter requirement was
introduced by Hoem (1988) as the “basis safe-side requirement”. The “true”
basis may contain some quite extreme situations that appear too safe in one
way or another. For example, they may be too expensive in terms of pricing or
reserving. Therefore, we propose to work with the weaker

P
(
Vi (s; ϕ̃, μ̃) ≥ Vi (s; φ, ν)

)
≥ 1 − α. (3.7)

Starting from a set of possible future scenariosM that satisfies P((φ, ν) ∈ M) ≥
1 − α, we can find an admissible scenario (ϕ̃, μ̃) for (3.7) by calculating

(ϕ̃, μ̃) = argmax
(ϕ,μ)∈M

Vi (s; ϕ, μ) (3.8)

since

P
(
argmax
(ϕ,μ)∈M

Vi (s; ϕ, μ) ≥ Vi (s; φ, ν)
)

≥ P((φ, ν) ∈ M) ≥ 1 − α. (3.9)

The focus of our paper is to solve the optimization problem (3.8), supposing that
M is given. Note that in general it is not a trivial task to find a proper scenario
set M. For example, M can represent some expert opinion or can be deduced
from a stochastic model.

Solutions of the worst-case problem (3.8) are of general interest because of
(3.9). However, it is of special interest for calculating regulatory solvency capital.
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According to the Solvency II directive of the European Parliament and of the
Council (2008), the SCR shall be calculated as the 99.5% value-at-risk of the
change in the net value of assets minus liabilities over an m = 1 year period.
With writing N(t) = A(t) − L(t) for the net value of assets minus liabilities at
time t, the SCR at time s has the representation

SCR(s) = VaR0.995(N(s) − v(s, s +m) N(s +m)) .

The so-called Standard Formula, as suggested by the regulator, uses the approx-
imation

SCR(s) = VaR0.995

(
N(s) − NFs+m(s)

)
instead, where NFs+m(s) is the net value at time s given Fs+m, and Fs+m denotes
the information about (φ, ν) on [0, s + m]. If the insurer mainly holds riskless
assets, then the difference A(s) − AFs+m(s) is negligible, and we obtain

SCR(s) = VaR0.995

(
− L(s) + LFs+m(s)

)
.

A different motivation for leaving out A(s) − AFs+m(s) would be to concentrate
on the SCR contribution from the interest rate and insurance risk modules only
(partial internal model). According to the so-called mark-to-market approach,
which is adopted in Solvency II, and given that our policyholder is at present
time s in state i , L(s) has here the form

L(s) = Vi (s; ϕBEs , μBEs ),

where (ϕBEs , μBEs ) denotes a market-consistent best estimate basis known at
time s. Such a basis combines market-consistent valuation of risks that are
priced in the market by calibrating to market prices with a plain expectation
with respect to risks that are not priced in the market. If e.g. the bond market
specifies a forward rate projection of interest rates, these forward rates would
be part of the market-consistent basis, see e.g. Fabozzi (2005, p. 148). If e.g.
there exists a market for mortality derivatives, forward mortality rates would be
part of the market-consistent basis, see e.g. Cairns et al. (2008). For LFs+m(s),
we introduce a basis (φs+m, νs+m) that combines the true stochastic basis (φ, ν)

on the time interval [0, s +m) and the Fs+m-measurable market-consistent best
estimate basis (ϕBEs+m , μBEs+m) on the time interval [s +m, ∞). Then,

LFs+m(s) = Vi (s; φs+m, νs+m)

= E

(
Vi (s; φ, ν) − v(s, s +m; φ)VX(s+m)(s +m; φ, ν)

+ v(s, s +m; φ)VX(s+m)(s +m; ϕBEs+m , μBEs+m)

∣∣∣Fs+m
)
.

https://doi.org/10.1017/asb.2013.16 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2013.16


334 M.C. CHRISTIANSEN AND M. STEFFENSEN

In the second and third terms, we replace the stochastic basis (φ, ν) underlying
Vi (s; φ, ν) by the basis (ϕBEs+m , μBEs+m) from time s + m and onward for valu-
ation at time s of the payments from time s + m and onward. The expectation
conditional on information about (φ, ν) until s +m is then a representation of
Vi (s; φs+m, νs+m). Hence, the SCR at time s has the formula

SCR(s) = VaR0.995

(
− Vi (s; ϕBEs , μBEs ) + Vi (s; φs+m, νs+m)

)
(3.10)

and concerns the uncertainty of (φs+m, νs+m) given Fs . In (3.10), it is of course
a delicate issue how to determine (ϕBEs , μBEs ) and (φs+m, νs+m) given Fs , see
Börger (2010). However, this is not central for what follows and is therefore
beyond the scope of this paper.

If we set m = ∞, formula (3.10) can be interpreted as the liability runoff
approach. Advantages and disadvantages of different choices of m can be —
and have been — discussed. Although it appears that for m = 1 and m = ∞
we have substantially different problems in (3.10), it is crucial to realize that this
is actually a matter of setting the distribution under which the value-at-risk is
taken. Below, specifications of the distribution of (φs+m, νs+m) correspond to
confidence sets for (φs+m, νs+m) which then become crucially important.

The problems (3.10) and (3.7) are very similar, form = ∞ they are in princi-
ple equivalent. However, both problems are in general difficult to solve. Instead,
one can look for an upper bound in terms of quantiles of (φs+m, νs+m). For ex-
ample, if we assume that M is a given confidence set with P((φs+m, νs+m) ∈
M) ≥ 0.995, then we can obtain the following bound for the SCR(s):

SCR(s) = VaR0.995

(
− Vi (s; ϕBEs , μBEs ) + Vi (s; φs+m, νs+m)

)
= inf

{
c ∈ R

∣∣∣P(Vi (s; ϕBEs , μBEs ) − Vi (s; φs+m, νs+m) ≥ −c
)

≥ 0.995
}

≤ − inf
(ϕ,μ)∈M

{
Vi (s; ϕBEs , μBEs ) − Vi (s; ϕ, μ)

}
= sup

(ϕ,μ)∈M

{
Vi (s; ϕ, μ) − Vi (s; ϕBEs , μBEs )

