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We have carried out three-dimensional Navier–Stokes simulations, from quiescent
conditions to the limit cycle, of a theoretical travelling-wave thermoacoustic heat
engine (TAE) composed of a long variable-area resonator shrouding a smaller annular
tube, which encloses the hot (HHX) and ambient (AHX) heat exchangers, and
the regenerator (REG). Simulations are wall-resolved, with no-slip and adiabatic
conditions enforced at all boundaries, while the heat transfer and drag due to the
REG and HXs are modelled. HHX temperatures have been investigated in the
range 440–500 K with the AHX temperature fixed at 300 K. The initial exponential
growth of acoustic energy is due to a network of travelling waves thermoacoustically
amplified by looping around the REG/HX unit in the direction of the imposed
temperature gradient. A simple analytical model demonstrates that such instability is
a localized Lagrangian thermodynamic process resembling a Stirling cycle. An inviscid
system-wide linear stability model based on Rott’s theory is able to accurately predict
the operating frequency and the growth rate, exhibiting properties consistent with a
supercritical Hopf bifurcation. The limit cycle is governed by acoustic streaming –
a rectified steady flow resulting from high-amplitude nonlinear acoustics. Its key
features are explained with an axially symmetric incompressible model driven
by the wave-induced stresses extracted from the compressible calculations. These
features include Gedeon streaming, Rayleigh streaming in the resonator, and mean
recirculations due to flow separation. The first drives the mean advection of hot fluid
from the HHX to a secondary heat exchanger (AHX2), in the thermal buffer tube
(TBT), necessary to achieve saturation of the acoustic energy growth. The direct
evaluation of the nonlinear energy fluxes reveals that the efficiency of the device
deteriorates with the drive ratio and that the acoustic power in the TBT is balanced
primarily by the mean advection and thermoacoustic heat transport.
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1. Introduction
Thermoacoustic heat engines (TAEs) are devices that can convert available thermal

energy into acoustic power with very high efficiencies. This potential is due to the
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Modelling of a thermoacoustic heat engine 369

absence of moving parts and relative simplicity of the components. This results
in low manufacturing and maintenance costs, making these systems an attractive
alternative for clean and effective energy generation or waste-energy reutilization.
The core energy conversion process occurs in the regenerator (REG) – a porous
metallic block, placed between a hot (HHX) and a cold ambient heat (AHX)
exchanger, sustaining a mean temperature gradient in the axial direction. Acoustic
waves propagating through it (under the right conditions) can be amplified via a
thermodynamic process resembling a Stirling cycle. Most designs explored up to the
mid-1980s were based on standing waves and had efficiencies typically less than 5 %.
A significant breakthrough was made by Ceperley (1979), who showed that travelling
waves can extract acoustic energy more efficiently, leading to the design concept for
travelling-wave TAEs (de Blok 1998; Yazaki et al. 1998; Backhaus & Swift 1999,
2000). In this configuration the generated acoustic power is in part resupplied to
the REG via some form of feedback and in part directed towards a resonator for
energy extraction. A secondary ambient heat exchanger (AHX2) is typically needed
to contain the heat leaking (due to nonlinear effects) from the HHX. This design is
the focus of the present study.

Improving the technology behind TAEs has been of particular interest in the last
decade, with research efforts being made worldwide (see Garrett 2004 for a review).
A recent breakthrough, for example, has been made by Tijani & Spoelstra (2011),
who designed a travelling-wave TAE achieving a remarkable overall efficiency of
49 % of the Carnot limit. The state-of-the-art prediction capabilities and technological
design of TAEs can, however, significantly benefit from a high-fidelity description
of the underlying fluid mechanics. The potential of such an approach to fill
important modelling gaps has inspired the present study, which relies on full-scale
three-dimensional flow simulations to gain insight into the linear and nonlinear
processes occurring in a theoretical travelling-wave TAE.

A comprehensive theoretical analysis of thermoacoustic effects in ducts is provided
in the seminal publications by Rott and co-workers (Rott 1969, 1973, 1974, 1975,
1976a,b; Zouzoulas & Rott 1976; Rott 1980; Müller & Rott 1983; Rott 1984), where
a predictive analytical framework (restricted to simple configurations) is derived
improving upon pre-existing theories by Kirchhoff (1868) and Kramers (1949). Issues
addressed include the onset of instability, thermoacoustic heating, transport due to
acoustic nonlinearities and effects of variable cross-sectional area. Later, Swift and
co-workers used Rott’s work as the basis for the development of semi-empirical
low-order models for the acoustics in various components found in real TAEs (Swift
1988, 1992; Swift & Ward 1996). This resulted in the development of the prediction
software package DELTAE (Ward & Swift 1994), replaced now by DELTAEC, which,
together with similar modelling tools such as SAGE (Gedeon 1995) and REGEN
(Gary, O’Gallagher & Radebaugh 1994), is still actively used in the academic
literature as well as in industry. Other examples of advanced low-order modelling
relying on Rott’s theory and systematic asymptotic approximations (Bauwens 1996; In
’T Panhuis et al. 2009; Hireche et al. 2010) suffer from similar shortcomings. While
the prediction of global quantities of interest such as acoustic amplitude, efficiency,
and frequency of operation can be made accurate in low-pressure amplitude cases
(not without some heuristics required on the user’s end), it is not possible with such
an approach to directly account, for example, for the interaction of high-amplitude
acoustic wave with complex geometries, the effects of transitional turbulence and
higher-order harmonics on thermoacoustic transport (Olson & Swift 1997) and
acoustic energy dissipation (Ward & Swift 1994). First-principles modelling tools
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(e.g. direct numerical computations) can successfully address such issues, which have
a direct impact on the functionality of TAEs and are, nonetheless, either (inevitably)
ignored or heuristically treated.

One of the most important nonlinear processes impacting the efficiency of TAEs
is acoustic streaming (Boluriaan & Morris 2009). This is the cumulative effect of
fluid parcel displacements over several high-amplitude acoustic cycles. The result is a
rectified flow that, when unsteady, may evolve over time scales orders of magnitude
larger than the fundamental acoustic frequency (Thompson, Atchley & Maccarone
2004). In TAEs, streaming is responsible for mean advection of hot fluid away from
the HHX (thermal leakage) and limiting the obtainable wave amplitude. Penelet
and co-workers (Penelet et al. 2005a,b, 2006, 2012) identified, in the inadequate
modelling of such nonlinear effects, the primary reason for the failure of low-order
models to correctly capture wave-amplitude saturation, even in simple geometries. It
is therefore necessary to adopt a direct modelling approach, as done by Boluriaan &
Morris (2003), who performed simulations solving the fully compressible viscous flow
equations in an idealized two-dimensional configuration modelling travelling-wave
streaming suppressed by a jet pump. To properly account for the viscous interactions
with the solid wall, the Stokes thickness needs to be resolved. Three-dimensional
flow simulations of similar configurations, fully resolving thermoviscous effects and
transport due to streaming, have yet to be attempted. In the present work we take
on the challenge of studying streaming occurring in a three-dimensional flow with
geometric complexities by analysing its effects on the engine performance but also
directly modelling it with a vorticity–streamfunction formulation. A fluid dynamic
analogy can be exploited to model the streaming (Rudenko & Soluyan 1977) as an
incompressible flow driven by wave-induced Reynolds stresses. By following this
approach, we developed a simplified numerical model to gain insight into the spatial
structure of the acoustic stresses and their relationship with complex geometrical
features. The model reproduces key nonlinear effects, such as Rayleigh and Gedeon
streaming (Gedeon 1997).

A very high computational cost, however, is associated with the direct resolution
of the governing equations. In a full TAE the range of temporal and spatial scales
can span four orders of magnitude (Hamilton, Ilinksii & Zabolotskaya 2002). These
range from the acoustically driven thermal and viscous boundary layers, scaling with
the Stokes boundary layer thickness δν , typically of the order of 10−1 mm, to the
resonator length, typically of the order of the acoustic wavelength λ ' 1 m. This
challenge has been directly confronted in the present simulations, where special care
has been taken to devise a meshing strategy that could capture the large range of
scales while retaining a manageable computational cost in three dimensions. The
porous metallic structure of the REG and HXs has not been directly resolved in
our work due to its complex geometrical features. Directly resolving such structures,
however, does not pose a significant extra burden on the required computational time
per se (since the characteristic pore size is typically 100–500 µm, of the order of
the already resolved viscous boundary layer) but, rather, on the meshing effort, which
would become unfeasible, and on the modelling side, requiring one to account for
conduction through the metallic structure and coupling with the fluid.

For the purpose of the present study we propose a theoretical model of a
travelling-wave TAE, building upon the design proposed by Lycklama à Nijeholt,
Tijani & Spoelstra (2005), which has been extended to a three-dimensional set-up
with the addition of a secondary AHX2. necessary to achieve a limit cycle. Details
omitted in Lycklama à Nijeholt et al. (2005), regarding the geometry and the
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modelling of the heat transfer and drag in HXs and REGs, are reconstructed to
the best of the authors’ ability with the help of Ray Hixon (Personal communication,
2012). The latter have been accounted for with a simple low-order parametrization
available in the literature. The objective at this stage of the research effort is, in fact,
not to simulate a thermoacoustic device that is as realistic as possible, but, rather,
as simple (and complete) as possible, intentionally excluding physical processes of
secondary importance. This has allowed the straightforward generation of spatially and
temporally resolved data, which have supported a fundamental investigation into the
governing linear and nonlinear physical processes occurring in TAEs. The investigation
focuses primarily on the instability dynamics of the startup phase (first seconds of
operation) and the fully nonlinear effects at the limit cycle. The lack of experimental
data available for the proposed theoretical device has required the creation of several
additional companion lower-order models, ranging from zero-dimensional and purely
analytical, to axially symmetric and nonlinear, which have confirmed the results
obtained from the three-dimensional simulations. The present work can be regarded
as the first step towards a simple benchmark case for computational modelling of
TAEs and of the fluid dynamic processes occurring in them.

