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Abstract. For a transitive countably piecewise monotone Markov interval map we consider
the question of whether there exists a conjugate map of constant slope. The answer varies
depending on whether the map is continuous or only piecewise continuous, whether it is
mixing or not, what slope we consider and whether the conjugate map is defined on a
bounded interval, half-line or the whole real line (with the infinities included).

1. Introduction
Among piecewise monotone interval maps, the simplest to understand are the piecewise
linear maps with the same absolute value of slope on every piece; such maps are said to
have constant slope (and we will usually say ‘slope’ in the meaning ‘absolute value of
slope’). These maps offer the dynamicist many advantages. For example, if we wish to
compute the topological entropy, we just take the larger of zero and the logarithm of the
slope. If we wish to study the symbolic dynamics and the slope is larger than one, then no
two points can share the same itinerary; this already rules out the existence of homtervals.

There are two classic results by which constant slope maps provide a good model for
understanding more general piecewise monotone maps. Fifty years ago, Parry proved
that every topologically transitive, piecewise monotone (and even piecewise continuous)
interval map is conjugate to a map of constant slope [8]. Then, in the 1980s, Milnor and
Thurston showed how to modify Parry’s theorem to remove the hypothesis of topological
transitivity [5]. As long as a piecewise monotone map has positive topological entropy
log λ, there exists a semiconjugacy to a map of constant slope λ. The semiconjugating
map is non-decreasing, preserving the order of points in the interval, but perhaps collapsing
some subintervals down to single points.
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It is natural to ask how well the theory extends to countably piecewise monotone maps,
when we no longer require the set of turning points to be finite, but still require it to have
a countable closure. The theory has to be modified in several ways. In contrast to Parry’s
result, it is possible to construct transitive examples which are not conjugate to any interval
map of constant slope. Such examples are contained in the authors’ prior publication [7].
However, those particular examples are conjugate to constant slope maps on the extended
real line [−∞,∞], which we may choose to regard as an interval of infinite length. In
response, Bobok and Bruin posed the following problem. Under what conditions does a
countably piecewise monotone interval map admit a conjugacy to a map of constant slope
on the extended real line?

The present paper answers this problem, focusing on the Markov case. Section 2 gives
the necessary definitions, then closes with a theorem due to Bobok [2], that there exists a
non-decreasing semiconjugacy to a map of constant slope λ > 1 on the finite length interval
[0, 1] if and only if the relevant transition matrix admits a non-negative eigenvector with
eigenvalue λ and summable entries.

We investigate whether eliminating the summability requirement on the eigenvector
might allow for the construction of constant slope models on the extended real line. We
find two new obstructions, not present in previous works. We present one example which
is topologically transitive but not mixing (§12), and one example which is mixing but only
piecewise continuous (§11), and we show for both of these examples that although the
transition matrix admits a non-negative eigenvector with some eigenvalue λ, nevertheless,
there is no conjugacy to any map of constant slope λ. These are the only two obstructions;
under the assumptions of continuity and topological mixing, we state in §3 our main
theorem, Theorem 3.1, that a countably piecewise monotone and Markov map which
is continuous and mixing admits a conjugacy to a map of constant slope λ on some
non-empty, compact (sub)interval of the extended real line [−∞,∞] if and only if the
associated Markov transition matrix admits a non-negative eigenvector of eigenvalue λ.
Sections 4–7 are dedicated to the proof of Theorem 3.1.

Sections 8–10 apply Theorem 3.1 to three explicit examples of continuous countably
piecewise monotone Markov maps. The first admits conjugate maps of constant slope on
the unit interval. The second admits conjugate maps of constant slope on the extended
real line and the extended half-line. The third does not admit any conjugate map of
constant slope. These sections illustrate a variety of novel techniques for calculating the
non-negative eigenvectors of a countable 0–1 matrix and for calculating the topological
entropy of a countably piecewise monotone map.

2. Definitions and background
The extended real line [−∞,∞] is the ordered set R ∪ {∞,−∞} equipped with the order
topology; this topological space is a two-point compactification of the real line and is
homeomorphic to the closed unit interval [0, 1].

There is an exceedingly simple example which illustrates how the extended real line
behaves differently from the unit interval with respect to constant slope maps. Consider
the map f : [0, 1] → [0, 1] given by f (x)= x2. A conjugate map on the unit interval
must be monotone with fixed points at 0 and 1, and the only constant slope map with those
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FIGURE 1. A conjugacy which moves the fixed points to ±∞.

properties is the identity map. On the other hand, the map g : [−∞,∞]→ [−∞,∞]
given by g(x)= x − 1 has constant slope equal to 1 and is conjugate to f by the
homeomorphism h : [0, 1] → [−∞,∞], h(x)=−log2(−log2(x)). Thus, we achieve
constant slope by taking advantage of the infinite length of the extended real line and
pushing our fixed points out to ±∞ (see Figure 1).

Suppose f is a continuous self-map of some interval [a, b], −∞≤ a < b ≤∞, and
suppose that there exists a closed, countable set P ⊂ [a, b], a, b ∈ P , such that f (P)⊂ P
and f is monotone on each component of [a, b] \ P . Such a map is said to be countably
piecewise monotone and Markov with respect to the partition set P; the components of
[a, b] \ P are called P-basic intervals, and the set of all P-basic intervals is denoted by
B(P). If, additionally, the restriction of f to each P-basic interval is affine with slope of
absolute value λ, then we say that f has constant slope λ. This is a metric, rather than
a topological property, and it is the reason we must distinguish finite from infinite length
intervals. The class of all continuous countably piecewise monotone and Markov maps is
denoted by CPMM. The subclass of those maps which act on the closed unit interval
[0, 1] is denoted by CPMM[0,1].

Let us draw the reader’s attention to three properties of the class CPMM. First, the
underlying interval [a, b] depends on the map f and is permitted to be infinite in length.
Second, the map f is required to be globally (rather than piecewise) continuous; this is
essential for our use of the intermediate value theorem. And third, the set P is required
to be forward invariant. This is the Markov condition; it means that if I , J are P-basic
intervals and f (I ) ∩ J 6= ∅, then f (I )⊇ J .

If f is countably piecewise monotone and Markov with respect to P , then we define
the binary transition matrix T = T ( f, P) with rows and columns indexed by B(P) and
entries

T (I, J )=

{
1 if f (I )⊇ J,

0 otherwise.
(1)

This transition matrix represents a linear operator on the linear space RB(P) without any
reference to topology. In particular, in Theorem 2.1 below, T is not required to represent a
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bounded operator on the subspace of summable sequences (with the `1 norm), nor even to
preserve this subspace.

We wish also to study maps which are only piecewise continuous. To that end, we
define the class CPMMpc which contains any self-map f of any closed, non-empty
interval [a, b] ⊂ [−∞,∞], such that f has the following properties with respect to some
closed, countable set P ⊂ [a, b], a, b ∈ P . These are that f (P)⊂ P , that the restriction
f |I is strictly monotone and continuous for each P-basic interval I ∈ B(P) and that, for
each pair I, J ∈ B(P), either f (I ) ∩ J = ∅ or else f (I )⊇ J . Note that this definition
places no continuity requirements on the map f at the points of P†. Studies on finitely
piecewise continuous maps often require one-sided continuity at the endpoints of the basic
intervals (allowing the map to take two values at a single point), but our countable set
P may have accumulation points which are not the endpoints of any P-basic interval, so
such an approach makes no sense here. We define also the subclass CPMMpc

[0,1] for those
maps which act on the closed unit interval [0, 1], and we define the binary transition matrix
T = T ( f, P) by the same formula (1) as before.

We will also have cause to consider the properties of topological transitivity and
topological mixing. We use the standard definitions: that is, that a map f is topologically
transitive (respectively, topologically mixing) provided that for every pair of non-empty
open sets U, V there exists n0 ∈ N such that f n0(U ) ∩ V 6= ∅ (respectively, for all n ≥ n0,
f n(U ) ∩ V 6= ∅).

If we ignore the extended real line [−∞,∞] and allow only for maps on the unit
interval [0, 1], then there is already an established necessary and sufficient condition to
determine when a map is semiconjugate to a map of constant slope.