}
,

(3.11)

where the inequality is based on the fact that

c̃ = − inf
(ϕ,μ)∈M

{
Vi (s; ϕBEs , μBEs ) − Vi (s; ϕ, μ)

}

is an admissible constant in the sense that

P
(
Vi (s; ϕBEs , μBEs )−Vi (s; φs+m, νs+m) ≥ −c̃

)
≥P
(
(φs+m, νs+m) ∈ M

)≥0.995.
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This correspondence of the value-at-risk to a worst-case problem was already
shown by Studer (1997, 1999), who denotes M as the trust region. The supre-
mum in (3.11) corresponds to problem (3.8) and is the kind of worst-case prob-
lem that we study in this paper. A similar idea to identify an upper bound for
the SCR can be found in Section 4 of Bauer et al. (2009). There, the SCR of
a monotonically increasing functional of a finite-dimensional random vector
is bounded by taking the minimum over all rectangular confidence sets for the
argument. In our case, the functional has an infinite dimensional domain, the
supremum is taken over an arbitrarily shaped yet fixed confidence set, and, most
important, we avoid the monotonicity requirement. The Solvency II Standard
Formula also uses the idea in (3.9) by approximating the value-at-risk by a stress
scenario that can be interpreted as a worst-case scenario, see for example Börger
(2010).

Finally, we wish to place a comment on the connection between the choice
of M and the time consistency of the worst-case basis already at this point. Our
results in the next section contain invariance conditions for the set M under
which the worst-case basis is indeed time consistent. We provide examples for
which the invariance condition holds. However, we do not discuss necessary
properties of the set M under which the invariance conditions are fulfilled. In
other words, we do not impose any upfront restrictions onM that guarantee the
worst-case basis to be time consistent. This would be a different route to take
but it is not clear how such restrictions should be formed.

4. CALCULATION OF WORST-CASE SCENARIOS

Let the vector (ϕ(t), μJ(t)) := (ϕ(t), (μ jk(t))( j,k)∈J) be an element of a set
M ⊂ L1+|J|

1 ([0, ωx]) of integrable intensity vectors. We think of M as a set of
future financial and biometrical scenarios that may occur with some probabil-
ity, possibly one. (Recall that the diagonal elements of μ are determined by μJ
via μ j j = −∑k:k �= j μ jk.) We write M(t), t ∈ [0, ωx], for the t-slices of M, which
describe the admissible values that the different scenarios may take just at time
t. We are interested in the supremum

sup
(ϕ,μJ )∈M

Vi1(s1; ϕ, μJ) (4.1)

for arbitrary but fixed i1 ∈ S, s1 ∈ [0, ωx]. If there exists an element (ϕ̃, μ̃J) ∈
M such that Vi1(s1; ϕ̃, μ̃J) equals the supremum, we call (ϕ̃, μ̃J) a worst-case
scenario for Vi1(s1) with respect to M. For general sets M, the calculation of
the supremum in (4.1) can be very difficult. We give analytical solutions for a
number of special cases for which dynamic programming applies.
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Proposition 4.1 (Verification Lemma). Let (ϕ, μJ) ∈ M and (ϕ̃, μ̃J) ∈ M be
fixed scenarios that solve

Ṽi (s) = Bi (ωx) − Bi (s) −
∫ ωx

s
Ṽi (t) ϕ̃(t) dt

+
∑
j : j �=i

∫ ωx

s
R̃i j (t) μ̃i j (t) dt, i ∈ S , s ≥ s1,

(ϕ̃(t), μ̃J(t)) = argmax
( f,mJ )∈M(t)

{ ∑
( j,k)∈J

v(s1, t) pi1 j (s1, t) R̃jk(t)mjk

−
∑
j∈S

v(s1, t) pi1 j (s1, t) Ṽj (t) f
}
, t ≥ s1, (4.2)

with initial values Vi (ωx) = 0 for all i ∈ S. Further assume that for each
t > s1 the argmax is constant with respect to all factors v(s1, t) pi1 j (s1, t) ∈
{v(s1, t; ϕ) pi1 j (s1, t; μJ) | (ϕ, μJ) ∈ M}. Then we have

Ṽi1(s1) = Vi1(s1; ϕ̃, μ̃J) = sup
(ϕ,μJ )∈M

Vi1(s1; ϕ, μJ),

and, thus, (ϕ̃, μ̃J) is a worst-case scenario for Vi1(s1) with respect to M.

The crucial assumption in this proposition is that the argmax property of
(ϕ̃, μ̃J) holds with respect to all alternative scenarios (ϕ, μJ) ∈ M indepen-
dently of v(s1, t) pi1 j (s1, t). This is a rather strong condition, but we will see
that there are a number of examples of practical interest where this condition is
satisfied.

Proof. Under the assumptions of the proposition, we have at any time t > s1
that

0 ≤ max
( f,mJ )∈M(t)

⎧⎨
⎩
∑

( j,k)∈J
v(s1, t) pi1 j (s1, t) R̃jk(t)

(
mjk − μ jk(t)

)

−
∑
j∈S

v(s1, t) pi1 j (s1, t) Ṽj (t)
(
f − ϕ(t)

)⎫⎬⎭
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for all (ϕ, μJ) ∈ M. Applying (3.3), we then get

Vi1(s1; ϕ̃, μ̃J) − Vi1(s1; ϕ, μJ)

=
∫ ωx

s1

( ∑
( j,k)∈J

v(s1, t) pi1 j (s1, t) R̃jk(t)
(
μ̃ jk(t) − μ jk(t)

)

−
∑
j∈S

v(s1, t) pi1 j (s1, t) Ṽj (t)
(
ϕ̃(t) − ϕ(t)

))
dt

=
∫ ωx

s1
max

( f,mJ )∈M(t)

{ ∑
( j,k)∈J

v(s1, t) pi1 j (s1, t) R̃jk(t)
(
mjk − μ jk(t)

)

−
∑
j∈S

v(s1, t) pi1 j (s1, t) Ṽj (t)
(
f − ϕ(t)

)}
dt

≥ 0

for all (ϕ, μJ) ∈ M.

The question is now if a scenario (ϕ̃, μ̃J) ∈ Mwith the properties of Proposition
4.1 really exists.Wewill give an existence result, but note thatwe assume stronger
conditions than in Proposition 4.1.