In the following, the computational set-up is first introduced, discussing the adopted
meshing strategy and the semi-empirical heat-transfer and drag models for the HXs
and the REG. Results follow, investigating first the startup phase, where linear models
are adopted to describe the nature of the wave propagation throughout the system and
amplification via thermoacoustic instability. Instantaneous data is then collected at the
limit cycle, where acoustic streaming is investigated. Results from an incompressible
numerical model used to directly solve for streaming flow are discussed. Finally,
thermal energy budgets in the TBT are analysed.

2. Problem formulation
The full-scale approach advocated in the present study requires the resolution of the

complete set of compressible viscous flow equations. The conservation equations for
mass, momentum and total energy are reported here in index notation:

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (2.1a)

∂ρui

∂t
+ ∂ρuiuj

∂xj
+ ∂τij

∂xj
=− ∂p

∂xi
+Di, (2.1b)

∂ρEt

∂t
+ ∂

∂xj

[
(ρEt + p) uj

]+ ∂βj

∂xj
= SE, (2.1c)

where x1, x2 and x3 (or x, y and z) are the axial and cross-sectional coordinates, ui
the velocity components in those directions, and p, ρ and Et are the pressure, density
and total energy. The viscous stress tensor and energy flux, respectively, τij and βi,
are given by

βi =−ujτij + qi, (2.2a)

τij =−2µ
[

Sij − 1
3
∂uk

∂xk
δij

]
, (2.2b)

where qi is the molecular heat flux, µ the dynamic viscosity and Sij the deviatoric
part of the strain-rate tensor. The fluid is assumed to be an ideal gas with reference
state given by ρref = 1.2 kg m−3, pref = 101 325 Pa and Tref = 300 K. The dynamic
viscosity varies with temperature based on the power law µ(T)=µref (T/Tref )

n, where
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FIGURE 1. Illustration of the model travelling-wave TAE inspired by Lycklama à Nijeholt
et al. (2005). Full system (a) and REG/HX area (b), drawn to scale. A dash-dotted
line indicates the line of symmetry. The different components of the engine are the
resonator (R), the annular feedback inertance loop (i), the compliance (c), the hot heat
exchanger (HHX), the regenerator (REG), the ambient heat exchanger (AHX), secondary
heat exchanger (AHX2) and the thermal buffer tube (TBT). The annular tube enclosing
the AHX2, HHX, REG and AHX is also referred to as the pulse tube, of which the TBT
is only a section.

n = 0.76 (Shang & Wang 1990) and µref = 1.983 × 10−5 kg m−1 s−1. The Prandtl
number and the heat ratio capacity are Pr = 0.7 and γ = 1.4, respectively, for all
cases. The equations are solved in the geometry illustrated in figure 1, consisting of a
long resonator with the REG/HX unit at one end, enclosed by a zero-thickness annular
tube, which is also referred to as the pulse tube. The section of the pulse tube between
the HHX and the AHX2 is the TBT. The resonator and annular tube are treated as
adiabatic no-slip walls with homogeneous Neumann conditions for pressure. While
the choice of adiabatic wall conditions is consistent with the model of Lycklama à
Nijeholt et al. (2005) and reduces the overall complexity of the computational set-up,
it does not allow one to account for thermal dissipation of acoustic energy in the
boundary layer.

The REG and HXs are typically composed of a porous metallic structure ranging
from overlapped wire screens (or metal felts) to stacks of parallel plates or rods, the
former being more typical for REGs, the latter for HXs. Following Lycklama à
Nijeholt et al. (2005) we choose to model the heat transfer and drag in such
components via the source terms Di and SE on the right-hand side of (2.1b) and
(2.1c). They are expressed as

Di =−[RC + RF(ujuj)
1/2]ui, (2.3a)

SE =−uiDi + Sh, (2.3b)

where the drag term Di is modelled following the parametrizations

RC =Csfµ
(1− φ)
4dw

2φ
, (2.4a)

RF = ρCfd

4dw
, (2.4b)
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where φ and dw are the characteristic porosity and mesh wire size of the component,
and Csf and Cfd are dimensionless fitting constants taken from the ILK Dresden
and Kühl metal felts correlations (Thomas & Pittman 2000). These are specific to
TAE REGs and are derived under different oscillating flow conditions. Unfortunately,
Lycklama à Nijeholt et al. (2005) does not provide values for the wire size dw, which
have been estimated according to (Organ 1992)

rh = dwφ

4(1− φ), (2.5)

where rh is the pore hydraulic radius.
The source term Sh in (2.3b) accounts for heat transfer in the REG/HX unit and is

modelled as
Sh =−αT[T − T0(x)], (2.6)

where T is the instantaneous fluid temperature and T0(x) is the target mean
temperature profile, which is equal to Th and Ta, respectively, in the HHX and
AHX, and varies linearly in the REG between the two values. No information is
provided in Lycklama à Nijeholt et al. (2005) for the proportionality constant α. We
propose to model it as (R. Hixon, Personal communication, 2012)

αT = αh
ρR
γ − 1

, (2.7)

where R is the gas constant and γ is the ratio of specific heats. The ratio ρR/(γ − 1)
in (2.6) is a ballpark estimate of variations of total energy with respect to temperature
(∂ρEt/∂T) derived using the equation of state. The constant αh is defined as

αh = 1/τh, (2.8)

where τh is the characteristic time scale for heat transfer in the void spaces of the
HXs and REG. An estimate for τh can be derived by modelling such components as
stacks of parallel plates with spacing b matching the given hydraulic radius of the
pores, b= 2rh (table 1). This results in (Bejan 2004)

τh = (b/2)
2

k/ρCp
= b2ρPr

4µ
, (2.9)

where k is the thermal conductivity and Cp the specific heat capacity of the gas.
This simplified model is expected to predict the intensity of the heat-transfer rate

to the pore flow within an order of magnitude. It is based on the assumption of
perfect thermal contact and is in quantitative agreement with a similar model used
in DELTAEC (Ward & Swift 1994). While the thermal regime resulting from (2.6) is
not affected by the flow velocity, its linear dependency on the temperature facilitates
the lower-order modelling efforts made in the present manuscript. Overall, despite
their simplicity and coarse approximation, the application of the source terms (2.3)
reproduces the essential thermodynamic and hydrodynamic processes that occur in
REGs and HXs in TAEs, as discussed in the following.

3. Numerical model
The governing equations are discretized on an unstructured hexahedral mesh

(figure 2) and solved in a 90◦ sector with rotational periodicity applied in the
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(a)

(b)

FIGURE 2. Cross-section of three-dimensional computational grid A for the full length
resonator (a) and zoom on the right end (b) corresponding to the view in figure 1.
The computational grid has been mirrored about the centreline for illustrative purposes.
Computations are performed in a 90◦ sector.

Parameter Heat exchangers Regenerator

rh (mm) 0.1 0.041
dw (mm) 0.2667 0.0670

φ 0.60 0.71
Csf 49.46 49.46
Cfd 0.572 0.572

TABLE 1. Parameters for REG/HX model (2.3). Hydraulic radius rh, characteristic wire
diameter dw (mm), porosity φ and drag coefficients Csf , Cfd (Thomas & Pittman 2000).
Values for rh and φ are taken from Lycklama à Nijeholt et al. (2005).

azimuthal direction. The infinitely thin annular tube wall is introduced by breaking
the mesh connectivity, creating two overlapping boundary surfaces with opposite
orientation. Three concentric O-grids in the cross-section, two in the annular tube
and one in the pulse tube (not shown), are required in this region to map the polar
mesh at the resonator walls to a quasi-uniform Cartesian block at the centre. High
resolution is retained near the sharp edges of the annular tube walls to properly
capture the shear layer caused by periodic flow separation. Visual inspection of the
flow in previous calculations does not reveal a significant vorticity magnitude away
from the wall for x < −0.1 m. This has led to the choice of collapsing hexahedral
elements into larger ones (i.e. grid coarsening) starting at x=−0.146 m (figure 2b),
resulting in a coarser radial grid distribution for x<−0.146 m. Points have also been
concentrated in the AHX2 (x = 0.031 m), due to intense instantaneous temperature
and velocity gradients at the limit cycle created by hot fluid streaming away from
the HHX (discussed later). Overall, a significant effort has been made to retain a
high-quality structured grid when possible.

A preliminary grid refinement study has been carried out to ensure adequate
resolution of the axially symmetric components of the acoustic field and accurate
prediction of the growth rate. The latter is sensitive primarily to the resolution in
the axial direction (main direction of propagation of the acoustic waves), both in
the resonator and in the TBT. The viscous boundary layers are resolved with a
control-volume height of 0.1 mm at the wall for all cases. These considerations have
lead to the design of a baseline grid distribution, grid A (figure 2), used to rapidly
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Grid type Ncv Nθ Th = 460 K Th = 480 K Th = 500 K

A 460 000 20 (x) (x) (x)
B 1250 000 40 (·) (·) (x)
C 5080 000 80 (x) (·) (x)

TABLE 2. Parameter space for numerical simulations carried out to limit cycle. Total
number of control volumes Ncv , control volumes in the azimuthal direction only Nθ ,
temperature in the HHX Th. For all cases Ta= 300 K. Three meshes with increasing level
of resolution and quality (from grid A to C) are considered. Computations performed (x)
and not performed (·).

advance in time through the initial transient. Simulations have been carried out for
HHX temperatures of Th = 440, 460, 480 and 500 K and an AHX temperature of
Ta= 300 K in all cases. The acoustic perturbation is initialized with a standing wave
of 0.5 kPa in amplitude and the source terms (2.3) are applied from the beginning.
The former is only used to reduce the duration of the transient and is not required to
achieve acoustic energy growth (see § 4). Once a limit cycle is reached, two successive
grid refinement steps are carried out, resulting in grids B and C. At each step the
resolution was increased in the axial direction, especially around the sharp edges,
and systematically doubled in the azimuthal direction. The effective resolution in the
latter direction is equivalent to Wu & Moin (2008)’s direct numerical simulation of
pipe flow at comparable Reynolds numbers. The mesh size in the radial direction
is then adjusted and/or increased to optimize the cell’s aspect ratio. The sensitivity
of the wave-induced Reynolds stresses to these changes (shown later) is used as a
metric for grid convergence and has only been assessed in calculations at Th= 500 K
(table 2).