THEOREM 2.1. (Bobok, [2]) Let f ∈ CPMMpc
[0,1] be a map with partition set P and

transition matrix T . Fix λ > 1. Then f is semiconjugate via a continuous non-decreasing
map ψ to some map g ∈ CPMMpc

[0,1] of constant slope λ if and only if T has a non-
negative summable eigenvector v = (vI )I∈B(P) with eigenvalue λ.

Remark 2.2. The statement of the above theorem in [2] is for the class CPMM[0,1] of
globally continuous maps, but the proof applies equally well in the piecewise continuous
setting.

We draw the reader’s attention to the requirement that the eigenvector v should be
summable. If we read the proof in [2], the reason for this is clear. If we are given the
semiconjugacy ψ to the constant slope map, then we construct the eigenvector v by setting
vI = |ψ(I )| for each P-basic interval I , where | · | denotes the length of an interval, and
therefore the sum of the entries vI is just the length of the unit interval [0, 1]. Conversely,
if we are given an eigenvector v, then we rescale it so that the sum of the entries is 1 and
then construct the semiconjugacy in such a way that |ψ(I )| = vI for all I , obtaining a map
g of an interval of length 1.

† Although this basically means that we do not care what the values of f at the points of P are, we still need the
assumption f (P)⊂ P in order for P to function as a ‘black hole’.
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3. Statement of main results
We return now to the question: when does a map f ∈ CPMM admit a non-decreasing
semiconjugacy ψ to a map g of constant slope on some compact subinterval of [−∞,∞],
whether finite or infinite in length? It is clear that g must belong to the class CPMM,
because g will necessarily be piecewise monotone and Markov with respect to ψ(P)
(see [1, Lemma 4.6.1]). Here are the statements of our main results.

THEOREM 3.1. Let f ∈ CPMM be a map with partition set P and transition matrix
T . Fix λ > 1. Assume that f is topologically mixing. Then f is conjugate via a
homeomorphism ψ to some map g ∈ CPMM of constant slope λ if and only if

T has a nonnegative eigenvector v = (vI ) ∈ RB(P) with eigenvalue λ. (2)

THEOREM 3.2. In the piecewise continuous case (replacing CPMM by CPMMpc,
while retaining the mixing hypothesis), condition (2) is necessary but not sufficient.

THEOREM 3.3. If we replace the hypothesis of topological mixing with the weaker
condition of topological transitivity, then condition (2) is necessary but not sufficient.

Remark 3.4. Since the map f in Theorem 3.1 defines a topological dynamical
system without regard to geometry, there is no loss of generality if we assume that
f ∈ CPMM[0,1]. We will make this assumption from now on.

We will start by showing the necessity of condition (2). The same proof applies in all
cases (continuous or piecewise continuous, mixing or transitive). Showing the sufficiency
of condition (2) in Theorem 3.1 requires much more work. We give an explicit construction
of the conjugating map ψ in several stages. Our construction begins in a similar way to the
proofs of [2, Theorem 2.5] and [1, Theorem 4.6.8], but the unsummability of v introduces
some additional difficulties not present in these previous works. It is the strength of
global continuity and topological mixing which allows us to overcome these difficulties.
The insufficiency of condition (2) in Theorems 3.2 and 3.3 is proved by example in
§§11 and 12.

4. The proof begins
LEMMA 4.1. (Bobok) In Theorems 3.1, 3.2 and 3.3, condition (2) is necessary.

Proof. This proof is due to a private communication with Jozef Bobok. As mentioned
before, we may suppose that f is defined on the finite interval [0, 1]. Let ψ be the
conjugating map, ψ ◦ f = g ◦ ψ . Define v by vI = |ψ(I )|, I ∈ B(P), where | · | denotes
the length of an interval. A priori, it may be that |ψ(I )| =∞: this happens if and only if
I contains one of the endpoints 0, 1 and ψ maps this endpoint to one of ±∞. (Recall that
if 0, 1 are accumulation points of P , then they are not endpoints of any P-basic interval).
We want to show that all the entries of v are finite. Since g is monotone with slope of
absolute value λ on each ψ(P)-basic interval,

|g(ψ(I ))| = λ|ψ(I )|, I ∈ B(P), (3)

where if one side of the equality is infinite, then so is the other. Let F denote the collection
of all P-basic intervals I such that |ψ(I )| =∞. If I ∈ F and if f (J )⊇ I , then, by the
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conjugacy of f , g and by equation (3), it follows that J ∈ F . Now invoke topological
transitivity and the Markov condition and it follows that either F = ∅ or F = B(P).

Suppose, toward a contradiction, that F = B(P). Then there are neighborhoods of±∞
on which g is affine with constant slope λ > 1. It follows that at least one of the points
±∞ is an attracting fixed point, or else they form an attracting two-cycle (a slope larger
than 1 in a neighborhood of infinity means that the images of points close to infinity are
even closer to infinity). This contradicts transitivity. We may conclude that F = ∅ and all
entries of v are finite.

We still need to show that v is an eigenvector for T . Applying equation (3) gives

λvI = λ|ψ(I )| = |g(ψ(I ))| = |ψ( f (I ))| =
∑

J⊂ f (I )

|ψ(J )| =
∑

J∈B(P)
TI JvJ . �

Now we begin the long work of proving the sufficiency of condition (2) in Theorem 3.1.
Let f , T be as in the statement of the theorem, fix λ > 1 and suppose that T v = λv for
some non-zero vector v = (vI ) ∈ RB(P) with non-negative entries. We will assume (by
Remark 3.4) that f ∈ CPMM[0,1]. We will construct a map ψ : [0, 1] → [−∞,∞]
which is a homeomorphism onto its image in such a way that g := ψ ◦ f ◦ ψ−1 has
constant slope λ. Define the sets

Pn =

n⋃
i=0

f −i (P), n ∈ N, Q =
∞⋃

i=0

f −i (P).

The set Q is backward invariant by construction and forward invariant because P is
forward invariant. Q is a dense subset of [0, 1] because f is mixing. Choose a basepoint
p0 ∈ P and define ψ on Q by the formula

ψ(x)=



0 if x = p0,

λ−n
∑

J∈B(Pn)
p0<J<x

v f n(J ) if x ∈ Pn, x > p0,

−λ−n
∑

J∈B(Pn)
x<J<p0

v f n(J ) if x ∈ Pn, x < p0.

(4)

The choice of p0 is somewhat arbitrary, but to simplify the proof of Lemma 4.3(v), we
insist that 0< p0 < 1 and that p0 is an endpoint of some P-basic interval (i.e., p0 is not
a two-sided accumulation point of P). This is possible because P is a closed, countable
subset of [0, 1] and hence cannot be perfect.

Remark 4.2. In light of equation (4), we find that we are constructing a map g on:
• a finite interval [a, b], if

∑
vI <∞;

• an extended half-line [a,∞], if
∑

I<p0
vI <∞ and

∑
I>p0

vI =∞;
• an extended half-line [−∞, b], if

∑
I<p0

vI =∞ and
∑

I>p0
vI <∞; and

• the extended real line [−∞,∞], if
∑

I<p0
vI =∞ and

∑
I>p0

vI =∞.

LEMMA 4.3. The function ψ : Q→ [−∞,∞] has the following properties.
(i) ψ is well defined; i.e., when x ∈ Pn1 and x ∈ Pn2 , the sums agree.
(ii) ψ is strictly monotone increasing.
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(iii) If x, x ′ ∈ Q belong to an interval of monotonicity of f , then

|ψ( f (x))− ψ( f (x ′))| = λ|ψ(x)− ψ(x ′)|,

where if one side of the equality is infinite, then so is the other.
(iv) For arbitrary x, x ′ ∈ Q,

|ψ( f (x))− ψ( f (x ′))| ≤ λ|ψ(x)− ψ(x ′)|,

and we allow for the possibility that one or both sides of this inequality is infinite.
(v) For 0< x < 1, ψ(x) is finite.

Proof.
(i) Suppose that K ∈ B(Pn). Then f n

|K is monotone and f n(K ) ∈ B(P). Therefore

λ−n−1
∑

J∈B(Pn+1)
J⊂K

v f n+1(J ) = λ
−n−1

∑
J∈B(P1)
J⊂ f n(K )

v f (J )

= λ−n−1
∑

J∈B(P0)

T f n(K )JvJ = λ
−n−1λv f n(K ) = λ

−nv f n(K ).