Proposition 4.2 (Existence). Let M⊂ L1+|J|
1 ([0, ωx]) be a set of intensity vectors

(ϕ, μJ) where the slices M(t) are compact subsets of R
1+|J| and the function

t → sup
(ϕ(t),μJ (t))∈M(t)

‖(ϕ(t), μJ(t))‖ (4.3)

is integrable. Further assume that for each time t the quantity

argmax
( f,mJ )∈M(t)

{ ∑
( j,k)∈J

v(s, t) pi j (s, t) Rjk(t)mjk−
∑
j∈S

v(s, t) pi j (s, t)Vj (t) f
}

(4.4)

is constant with respect to all times s ∈ [0, t), all states i ∈ S, and all fac-
tors v(s, t) pi j (s, t) ∈ {v(s, t; ϕ) pi j (s, t; μJ) | (ϕ, μJ) ∈ M}. Then, the sequence
of valuation bases (ϕ(n), μ

(n)
J )n≥0 defined by an arbitrary but fixed starting point

(ϕ(0), μ
(0)
J ) ∈ M, an arbitrary but fixed initial state X0 = i0 ∈ S, and the recursion

(ϕ(n+1)(t), μ(n+1)
J (t)) ∈ argmax

( f,mJ )∈M(t)

{ ∑
( j,k)∈J

v(n)(0, t) p(n)
i0 j (0, t) R

(n)
jk (t)mjk

−
∑
j∈S

v(n)(0, t) p(n)
i0 j (0, t)V

(n)
j (t) f

} (4.5)
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creates a series of prospective reserves that converge to a limit
limn→∞ Vi (t; ϕ(n), μ

(n)
J ) =: V∗

i (t) for all t ∈ [0, ωx] and i ∈ S. With defining
R∗
jk(t) := bi j (t) + V∗

j (t) − V∗
i (t), the intensity vectors

(ϕ̃(t), μ̃J(t)) = argmax
( f,mJ )∈M(t)

{ ∑
( j,k)∈J

v(s1, t) pi1 j (s1, t) R
∗
jk(t)mjk

−
∑
j∈S

v(s1, t) pi1 j (s1, t)V
∗
j (t) f

}

satisfy the assumptions of Proposition 4.1 for all s1 ≥ 0 and all i1 ∈ S.
In Proposition 4.1, we assumed that the argmax in (4.2) does not depend on

the factors v(s, t) pi j (s, t) for s = s1 and i = i1. In Proposition 4.2, we extended
that assumption for the argmax in (4.4) to all s ≥ 0 and all i ∈ S. In effect, we
get the maximality of Vi (s; ϕ̃, μ̃J) not only at s = s1 and i = i1 but for all s ≥ 0
and all i ∈ S. That means that the worst-case scenario is time consistent in the
sense that it does not change when we look at the same policy at a later point in
time. Under the weaker assumptions of Proposition 4.1 that is not necessarily
the case.

Proof. Because of the independence of (4.4) from the factors v(s, t) pi j (s, t)
for all s ≥ 0 and i ∈ S, we can substitute (4.5) with

(ϕ(n+1)(t), μ(n+1)
J (t)) ∈ argmax

( f,mJ )∈M(t)

{ ∑
( j,k)∈J

v(n+1)(0, t) p(n+1)
i0 j (0, t) R(n)

jk (t)mjk

−
∑
j∈S

v(n+1)(0, t) p(n+1)
i0 j (0, t)V(n)

j (t) f
}
.

Multiplying both sides of (3.3) with−1 and identifying (ϕ, μJ) and (ϕ̃, μ̃J)with
(ϕ(n+1), μ

(n+1)
J ) and (ϕ(n), μ

(n)
J ), respectively, we obtain

Vi (s; ϕ(n+1), μ
(n+1)
J ) − Vi (s; ϕ(n), μ

(n)
J )

=
∫ ωx

s

( ∑
( j,k)∈J

v(n+1)(s, t) p(n+1)
i j (s, t) R(n)

jk (t)
(
μ

(n+1)
jk (t) − μ

(n)
jk (t)

)

−
∑
j∈S

v(n+1)(s, t) p(n+1)
i j (s, t)V(n)

j (t)
(
ϕ(n+1)(t) − ϕ(n)(t)

))
dt
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=
∫ ωx

s
max

( f,mJ )∈M(t)

{ ∑
( j,k)∈J

v(n+1)(s, t) p(n+1)
i j (s, t) R(n)

jk (t)
(
mjk − μ

(n)
jk (t)

)

−
∑
j∈S

v(n+1)(s, t) p(n+1)
i j (s, t)V(n)

j (t)
(
f − ϕ(n)(t)

)}
dt

≥ 0.

That means that the sequences Vi (t; ϕ(n), μ
(n)
J ) are monotonically increasing.

Using the representation formula (3.1), we can show thatVi (t; ϕ, μ) is uniformly
bounded for all i ∈ S, t ∈ [0, ωx], and (ϕ, μ) ∈ M, since the payments functions
Bj and b jk have finite variation, the discounting factor is bounded because of the
integrability of (4.3), and all transition intensities are bounded by (4.3). Thus,
the limits limn→∞ Vi (t; ϕ(n), μ

(n)
J ) exist pointwise on [0, ωx] for all i ∈ S, and

also the limits of the sequences Ri j (t; ϕ(n), μ
(n)
J ) = bi j (s) + Vj (t; ϕ(n), μ

(n)
J ) −

Vi (t; ϕ(n), μ
(n)
J ) exist pointwise on [0, ωx]. Multiplying both sides of (3.3) with

−1, we get that

Vi (s; ϕ̃, μ̃J) − V∗
i (s)

= Vi (s; ϕ̃, μ̃J) − lim
n→∞Vi (s; ϕ(n), μ

(n)
J )

= lim
n→∞

∫ ωx

s

( ∑
( j,k)∈J

ṽ(s, t) p̃i j (s, t) R
(n)
jk (t)

(
μ̃ jk(t) − μ

(n)
jk (t)

)

−
∑
j∈S

ṽ(s, t) p̃i j (s, t)V
(n)
j (t)