The governing equations for mass, momentum and total energy are solved in the
finite-volume unstructured code CharLESX, developed as a joint-effort project among
researchers at Stanford University. The flux reconstruction method is grid-adaptive
at the preprocessing stage and solution-adaptive at run time. It blends a high-order
polynomial interpolation scheme (up to fourth-order on uniform meshes) with a
lower-order scheme to ensure numerical stability in areas of low grid quality (Ham
et al. 2007). A second-order, essentially non-oscillatory (ENO) reconstruction is
adopted within the TBT to control unwanted oscillations in the solution caused
by the application of the source terms (2.3). The discretized system of equations
is integrated in time with a fully explicit, third-order Runge–Kutta scheme. The
code is parallelized using the message passing interface (MPI) protocol and highly
scalable on a large number of processors. The adoption of computationally intensive
discretizations such as ENO reconstruction in a limited portion of the domain has
lead to a load-balancing problem that required a volume-based dual-constrained
partitioning (Karypis & Kumar 1998; Schloegel, Karypis & Kumar 2000) to recover
acceptable performance.

4. Engine startup
In all of the numerical trials performed, the abrupt activation of the source terms

(2.3) alone in a quiescent flow provides a sufficiently intense initial disturbance
(∼1 kPa) to trigger the thermoacoustic instability, leading to the production of
acoustic energy in the system (figures 3 and 4). Several attempts have been made to
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FIGURE 3. (a) Time series of pressure along the centreline, r = 0, at x = −1.8825 m
(– –) and x = 0.0425 m (—–) and (b) axial velocity at x = −0.92 m (—–) for the case
Th = 500 K on grid A.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

(b)

(c)

(a)

154.0

171.2

178.4

175.7

100

101

FIGURE 4. Time series of pressure amplitude (kPa) on the left end of the resonator and
corresponding sound pressure level (+dB) for Th = 460 K (a), Th = 480 K (b) and Th =
500 K (c) on grid A (see table 2). The decaying case for Th = 440 K is not shown.

reduce the initial pressure amplitude, but have not been successful. In order to rapidly
damp the broadband component of such a disturbance, all cases are initiated with
a half-wavelength pressure distribution of 0.5 kPa in amplitude, with base pressure
and temperature of 101 325 Pa and 300 K. For a given hot temperature setting,
the pressure amplitude initially grows exponentially at the same rate and frequency
(∼60 Hz) at all locations in the engine. As shown later in § 4.3, the observed
behaviour (in the first few seconds of operation) can be quantitatively explained with
a system-wide model based solely on linear acoustics.

The rapidly growing pressure amplitude is accompanied by an increasing base
pressure (not shown). The latter is caused by the gradual leakage of hot fluid in
the TBT from the HHX (a nonlinear effect), already visible in the startup phase
(figure 5a, for x < 0.155 m). While such an effect is not important during the first
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FIGURE 5. (a) Base temperature (—–) and density profiles (- - -) taken along the centreline
in the REG/HX unit at t = 0.55 s for Th = 500 K, grid A (see table 2); (b) Lagrangian
fluid parcel axial position xL starting at x= 0.171 m at t= 0; (c) fluctuating pressure, p′L,
(—–) and velocity, u′L, (- - -) of the Lagrangian fluid parcel in (b) plotted against specific
volume fluctuation, v′L, over one acoustic cycle at t= 0.55 s with heat release fluctuation,
Sh
′ (2.6) shown with arrows (oriented upwards for heat addition S′h > 0 and downwards

for removal S′h < 0 with scale in figure). Both cycles are traversed clockwise, as shown
by the phase markers.

seconds of operation, it affects the growth rate at later times. As the slowly advancing
(cycle-averaged) hot flow front enters into contact with the AHX2 for the first time,
a sudden increase in the growth rate is observed. At the same time, the base pressure
plateaus due to the AHX2 picking up the excess heat. Finally, the acoustic pressure
amplitude settles after the overall dissipation matches the enhanced acoustic energy
production. These are all nonlinear effects, which will be discussed in more detail
in § 5. In the following we restrict the analysis of the generation and propagation of
acoustic energy in the system during the startup phase to linear acoustics.

The driver of the thermoacoustic instability, converting heat into acoustic power,
is the mean temperature gradient imposed in the REG/HX unit (figure 5a). Insight
into the fundamental energy conversion mechanisms can be gained by looking at the
evolution of a Lagrangian fluid parcel in the REG interacting with the acoustic field.
The slight drift in the direction of the mean temperature gradient (figure 5b) is a
nonlinear effect known as acoustic streaming (discussed later in § 5), which can be
ignored at this stage.
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The fluid parcel in the REG experiences a thermodynamic cycle converting heat
into acoustic power, which is neither the ideal Stirling or Carnot cycle (figure 5c).
For example, purely isochoric transformations, present in the ideal Stirling cycle, are
not possible due to the sinusoidal waveform of the acoustic velocity and pressure.
Moreover, isentropic transformations, present in the ideal Carnot cycle, are not
possible due to the heat-exchange and viscous losses in the REG/HX unit. However,
analogously to the ideal Stirling cycle, most of the heating and cooling occurs,
respectively, during the expansion and compression stages. The heat-transfer model in
(2.6) assumes perfect thermal contact and it is therefore likely that its adoption leads
to an overestimation of the real thermoacoustic response under comparable conditions.

Due to the orientation of the background temperature gradient (dT0(x)/dx < 0,
figure 5a), a fluid parcel in the REG that is displaced towards the HHX (u′< 0) will
experience heating. This occurs with a given phase lag with respect to the velocity
depending, in particular, on the nature of the heat transfer. In our case the heat
addition, S′h > 0, peaks ∼90◦ after the maximum negative velocity (at which point the
parcel comes to rest) and so does the positive pressure fluctuation, p′ > 0 (figure 5c).
The opposite occurs when the fluid is displaced towards the AHX. Consistently with
the energetic considerations underlying the Rayleigh criterion, S′hp′ > 0, the observed
phase differences suggest the presence of positive acoustic energy production. The
phasing between velocity and pressure fluctuations is consistent with a standing wave,
short of approximately 15◦. This slight phase difference contributes to a negative
correlation between u′ and p′, i.e. the left-travelling wave propagating through the
REG/HX is more intense than the right-travelling wave. Acoustic power is therefore
being produced.

4.1. A Lagrangian model of the thermodynamic cycle
Inspired by Swift (1988)’s theoretical TAE (figure 6, top), a one-dimensional analytical
model is derived in the following to rigorously explain the interaction between a mean
temperature gradient and a Lagrangian fluid parcel in a generic planar acoustic wave
field. The latter can be expressed as the linear superposition of a left- and a right-
travelling wave, which in complex form reads

p̂(x)= p−ei[kx+φ−] + p+ei[−kx−φ+], (4.1)
ρ0a0û(x)=−p−ei[kx+φ−] + p+ei[−kx−φ+], (4.2)

where p+/− and φ+/− are the amplitude and phase of the right/left-travelling wave and
k is the wavenumber. The acoustic pressure and velocity in time are given based on
the convention p′ = p̂(x)eiωt and u′ = û(x)eiωt, where i is the imaginary unit and the
base impedance ρ0a0 is given by the state {ρ0, T0, P0}.

Let xp = x + x′p be the instantaneous position of a fluid parcel oscillating with
small displacements x′p about the position x, where a linear temperature gradient is
locally imposed (figure 6). The fluid parcel velocity can be approximated, based on
the assumption k max(x′p)� 1, as

d
dt

x′p = u′(x+ x′p, t)=Re{û(x+ x′p)e
iωt} 'Re{û(x)eiωt}, (4.3)

yielding the relation
x̂p = û(x)/iω. (4.4)
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FIGURE 6. Results from the linear Lagrangian model (§ 4.1) applied to a one-dimensional
theoretical TAE (inspired by Swift 1988) composed of a generic plane wave interacting
with a negative temperature gradient located at x (top). (a) Imposed pressure distribution
as a function of kx , (b) overall cycle-averaged work (i.e. generated acoustic power) as
a function of kx (temperature gradient location) and (c) Lagrangian thermodynamic cycle
extracted in the temperature gradient region for kx=π/4 (c). Results for plane waves of
amplitude p− = 3 × 10−3P0, p+ = 1 × 10−3P0 (—–); p+ = p− = 2.5 × 10−3P0 (— · —);
p− = 1× 10−3P0, p+ = 3× 10−3P0 (– –) for P0 = ρ0a2

0. For all cases φ− = φ+ =−π/2.

Introducing a Lagrangian base state ρL,0,PL,0, TL,0 (specified later) for the fluid parcel
density, entropy and temperature,

ρL = ρL,0 +Re{ρ̂Leiωt}, (4.5)
sL = sL,0 +Re{ŝLeiωt}, (4.6)

TL = TL,0 +Re{T̂Leiωt}, (4.7)

and substituting into the heat-transfer equation, expressed in terms of entropy with
heat source modelled based on (2.6) and evaluated at the parcel position xp, yields

ρLTL
dsL

dt
=−αT[TL − T0(xp)], (4.8)

where the (total) time derivative on the left-hand side, applied to the Lagrangian fluid
parcel’s specific entropy, has replaced the material derivative of the Eulerian entropy
field.
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Substituting Gibbs’ relationship linearized about the Lagrangian base state TL,0, pL,0
(= p0),

dsL = cp

TL,0
dTL − R

p0
dpL, (4.9)

into (4.8), which is also linearized assuming ρLTL ' ρL,0TL,0, yields

ρL,0cp
dTL

dt
− dpL

dt
=−αT[TL − T0(xp)]. (4.10)

The imposed mean temperature at the particle location, T0(xp), can be expressed via
the Taylor expansion

T0(xp)= T0(x̄)+ x′p
dT0

dx

∣∣∣∣
x=x̄

(4.11)

which is exact in the case of a linear base temperature distribution. Substituting (4.11)
into (4.10) yields