This shows that ψ is well defined.
(ii) We will use the non-negativity of the eigenvector v together with the mixing

hypothesis to show that the entries of v must be strictly positive. Strict monotonicity
of ψ then follows from the definition. Since v is not the zero vector, there must be some
P-basic interval I0 with vI0 6= 0. Let I ∈ B(P). By the mixing hypothesis, there is n ∈ N
such that (T n)I I0 6= 0. Then vI = λ

−n ∑
J (T

n)I JvJ ≥ λ
−nvI0 > 0.

(iii) For x, x ′ ∈ Q there exists a common value n ≥ 1 such that x, x ′ ∈ Pn (since P0 ⊂

P1 ⊂ P2 ⊂ · · · ). Then f (x), f (x ′) ∈ Pn−1. By the monotonicity of f between x, x ′, the
assignment K = f (J ) defines a bijective correspondence

{J ∈ B(Pn) : J between x, x ′} ←→ {K ∈ B(Pn−1) : K between f (x), f (x ′)}.

By the definition of ψ , we may sum over those sets and obtain

|ψ( f (x))− ψ( f (x ′))| =
∑

K

λ−(n−1)v f n−1(K )

=

∑
J

λ−(n−1)v f n−1( f (J )) = λ|ψ(x)− ψ(x
′)|.

(iv) This is the inequality that survives from (iii) when we allow for folding between
x and x ′. To see it, we imitate the proof of (iii), noticing that by the intermediate value
theorem the assignment K = f (J ) attains every interval K between f (x), f (x ′) at least
once.

(v) Let x be given, 0< x < 1. Assume that x < p0; the proof when x > p0 is similar.
Fix a P-basic interval J0 with p0 at one endpoint. Because f is mixing, there exists n such
that J0 ∩ f −n((p0, 1)) 6= ∅ and J0 ∩ f −n((0, x)) 6= ∅. By the intermediate value theorem,
there exist x1, x2 ∈ J0 with f n(x1)= x and f n(x2)= p0. By (iv) applied n times,
|ψ(x)| ≤ λn

|ψ(x2)− ψ(x1)|. But, by (ii), |ψ(x2)− ψ(x1)| ≤ |ψ(sup J0)− ψ(inf J0)|.
At the two endpoints of J0, ψ takes the finite values 0 and vJ0 (or possibly −vJ0 ). �
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The main problem to tackle before we can extend ψ to the desired homeomorphism is
to show that the map we have defined so far has no jump discontinuities.

Problem 4.4. Show that, for each x ∈ [0, 1],
inf ψ(Q ∩ (x, 1])= sup ψ(Q ∩ [0, x)),

except that for x = 0 we write ψ(0) in place of the supremum and for x = 1 we write ψ(1)
in place of the infimum.

The resolution of this problem makes essential use of the global continuity of f as well
as the order structure of the interval [0, 1]. Moreover, special treatment is required for the
points x ∈ Q; we must show the continuity of ψ from each side separately. We do this by
introducing a notion of ‘half-points’†.

5. Half-points
Construct the sets

Q̃ = (Q × {+,−}) \ {(0,−), (1,+)}, S = ([0, 1] \ Q) ∪ Q̃.

The way to think of this definition is that we are splitting each point x ∈ Q into the two
half-points (x,+) and (x,−). Then S is the interval [0, 1] with each point of Q replaced
by half-points. We use boldface notation to represent points in S, whether half or whole.
Thus x may mean x or (x,+) or (x,−), depending on the context.

Let us extend the dynamics of f from [0, 1] to S. Recall that Q is both forward and
backward invariant. On S \ Q̃ = [0, 1] \ Q, we keep the map f without change. To extend
f from Q to Q̃, we define a notion of the orientation of the map at half-points. We say that
f is orientation preserving (respectively, orientation reversing) at the half-point (x,+) if
some half-neighborhood [x, x + ε) is contained in some J ∈ B(P) with f |J increasing
(respectively, decreasing). For a half-point (x,−), the definition is the same, except that
we look at a half-neighborhood of the form (x − ε, x]. It is not clear how to decide whether
f is orientation preserving or orientation reversing at the accumulation points of P . It may
happen that every half-neighborhood of x contains f (x) in the interior of its image, so that
neither definition is appropriate. Nevertheless, we define the extended map f on Q̃ by the
formula

f (x,+)=



( f (x),+) if f is orientation-preserving at (x,+),

( f (x),−) if f is orientation-reversing at (x,+),

( f (x),+) if for all ε > 0 there exists x ′ ∈ P ∩ [x, x + ε),

such that f (x ′) > f (x),

( f (x),−) otherwise,

f (x,−)=



( f (x),+) if f is orientation-reversing at (x,−),

( f (x),−) if f is orientation-preserving at (x,−),

( f (x),+) if for all ε > 0 there exists x ′ ∈ P ∩ (x − ε, x],

such that f (x ′) > f (x),

( f (x),−) otherwise.

(5)

† It is a slight modification of the construction from [6]. However, really, the idea goes back to the International
Mathematical Olympiad in 1965, where the Polish team was making jokes about the half-points [a, a) and (a, a].
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Let us say a few words about the ‘otherwise’ cases. Consider a half-point (x,+) which
does not fit into any of the first three cases. We claim that for such a point, for all
ε > 0 there exists x ′ ∈ P ∩ [x, x + ε), such that f (x ′) < f (x). If not, we would have
to conclude that there exists ε > 0, such that, for all x ′ ∈ P ∩ [x, x + ε), f (x ′)= f (x).
But this is impossible, because the half-neighborhood [x, x + ε) must contain some P-
basic interval J , and, by the strict monotonicity of f |J , the two endpoints of this interval
have distinct images. Similarly, if a half-point (x,−) falls into the ‘otherwise’ case, then
for all ε > 0 there exists x ′ ∈ P ∩ (x − ε, x], such that f (x ′) < f (x). This is relevant in
the proofs of Lemmas 5.1 and 5.2.

Now we define a real-valued function 1ψ on S by the formula

1ψ (x)=


inf ψ(Q ∩ (x, 1])− ψ(x) if x = (x,+) ∈ Q̃,

ψ(x)− sup ψ(Q ∩ [0, x)) if x = (x,−) ∈ Q̃,

inf ψ(Q ∩ (x, 1])− sup ψ(Q ∩ [0, x)) if x = x ∈ S \ Q̃.

If 1ψ (x) > 0, then we say that x is an atom for ψ and that 1ψ (x) is its mass. In this
language, Problem 4.4 asks us to show that ψ has no atoms.

The next lemma is an analog of Lemma 4.3(iii) for a single point (or half-point) x. We
introduced half-points for the purpose of proving this lemma even at the folding points
of f .

LEMMA 5.1. Let x ∈ S. Then 1ψ ( f (x))= λ1ψ (x).

Proof. First, consider the case when x = x is a whole-point, that is, x ∈ S \ Q̃. Then x
belongs to the interior of some P-basic interval J . We may choose a sequence yi in Q ∩ J
converging to x from the left-hand side and a sequence zi in Q ∩ J converging to x from
the right-hand side. Then f (yi ) and f (zi ) are sequences in Q converging to f (x) from
opposite sides. By the monotonicity of ψ and the definition of 1ψ , |ψ(zi )− ψ(yi )| →

1ψ (x) and |ψ( f (zi ))− ψ( f (yi ))| →1ψ ( f (x)). Since J is an interval of monotonicity
of f , the result follows from Lemma 4.3(iii).

Now consider the case when x = (x,+) or x = (x,−), and suppose that an appropriate
half-neighborhood of x is contained in a single P-basic interval J so that f is either
orientation preserving or orientation reversing at x. We may repeat the proof from the
previous case, with one modification. If x = (x,+), then we take yi to be instead the
constant sequence with each member equal to x . If x = (x,−), then we take zi to be
instead the constant sequence with each member equal to x . Then the rest of the proof
holds as written.