(
ϕ̃(t) − ϕ(n)(t)

))
dt

= lim
n→∞

∫ ωx

s

( ∑
( j,k)∈J

ṽ(s, t) p̃i j (s, t) R∗
jk(t)

(
μ̃ jk(t) − μ

(n)
jk (t)

)

−
∑
j∈S

ṽ(s, t) p̃i j (s, t)V∗
j (t)

(
ϕ̃(t) − ϕ(n)(t)

))
dt

+ lim
n→∞

∫ ωx

s

( ∑
( j,k)∈J

ṽ(s, t) p̃i j (s, t) (R(n)
jk (t) − R∗

jk(t))
(
μ̃ jk(t) − μ

(n)
jk (t)

)

−
∑
j∈S

ṽ(s, t) p̃i j (s, t) (V(n)
j (t) − V∗

j (t))
(
ϕ̃(t) − ϕ(n)(t)

))
dt.

The integrand of the first integral is never negative because of the definition
of (ϕ̃, μ̃J). The second integral converges to zero because its integrand con-
verges pointwise to zero and is uniformly bounded (see the arguments of above).
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Hence, we obtain Vi (s; ϕ̃, μ̃J) − V∗
i (s) ≥ 0. Analogously, we can show that

Vi (s; ϕ̃, μ̃J) − V∗
i (s)

= lim
n→∞

∫ ωx

s

⎛
⎝ ∑

( j,k)∈J
ṽ(s, t) p̃i j (s, t) R

(n−1)
jk (t)

(
μ̃ jk(t) − μ

(n)
jk (t)

)

−
∑
j∈S

ṽ(s, t) p̃i j (s, t)V
(n−1)
j (t)

(
ϕ̃(t) − ϕ(n)(t)

)⎞⎠ dt

+ lim
n→∞

∫ ωx

s

⎛
⎝ ∑

( j,k)∈J
ṽ(s, t) p̃i j (s, t)

(
R(n)
jk (t) − R(n−1)

jk (t)
)(

μ̃ jk(t) − μ
(n)
jk (t)

)

−
∑
j∈S

ṽ(s, t) p̃i j (s, t) (V(n)
j (t) − V(n−1)

j (t))
(
ϕ̃(t) − ϕ(n)(t)

)⎞⎠ dt.

The integrand of the first integral is never positive because of the definition of
(ϕ(n), μ

(n)
J ). The second integral converges to zero. Hence, we have Vi (s; ϕ̃, μ̃J)−

V∗
i (s) ≤ 0, and thus Vi (s; ϕ̃, μ̃J) = V∗

i (s) for all states i and times s. That
means that (ϕ̃, μ̃J) satisfies the assumptions of Proposition 4.1 for each s1 ≥ 0
and i1 ∈ S.

We now turn to discuss the construction of worst-case scenarios for (4.1).

(a) First we look at the situation where the assumptions of Proposition 4.2
hold. The proof of Proposition 4.2 has a constructive form and does not
only show the existence of a solution for (4.2) but also gives an iteration
method for the numerical calculation of a solution.

Algorithm
(1) Choose a starting scenario (ϕ(0), μ

(0)
J ) ∈ M.

(2) Calculate a new scenario by using the iteration

(ϕ(n+1)(t), μ(n+1)
J (t)) ∈ argmax

( f,mJ )∈M(t)

⎧⎨
⎩
∑

( j,k)∈J
v(n)(0, t) p(n)

i0 j (0, t) R
(n)
jk (t)mjk

−
∑
j∈S

v(n)(0, t) p(n)
i0 j (0, t)V

(n)
j (t) f

⎫⎬
⎭

(4.6)

for an arbitrary but fixed initial state X0 = i0 ∈ S.
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(3) Repeat step 2 until
∣∣Vi1(s1; ϕ(n+1), μ

(n+1)
J ) − Vi1(s1; ϕ(n), μ

(n)
J )
∣∣ is below

some error tolerance.
If the assumptions of Proposition 4.2 hold, we know that the algorithm
always converges to a worst-case scenario (ϕ̃, μ̃J) ∈ M.

(b) Under the weaker assumptions of Proposition 4.1, we still have that the
right-hand sides of both equations in (4.2) only depend on the future and
not on the past. By replacing t in the second equation of (4.2) by s, which
is possible according to the assumptions of Proposition 4.1, we can see
(4.2) as a terminal value problem that can be solved backward starting
from time s = ωx and going backward to s = s1. In other words, we
use a dynamic programming approach. If we find a solution, it must be
maximal because of Proposition 4.1. In practice, we typically do not find
an analytical solution but we can then use standard numerical techniques
for ordinary differential/integral equation systems.
The assumption of Proposition 4.1 that the argmax in (4.2) is constant
with respect to the factors v(s1, t) pi1 j (s1, t) means that we do not need to
know the past before time t when calculating (ϕ̃(t), μ̃J(t)). This is the min-
imal assumption that we need in order to allow for dynamic programming
leading to a deterministic solution.

(c) If we are in a situation where even the weaker assumptions of Proposition
4.1 do not hold, we can neither use dynamic programming as in (b), nor
do we know if the algorithm in (a) really converges to a worst-case. In the
optimization literature, a popular approach for dealing with difficult op-
timization problems is the gradient ascent method. However, this method
yields a local maximum but not necessarily a global maximum. Neverthe-
less, in what follows, we briefly outline how a gradient ascent method looks
here.
By applying the first-order Taylor expansion (3.4),

Vi (s; ϕ̃, μ̃J) = Vi (s; ϕ, μJ) +
∫ ωx

s
∇(ϕ,μJ )(Vi (s))(t) · ((ϕ̃(t), μ̃J(t))

− (ϕ(t), μJ(t))
)
dt + o(‖(ϕ̃, μ̃) − (ϕ, μ)‖),

we can locally increase Vi (s; ϕ, μJ) by making a small step from (ϕ, μJ)

to (ϕ̃, μ̃J) = (ϕ, μJ) + ε ∇(ϕ,μJ )(Vi (s)) in the direction of the generalized
gradient ∇(ϕ,μJ )(Vi (s)). The step size factor ε has to be sufficiently small.
Iterating this idea leads us to the following gradient ascent method.