ρL,0cp
dTL

dt
− dpL

dt
=−αT

[
TL − T0(x̄)− x′p

dT0

dx

∣∣∣∣
x=x̄

]
. (4.12)

Defining the Lagrangian-based state for temperature such that TL,0 = T0(x), assuming
pL = p and switching to the complex form,

ρL,0cpiωT̂L − iωp̂=−αT

[
T̂L − x̂p

dT0

dx

∣∣∣∣
x=x̄

]
, (4.13)

where the Lagrangian base density is ρL,0 = p0/(RTL,0).
If the acoustic field is assigned, so are the complex pressure amplitude p̂ and

particle displacement x̂p = (iω)−1û(x), which then allows one to solve for T̂L from
(4.13). The density of the Lagrangian parcel can then be calculated from the linearized
equation of state

ρ̂L = p̂− ρL,0RT̂L

RTL,0
. (4.14)

The work done by the fluid parcel on the surrounding ambient per unit time
(generated acoustic power) is

ẇ=− p
ρ

Dρ
Dt
'− 1

ρL,0

1
2

Re{p̂(iωρ̂L)
∗}. (4.15)

Depending on the nature of acoustic wave being imposed (figure 6a), ranging from
purely left-travelling to purely right-travelling, a different phasing between p̂ and
û is achieved, determining ẇ (figure 6b). In the case of a standing wave, acoustic
energy will be absorbed (ẇ < 0) or generated (ẇ > 0) depending on the location of
the temperature gradient, x. For a sufficiently high amplitude of the right-, p+� p−,
(or left-, p− � p+) travelling wave, acoustic power is ultimately only absorbed (or
generated) for any x in the case of a negative mean temperature gradient, dT0/dx< 0
(figure 6b). This shows that an acoustic wave travelling in the same direction as
or opposite to the imposed mean temperature gradient (applied over a region small
compared to the wavelength) will be amplified or absorbed, respectively. Moreover,
the acoustic power associated with the energy conversion occurring in an (almost)
purely travelling wave is remarkably higher (see area enclosed by the p–v diagrams
in figure 6c) than that of a standing wave of comparable amplitude. This confirms
Ceperley (1979)’s seminal intuition that led to the revolutionary concept of travelling-
wave energy conversion, trumping thereafter designs based on standing waves.
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4.2. Acoustic network of travelling waves
In spite of the finite amplitude of the initial perturbation (exceeding 1 % of the base
pressure) and the immediate establishment of nonlinear effects, the exponentially
growing acoustic amplitude (with uniform growth rate in the entire system) suggests
that the system-wide behaviour in the startup phase can be analysed by invoking
linear acoustics. The low frequencies observed in the numerical simulations and the
high aspect ratio of the resonator (with lowest cut-on frequency ∼1.7 kHz) allows
us to neglect radial or azimuthal acoustic modes at the resonator scale. This suggests
that, as a first approximation, our analysis can be restricted to planar waves. The
nature of the thermoacoustic instability in the REG/HX (analysed in § 4.1) suggests
that the pulse tube acts as an amplifier of left-travelling waves. These are expected
to propagate into the resonator, be reflected back and, upon returning to the REG/HX
unit as right-travelling waves, propagate both through the pulse tube and in the
feedback inertance (figure 1), being absorbed in the former case (figure 6c) and
propagating freely in the latter. The acoustic power propagating through the inertance
is looped back into the REG/HX unit via the compliance, hence creating a network
of self-amplified travelling waves. This scenario, typical of travelling-wave TAEs built
in a looped configuration (Backhaus & Swift 2000), is confirmed in the following
analysis.

An exact local decomposition in terms of left (−) and right (+) travelling waves

p′(t)= p−f (ωt+ φ−)+ p+f (−ωt+ φ+), (4.16a)
u′(t)=−u−f (ωt+ φ−)+ u+f (−ωt+ φ+), (4.16b)

can allow the direct evaluation of the amplitudes p± and u± and phases φ± of purely
travelling waves of a given generic waveform f ( ) (periodic function of period 2π). In
our case, the angular frequency ω is much larger than the growth rate (discussed in
§ 4.3), allowing us to ignore the variations of pressure and velocity amplitudes over
one acoustic period as well as the change in base impedance, ρ0a0, due to a DC
mode in pressure (discussed above). The following analysis is restricted to the startup
phase and for locations in the engine outside of the REG/HX unit where the strong
mean temperature causes non-negligible spatial gradients of the base impedance and
the isentropic wave propagation assumption to be violated.

The acoustic perturbation (4.16) can be rewritten in the form of a complex Fourier
series

+∞∑
k=−∞

p̂keikωt = p−
+∞∑

k=−∞
f̂keik[ωt+φ−] + p+

+∞∑
k=−∞

f̂ ∗k eik[ωt−φ+], (4.17a)

ρoao

+∞∑
k=−∞

ûkeikωt =−p−
+∞∑

k=−∞
f̂keik[ωt+φ−] + p+

+∞∑
k=−∞

f̂ ∗k eik[ωt−φ+], (4.17b)

where p±=±ρ0a0u± and the superscript ∗ indicates the complex conjugate. Letting the
mth mode be any non-zero Fourier component, the unknowns p± and φ± are easily
determined by isolating that mode from (4.17), yielding

p̂m = f̂m[p−eimφ−] + f̂ ∗m[p+e−imφ+], (4.18a)

ρoaoûm =−f̂m[p−eimφ−] + f̂ ∗m[p+e−imφ+]. (4.18b)
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FIGURE 7. Left (–, B, r) and right (+, D, t) travelling-wave amplitudes, p±, (a)
and phases, φ±, (b) extracted from the Navier–Stokes calculations based on the linear
approximation (4.16) for time t = 0.55 s for the Th = 500 K case on grid A. The
locations where data is extracted are shown in the top subfigure. White and black symbols
correspond to values extracted on the centreline and in the feedback inertance, respectively.

The amplitudes and phases of the modes in (4.16) can be obtained from the magnitude
and phases of the complex unknowns grouped into squared brackets above, yielding

p− = |p̂m − ρ0a0ûm|/|2f̂m|, (4.19a)

p+ = |ρ0a0ûm + p̂m|/|2f̂ ∗m|. (4.19b)

The phases φ− and φ+ are then readily extracted from (4.18) given the pressure
amplitudes p− and p+.

This procedure is applied to the discrete set of points in figure 7(top) located along
the resonator axis and around the pulse tube. Results show that left-travelling waves
leaving the REG/HX unit propagate into the resonator and are reflected back with a
slightly lower amplitude due to losses in the resonator (figure 7a). Consistently with
the one-dimensional approximation in (4.16), the acoustic power can be expressed as

Ė+a =
∫

A
p′u′dA= A

ρ0a0
[p+2 − p−2]

+∞∑
k=−∞

f̂ ∗k f̂k, (4.20)

providing an energetic interpretation to the imbalance p−≷ p+. The data (figure 7a,b)
confirm that, as anticipated earlier in this section, the acoustic power generated in
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the REG/HX is fed back to it by the compliance after being channelled through the
inertance, where p+2� p−2.

The adopted coaxial configuration is not efficient as it allows part of the acoustic
power that is returned by the resonator to be absorbed by the pulse tube. This results
in a spatial distribution of the phases φ− and φ+ almost resembling a standing wave
(figure 7b). However, the clear deviation in the REG/HX and in the inertance from
such a pattern, both in the phases, φ±, and in the wave amplitudes, p±, is due to the
acoustic energy production mechanisms illustrated in figure 5c and modelled in § 4.1,
which are based on the travelling-wave concept (Ceperley 1979).

The presence of acoustic power being looped around the REG/HX unit (the
feedback inertance), which is a component not found in standing-wave TAEs,
effectively qualifies the proposed model as a travelling-wave TAE and, as discussed
later in § 5, is directly responsible for nonlinear processes such as Gedeon streaming.
If the same model had been rearranged in a looped configuration, the departure from a
pure standing wave in the REG/HX unit and inertance would only be (quantitatively)
more significant, while retaining the same (qualitative) structure as found in the
present configuration.

4.3. System-wide linear modelling
Results shown so far suggest that nonlinearities do not play an important role in
explaining the acoustic energy propagation and amplification mechanisms during the
startup phase. However, given the high amplitude of the initial perturbation (∼1 kPa)
and the presence of complex geometrical features such as the sharp edges of the pulse
tube (inducing vortex shedding from the start), it is important to assess to what extent
a system-wide linear model is able to quantitatively explain the observed instability.

Building upon well-established linear modelling approaches (Rott 1969; Ward
& Swift 1994; de Waele 2009), the engine is divided into a collection of control
volumes (figure 8), representing different components, each modelled as a one-
or zero-dimensional element, exchanging acoustic power and mass with adjacent
components. Data from the Navier–Stokes simulations suggests that the pressure
field is uniform within the compliance, consistent with de Waele (2009)’s modelling
choices. Such a component is, in fact, compact with respect to the fundamental
wavelength. By imposing the conservation of mass and assuming an isentropic
relation between volume-averaged density and pressure variations one obtains, in the
time domain,

d
dt

p′c =wc0[U′i1 −U′t0], (4.21)

where p′c, U′i1 and U′t0 are, respectively, the instantaneous fluctuating pressure in the
compliance and flow rates exchanged with the inertance through surface i1, and with
the pulse tube through t0 (figure 8), and wc0 = γP0/Vc0 , where P0 is the base pressure
and Vc0 the volume of the compliance.

The very small variation among the growth rates and frequencies extracted from the
numerical simulations at the locations in figure 7 (not shown) suggests that normal
modes can be assumed for all fluctuating quantities. By adopting the e+iσ t convention
with σ =−iα + ω, where α and ω are, respectively, the growth rate and the angular
frequency, (4.21) becomes

iσ p̂c =wc0[Ûi1 − Ût0]. (4.22)
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Resonator Pulse tube

Junction Feedback inertance

Compliance

FIGURE 8. Sketch illustrating the subdivision of the engine into control volumes
representing different components (cf. figure 1): compliance (c), pulse tube (t), feedback
inertance (i), junction (J), and resonator (R). Control surfaces are shown with dashed
lines marking the beginning (0) and the end (1) of one-dimensional segments (oriented
according to arrows) modelling the pulse tube, inertance and resonator. Complex pressure,
volumetric flow rate and temperature are indicated with p̂, Û and T̂ respectively.
References to the TBT are dropped in the context of the analysis of the startup phase
during which nonlinear effects can be neglected. The left end of the control volume
representing the junction is located at x=−23 mm.