Now consider the case when x = (x,+) and f (x)= ( f (x),+), but every half-
neighborhood [x, x + ε) meets P . We will show that, in this case, 1ψ (x) and 1ψ ( f (x))
are both zero. Choose points zi ∈ P which converge monotonically to x from the right
and such that each f (zi ) > f (x). By continuity, f (zi )→ f (x) and, after passing to a
subsequence, we may assume that this convergence is also monotone. Now we calculate
1ψ (x) using the sequence zi and appealing back to the definition of ψ .

1ψ (x)= lim
i→∞

(ψ(zi )− ψ(x))= lim
i→∞

∑
J∈B(P)
x<J<zi

vJ = lim
i→∞

∞∑
j=i

∑
J∈B(P)

z j+1<J<z j

vJ = 0.
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The rearrangement of the sum is justified because, for each P-basic interval J between
x and zi , there is exactly one j ≥ i such that J lies between z j+1 and z j . But, by
Lemma 4.3(v), when i = 1 we have already a convergent series. Thus, when we sum
smaller and smaller tails of the series, we obtain zero in the limit. We may apply exactly
the same argument to compute 1ψ ( f (x)) along the sequence f (zi ), because these points
also belong to the invariant set P and decrease monotonically to f (x).

There are three other cases in which every appropriate half-neighborhood of x meets
P; again, in each of these cases, 1ψ (x)= 0 and 1ψ ( f (x))= 0, by similar arguments. �

The next lemma shows that the intermediate value theorem respects our definition of
half-points.

LEMMA 5.2. Let x1 < x2 be any two points in [0, 1], not necessarily in Q, and let k ∈ N.
Suppose that there exists a point y ∈ S with y strictly between f k(x1) and f k(x2). Then
there exists x ∈ S with x between x1 and x2 such that f k(x)= y.

Proof. If y = y ∈ S \ Q̃, we just apply the invariance of Q and the usual intermediate
value theorem. If y ∈ Q̃, then we consider the set A = [x1, x2] ∩ f −k(y). It is non-empty
by the usual intermediate value theorem, compact by the continuity of f k and contained
in Q by the invariance of Q. First, suppose that f k(x1) < f k(x2). If x ′ satisfies x1 < x ′ <
min A, then f k(x ′) < y by the usual intermediate value theorem and the minimality of
min A. It follows that f k(min A,−)= (y,−). Similarly, f k(max A,+)= (y,+). Thus
x may be taken as one of the points (min A,−), (max A,+). The proof when f k(x1) >

f k(x2) is similar, except that f k(min A,−)= (y,+) and f k(max A,+)= (y,−). �

6. No atoms
Now we are ready to solve Problem 4.4.

LEMMA 6.1. ψ has no atoms; that is, 1ψ is identically zero.

Proof. Assume, toward a contradiction, that there is a point b ∈ S such that 1ψ (b) > 0.
For n = 0, 1, 2, . . . , let bn := f n(b) ∈ S and denote the corresponding point in [0, 1] by
bn . We denote the orbit of b by Orb(b)= {b0, b1, b2, . . .}. By Lemma 5.1,

1ψ (bn)= λ
n1ψ (b), n ∈ N (6)

and this grows to ∞ because λ > 1. If Orb(b) has an accumulation point in the open
interval (0, 1), then the increment of ψ across a small neighborhood of this accumulation
point is ∞, which contradicts Lemma 4.3(v) and the proof is complete. Henceforth, we
may assume that the orbit of b only accumulates at (one or both) endpoints of [0, 1]. First,
consider the case when Orb(b) accumulates at only one endpoint of [0, 1] and assume,
without loss of generality, that limn→∞ bn = 1.

Since f is mixing, it must have a fixed point w with 0<w < 1. Since bn→ 1, it
follows that bn >w for all sufficiently large n. Thus, after replacing b and b with their
appropriate images, we may assume that bn >w for all n ∈ N. Equation (6) continues to
hold, and it follows that b is not a fixed point for f , so b 6= 1.
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Now consider the following claim.

For all N ∈ N, there exist n > N and a ∈ S

such that a /∈ Orb(b), f (a)= bn and w < a < bn+1. (?)

The proof of claim (?) proceeds in two cases. First, assume that bN < bN+1 <

bN+2 < · · · ; that is, starting from time N , the orbit of b moves monotonically to the
right. Since f is mixing, the interval [bN+1, 1] cannot be invariant, so there must exist
c > bN+1 with f (c) < bN+1. Take n =max{i : bi < c}. Clearly, n > N . The relevant
ordering of points is bn−1 < bn < c < bn+1. Since f (bn) > bn and f (c) < bn , it follows
by Lemma 5.2 that there exists a with a between bn and c such that f (a)= bn . Clearly,
a 6= bn−1. It follows that a /∈ Orb(b). Moreover, w < a < bn+1.

The remaining case is that there exists i ≥ N such that bi+1 < bi ; that is, at some time
later than N , the orbit moves to the left. But our orbit is converging to the right-hand
endpoint of [0, 1], so it cannot go on moving to the left forever. Let n =min{ j > i :
b j+1 > b j }. We have n > N and the relevant ordering of points is bn−1 > bn and bn+1 >

bn . Since f (w) < bn and f (bn) > bn , it follows by Lemma 5.2 that there exists a with
a between w and bn such that f (a)= bn . Again, we see that a 6= bn−1, so a /∈ Orb(b).
Finally, a < bn+1. This concludes the proof of claim (?).

Now we apply claim (?) recursively to find infinitely many distinct atoms between w
and b, each with the same positive mass. At stage 1, find n1 and a1 with a1 /∈ Orb(b)
such that f (a1)= bn1 and w < a1 < bn1+1. Now we apply Lemma (5.2) to f n1+1 to find
x1 with x1 between w and b such that f n1+1(x1)= a1. Then f n1+2(x1)= bn1 , and so,
by applying Lemma 5.1 and equation (6), 1ψ (x1)= λ

−(n1+2)1ψ (bn1)= λ
−21ψ (b). The

point x1 will serve as the first of infinitely many points between w and b at which ψ has
this particular increment. At stage i , set N = ni−1 and apply claim (?) to find ni and
ai with ni > ni−1. Again, we can find xi with xi between w and b and f ni+1(xi )= ai ,
and hence 1ψ (xi )= λ

−21ψ (b), as before. It remains to check that the points {xi } are
distinct. Observe that f ni+1(xi )= ai does not belong to the invariant set Orb(b), whereas
f ni+2(xi )= bni ∈ Orb(b). By construction, the numbers {ni } are all distinct. Thus the
points {xi } are distinguished from one another by the time required to make first entrance
into Orb(b).

Now we use our atoms to produce a contradiction. By Lemma 4.3(v), the increment
ψ(b)− ψ(w) is finite. Choose an integer n large enough so that nλ−21ψ (b) > ψ(b)−
ψ(w). Consider the points x1, x2, . . . , xn , and let δ be the minimum distance between
two adjacent points of the set {w, b} ∪ {x1, x2, . . . , xn}. For each i = 1, . . . , n, there exist
yi , zi ∈ Q with yi < xi < zi and max{zi − xi , xi − yi }< δ/2. Then ψ(zi )− ψ(yi )≥

λ−21ψ (b). By the monotonicity of ψ ,

ψ(b)− ψ(w)≥
n∑

i=1

ψ(zi )− ψ(yi ) > nλ−21ψ (b) > ψ(b)− ψ(w).