Algorithm
(1) Choose a Taylor center (ϕ(0), μ

(0)
J ) ∈ M.

(2) Calculate a new Taylor center by using the iteration

(ϕ(n+1)(t), μ(n+1)
J (t)) = (ϕ(n)(t), μ(n)

J (t)) + εn ∇
(ϕ(n),μ

(n)
J )

(Vi1(s1))(t)
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for some small step size factor εn > 0 such that (ϕ(n+1), μ
(n+1)
J ) ∈ M.

(3) Repeat step 2 until
∣∣Vi1(s1; ϕ(n+1), μ

(n+1)
J ) − Vi1(s1; ϕ(n), μ

(n)
J )
∣∣ is below

some error tolerance.
If our series converges, the limit is a local maximum but not necessarily a
global maximum. Therefore, this algorithm must be applied carefully.

5. EXAMPLES

We give some examples where the assumptions of Proposition 4.2 hold and some
examples where at least the weaker assumptions of Proposition 4.1 are satisfied.
That means that we can use both the recursion algorithm and the dynamic pro-
gramming method. Apart from Example 5.3, where both methods are demon-
strated, we will always use the latter method, since it has the advantage that we
have to numerically solve only one differential equation system. In all numerical
examples, the premiums are chosen as best estimate net premiums.

Example 5.1 (No dependence, interest rate fixed). Let the confidence band
M have a fixed interest rate ϕ and rectangular slices M(t) = {ϕ(t)} ×(×( j,k)∈J Mjk(t)

)
with compact sets Mjk(t) ⊂ R,

M= {(ϕ, μJ)
∣∣ϕ fixed, μ jk(t) ∈ Mjk(t) for compact Mjk(t) ⊂ R

}
.

Then, the argmax in (4.2) can be rewritten as

ϕ̃(t) = ϕ(t),

μ̃ jk(t) = argmax
mjk∈Mjk(t)

{
R̃jk(t)mjk

}
, ( j, k) ∈ J,

and for any time t the choice of (ϕ(t), μJ(t)) does not depend on the past. The
special case with Mjk(t) = [μ

jk
(t), μ jk(t)] for μ

jk
, μ jk ∈ L1([0, ωx]) can be

already found in Christiansen (2010), where also two numerical examples are
given.

Example 5.2 (Exit intensities from the same states are dependent, interest rate
fixed).Wenow expand themodel setting of Example 5.1 to only partially rectan-
gular slices M(t) = {ϕ(t)} × (× j∈S Mj (t)

)
with compact sets Mj (t) ⊂ R

|S|−1,

M= {(ϕ, μJ)
∣∣ϕ fixed, μ j (t) = (μ jk(t))k:k �= j

∈ Mj (t) for compact Mj (t) ⊂ R
|S|−1}.
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The argmax in (4.2) can be rewritten as

ϕ̃(t) = ϕ(t),

μ̃ j (t) = argmax
mj∈Mj (t)

{ ∑
k:k �= j

R̃jk(t)mjk

}
, j ∈ S,

and for any time t we still have independency of the choice of (ϕ(t), μJ(t)) from
the past.

Numerical example. Consider a 30-year-old male who contracts a critical
illness insurance that pays a lump sum of 10 000 in case of death or a lump sum
of 7000 in case of disability, whichever occurs first. The contract terminates after
the first claim occurs but at the latest at age 60. A constant premium of 47.5626
is paid yearly in advance. The relevant transitions are ad = “active to dead” and
ai = “active to invalid/disabled”. For the construction ofM(t) = {ϕ(t)}×Ma(t),
where Ma(t) ⊂ R

2 is the set of admissible values for (μad(t), μai (t)), we use the
model of Christiansen et al. (2012). Letμad(t) andμai (t) be stochastic processes
that are constant in between years,

μad(x+ t) = μad(x+ [t]), μai (x+ t) = μai (x+ [t]),

with a representation of the form

ln(μad(x+ k)) = αad(x+ k) + βad(x+ k) γad(k),

ln(μai (x+ k)) = αai (x+ k) + βai (x+ k) γai (k),

for all integer values k, where αad(x + k), αai (x + k), βad(x + k), βai (x + k)
are deterministic and the differences (γad(k) − γad(k− 1), γai (k) − γai (k− 1))T

are independent and identically normal distributed random vectors with mean
(−0.037238, −0.072526)T and variance–covariance matrix


 =
(
0.001392 0.000770
0.000770 0.008808

)
.

Note that the model of Christiansen et al. (2012) shows an outlier at age 50
and that we adopt their model as it is without making corrections. One can
easily show that also (ln(μad(x + k)), ln(μai (x + k)))T is a normal distributed
random vector with some mean mk and some covariance matrix 
k. Now we
define the confidence area Ma(t) as the set where the probability density of
(ln(μad(t)), ln(μai (t)))T is at or above a certain level, that is

Ma(t) =
{
(x1, x2)T ∈ R

2
∣∣∣(( ln(x1)

ln(x2)

)
−m[t])

T
−1
[t] (
( ln(x1)
ln(x2)

)
−m[t]) ≤ r2

}
(5.1)

for some constant r2 > 0. (Note that for a two-dimensional normal ran-
dom vector X with mean m and covariance matrix 
, we always have that
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FIGURE 1: Confidence band Ma of Example 5.2 for age span 30–60 (front axis) for mortality intensity μad
(left axis) and disability intensity μai (vertical axis).

(X−m)T
−1(X−m) has a chi-square distribution with 2 degrees of freedom.)
For any fixed t, the calculation of

(μ̃ad(t), μ̃ai (t)) = argmax
(mad ,mai )∈Ma(t)

{
R̃ad(t)mad + R̃ai (t)mai

}
is a linear optimization problem and there is always a maximal solution on the
boundary ∂Ma(t) ofMa(t). (∂Ma(t) is the subset ofMa(t)wherewe have equality
in (5.1).) If Ma(t) is strictly convex, we can find the argmax as explained in the
Appendix. Figure 1 shows the confidence band t → Ma(t) for age span 30–60
and r2 = 3. Figures 3 and 4 show the worst-case valuation basis (μ̃ad, μ̃ai ) ∈ M.
By comparing the worst-case with the best estimate, the latter being given by

 = 0, we see that the worst-case scenario increases the prospective reserve in
state active at contract time zero from 0 to 130.96, see Figure 2. A crucial ob-
servation from Figure 3 is that, taking dependence into account, the “optimal”
transition rates are not necessarily to be found on the univariate boundaries.