The same modelling approach is adopted for convenience at the junction, where the
conservation of mass reads

iσ p̂J =wJ0[ÛR1 − Ûi0 + Ût1] (4.23)

with wJ0 = γP0/VJ0 , where VJ0 is the volume of the control volume modelling the
junction (figure 8).

Phase variations along the axial coordinate, x, are significant for the other
components of the engine and the direct application of the complete set of linearized
Euler equations is necessary. In all cases, the fluctuating field and the base state,
defined by ρ0, T0 and P0, are assumed to be exclusively a function of x.

For the resonator (R) and feedback inertance (i) isentropic wave propagation is
assumed, yielding a simplified set of linearized equations for mass and momentum,

iσ p̂=−ρ0a2
0

A(x)
dÛ
dx
, (4.24a)

iσ Û =−A(x)
ρ0

dp̂
dx
, (4.24b)

valid for a variable cross-sectional area distribution A(x), where a0 = √γRT0 is the
speed of sound based on the base temperature. By introducing a spatial discretization,
the set of equations (4.24) can be recast in algebraic form, as

(iσ I −BR) · uR = 0 (4.25)

for the resonator, and
(iσ I −Bi) · ui = 0 (4.26)

for the inertance, where I is the identity matrix, B is an operator discretizing the
right-hand side of (4.24), and u is a discrete collection of complex amplitudes for
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pressure and flow rate, specifically, uR = {p̂R, ÛR} for the resonator, and ui = {p̂i, Ûi}
for the feedback inertance.

The systems of equations (4.25) and (4.26) are isolated component eigenvalue
problems (with boundary conditions to be specified) and their resolution, in the
context of a system-wide linear stability analysis, is only meaningful if coupled with
all of the other components in the engine, as discussed in the following.

The heat transfer and drag in the pulse tube, and the presence of gradients of base
density and temperature in the REG/HX unit, require variations of entropy to be
explicitly accounted for. Replacing the conservation equation for the total energy with
the transport equation for entropy, expressed in terms of temperature and pressure
using Gibbs’ relation, yields

iσAρ̂ + dÛ
dx
ρ0 + Û

dρ0

dx
= 0, (4.27a)

iσ Û + A
ρ0

dp̂
dx
=−RC

ρ0
Û, (4.27b)

ρ0Cp

[
iσ T̂ + Û

A
dT0

dx

]
− iσ p̂=−αT T̂, (4.27c)

where the source term on the right-hand side of (4.27b) is obtained by linearizing
the drag model (2.3a) due to Organ (1992) and the heat-transfer model on the right-
hand side of (4.27c) is the same one used in (2.6) (Bejan 2004). Such terms are only
activated in the HXs and the REG. The spatial distribution of the base state in the
pulse tube is taken from the numerical data at t = 0.55 s (figure 5a), at the early
stages of the startup phase (figure 4).

Recasting the system of equations in (4.27) in diagonalized form yields

iσ p̂=
[
ρ0RBT̂Û −

P0

A
d
dx
− RT0

A
dρ0

dx

]
Û + [ρ0RBT̂T̂]T̂, (4.28a)

iσ Û =
[
− A
ρ0

d
dx

]
p̂+

[
−Rc

ρ0

]
Û, (4.28b)

iσ T̂ =BT̂ÛÛ +BT̂T̂ T̂, (4.28c)

where

BT̂Û =−
T0

A

[
1
T0

dT0

dx
+ (γ − 1)

d
dx

]
, (4.29)

BT̂T̂ =−
γαT

ρ0Cp
, (4.30)

which, discretized in space, yields

(iσ I −Bt) · ut = 0, (4.31)

where ut = {p̂t, Ût, T̂t}.
The complete eigenvalue problem can finally be solved by coupling the isolated

component eigenvalue problems (4.22), (4.23), (4.25), (4.26) and (4.31) via the
following conditions

ÛR0 = 0, (4.32a)
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d
dx

p̂R

∣∣∣∣
0

= 0, (4.32b)

p̂J = p̂R1 = p̂i0 = p̂t1, (4.32c)
p̂c = p̂i1 = p̂t0, (4.32d)

T̂t1 =
1
ρ0R

γ − 1
γ

p̂J, (4.32e)

T̂t0 =
1
ρ0R

γ − 1
γ

p̂c, (4.32f )

representing, respectively, the hard-wall condition on the left end of the resonator,
continuity of pressure at the junction and in the compliance, and an isentropic closure
for the temperature fluctuations at the two ends of the pulse tube. The final eigenvalue
problem can now be built by first combining (4.25), (4.26) and (4.31) into one system
of equations,

where v= {ut; uR; ui}, and then incorporating the conditions (4.32) and the equations
(4.22) and (4.23) to close the problem. Each of the conditions in (4.32), (4.22) and
(4.23) replaces one corresponding equation in (4.33), therefore, not affecting the rank
of the system. The eigenvalue structure is finally recovered by absorbing the equations
that do not contain σ (i.e. the ones deriving from (4.32)) via Gaussian elimination.

The linear modelling framework composed of equations (4.22)–(4.24) and (4.27)
is first tested against the three-dimensional numerical simulation data for verification
purposes. First, the acoustic impedance at different axial positions in the resonator,
obtained by numerically integrating (4.24), has been quantitatively verified against the
simulation data, as well as the constants wc0 in (4.22) and wJ0 in (4.23), which are
equal to 135× 106 N m−5 and 312× 106 N m−5, respectively. Good agreement is also
obtained by directly integrating (4.27) from section t0 to t1 and i0 to i1 (figure 8) using
data from the numerical simulations as initial conditions (table 3). The integration
has been carried out with the exact value of the frequency and growth rate extracted
from the simulations (figure 9). Numerical trials have shown that, for a given initial
condition and base state, the direct integration of (4.27) is much more sensitive to
the angular frequency ω than the growth rate α, which suggests that the prediction of
the latter, in thermoacoustic systems, is potentially problematic, especially within the
framework of linear modelling in the spectral domain.

The eigenvalues σ are finally calculated by directly solving the complete eigenvalue
problem for operating conditions ranging between τ = 1.25 and τ = 1.85, where
τ = Th/Tc is the hot-to-cold temperature ratio. The segments representing the pulse
tube, inertance and resonator were discretized with 256, 64 and 32 points, respectively,
with a fourth-order spatial polynomial reconstruction. The frequency of instability
and its variation with τ are predicted within a ∼0.2 Hz error (figure 9a). The
operating frequency of the system could also be predicted (with a ∼1 Hz error) by
simply solving the eigenvalue problem (4.24) in the complete variable-area resonator
alone (without the pulse tube), in accordance with the phase distribution shown in
figure 7(b), which is consistent with simple standing-wave resonance. The growth rate
is slightly overpredicted (figure 9b), having neglected viscous and nonlinear losses.
Overall, the quantitative agreement is very encouraging, serving both as a verification
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FIGURE 9. (a) Frequency, ω/2π, and (b) growth rate, α, and limit-cycle pressure
amplitude, p′lc, versus hot-to-cold temperature ratio, τ = Th/Tc. Linear stability model
(- - -), numerical simulations (symbols) with corresponding fitting (—–) yielding the critical
temperature ratio τcr = 1.505 and p′lc

∣∣
δτ=1 = 41 000 Pa.

step for the full Navier–Stokes calculations and to gain insight into the nature of the
instability, also briefly discussed in the following section.

One could also think of solving the complete eigenvalue problem by iteratively
integrating (4.27) and (4.28) in space, starting from a given set of initial conditions or
guesses. This approach is adopted in DELTAEC (Ward & Swift 1994) to predict the
limit-cycle pressure and velocity distributions in TAEs, which is a valid approximation
in the case of relatively low-pressure amplitudes, limited waveform distortion and
simple geometries. Several numerical trials, however, have shown that applying
the same approach to the eigenvalue problem above (valid for the startup phase
only) leads to numerically unstable results, especially when trying to predict the
growth rate. Accurately predicting the correct instability frequency, on the other hand,
appears to be possible regardless of the quality of the specific strategy adopted. A
fully implicit spatial formulation, similar to Helmholtz solvers used in investigations
of thermoacoustically unstable reactive flows (Poinsot & Veynante 2011), which has
been adopted in the present context, is the only one that has proved to be reliable.

4.4. Supercritical Hopf bifurcation
A linear fit of the growth rates, α, extracted from the numerical simulation data versus
the temperature ratio τ = Th/Tc (figure 9b) suggests a critical value of τcr = 1.505.
This is in perfect agreement with the same value obtained by fitting the functional
form suggested by the supercritical Hopf bifurcation model

p′lc = p′lc
∣∣
δτ=1

√
τ − τcr, (4.34)

to the limit-cycle pressure amplitudes p′lc versus τ . A similar result is obtained via
nonlinear modelling by Mariappan & Sujith (2011). The fitting parameters in (4.34)
are p′lc

∣∣
δτ=1 (dimensional) and τcr (dimensionless). Moreover, two assumptions required

by the Hopf bifurcation theorem are also satisfied: the non-hyperbolicity condition,
α = 0 and ω 6= 0 at τcr (figure 9a), and the transversality condition, dα/dτ 6= 0 at
τcr (figure 9b). These results have important implications on the parametrization of
nonlinear fluxes, discussed later in § 5.2.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

74
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.745


Modelling of a thermoacoustic heat engine 389

5. Nonlinear regime

The analysis carried out so far has been exclusively based on the assumption of
linear acoustic perturbations and therefore limited to the startup phase. Nonlinear
effects, however, are already detectable after only a few cycles of operation. These
include the departure from exponential growth of the pressure amplitude (figure 4),
the presence of broadband fine-scale flow structures associated with transitional
turbulence, and a steady drift in the fluid parcels’ motion, already noticeable in the
REG/HX during the startup phase (figure 5b). The latter phenomenon is known as
acoustic streaming, which is the focus on this section.