This is a contradiction; in words, we cannot have infinitely many atoms between w and
b all having the same positive mass when the total increment of ψ between w and b is
finite. This completes the proof in the case when Orb(b) accumulates at only one endpoint
of [0, 1].
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Finally, let us say a few words about the case when Orb(b) accumulates at both
endpoints of [0, 1]. In this case, f (0)= 1 and f (1)= 0 by continuity. Again by continuity,
for sufficiently large n, the points bn belong alternately to a small neighborhood of 0 and a
small neighborhood of 1. Thus the subsequence b2n accumulates only on a single endpoint
of [0, 1]. The map f 2 is again topologically mixing. It is straightforward, then, to modify
the above proof to deal with this case, by working along the subsequence b2n and writing
f 2 and λ2 in place of f and λ. �

7. The rest of the proof of Theorem 3.1
Having resolved Problem 4.4, we are ready to finish the proof of Theorem 3.1.

Proof. It remains to show that condition (2) is sufficient. We have defined on the dense
subset Q ⊂ [0, 1] a strictly monotone map ψ : Q→ [−∞,∞]. In light of Lemma 6.1, the
formula ψ(x)= sup ψ(Q ∩ [0, x))= inf ψ(Q ∩ (x, 1]) gives a well-defined extension
ψ : [0, 1] → [−∞,∞]. Strict monotonicity of the extension follows from the strict
monotonicity of ψ |Q and the density of Q. We claim that the extended function ψ is
continuous. It suffices to verify for each x that ψ(x)= limy→x− ψ(y)= limz→x+ ψ(z).
By monotonicity of ψ and the density of Q, we may evaluate these one-sided limits
using points y, z ∈ Q and, by our definition of the extended map ψ , the claim follows.
Finally, from strict monotonicity and continuity, it follows that ψ : [0, 1] → [−∞,∞] is
a homeomorphism onto its image.

Define a map g : ψ([0, 1])→ ψ([0, 1]) by the composition g := ψ ◦ f ◦ ψ−1. It is
countably piecewise monotone and Markov with respect to ψ(P). If y = ψ(x) and
y′ = ψ(x ′) belong to a single ψ(P)-basic interval, then x and x ′ belong to an interval
of monotonicity of f . By Lemma 4.3(iii) and the density of Q, we may conclude that
|g(y)− g(y′)| = λ|y − y′|. This shows that g has constant slope λ. �

8. Constant slope on the interval
We now present a map f : [0, 1] → [0, 1], f ∈ CPMM with the following linearizability
properties. For any λ≥ λmin, where λmin is the positive real root of λ3

− 2λ2
− λ− 2

(approximately 2.66), there is a map g : [0, 1] → [0, 1] of constant slope λ conjugate to f .
Moreover, the topological entropy of f is equal to log λmin. However, f is not conjugate
to any map of constant slope on the extended real line or the extended half-line. This
sharply illustrates the point that, for countably piecewise monotone maps, constant slope
gives only an upper bound for topological entropy.

Bobok and Soukenka [4] have constructed a map with similar linearizability properties,
that is, with entropy log 9 and with conjugate maps of every constant slope λ≥ 9.
However, their example exhibits transient Markov dynamics [3], whereas our map f
exhibits strongly positive recurrent Markov dynamics (in the sense of the Vere-Jones
recurrence hierarchy for countable Markov chains; see [10, 11]). We regard this as
evidence that the existence of constant slope models for a given map is in some part
independent of the recurrence properties of the associated Markov dynamics (but see the
discussion at the beginning of §10).
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FIGURE 2. A map conjugate to maps of any constant slope λ≥ λmin.

To construct the map f , we subdivide the interval [0, 1] into countably many
subintervals {Ai }

∞

i=0, {Bi }
∞

i=0, {Ci }
∞

i=0 and D, ordered from left to right as follows.

D < C0 < C1 < C2 < · · ·< xfixed < · · ·< B2 < A2 < B1 < A1 < B0 < A0.

We specify the lengths of the intervals Ai , Bi , Ci , D to be equal (respectively) to the
numbers ai , bi , ci , d given in equation (12) below, taking λ= λmin. The partition P
consists of the endpoints of these intervals together with their (unique) accumulation point,
which we denote by xfixed and set as a fixed point for f . We prescribe for f the Markov
dynamics

f (D)= [0, 1], f (C0)= D, f (Ci )= Ci−1, i ≥ 1,

f (Ai )=

( ∞⋃
j=i+1

A j

)
∪

( ∞⋃
j=i+1

B j

)
∪

( ∞⋃
j=i

C j

)
,

f (Bi )=

( ∞⋃
j=i+2

A j

)
∪

( ∞⋃
j=i+2

B j

)
∪

( ∞⋃
j=i

C j

)
.

Moreover, we prescribe that our map will increase linearly on each of the intervals Ai ,
Ci and decrease linearly on each of the intervals Bi , D. This completes the definition
of f ; we present its graph in Figure 2. As we will see, the lengths we chose for the P-
basic intervals comprise an eigenvector for the Markov transition matrix with eigenvalue
λmin. Thus, by construction, f has constant slope λ= λmin > 2. This allows us to verify
that f is topologically mixing. Indeed, let U, V be a pair of arbitrary open intervals.
The iterated images f n(U ) grow in size until some image contains an entire P-basic
interval (any interval which does not contain an entire P-basic interval is folded by f
in at most one place, so that its image grows by a factor of at least λmin/2> 1, and such
growth cannot continue indefinitely in a finite length state space). Consulting the Markov
transition diagram in Figure 3, we see that the union of images of any given P-basic
interval includes all P-basic intervals and therefore intersects the open set V .
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Next we consider the non-negative eigenvalues and eigenvectors corresponding to our
Markov partition: that is, we solve the system of equations

λai =

∞∑
j=i+1

a j +

∞∑
j=i+1

b j +

∞∑
j=i

c j ,

λbi =

∞∑
j=i+2

a j +

∞∑
j=i+2

b j +

∞∑
j=i

c j ,

λci = ci−1,

λc0 = d,

λd =
∞∑
j=0

a j +

∞∑
j=0

b j +

∞∑
j=0

c j + d,

(7)

where ai , bi , ci and d represent the entries corresponding to the intervals Ai , Bi , Ci and
D, respectively, and λ represents the eigenvalue. We subtract the first equation of (7) with
index i + 1 from the first equation with index i to obtain

λ(ai − ai+1)= ai+1 + bi+1 + ci . (8)

Then we subtract the first equation of (7) with index i + 2 from the second equation with
index i + 1 to obtain

bi+1 = ai+2 + λ
−1ci+1. (9)

Substituting (9) into (8), applying the third equation from (7) to express all ci in terms of
c0 and rearranging terms gives

0= ai+2 + (λ+ 1)ai+1 − λai + λ
−i (1+ λ−2)c0. (10)

This equation defines a non-homogeneous, constant-coefficient linear recurrence relation
on the terms ai . The theory of linear recurrence equations tells us that the general solution
to (10) is

ai = αx i
+ + βx i

− +
(λ2
+ 1)c0

λ3 − λ2 − λ− 1
λ−i , (11)

where α and β are arbitrary constants and x+, x− are the positive and negative solutions of
the characteristic equation x2

+ (λ+ 1)x − λ= 0 (they are real because λ > 0). Observe
that the terms ci grow exponentially with rate λ−1 and, from the first equation of (7),∑
∞

i=0 ci < λa0 <∞. It follows that λ > 1. Now of the three exponential terms in (11), the
base with the greatest modulus is x− <−1. It follows that we must take β = 0 to achieve
non-negativity of the terms ai . For λ between 1 and the real root of λ3

− λ2
− λ− 1,

simultaneously (miracle), λ−1 > x+ and the coefficient of the λ−i term is negative.
Non-negativity of the terms ai forces us to consider only λ greater than the real root
of λ3

− λ2
− λ− 1, and henceforward we may assume that λ3

− λ2
− λ− 1> 0 and

(equivalently) that x+ > λ−1. Now that we are equipped with equations (9), (11) and
the third equation of (7), we are able to sum the geometric series in the fifth equation
of (7), which gives us that α = (x+λ(λ3

− 2λ2
− λ− 2)/(λ3

− λ2
− λ− 1))c0. Again, we

invoke non-negativity of the terms ai to conclude that λmust be greater than or equal to the
real root of λ3

− 2λ2
− λ− 2, which is approximately 2.66. Combining all of our results
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so far, using the equality (x+ + 1)/(x+ − 1)= λ/x+ and choosing a scaling constant to
clear all denominators, we find that any solution to the system (7) must be of the form

λ ∈ [λmin,∞), λmin = the real solution of λ3
− 2λ2

− λ− 2= 0,
x = the positive solution of x2

+ (λ+ 1)x − λ= 0,
α = xλ(λ3

− 2λ2
− λ− 2),

ai = αx i
+ (λ2

+ 1)λ−i ,

bi = αx i+1
+ (λ2

− 1)λ−i ,

ci = (λ
3
− λ2

− λ− 1)λ−i ,

d = (λ3
− λ2

− λ− 1)λ.