Example 5.3 (Multiple causes of decrement model with dependence on
interest rates). Assume that S = {a, d1, ..., dm}, that only the transitions
(a, d1), ..., (a, dm) are possible, and that annuity benefits and premiums are only
payable in state a = “active”. Then for arbitrarily shaped confidence bands of
the form

M= {(ϕ, μJ)
∣∣(ϕ(t), μJ(t)) ∈ M(t) for compact M(t) ⊂ R

1+|J|,

μ jk(t) = 0 for all ( j, k) �= (a, d1), ..., (a, dm)
}
,
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FIGURE 2: Best estimate (lower gray curve) and worst-case (upper black curve) prospective reserve for
Example 5.2 in state active at ages 30–60.

FIGURE 3: Worst-case mortality intensity μ̃ad (black) of Example 5.2 and maximal and minimal possible
mortality intensities (gray).
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FIGURE 4: Worst-case disability intensity μ̃ai (black) of Example 5.2 and maximal and minimal possible
disability intensities (gray).

the argmax in (4.2) can be transformed to

(ϕ̃(t), μ̃J(t)) = argmax
( f,mJ )∈M(t)

{ ∑
j∈{d1,...,dm}

R̃aj (t)maj − Ṽa(t) f
}
.

Hence, for any time t, the choice of (ϕ(t), μJ(t)) is independent from the past.
We point out that this example also comprises the surrender model of Section
2.

Numerical example 1. Consider a temporary life insurance that starts at age
35 and that pays a lump sumof 10 000 in case of death of the policyholder before
termination of the contract at age 65. A constant premium of 28.3435 is paid
yearly in advance. For the construction of M(t) ⊂ R

2 (the set of admissible
values for (ϕ(t), μad(t))), we use the following model. Let ϕ(t) and μad(t) be
stochastic processes that are constant in between years,

ϕ(t) = ϕ([t]), μad(x+ t) = μad(x+ [t]),

where the latter has a representation of the form

ln(μad(x+ k)) = α(x+ k) + β(x+ k) γ (k)

for all integer values k. Let (�ϕ(k), �γ (k)) = (ϕ(k) − ϕ(k− 1), γ (k) − γ (k−
1))T be independent and identically normal distributed random vectors with
mean (0, θ) and covariance matrix 
. We choose

√
Var(�ϕ(k)) = 0.002 and
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use for α(x+k), β(x+k), γ (0), θ , and
√
Var(�γ (k)) the values of Christiansen

and Denuit (2010). If we add some correlation factor corr(�ϕ(k), �γ (k)) = ρ,
then the covariance matrix 
 is uniquely determined. One can easily show that
(ϕ(k), ln(μad(x+ k)))T is also a normal distributed random vector with mean
mk = (ln(1.035), α(x+ k) + β(x+ k)(γ (0) + kθ))T and covariance matrix


k =
(

(k+ 1)σ 2
�ϕ(k) (k+ 1)σ�ϕ(k)β(x+ k)σ�γ (k)ρ

(k+ 1)σ�ϕ(k)β(x+ k)σ�γ (k)ρ β(x+ k)2(k+ 1)σ 2
�γ (k)

)
.

Now we define confidence areas M(t) for (ϕ(t), μad(t))T as sets where the prob-
ability density of (ϕ(t), ln(μad(t)))T is at or above a certain level, that is

M(t) =
{
(x1, x2) ∈ R

2
∣∣∣(( x1

ln(x2)

)
−m[t])

T
−1
[t] (
( x1
ln(x2)

)
−m[t]) ≤ r2

}
(5.2)

for some constant r2 > 0. (Recall that for a two-dimensional normal ran-
dom vector X with mean m and covariance matrix 
, we always have that
(X−m)T
−1(X−m) has a chi-square distribution with 2 degrees of freedom.)
For any fixed t, the calculation of

(ϕ̃(t), μ̃ad(t)) = argmax
( f,mad )∈Mt

{
R̃ad(t)mad − Ṽa(t) f

}

is a linear optimization problem, and there is always an optimal solution at the
boundary ∂M(t) of M(t). (∂M(t) is the subset of M(t) where we have equality
in (5.2).) If M(t) is strictly convex, we can find the argmax as explained in the
Appendix. Figure 5 shows the confidence bandM for age span 35–60, ρ = 0.25,
and r2 = 3. The reason that we exemplify our method with ρ = 0.25 is that the
Fifth Quantitative Impact Study (2010) of Solvency II also uses a correlation
assumption of 0.25 when aggregating market risk and life underwriting risk,
although it is not clear if this coefficient can be projected to our model. Figures
7 and 8 show the worst-case valuation basis (ϕ̃, μ̃ad) ∈ M, and Figure 6 shows
the corresponding prospective reserves in state active. The results were obtained
by using the dynamic programming method. If we use the recursion algorithm
(4.6) with the center of the confidence band as starting scenario, we get a good
approximation already after two steps. The corresponding prospective reserves
in state active at the beginning of the contract time are

limit / worst-case/
starting scenario first iter. step second iter. step dyn. progr.
0.0199 79.5890 81.7640 81.7642.
In contrast to the case with rectangular confidence bands, where the worst-

case interest intensity is always equal to the lower bound, we here have a worst-
case interest intensity that is significantly above the minimal values. Toward the
end of the contract period, we are even above the mean. The lesson to learn is
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FIGURE 5: Confidence band M of Example 5.3 for ages 35–65 (right axis) for interest intensity ϕ (vertical
axis) and mortality intensity μad (left axis).

FIGURE 6: Best estimate (lower gray curve) and worst-case (upper black curve) prospective reserve of
Example 5.3 in state active at ages 35–65
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FIGURE 7: Worst-case interest intensity ϕ̃ (black) of Example 5.3 and maximal and minimal possible interest
intensities (gray).