The most dramatic manifestation of acoustic streaming in travelling-wave TAEs is
the advective heat leakage from the HHX (figure 10), which requires the introduction
of the AHX2 (figure 1) to remove the excess heat and achieve a limit cycle. Acoustic
streaming occurs everywhere in the engine, and its prediction and its suppression is
one of the main technological challenges in the design of efficient TAEs.

5.1. Direct modelling of acoustic streaming
A triple decomposition can be invoked to separate the streaming flow (rigorously
defined below) from the acoustic field and the small-scale high-frequency fluctuations,
starting with the Reynolds decomposition

ρ = ρ0 + ρ ′, (5.1a)
p= p0 + p′, (5.1b)
ui = u0,i + u′, (5.1c)

where the subscript ‘0’ indicates a sharp-spectral-filtered quantity (also used before to
indicate mean quantities), such as

u0,i = ui =
∫ ∞
−∞

ui(x, t+ τ)sin(πfcτ)

πτ
dτ , (5.2)

where fc is the cutoff frequency. The filtering operation (5.2) is, in practice,
carried out over six acoustic periods by adopting Simpson’s quadrature rule on
the discrete data sampled at 2.2 kHz and fc = 0.9f , where f = ω/2π is the acoustic
frequency (figure 9a). The remainder of the filtering operation in (5.1) can be further
decomposed into a purely acoustic (subscript ‘a’) and a small-scale component
(subscript ‘t’),

ρ ′ = ρ ′a + ρ ′t , (5.3a)
p′ = p′a + p′t, (5.3b)

u′i = u′a,i + u′t,i, (5.3c)

where the acoustic component can be isolated by applying another filtering operation
that removes frequencies higher than f while preserving the full acoustic amplitude.
Due to the truncation in time of the filter kernel, this was achieved, in practice, with
a cutoff frequency of fc > 10f .

No evidence of significant turbulent activity has been found in the resonator. The
Stokes Reynolds number in the neck is approximately 750, barely entering the
intermittently turbulent regime (Jensen, Sumer & Fredsøe 1989). The low Stokes
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(d)

FIGURE 10. (Colour online) Instantaneous visualizations of temperature contours
(colourbar beneath) showing streaming of hot fluid in the TBT and vorticity magnitude
(white) showing intense vortex shedding and transitional turbulence. Data is shown
over one complete acoustic cycle with 90◦ phase increments from (a) to (d). (See
supplementary material available at http://dx.doi.org/10.1017/jfm.2014.745).

Reynolds number, together with other complex geometrical features, does not allow
turbulence to be fully developed during the acoustic cycle.

Vorticity contours from instantaneous visualizations (figure 10) suggest that the most
intense small-scale fluctuations occur in the feedback inertance. The unsteadiness of
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FIGURE 11. Profiles of cycle- and time-averaged variance of acoustic 〈u′a,xu′a,x〉 (—–)
and small-scale 〈u′t,xu′t,x〉 axial velocity fluctuations (– –) extracted in the inertance, for
x/Li = 0.01, 0.2, 0.40, 0.60, 0.80, 0.99, from left to right, where Li = 0.204 m (shifted
by 500 m2 s−2 for clarity) for Th = 500 K and grid C (table 2).

the (larger-scale) acoustic fluctuations does not allow turbulence to reach a fully (or
even partially) developed state. The Reynolds number based on the Stokes thickness
δν = √2ν/ω and the maximum velocity amplitude at the centre of the feedback
inertance is approximately Reδν = 360 (far below the upper limit of the disturbed
laminar regime described in Jensen et al. (1989)), suggesting that the turbulent
kinetic energy generated from the breakup of the vortices rolling up from the edges
of the annular tube is not sustained by the wall-induced shear. Moreover, turbulent
stresses extracted for the Th = 500 K case (highest drive ratio) and for the finest
grid available (table 2) are approximately two orders of magnitude smaller than
the acoustic stresses (figure 11) and will be neglected in the following analysis.
This choice also accommodates the need to devise a simple predictive modelling
framework for the streaming velocity (5.7), which is discussed in the following.

Substituting the decomposition (5.1) into the time-filtered conservation of mass,
ignoring temporal and spatial variations of the filtered density field (a strong
assumption, particularly for the regions around the sharp edges and in the TBT),
assuming that second-order quantities in the small-scale fluctuations are negligible
with respect to their acoustic counterpart (figure 11),

u′t,iu′t,i� u′a,iu′a,i, (5.4)

ρ ′tu
′
t,i� ρ ′au′a,i, (5.5)

(despite both being nominally second order) yields the divergence-free condition

∂ ũi

∂xi
= 0, (5.6)

where ũi is the density-weighted velocity field, ũi = ρui/ρ0, defined based on the
filtering operation (5.2), which, under the assumptions made, can be expressed as

ũi ' u0,i +
ρ ′au′ai

ρ0
. (5.7)

In the present manuscript the density-weighted velocity field, ũi, is adopted as the
definition of the streaming velocity based on (5.7), which is second-order accurate in
wave amplitude.
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FIGURE 12. (Colour online) Contours of axial component of time-averaged streaming
velocity 〈ũx〉 (5.7) for Th = 500 K and grid C (table 2). Full-scale visualization (a) and
zoom on the right end (b). Results have been mirrored about the centreline and streamlines
have been only numerically approximated for illustrative purposes.

The streaming velocity field in our case is axially symmetric and spans the full
extent of the engine (figure 12). Very large and elongated recirculations, of the order
of a quarter of the acoustic wavelength, are visible in the resonator and are driven
by the wall-normal gradient of the wave-induced shear stresses (not shown). Large
recirculations of the order of the resonator radius near the sharp edges of the pulse
tube and a mean flow circulating around the pulse tube (following the direction of the
amplified waves) are also observed. The latter is called Gedeon (or DC) streaming
(Gedeon 1997) and is responsible for the mean transport of hot fluid away from
the HHX, in the direction of the AHX2. As a result of such advective process, the
TBT experiences a significant thermal load, with hot fluid occupying, on average, a
significant portion of the TBT’s length at the limit cycle (figure 10). Such a process,
leading to heat leakage, limits the efficiency of most travelling-wave TAEs, as also
discussed later in the context of the present engine.

Assuming that time scales of variation of the filtered quantities ρ0 and u0,i are
much longer than the acoustic period, and under the same assumptions underlying the
derivation of (5.7), it can be shown that ũi satisfies the incompressible Navier–Stokes
equations (Rudenko & Soluyan 1977),

∂ ũi

∂t
+ ∂

∂xj
ũiũj + ∂p0

∂xi
− ν∇2ũi = Fa,i, (5.8)

where p0 = P0/ρ0 and the forcing term Fa,i is the divergence of the wave-induced
Reynolds stresses, which can be expressed to second-order accuracy in wave amplitude
as

Fa,i =− ∂

∂xj
u′a,ju′a,i +

∂

∂xj

{
− ν
ρ0

[
∂

∂xj
ρ ′au′a,i +

∂

∂xi
ρ ′au′a,j

]
+ 2

3
ν

ρ0

∂

∂xk
ρ ′au′a,kδij

}
. (5.9)

For large Reynolds numbers based on the streaming velocity, the terms containing the
molecular diffusion in (5.9) can be neglected, finally yielding

Fa,i '− ∂

∂xj
u′a,ju′a,i. (5.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

74
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.745


Modelling of a thermoacoustic heat engine 393

–20 –10 0 100 110 1209080604010 20 705030

60
59
58
57
56
55
54
53
52

–20 –10 0 100 110 1209080604010 20 705030

60
59
58
57
56
55
54
53
52

–150 –75 0 750 825 90067560045030075 150 525375225

60
59
58
57
56
55
54
53
52

–20 –10 0 100 110 1209080604010 20 705030

60
59
58
57
56
55
54
53
52

(a)

(b)

(d )

(c)

FIGURE 13. Profiles of time-averaged streaming velocity (a) and wave-induced Reynolds
stresses (b–d) in the inertance, for x/Li= 0.01, 0.2, 0.40, 0.60, 0.80, 0.99, respectively from
left to right, where Li = 0.204 m (shifted by 20 m s−1 or 150 m2 s−2 for clarity). Data
for Th = 500 K and grid A (— · —), grid B (– –) and grid C (—–) (table 2). The time-
averaged volumetric flux through the inertance (intensity of Gedeon streaming) for this
drive ratio is approximately 0.0033 m3 s−1, corresponding to a mean streaming velocity
of 1.2 m s−1.

The maximum value of the stresses u′a,ju′a,i is expected to be found in the feedback
inertance where the acoustic power is maximum in the system. A grid-sensitivity study
on all of the components of the stresses in the inertance (figure 13) shows monotonic
grid convergence of the stresses from grid A to C (table 2).
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FIGURE 14. (Colour online) Contour plots of the divergence of wave-induced Reynolds
stresses. (a) Axial, Fa,x, and (b) radial, Fa,r, components extracted for Th = 500 K on
grid C (table 2).

The direct evaluation of (5.10) from the numerical data reveals very high values
of Fa,i near the sharp edges of the annular tube (figure 14) which locally drive the
large aforementioned recirculations. On the other hand, Gedeon streaming is driven
by the viscous decay of the wave amplitude in the annular inertance. This results in
a negative axial gradient of normal stress u′a,xu′a,x, visible in both figures 14 and 13(b).

An axially symmetric numerical model, StreamX (for more details see appendix A),
has been developed to directly simulate the streaming velocity field as the solution
of the incompressible equation (5.8) driven by the divergence of the wave-induced
stresses (figure 14) extracted from the three-dimensional fully compressible calcula-
tions. Secondary features such as steady large-scale recirculations near the sharp edges
of the annular tube are only qualitatively reproduced (figure 15), with the appearance
of a second recirculation in the compliance, which is not observed in the calculations.
The actual target of the present low-order modelling effort is the prediction of the
intensity of the Gedeon streaming. In spite of the numerical challenges involved in
solving incompressible flow in the presence of a sharp edge, the latter is predicted
fairly accurately (figure 17a), especially for low drive ratios. For high drive ratios,
resulting in very high limit-cycle acoustic amplitudes, the errors associated with
the assumptions made in deriving (5.7), (5.8) and (5.10) become too severe. ‘Slow’
streaming (Rudenko & Soluyan 1977) never actually occurs in our engine, where the
maximum intensity of ũ is comparable to the acoustic velocity amplitude in all cases.