(12)

Conversely, we can verify that equation (12) does indeed define a non-negative solution
to (7). This completes our eigenvector analysis. In light of Theorem 3.1, this establishes
our claims about the existence of constant slope maps conjugate to f for each λ≥ λmin.

It is worth noting that the transition matrix T cannot have unsummable non-negative
eigenvectors for the simple reason that the P-basic interval D contains in its image all
P-basic intervals, so that the sum of the entries of any eigenvector must be λ · d <∞.

Next, we wish to argue that the topological entropy of f is equal to log λmin. We
begin by recalling the necessary facts from the theory of transitive countable Markov
chains. We assume throughout that the transition matrices representing our chains are
both irreducible and aperiodic. The Perron value λM of such a countable state Markov
chain can be defined [3] as λM = lim(p(n)uu )

1/n, where p(n)uu denotes the number of length
n loops in the chain’s transition graph which start and end at a fixed, arbitrary vertex u;
the limit is independent of the choice of u. In contrast, the numbers f (n)uu count only the
length n first-return loops, which start and end at the vertex u but do not visit u at any
intermediate time. It may happen that 8u := lim sup( f (n)uu )

1/n < λM for some vertex u;
then the same inequality holds for every vertex u and the chain is called strongly positive
recurrent [10, Definition 2.3 and Theorem 2.7]. Moreover, [10, Proposition 2.4] gives the
following equivalence, which allows us to detect strongly positive recurrence.

8u < λM if and only if
∑
n≥1

f (n)uu 8
−n
u > 1. (13)

Strongly positive recurrent chains are a special case of recurrent chains, for which
the Perron value is known to be equal to the minimum of the set of eigenvalues for
non-negative eigenvectors [9, Theorem 2]. The connection to interval maps is given
by [3, Proposition 8], which says that the entropy of a topologically mixing countably
piecewise monotone and Markov map is given by the logarithm of the Perron value of the
corresponding Markov chain.

Consider now the countable state topological Markov chain associated to our particular
map f with its given Markov partition. The transition diagram of this chain is shown
in Figure 3. Denoting its Perron value by λM and applying the results of the preceding
paragraph, htop( f )= log λM . To show that λM = λmin, it suffices to count first-return
paths and prove that the chain is strongly positive recurrent.

Let f (n) denote the number of first-return paths of length n from the vertex D to itself.
To compute these numbers, we organize the collection of all first-return paths from D
to itself as follows. Using the convention D = C−1, we find (see Figure 3) that each
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FIGURE 3. The transition diagram.

FIGURE 4. The tree of first-return paths.

first return path may be written uniquely in the form DxCnCn−1 · · · C0 D, where x is a
string (perhaps empty) consisting only of A and B and n ≥−1. If the final symbol in
the string x is not Bn , then we declare that DxCnCn−1 · · · C0 D has three descendants,
namely, DxCn+1Cn · · · C0 D, Dx An+1Cn+1Cn · · · C0 D and Dx Bn+1Cn+1Cn · · · C0 D.
But if the final symbol in the string x is Bn , then we declare that DxCnCn−1 · · · C0 D has
only one descendant, namely, DxCn+1Cn · · · C0 D. This relationship organizes the set
of first-return paths into a tree (Figure 4), in which each first-return path traces a unique
ancestry back to the shortest first-return path DD. Moreover, we may organize this tree
into levels, corresponding to the lengths of the first-return paths.

Looking again at Figure 4, we see that the problem of computing the growth rate of
the numbers f (n) is the same as computing the growth rate of a population of white and
black rabbits, reproducing according to the rules that each white rabbit gives birth to a
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FIGURE 5. The constant slope map F : R→ R and the conjugate map f : [0, 1] → [0, 1] with fixed points
at 0, 1.

white rabbit on its first birthday and to twin white and black rabbits on its second birthday,
whereas a black rabbit gives birth to a white rabbit on its first birthday and no additional
rabbits. Thus, the sub-population of white rabbits is growing according to the recurrence
relation w(n+3)

= w(n+2)
+ w(n+1)

+ w(n), while the total population at generation n is
f (n) = w(n) + w(n−2). This yields the closed form expressions

w(n) = αxn
1 + βxn

2 + γ xn
3 ,

f (n) = α(1+ x−2
1 )xn

1 + β(1+ x−2
2 )xn

2 + γ (1+ x−2
3 )xn

3 ,

where x1, x2, x3 are the three roots of the characteristic polynomial x3
− x2

− x − 1= 0
and the coefficients α, β, γ can be determined by fitting the initial data w(1) = 1, w(2) = 1,
w(3) = 2. Of these three roots, we have x1 ≈ 1.84 real and x2, x3 complex conjugates
with modulus less than 1. Now the simple observation that w(3) >w(2) gives us that
α 6= 0, and therefore we obtain the limit ( f (n))1/n

→ x1. However, the sum
∑

f (n)x−n
1

diverges, because the terms f (n)x−n
1 are converging to the non-zero constant α(1+ x−2

1 ).
Comparing with equation (13), we see that our chain is strongly positive recurrent, which
is what we wanted to show.

9. Constant slope on the extended real line and half-line
We present now a map f : [0, 1] → [0, 1], f ∈ CPMM, with the following
linearizability properties. It is conjugate to maps of constant slope λ on the extended real
line (respectively, extended half-line) for every λ≥ 2+

√
5 (respectively, λ > 2+

√
5).

First, define a map F : R→ R as the piecewise affine ‘connect-the-dots’ map with
‘dots’ at (k, k − 1), (k + b, k + b + 1), k ∈ Z, where b = (

√
5− 1)/2; it is piecewise

monotone and Markov with respect to the set {k, k + b : k ∈ Z} and it has constant slope
2+
√

5. Moreover, fix a homeomorphism h : (0, 1)→ R; if we wish to be concrete,
we may take h(x)= ln(x/(1− x)). Let f : [0, 1] → [0, 1] be the map h−1

◦ F ◦ h with
additional fixed points at 0, 1. Then f is piecewise monotone and Markov with respect to
the set P = {0, 1} ∪ {h−1(k), h−1(k + b) : k ∈ Z}. Figure 5 shows the graphs of F and f
together with their Markov partitions.
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We enumerate the P-basic intervals as

I2k = [h−1(k), h−1(k + b)], I2k+1 = [h−1(k + b), h−1(k + 1)], k ∈ Z. (14)

The Markov transitions are given by

f (I2k)=

2k+2⋃
i=2k−2

Ii , f (I2k+1)=

2k+2⋃
i=2k

Ii , k ∈ Z. (15)

We must verify that f is mixing. Let U, V be any pair of non-empty open intervals. We
may assume that the points 0, 1 do not belong to U or V . Passing through the conjugacy,
we may work instead with the map F and the intervals h(U ), h(V ). Each iterated image
of h(U ) that contains at most one folding point of F is expanded in length by a factor of
at least 1

2 (2+
√

5) > 1. Therefore some iterated image of h(U ) contains an entire h(P)-
basic interval. The Markov transitions are such that the iterated images of an arbitrary
basic interval eventually include any other given basic interval. This establishes the mixing
property.

Let T be the 0–1 transition matrix for the map f and the partition set P . In light of
Theorem 3.1, we wish to find all non-negative solutions v ∈ RB(P), λ > 1 to the equation
T v = λv. Comparing equation (15) with the definition of T , we are looking for all non-
negative solutions to the infinite system of equations

λ vI2k =

2k+2∑
i=2k−2

vIi ,

λ vI2k+1 =

2k+2∑
i=2k

vIi ,

k ∈ Z. (16)

Adding and subtracting equations gives{
λ(vI2k+1 + vI2k−1 − vI2k )= vI2k ,

λvI2k+1 = vI2k + vI2k+1 + vI2k+2 ,
k ∈ Z.

Solving for later variables in terms of earlier ones, we obtainvI2k+1

vI2k+2

=
 −1 1+

1
λ

−λ+ 1 λ− 1−
1
λ


︸ ︷︷ ︸

Mλ

vI2k−1

vI2k

 , k ∈ Z. (17)

Equation (17) should be regarded as a linear recurrence relation on v. Notice (miracle)
that det Mλ = 1 is independent of λ. Using the invertibility of Mλ, we may conclude
inductively that [

vI2k+1

vI2k+2

]
= Mk

λ

[
vI1

vI2

]
, k ∈ Z.