FIGURE 8: Worst-case mortality intensity μ̃ad (black) of Example 5.3 and maximal and minimal possible
mortality intensities (gray).
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that the optimization problem does not have a so-called corner solution due to
the mutual dependence between interest rates and mortality.

Numerical example 2.Consider a unit-linked endowment insurance with sur-
render guarantees and a state space of S = {a, d, s}. The contract starts at age
35, and the policyholder gets a lump sum of

bad(t) = 10 000 max{a(t) e
∫ t
0 ϕg(u) du, e

∫ t
0 ϕ(u) du}, 0 < t ≤ 30,

in case of death before age 65 or a survival payment of

�Ba(30) = 10 000 max{a(30) e
∫ 30
0 ϕg(u) du, e

∫ 30
0 ϕ(u) du}

at age 65. The function ϕ is the interest rate of the investment (a priori unknown
and reduced by a fee, if any), ϕg is a deterministic minimal interest rate, and
a(t) is the fraction of the premium guaranteed to yield the minimal interest rate
ϕg. Let a(t) = min{1 − 0.015 t, 0.85} and ϕg = ln(1.035). If the contract is
terminated early, a surrender value of

bas(t) = 10 000 (1 − c(t)) e
∫ t
0 ϕg(u) du

is paid, where c(t) is the surrender penalty, which is here set to c(t) =
max{0.01 (5 − t), 0}. For μad we choose the best estimate of ln(μad(x+ k)) ac-
cording to the previous example. In this example, for all scenarios (ϕ, μad, μas)

and (ϕ′, μad, μas) with ϕ(t) ≥ ϕ′(t) for all t, we have that

Va(0; ϕ, μad, μas) ≤ Va(0; ϕ′, μad, μas) (5.3)

since the discounted payments v(0, t) bad(t) = max{v(0, t) a(t) e
∫ t
0 ϕg(u) du, 1},

v(0, 30) �Ba(30) = max{v(0, 30) a(30) e
∫ 30
0 ϕg(u) du, 1}, and v(0, t) bas(t) are non-

increasing in ϕ. A better than expected performance of the investment does not
increase the prospective reserve here because the increased benefits can be fully
paid from the excess return. At first, let

M(t) := [ln(1.015), ln(1.100)] × {μad(t)} × [0.005, 0.100].

Because of (5.3), for the worst-case calculation we can replace M(t)
by M(t) = {ln(1.015)} × {μad(t)} × [0.005, 0.100], which implies that
a(t) exp{∫ t0 ϕg(u) du} ≥ exp{∫ t0 ϕ(u) du} for all t so that bad(t) and �Ba(30)
do not depend on ϕ anymore. By applying the dynamic programming method,
we get that

ϕ(t) = ln(1.015) , μas(t) = 0.005 1[35,58.892)(t) + 0.1 1[58.892,65](t)

is the worst-case scenario. The corresponding prospective reserve at the begin-
ning of the contract in state active is 15 320.69. In a second step, we assume that
the surrender intensity depends on the interest rate in such a way that in case of
a low interest rate the surrender activity is low as well. We model that by cutting
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off fromM(t) a neighborhood of the edge (ln(1.015), μad(t), 0.100), namely the
triangle

D(t) : = conv{(ln(1.015), μad(t), 0.005), (ln(1.030), μad(t), 0.100),

(ln(1.015), μad(t), 0.100)}.

We are looking for a worst-case scenario in M′(t) := M(t) \ D(t). Because of
(5.3), for the worst-case calculation we can replace M′(t) by the line

conv{(ln(1.015), μad(t), 0.005), (ln(1.030), μad(t), 0.100)},

where conv means the convex hull. Analogous to the above, in the reduced set
bad(t) and�Ba(30) do not depend on ϕ. By applying the dynamic programming
method, we get that

ϕ(t) = ln(1.015) 1[35,64.109)(t) + ln(1.030) 1[64.109,65](t),

μas(t) = 0.005 1[35,64.109)(t) + 0.1 1[64.109,65](t)

is the worst-case scenario with respect to M′. The corresponding prospective
reserve at the beginning of the contract in state active is 14 785.71. Compared
with the worst-case with respect to M that is a difference of −534.98.

Example 5.4 (Fixed transition intensities, unknown interest rates). If all transi-
tion intensities are fixed and only the interest intensity may fluctuate,

M= {(ϕ, μJ)
∣∣ϕ(t) ∈ Mϕ(t) for compact Mϕ(t) ⊂ R, μJ fixed

}
,

then the argmax in (4.2) can be transformed to

ϕ̃(t) = argmax
f∈Mϕ(t)

{
−
∑
j∈S

pi1 j (s1, t) Ṽj (t) f
}

,

μ̃J(t) = μJ(t).

The factors pi1 j (s1, t) are fixed since μJ is fixed, and we may apply Proposi-
tion 4.1. However, the stronger assumption (4.4) of Proposition 4.2 is not met,
because the argmax can vary with respect to i1 and s1. In order to obtain an ex-
istence result, we use the following trick. Instead of maximizing the prospective
reserve Vi1(s1), we use the property Vi1(s1) = Vi1,s1(s1) and maximize

Vi1,s1(t) :=
∑
j∈S

pi1 j (s1, t)Vj (t)
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by using the Bellman equation

Ṽi1,s1(s) =
∑
j∈S

∫
(s,ωx]

pi1 j (s1, t) dBj (t) −
∫ ωx

s
Ṽi1,s1(t) ϕ̃(t) dt

+
∑

( j,k)∈J

∫ ωx

s
pi1 j (s1, t) b jk(t) μ jk(t) dt,

ϕ̃(t) = argmax
f∈Mϕ(t)

{
− Ṽi1,s1(t) f

}
,

(5.4)

which can be derived from (3.5) similar to (4.2). Now we follow the ideas of
Proposition 4.2 and obtain the existence of a solution Ṽi1,s1(t) = Vi1,s1(t; ϕ̃, μ̃)

of (5.4) on [s1, ωx] that satisfies Vi1,s1(t; ϕ̃, μ̃) ≥ Vi1,s1(t; ϕ, μ) for all scenarios
(ϕ, μJ) ∈ M and any t ≥ s1.