5.2. Efficiency and energy fluxes in the TBT
As the acoustic energy grows during the initial transient, so does the intensity of the
Gedeon streaming, increasing the rate of advective transport of hot fluid away from
the HHX towards the AHX2. This results in unwanted heat leakage, which lowers
the overall energy conversion efficiency. The gradual expansion of the gas in the TBT
determines a slow increase of the background pressure in the system (not shown),
which plateaus only when the hot temperature front enters into contact with the
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FIGURE 15. Positive (—–) and negative (– –) iso-levels of the Stokes streamfunction
from the incompressible solver StreamX driven by the wave-induced Reynolds stresses
(figure 14) extracted from the fully compressible three-dimensional calculations for Th =
500 K on grid C (table 2).

AHX2. At this point, a rapid increase of the growth rate is also observed, as shown
by the kink in the time series in figure 4. This is due to a change in the structure
of the velocity field in the TBT after the first contact between the hot gas front and
the AHX2 occurs. As shown in figure 10, and in time series of instantaneous axial
velocity in the TBT (not shown), when the hot gas is displaced towards the AHX2,
the hot flow front is abruptly stopped by the sudden density increase caused by the
cooling in the AHX2. This results in a reduction of the cycle-averaged velocity and,
therefore, a temporary containment of the intensity of the Gedeon streaming and heat
leakage from the HHX.

A limit cycle is only reached later, with a constant background pressure, when the
losses in the system balance the enhanced acoustic energy production. These losses
include streaming in the resonator and dissipation associated with the turbulent vortex
shedding from the pulse tube walls.

The exact conservation equation for the density-averaged internal energy, ẽ= ρe/ρ,
reads (Lele 1994)

∂

∂t
(ρẽ)=− ∂

∂xj

(
ρ
[
ũjẽ+ h̃′′u′′j

]
− qj

)
+ ∂

∂xj

(
p′u′′j

)+ u′′i
∂p
∂xi
− p′

∂u′′i
∂xi

, (5.11)

where u′′j = ui− ũi and h′′= hi− h̃ are the fluctuations of the density-weighted averages
of velocity and enthalpy, and qj is the time-filtered molecular heat flux. Applying
(5.11) to the flow in the TBT approximated as quasi one-dimensional, neglecting small
terms and assuming equilibrium conditions, yields

〈 ρũẽ〉︸ ︷︷ ︸
Advective H.T.

+
〈
ρh̃′′u′′

〉
︸ ︷︷ ︸

Thermoacoustic H.T.

− 〈
p′u′′

〉︸ ︷︷ ︸
Acoustic energy flux

' const., (5.12)

which is verified with fairly good approximation in the simulations (figure 16b).
The intensity of the advective heat transport in the TBT is proportional to the
mean temperature profile, since the streaming velocity is uniform in this region
(figure 12). The adjustment length back to ambient temperature of the mean
temperature distribution increases with the drive ratio (figure 16a). This is due
to thermoacoustic heat transport mechanisms. As the hot fluid front is transported
with stronger intensity towards the AHX2 by the high-amplitude velocity fluctuations,
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FIGURE 16. (a) Axial distribution of mean temperature for Th = 460 K, Th = 480 K and
Th = 500 K and (b) surface integrated energy fluxes in (5.12) for grid C and Th = 500 K
at limit cycle. Acoustic power (- -), thermoacoustic heat transport, (– –), advective heat
transport (— · —) and overall sum (E).

steeper instantaneous temperature gradients form at the interface between the AHX2
and the TBT (figure 10). The result is a net cycle-average conductive heat flux in
the positive axial direction, creating a temperature buffer region. The intensity of the
conductive heat flux in (5.11) is, however, negligible compared to the quantities in
(5.12), which dominate the energy transport budget in the TBT.

An accurate evaluation of the other terms in (5.11) is, unfortunately, made
impractical by the (necessary) application of a second-order ENO reconstruction in the
TBT and the smoothing associated with azimuthally averaging the three-dimensional
unstructured data. The energy balance expressed by (5.12) is, however, satisfied to a
sufficient degree of accuracy to gain insight into the role of the Gedeon streaming in
determining the overall efficiency of the device and the scaling of the energy fluxes
in (5.12).

While no direct energy extraction component (e.g. an acoustic load such as a piezo
electric element or a linear alternator) has been included in the set-up investigated, a
metric for efficiency can still be defined as

ηH =
〈

p′u′′
〉〈

ρh̃′′u′′
〉
+ 〈 ρũẽ〉

, (5.13)

which is the ratio between acoustic energy produced and total heat dissipated by the
AHX2. For example, our theoretical device produces ∼0.2 kW of acoustic power at
Th= 500 K while losing ∼2.0 kW, mostly due to mean advection caused by Gedeon
streaming, achieving a modest efficiency (∼10 %). Realistic travelling-wave TAEs can

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

74
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.745


Modelling of a thermoacoustic heat engine 397

 0.3

0.6

0.9

1.2

1.5

0

 –1.5

–1.0

–0.5

0

0.5

–2.0
1.50 1.55 1.60 1.65 1.70 1.50 1.55 1.60 1.65 1.70

0.05

0.10

0.15

0.20

0.25

0

G
ed

eo
n 

st
re

am
in

g

Po
w

er

(a) (b)

FIGURE 17. (a) Intensity of Gedeon streaming versus hot-to-cold temperature ratio
for fully compressible Navier–Stokes simulations (@) with corresponding fit (——),
incompressible model (p), order-of-magnitude analysis (5.16) (D), efficiency ηH (5.13)
( ). (b) Average nonlinear energy fluxes at limit cycle, full Navier–Stokes simulations
(symbols) and corresponding fit based on (5.18), (5.20), (5.22) (lines), respectively, for
advective heat transport ( , — · —), acoustic power (A, - - - ), and thermoacoustic heat
transport (♦, – –).

reach overall efficiencies of >20 %, or even >30 % if built in a cascaded configuration
(Gardner & Swift 2003). The efficiency directly evaluated from the simulation data
(figure 17a) decreases rapidly with the temperature ratio, which could be expected
in TAEs with excessive Gedeon streaming controlling the energy balance in the TBT
(G.W. Swift, Personal communication, 2014). However, the uncertainties in the integral
quantities in figure 17b, due to averaging over a limited number (approximately 25)
of acoustic cycles, makes the direct metric for the efficiency (5.13) not very reliable.

A more robust estimate for ηH can be derived by investigating the scaling of the
volume-averaged energy fluxes in (5.12) (figure 17b) with a simple order-of-magnitude
analysis and curve fitting. The advective flux in the TBT, driven by the Gedeon
streaming, is expected to scale as

〈ρũẽ〉 ∼ ρ0,tbtudcCvTh, (5.14)

where ρ0,tbt ∼ p0/(RTcτ) is the average density in the TBT and the hot temperature is
simply Th = Tcτ . The analytical expression of the streaming velocity due to a freely
propagating travelling wave,

udc = 1
2
|u′lc|2

a0
, (5.15)

suggests that the intensity of the streaming velocity scales quadratically with the
limit-cycle velocity amplitude u′lc ∼ p′lc/(ρ0a0). While the quadratic scaling of the
streaming velocity is an expected result, a more quantitative estimate for udc can be
obtained by further simplifying the analysis in § 5.1, where the streaming velocity is
directly modelled based on an hydrodynamic analogy. In fact, by roughly measuring
the average spatial decay rate of the axial acoustic stresses in the inertance, 〈Fa,x〉i
(figure 18a), and equating that to the linearized viscous losses in the pulse tube (see
(2.3a)), the intensity of the Gedeon streaming can be estimated as

udc ∼ ρ0AiLi〈Fa,x〉i
VAHX2Rc,AHX2 + VHHXRc,HHX + VREGRc,REG + VAHXRc,AHX

, (5.16)
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FIGURE 18. (a) Illustration of balance (5.16) between travelling-wave decay in feedback
inertance and drag due to HXs and REG. (b) Streamwise profile of axial wave-induced
stresses extracted at r = 56 mm for Th = 460 K (a), Th = 480 K (b) and Th = 500 K
(c) with linear fitting (- - -) approximating the mean decay rate.

where V and Rc are, respectively, the volume and drag coefficients (obtained by
linearizing (2.3)) of the REG/HX unit in the pulse tube. The estimate (5.16) is
in good quantitative agreement with the results from § 5.1 (figure 17a), showing
that, in this case, the viscous wave-amplitude decay in the inertance, leading to the
generation of strong divergence of wave-induced Reynolds stresses, dominates over
mean pressure gradient (∂p0/∂xi in (5.8)) effects. The case for Th = 480 K is an
outlier simply due to the lack of grid convergence of the acoustic stresses for this
particular case (table 2). The quadratic scaling adopted in (5.15) is, therefore, further
justified by (5.16), where 〈Fa,x〉i ∼ u′lc

2. By invoking the previously derived scaling
for the limit-cycle pressure (4.34), (5.15) becomes

udc = Adc
1
2

1
ρ2

0 a3
0

p′lc
2
∣∣∣
δτ=1

(τ − τcr), (5.17)

where the fitting coefficient is Adc = 0.52 (figure 17b). Substituting (5.17) into (5.14)
yields

〈 ρũẽ〉 = Aadv

[
CvP0

R
Adc

1
2

1
ρ2

0 a3
0

p′lc
2
∣∣∣
δτ=1

]
(τ − τcr), (5.18)

where the fitting coefficient is Aadv = 0.51. The same procedure can be applied to the
acoustic energy flux, which scales as