We may regard the matrix Mλ as defining a dynamical system on R2. Then the entries
of v are the orbit of the initial point (vI1 , vI2). To obtain non-negative entries for v,
we must choose the initial point so that the whole orbit (both forward and backward)
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FIGURE 6. The action of Mλ on R2.

remains in the first quadrant. We can solve this problem using the elementary theory of
linear transformations on R2. There are three cases we must consider; they are depicted in
Figure 6 and explained in the following three paragraphs.

If 1< λ < 2+
√

5, then the eigenvalues of Mλ are complex conjugates and Mλ ‘rotates’
R2 about the origin. In this case, no orbit stays in the first quadrant. The diligent reader
may verify the implications vI1 ≥ vI2 ≥ 0 H⇒ vI4 < 0 and vI2 ≥ vI1 ≥ 0 H⇒ vI−1 < 0.

If λ= 2+
√

5, then Mλ has unique real eigenvalue 1 with algebraic multiplicity two
and geometric multiplicity one. Thus Mλ acts as a shear on R2 parallel to a line of fixed
points (corresponding to the unique eigenvector of Mλ). The only way to obtain a whole
orbit in the first quadrant is to choose the initial point (vI1 , vI2) from the line of fixed
points. This yields (up to a scalar multiple) the unique non-negative solution

vI2k = 2, vI2k+1 =
√

5− 1, k ∈ Z. (18)

Applying Theorem 3.1, we recover (up to scaling and with fixed points at±∞) the constant
slope map F which started our whole discussion.

If λ > 2+
√

5, then Mλ has distinct positive, real eigenvalues whose product is 1. There
are distinct eigenvectors in the first quadrant and the origin is a saddle fixed point. Any
initial point (vI1 , vI2) chosen between these eigendirections in the first quadrant yields an
unsummable, non-negative v. We can achieve unsummability of v on one side or on both
sides, according to whether we choose the initial point to lie on one of these eigendirections
or strictly between them. Accordingly, Theorem 3.1 yields a constant slope map either on
an extended half-line or on the extended real line (see Remark 4.2).

10. No constant slope
We construct now a topologically mixing map f ∈ CPMM whose transition matrix does
not admit any non-negative eigenvectors, summable or otherwise. That means that f is
not conjugate to any map of any constant slope, even allowing for maps on the extended
real line. In terms of the Vere-Jones recurrence hierarchy, our map f has transient Markov
dynamics. Indeed it must, since, for recurrent Markov chains, there always exists a non-
negative eigenvector (see [11]). For transient Markov chains, Pruitt [9] offers a nice
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FIGURE 7. A map not conjugate to any constant slope map.

criterion for the existence or non-existence of a non-negative eigenvector; our example
was inspired by Pruitt’s paper. Other examples of this type are considered in [3].

We construct f as follows. Fix a subset N ⊂ N, 1 /∈ N , such that π(n)/n→ 0 and∑
∞

n=0 3−π(n) < 3, where π(n)= #N ∩ {1, 2, . . . , n}, π(0)= 0. If we wish to be explicit,
we may take N such that {π(n)}∞n=0 is the sequence 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, . . ..
Subdivide [0, 1] into adjacent intervals In = [1/2n+1, 1/2n

], n ≥ 0. Let f : [0, 1] → [0, 1]
be the continuous, piecewise affine map with the following properties. For n ∈ N , f maps
In onto In−1 once with slope +2. For n ∈ N \ N , f maps In onto In−1 three times with
alternating slopes ±6. Finally, f maps I0 onto the whole space [0, 1] with slope −2. The
idea is illustrated in Figure 7; the choice of N controls which windows contain only one
branch of monotonicity.

If we further subdivide each of the intervals In , n ≥ 1, into three subintervals
I k
n = [1/2

n+1
+ k/3 · 2n+1, 1/2n+1

+ (k + 1)/3 · 2n+1
], k ∈ {0, 1, 2}, then our map f is

countably piecewise monotone and Markov with respect to this refined partition.
We wish to use Theorem 3.1, and therefore we must verify that f is topologically

mixing. Let U be an arbitrary open interval. If an interval is mapped forward
monotonically by f , then its image is an interval of at least twice the length. Therefore,
there is some minimal n0 such that f n0(U ) contains a folding point of f . Then f n0+1(U )
contains a point of the form 2−n1 . Thus, f n0+n1+2(U ) contains a neighborhood of zero
and hence a whole interval In2 . Then f n0+n1+n2+3(U )= [0, 1]. This shows that f is
topologically mixing (and even locally eventually onto).

We investigate now the existence of non-negative eigenvectors for the corresponding
transition matrix. Suppose that there is an eigenvector with some eigenvalue λ > 0. Let vn

denote the sum of the entries corresponding to I 1
n , I 2

n and I 3
n , and let v0 denote the entry

corresponding to the undivided interval I0. Then the eigenvector condition implies that

λvn =

{
vn−1 if n ∈ N ,

3vn−1 if n /∈ N ,
λv0 =

∞∑
n=0

vn . (19)

By rescaling our vector, if necessary, we may suppose that v0 = 1. It follows inductively
that vn = 3n−π(n)/λn . If λ≥ 3, then

∑
∞

n=0 vn ≤
∑
∞

n=0 3−π(n) < 3 by the choice of N ,
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FIGURE 8. Transition diagram for the maps f and g.

FIGURE 9. The graphs of the maps f and g.

which contradicts the last equation of (19). If λ < 3, then vn→∞ by the choice of N , so
that

∑
n vn diverges, which again contradicts (19). It follows that our transition matrix has

no non-negative eigenvectors. In light of Theorem 3.1, this means that there does not exist
any conjugate map of any constant slope, even allowing for maps on the extended real line.

11. Piecewise continuous case

We turn our attention now to piecewise continuous maps. We finish the proof of
Theorem 3.2, showing by example the insufficiency of condition (2). We begin by defining
two maps f , g on the extended half-line [0,∞] with the same Markov structure. The P-
basic intervals are the intervals Ai = (2i

+ 2i − 1, 2i+1
+ 2i), Bi = (2i+1

+ 2i, 2i+1
+

2i + 1), i = 0, 1, 2, . . .; thus P is the set of endpoints of these intervals together with
the point at infinity. Notice that these intervals have lengths |Ai | = 2i

+ 1, |Bi | = 1 and
are arranged from left to right in the order A0 < B0 < A1 < B1 < A2 < B2 < · · · . Both
maps f , g will exhibit Markov transitions as indicated in Figure 8, where an arrow I → J
indicates that the image of interval I includes interval J . For each i , both g|Ai and g|Bi

are affine with slope 2; this completes the definition of g. Moreover, for all i , f |Bi is
affine with slope 2. However, the definition of f |Ai is different. For each i , f carries
(2i
+ 2i − 1, 2i+1

+ 2i − 1) (all but the right-most unit of Ai ) affinely onto Bi with slope
2−i and carries (2i+1

+ 2i − 1, 2i+1
+ 2i) (the right-most unit of Ai ) affinely onto Ai+1

with slope 2i+1
+ 1. This completes the definition of f . The graphs of both maps are

shown in Figures 8 and 9.
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We claim that the map f is topologically mixing. Indeed, let U, V ⊂ [0,∞] be any
open intervals. If, for each i , f i (U ) is contained in a single P-basic interval, then either
there are infinitely many indices i j for which f i j (U )⊂ A0 or there are only finitely many
(perhaps zero). The first case is impossible because the length | f i j+1(U )| must be greater
than the length | f i j (U )| by a factor of at least 2 (consider all possible loops from A0

to itself in Figure 8 and multiply slopes along the loop). The second case is impossible
because then some image of U must be contained in a set of the form

⋂
∞

k=0 f −k(An+k) for
some n (look again at Figure 8). But the length of the finite intersection

⋂K
k=0 f −k(An+k)

is equal to the length of An times the proportion of An mapped onto An+1, times the
proportion of An+1 mapped onto An+2, and so on, up to the proportion of An+K−1 mapped
onto An+K : that is,∣∣∣∣ K⋂

k=0

f −k An+k

∣∣∣∣= |An| ×
1
|An|
×

1
|An+1|

× · · · ×
1

|An+K−1|

=
2n
+ 1

(2n + 1)(2n+1 + 1) · · · (2n+K−1 + 1)
, (20)

which decreases to zero as K →∞. We conclude that there exists i such that f i (U )
is not contained in a single P-basic interval. Looking now at the graph of f , we can
see that either f i+1(U ) or else f i+2(U ) contains some interval (0, ε) and, in particular,
contains some interval (0, 2−i ′). Observe that f 2i ′(0, 2−i ′)= A0. Let i ′′ be such that
V ∩ (Ai ′′ ∪ Bi ′′) 6= ∅. For all n ≥ i ′′ + 3, f n(A0)⊃ (Ai ′′ ∪ Bi ′′) (look again for paths in
Figure 8). Therefore, for all n ≥ i + 2+ 2i ′ + i ′′ + 3, f n(U ) ∩ V 6= ∅. This concludes
the proof that f is topologically mixing.