Typically, insurance contracts are designed in such a way that all prospective
reserves are non-negative. Then, Vi1,s1 is also non-negative and we get that the
minimal interest intensity is a worst-case scenario.

Example 5.5 (Disability model with dependent death intensities, dependence with
interest rates). Assume that S = {a = “active”, i = “invalid/disabled”, d =
“dead”}, that there is no recovery, and that μai (t) and the difference d(t) =
μid(t) − μad(t) are arbitrary but fixed. Then, for any confidence band of the
form

M= {(ϕ, μJ)
∣∣(ϕ(t), μJ(t)) ∈ M(t) for compact M(t) ⊂ R

1+|J|,

μia(t) = 0 , μid(t) = μad(t) + d(t), μai (t) fixed
}
,

the argmax in (4.2) can be transformed to

(ϕ̃(t), μ̃J(t)) = argmax
( f,mJ )∈M(t)

{
R̃ad(t)mad + pai (s1, t)

paa(s1, t)
R̃id(t)mid

− (Ṽa(t) + pai (s1, t)
paa(s1, t)

Ṽi (t)
)
f
}
.

Since we have
pai (s1, t)
paa(s1, t)

=
∫ t

s1
μai (u) e

∫ t
u (μai (v)−d(v)) dvdu

and μai and d are assumed to be fixed, we have that pai (s1, t)/paa(s1, t) is in-
dependent from the choice of (ϕ, μJ) ∈ M, and we may apply Proposition 4.1.
(The assumptions of Proposition 4.2 are not necessarily satisfied.)

Numerical example. In addition to the temporary life insurance of Example
5.3, we add some disability benefits. In the case of disability, the policyholder is
freed from the premium and gets a yearly disability annuity of 1000 in arrears.
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FIGURE 9: Worst-case interest intensity ϕ̃ (black) of Example 5.5 and maximal and minimal possible interest
intensities (gray).

The disability intensity is given by

μai (t) = 0.0004 + 0.000003467368 e0.1381551 t.

Let the difference between mortality in state disabled and in state active be
d(t) = 0.0005. The constant yearly premium is 65.4756 and was calculated by
using the principle of equivalence on the basis of the best estimate, the latter
being defined by 
 = 0. For (ϕ(t), μad(t)) we take the confidence band from
Example 5.3. Figures 9 and 10 show the worst-case valuation basis (ϕ̃, μ̃ad). The
worst-case scenario (ϕ̃, μ̃ad) increases the prospective reserve in state active at
contract time zero from 0 to 164.77. Note from Figures 9 and 10 that, at certain
ages, both the interest rate and mortality intensity are found away from their
boundaries.

6. FINAL REMARKS

This paper explains how one can find deterministic worst-case scenarios when
the interest and transition rates are mutually dependent. Such worst-case sce-
narios are useful for the identification and assessment of risks in life insurance,
in particular for the calculation of first-order bases and SCRs. In the special
case of Solvency II, our calculations deal with interest rate and insurance risk
only, which can be motivated by either assuming (approximately) risk-free in-
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FIGURE 10: Worst-case mortality intensity μ̃ad (black) of Example 5.5 and maximal and minimal possible
mortality intensities (gray).

vestments or considering a partial contribution to the SCR. However, our re-
sults are not limited to applications inspired from Solvency II since we impose
hardly any restrictions on the distribution of future financial and demographical
developments. This makes our results robust to model risk.

There are several interesting open questions in the continuation of this work.
These topics for future research include:

• Concerning the Solvency II application, one should work out a full model
that includes asset risk.

• One of our motivating examples included a dependence between surrender
and interest rates. Accounting for and stressing of policyholder behavior is a
crucial part of Solvency II, and we foresee that this will challenge companies,
in particular in the case of internal modeling. We studied one example with
dependence between surrender and interest rates, but a closer look at this
kind of dependency is called for.

• One realizes from our figures that, when modeling the dependence between
basis elements, we no longer get corner solutions in general. However, it is
clearly valuable to better understand under what condition the corner solu-
tions turn out to be the worst-case after all, at least for some marginal el-
ements. Further quantitative and qualitative studies are needed for such a
clarification.

• In the present paper, we do not impose time-consistency restrictions upfront
in the sense that the worst-case scenario shall not change with progressing
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time. However, under certain invariance assumptions in Proposition 4.2, we
indeed have time consistency. This is not necessarily the case under theweaker
assumptions in Proposition 4.1. It is an important part of future research to
further discuss time consistency.
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APPENDIX

LOCAL OPTIMIZATION PROBLEM OF EXAMPLES 5.2 AND 5.3

Here, we explain how to calculate the argmax in Example 5.3. The argmax in Example 5.2
can be obtained analogously.

Assume that the set M(t) is strictly convex. Consider the linear optimization problem

min
(x,y)T∈M(t)

ax+ by = min
(x,y)T∈∂M(t)

ax+ by.

With writing si j = (
−1
t )i j for the i j th entry of the symmetric matrix 
−1

t , one can show
that

∂M(t) =
{
(x, y)T|x = Eϕ(t) + s12

s11
(E ln(μad(t)) − ln(y))

± 1
s11

√
s11r 2 − det(
−1

t )(E ln(μad(t)) − ln(y))2
}

.

(6.1)
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The point (x, y)T ∈ ∂M(t) is the minimal point if and only if its normal vector shows into
the same direction as (−a,−b)T . The tangent vector of (x, y)T ∈ ∂M(t) has the direction

(
dx/dy

1

)
=

⎛
⎜⎝− s12

s11
1
y ± 1

s11y
det(
−1

t )(ln(μad(t)) − ln(y))√
s11r 2 − det(
−1

t )(ln(μad(t)) − ln(y))2

1

⎞
⎟⎠ ,

and for a minimal point (x, y)T ∈ ∂M(t) the corresponding tangent vector is orthogonal to
(−a, −b)T , that is

(−a, −b)
(
dx/dy

1

)
= 0.

This equation, which has only one unknown variable, namely y, can be solved with standard
numerical methods, and one of the two solutions is the worst-case mortality intensity at t.
Plugging the right solution into the equation in (6.1) yields the worst-case interest intensity.
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