〈 p′u′′〉 ∼ p′lcu
′
lc

1
2 cos(1φ), (5.19)

where 1φ is the phase difference between pressure and velocity observed in the
REG/HX (figure 5c), leading to

〈 p′u′′〉 = Aap
1
2

cos(1φ)
1
ρ0a0

p′lc
2
∣∣∣
δτ=1

(τ − τcr), (5.20)
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where the fitting constant is Aap=0.3. Finally, the thermoacoustic heat flux is expected
to scale as

〈 ρh̃′′u′′〉 ∼ ρ0,tbtCp
∂T
∂P

p′lc
p′lc
ρ0a0

1
2

cos(1φ), (5.21)

where 1φ is needed to account for the correlation between pressure and velocity (like
in (5.19)), resulting in

〈 ρh̃′′u′′〉 = Ata

[
1

2ρ0a0
p′lc

2
∣∣∣
δτ=1

1
2

cos(1φ)
]
(τ − τcr) (5.22)

with the fitting coefficient Ata= 0.93. With all fluxes scaling as ∼(τ − τcr), this leads
to a robust estimate for the efficiency,

ηH,avrg = 0.13, (5.23)

effectively averaged over the range of temperature ratios investigated.
Linear acoustic solvers applied at the limit cycle can directly estimate second-order

quantities in the acoustic amplitudes such as (5.19) and (5.22), or even the mean
wave-amplitude decay 〈Fa,x〉i due to viscous losses in a duct, without prior knowledge
of the critical temperature ratio, τcr. However, process-based parametrizations for the
Gedeon streaming, and therefore the advective transport (5.18), are still currently
missing despite having a first-order impact on the acoustic energy budgets and the
efficiency. We have shown that, for slow streaming, commonly found in realistic
travelling-wave TAEs, a hydrodynamic analogy (Lighthill 1978) can be invoked, and
further simplified, leading to a very low-order modelling approach (5.16), which is
very amenable in the context of simple linear solvers used for engineering prediction
of TAEs. Moreover, estimates such as (5.16) do not require the knowledge of the
critical temperature ratio τcr, making the hydrodynamic analogy investigated in § 5.1
an attractive modelling paradigm for streaming.

6. Conclusions
We have carried out three-dimensional numerical simulations of a theoretical

travelling-wave TAE. This is the first step in a broader research effort aimed at
building multi-fidelity, full-scale prediction tools for TAEs. The goal is to assist
technological design by directly simulating, under realistic operating conditions, the
physical processes controlling the overall efficiency of such devices. These include
the thermoacoustic instability, wave propagation and amplification in the startup phase,
the nonlinear effects at the limit cycle (mainly acoustic streaming and turbulence)
and the effects of geometrical complexities. The last two are not directly captured in
state-of-the-art predictive tools for TAEs.

Inspired by the work of Lycklama à Nijeholt et al. (2005), we have devised
a simple travelling-wave TAE model that could serve as a benchmark case for
high-fidelity numerical simulations of similar devices. We have extended such a
set-up to three dimensions and introduced a secondary AHX2 to achieve a limit
cycle, modelling typical fluid dynamic conditions found in TBT. Details omitted
in Lycklama à Nijeholt et al. (2005) regarding the geometry and the modelling
of the HXs and REGs have been reconstructed to the best of the authors’ ability
and reported in detail. While the simplicity of the adopted REG/HX heat-transfer
and drag models allows the straightforward development of companion linear and
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nonlinear models (necessary for verification of the Navier–Stokes calculations), other
important processes typically occurring in the REG/HX unit are, inevitably, not
directly simulated. In the linear regime, for example, the natural phase shift present
between the instantaneous heat flux at the wall and gas temperature is not captured,
since the adopted heat-transfer model assumes perfect thermal contact. Moreover, the
mean hot (Th) and ambient (Ta) temperatures are directly imposed in the calculations,
not allowing one to capture, for example, the non-zero time-averaged temperature
difference between gas and the HX metal observed in experiments in the nonlinear
regime (Swift 1992). Dissipation mechanisms due to vortex shedding at the scale of
the pore or stack size of the REG, or hydrodynamic/thermal entrance effects are also
not directly reproduced, while their effects are accounted for. Overall, in spite of
the low-fidelity approach adopted in the REG/HX area, the complete computational
model has proved to successfully reproduce the essential critical issues, features and
complexities of real travelling-wave TAEs.

The time integration is carried out from initial quiescent conditions to the limit
cycle. It is shown that the mechanisms responsible for the acoustic energy generation
and propagation in the system during the startup phase can be explained with linear
acoustics, despite the high amplitude (∼1 % of the mean) of the initial perturbation
resulting from the activation of the source terms modelling the heat transfer. An
analytical linear Lagrangian model shows that the thermoacoustic instability occurring
in the REG/HX unit intensifies plane waves travelling in the direction of the imposed
temperature gradient via a process resembling a thermodynamic Stirling cycle. The
result is the establishment of a network of self-amplifying travelling waves looping
around the REG/HX unit. A system-wide linear stability model based on Rott’s theory
accurately predicts the frequency of the (only) unstable mode as well as the critical
temperature ratio, despite not accounting for viscous and other nonlinear losses. The
dependency of growth rates and limit-cycle pressure amplitudes on the temperature
ratio are shown to be consistent with a supercritical Hopf bifurcation model. No
evidence has been found to support subcritical or non-modal instability arguments.

At the limit cycle acoustic amplitudes exceed +170 dB and nonlinear effects
dominate the flow field in the form of transitional turbulence and acoustic streaming.
The latter is the occurrence of a quasi-steady flow evolving over time scales
much longer than the period of the waves inducing it. The data from the full
three-dimensional simulations has allowed identification of the governing processes
driving the streaming flow, which are viscous wave amplitude decay in the feedback
inertance, periodic vortex ring rollup and breakup around the sharp edges of the
annular tube, and near-wall acoustic shear stresses in the variable-area resonator.
The strong influence of geometrical features on the structure of the streaming flow
provides an effective means of controlling the latter, for example, by simple profiling
of the TBT (Olson & Swift 1997).

An axially symmetric numerical model based on the Stokes-streamfunction
formulation has been adopted to directly simulate the streaming flow as the
solution of the incompressible Navier–Stokes equations driven by the divergence
of the wave-induced Reynolds stresses extracted from the fully compressible
three-dimensional calculations. The model correctly reproduces the streaming flow
patterns and, in spite of the strong assumptions made and numerical issues associated
with geometric singularities, it correctly predicts the intensity of the Gedeon streaming.
The latter is responsible for the decrease of the engine’s efficiency as the drive ratio
is increased, and a robust parametrization for it is warranted. The investigation of the
scaling of nonlinear fluxes reveals the importance of prior knowledge of the critical
temperature ratio, which may not be straightforwardly achieved by simply relying on
linear theory, for more complex systems.
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Appendix A. StreamX: an axially symmetric incompressible flow solver model

StreamX solves the incompressible Navier–Stokes equations in cylindrical coordinates,

∂ux

∂t
+ 1

r
∂

∂r
(rurux)+ ∂

∂x
u2

x =−
∂p
∂x
+ ν

[
1
r
∂

∂r

(
r
∂ux

∂r

)
+ ∂

2ux

∂x2

]
+ Fx, (A 1)

∂ur

∂t
+ 1

r
∂

∂r
(ru2

r )+
∂

∂x
uxur =−∂p

∂r
+ ν

[
1
r
∂

∂r

(
r
∂ur

∂r

)
+ ∂

2ur

∂r2
− ur

r2

]
+ Fr, (A 2)

where p = P/ρ0 and (Fx, Fr) is a body force, relying on a Stokes streamfunction–
vorticity (Ψ –ζ ) formulation. A staggered and nodal collocations are adopted for ux and
ur, and for Ψ and ζ , respectively (figure 19a). Spatial derivatives are approximated
using a second-order central-difference scheme.

The non-simply connected computational domain (figure 19a) requires a special
time-advancement strategy to update the solution from time tn to tn+1. In order to
solve for Ψ n+1= (0, 0, Ψ n+1), its value at time tn+1 at the boundary ∂Ω1 needs to be
prescribed (for a given fixed arbitrary value on the boundary ∂Ω0, chosen to be, for
example, zero). The predicted velocity field at time tn+1, (u∗x, u∗r ), is first calculated
with an explicit Runge–Kutta time integration of (A 1) and (A 2), carried out without
the pressure terms. This guarantees the exact prediction of vorticity and circulation
at time tn+1, respectively,

ζ n+1 =∇× (u∗x, u∗r ), (A 3)

Γ n+1 =
∮
(u∗x, u∗r )ḋl. (A 4)

Knowing the exact boundary conditions for Ψ n+1 on ∂Ω0 and ∂Ω1 would allow one
to directly solve

∇×
(
∇× Ψ n+1

r

)
= ζ n+1 (A 5)

and complete the time advancement yielding (un+1
x , un+1

r ). A straightforward workaround
is to express the Stokes streamfunction at time tn+1 as the linear combination

Ψ n+1 =ΨA + αΨB, (A 6)
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x
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FIGURE 19. (a) Illustration of a domain with same degree of connectivity as the
computational domain in figure 1 with ∂Ω0 and ∂Ω1 representing the resonator walls and
the annular tube, respectively, and Γ the anticlockwise circulation calculated around ∂Ω1.
(b) Variable collocation in StreamX for axial velocity uij, radial velocity vij, vorticity ζij
and Stokes streamfunction Ψij.

where α is an unknown coefficient, and ΨA and ΨB are the solutions to

∇× (∇×ΨB/r)= 0, for ΨB|∂Ω0
= 0, ΨB|∂Ω1

= 1, (A 7)

∇× (∇×ΨA/r)= ζ n+1, for ΨA|∂Ω0
= 0, ΨA|∂Ω1

= 0, (A 8)

allowing one to calculate the circulations ΓA and ΓB and

α = (Γ − ΓA)/ΓB, (A 9)

where Γ is known from (A 3). While ΨA can be calculated in preprocessing, ΨB needs
to be re-evaluated at every time step. Finally, Ψ n+1 is calculated from (A 6).
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