Next we consider eigenvectors associated with the Markov structure of the map f .
We single out the eigenvalue λ= 2 and we denote by ai , bi , i = 0, 1, 2, . . ., the entries
of an eigenvector corresponding to the intervals Ai , Bi , i = 0, 1, 2, . . ., respectively. In
particular, we must find non-negative solutions to the infinite system of equations{

2ai = bi + ai+1,

2bi = a0,
i ∈ N.

Since eigenvectors are defined only up to a scaling constant, we are free to fix b0 = 1.
It follows that a0 = 2 and that bi = 1 for all i . Then the entries ai can be computed
inductively as ai = 2i

+ 1. Up to scaling, this is the only eigenvector for the eigenvalue
λ= 2.

Despite the existence of this eigenvector, f is not conjugate to any map of constant
slope 2. Indeed, let ϕ be a homeomorphism of [0,∞] onto a closed (sub)interval of
the extended real line; without loss of generality, we may assume that ϕ is orientation
preserving. Suppose that the conjugate map ϕ ◦ f ◦ ϕ−1 has constant slope 2. By
Lemma 4.1, the lengths of the ϕ(P)-basic intervals must be given by an eigenvector
with eigenvalue 2. Therefore, after rescaling and translating ϕ, if necessary, the map
ϕ ◦ f ◦ ϕ−1 is equal to the map g which we have already defined, so that ϕ(Ai )= Ai and
ϕ(Bi )= Bi for all i . In other words, ϕ fixes the entire set P . Let xk denote the left-hand
endpoint of the interval A0 ∩ f −1(A1) ∩ · · · ∩ f −k(Ak) and let yk denote the left-hand
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endpoint of the interval A0 ∩ g−1(A1) ∩ · · · ∩ g−k(Ak). Since ϕ conjugates f with g, we
must have ϕ(xk)= yk for all k. By the same reasoning as that used to derive equation (20),

xk = 2− 2×
1
2
×

1
3
× · · · ×

1
2k−1 + 1

,

yk = 2− 2×
3
4
×

5
6
× · · · ×

2k
+ 1

2k + 2
.

Inductively, yk = 2− (2k
+ 1)/2k . Then xk→ 2 and yk→ 1. Since ϕ(2)= 2, this

contradicts the continuity of ϕ. We conclude that f is not conjugate to any map of constant
slope 2.

Remark 11.1. We can also interpret this example from the point of view of wandering
intervals. The map g has a wandering interval A0 ∩ g−1(A1) ∩ g−2(A2) ∩ · · · , that is,
an interval whose images are pairwise disjoint. This is incompatible with topological
mixing (and even with topological transitivity). Thus, even though g has constant slope 2
and the right Markov structure, it cannot be conjugate to the topologically mixing map
f . Moreover, in light of Lemma 4.1 and the uniqueness of the eigenvector v for λ= 2,
it follows that g (up to translations and rescalings) was the only candidate for a map of
constant slope 2 conjugate to f .

12. The mixing hypothesis
We turn our attention now to maps which are topologically transitive but not topologically
mixing. We finish the proof of Theorem 3.3, showing the insufficiency of condition (2). We
construct a map f̃ in CPMM which is topologically transitive but not mixing. We give a
non-negative eigenvector v for the transition matrix T , but prove that f̃ is not conjugate to
any map on any subinterval [a, b] ⊂ [−∞,∞] with constant slope equal to the eigenvalue
of v.

Let f and P be as defined in §9. We define f̃ : [−1, 1] → [−1, 1] by the formula

f̃ (x)=

{
− f (x) if x ∈ [0, 1],

−x if x ∈ [−1, 0].

This map f̃ is piecewise monotone and Markov with respect to the set P̃ = P ∪ −P .
Figure 10 shows the graph of f̃ (in bold). Superimposed is the graph of the second iterate
f̃ 2. By construction, f̃ 2

|[0,1] and f̃ 2
|[−1,0] are both isomorphic copies of the map f . In

this sense, f̃ is a kind of dynamical square root of f .
We claim that f̃ is topologically transitive, but not topologically mixing. To see the

transitivity, take arbitrary non-empty open subsets U , V of [−1, 1]. After shrinking these
sets, we may assume that U, V are open intervals not containing zero. First, consider the
case when U, V ⊂ [0, 1]. By the transitivity of f , there exists n such that U ∩ f −n(V ) 6=
∅, but then U ∩ f̃ −2n(V ) 6= ∅. The case when U, V ⊂ [−1, 0] is similar. Now consider
the case when U ⊂ [0, 1] and V ⊂ [−1, 0]. Using the reflected set−V and the transitivity
of f , find n such that U ∩ f −n(−V ) 6= ∅. Then U ∩ f̃ 2n−1(V ) 6= ∅. The case when
U ⊂ [−1, 0] and V ⊂ [0, 1] is similar. This shows topological transitivity of f̃ . To see
that f̃ is not topologically mixing, notice that the set {n ∈ N : (0, 1) ∩ f̃ −n(0, 1) 6= ∅}
consists of only the even natural numbers.
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FIGURE 10. The map f̃ (shown in bold) is transitive but not mixing. Its second iterate (superimposed) consists
of two copies of the map f from §9 (compare with Figure 5).

Let T̃ be the 0–1 transition matrix for the map f̃ with respect to the Markov partition
by P̃ . We label the P̃-basic intervals Ik, Jk, k ∈ Z, where the intervals Ik are given by
equation (14) and the intervals Jk are their reflections, Jk =−Ik . Fix λ= 2+

√
5. We find

all non-negative solutions v ∈ RB(P̃) to the equation T̃ v =
√
λv. In light of the Markov

transitions, this is the infinite system of equations

√
λ vI2k =

2k+2∑
i=2k−2

vJi ,

√
λ vI2k+1 =

2k+2∑
i=2k

vJi ,

√
λ vJk = vIk ,

k ∈ Z. (21)

If we substitute the last line in equation (21) into the first two lines, we recover
equation (16), which for λ= 2+

√
5 has (up to scalar multiples) the unique non-negative

solution (18). Therefore (21) has (up to scalar multiples) the unique non-negative solution

vI2k = 2, vI2k+1 =
√

5− 1, vJ2k =
2
√
λ
, vJ2k+1 =

√
5− 1
√
λ

, k ∈ Z. (22)

Now we show that, despite the existence of this eigenvector v, there does not exist any
conjugacy ψ of the map f̃ to a map of constant slope

√
λ. Assume the contrary. Then, by

the uniqueness of v and by Lemma 4.1,

|ψ(I2k)| = 2c, |ψ(I2k+1)| = (
√

5− 1)c,

|ψ(J2k)| =
2c
√
λ
, |ψ(J2k+1)| =

(
√

5− 1)c
√
λ

, k ∈ Z,

for some positive real scalar c. But the P-basic intervals accumulate at the center of
[−1, 1] so that a small open interval (−ε, ε) contains infinitely many P-basic intervals.
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Thus, ψ(−ε, ε) has infinite length. On the other hand, a non-decreasing homeomorphism
ψ : [−1, 1] → [−∞,∞] must take finite values at every interior point of the interval
[−1, 1]. This is a contradiction.
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