
Proceedings of the Edinburgh Mathematical Society (2018) 61, 305–327

doi:10.1017/S0013091517000207

FREE AND PROPERLY DISCONTINUOUS ACTIONS OF GROUPS
ON HOMOTOPY 2N -SPHERES
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Abstract Let G be a group acting freely, properly discontinuously and cellularly on some finite dimen-
sional CW-complex Σ(2n) which has the homotopy type of the 2n-sphere S2n. Then, that action induces
a homomorphism G → Aut(H2n(Σ(2n))). We classify all pairs (G, ϕ), where G is a virtually cyclic group
and ϕ : G → Aut(Z) is a homomorphism, which are realizable in the way above and the homotopy types
of all possible orbit spaces as well. Next, we consider the family of all groups which have virtual cohomo-
logical dimension one and which act on some Σ(2n). Those groups consist of free groups and semi-direct
products F � Z2 with F a free group. For a group G from the family above and a homomorphism
ϕ : G → Aut(Z), we present an algebraic criterion equivalent to the realizability of the pair (G, ϕ). It
turns out that any realizable pair can be realized on some Σ(2n) with dim Σ(2n) ≤ 2n + 1.
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1. Introduction

The statement of the spherical space form problem in dimension n is: classify all man-
ifolds with the n-sphere Sn as the universal cover. Consequently, manifolds with finite
fundamental groups. The development of that motivates classifications of the possible
groups (not necessarily finite) which act freely, properly discontinuously and cellularly on
an n-homotopy sphere Σ(n) (a finite dimensional CW -complex with the homotopy type
of the n-sphere Sn). Further, this development began to accelerate with the discovery by
Milnor [14] that some periodic groups could not act freely on any sphere. Then, Swan [23]
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showed that every periodic finite group acts freely on a finite CW -complex Σ(km − 1)
for some k, where m is the period of the group. Further, he has also shown in [23]
that a periodic finite group acts freely on a CW -complex Σ(m) of dimension m, where
m + 1 is the period of the group. The finite periodic groups have been fully classified by
Suzuki–Zassenhaus, see e.g., [1, Chapter IV, Theorem 6.15].

A free action of a discrete (finite or infinite) group G on Σ(n) induces a homomorphism
G → Aut(Hn(Σ(n), Z)). Following [3, Chapter VII, Proposition 10.2], for any action of a
finite group G on Σ(2n + 1), the induced homomorphism G → Aut(H2n+1(Σ(2n + 1), Z))
is trivial. On the other hand, in view of [24], the only finite groups acting freely on
Σ(2n) are, up to isomorphism, trivial or Z2 and the induced homomorphism Z2 →
Aut (H2n(Σ(2n), Z)) is non-trivial. If the group G is infinite there are more possibil-
ities for the induced homomorphism G → Hn(Σ(n), Z) than in the finite case, and a
characterization of those homomorphisms is part of the problem we are going to study.
Actions of infinite discrete groups on Σ(n) together with the induced homomorphisms
described above have not been too much explored. We will study such a classification
which takes into account more geometric aspects of the action.

We state below some relevant results about actions of infinite groups. Recall that the
Farrell cohomology, Ĥ∗(−, Z) is a contravariant functor from groups to Z-graded algebras,
whenever the virtual cohomological dimension vcdG < ∞. If α ∈ Ĥq(G, Z), an integer
q > 0, and the map α ∪ − : Ĥi(G, Z) −→ Ĥi+q(G, Z) is an isomorphism for all i we say
that the group G has periodic Farell cohomology with period q.

In 1979 Wall [31, p. 518] raised the following problem: whether any countable group
with periodic Farell cohomology can act freely and properly on some product Rm × Sn?
The Wall’s problem was solved by Connolly and Prassidis (1989). Namely, [5, Corollary
1.4.] says: a discrete group G with vcd G < ∞ acts freely and properly on Rm × Sn for
some m,n if and only if G is countable and the Farrell cohomology Ĥ∗(G, Z) is periodic.

In view of [2] a discrete group G has periodic cohomology after d-steps with d ≥ 0
if there is an integer q > 0 and α ∈ Hq(G, Z) such that the cup product map α ∪ − :
Hi(G,M) −→ Hi+q(G,M) is an isomorphism for every G-module M and i > d.

Wall’s question is about actions of groups with finite virtual cohomological dimension.
The result [2, Corollary 1.3] characterizes groups which act freely and properly discon-
tinuously on Rm × Sn, without assuming that the group has finite virtual cohomological
dimension, and states: A discrete group G acts freely and properly on Rm × Sn for some
m,n > 0 if and only if G is a countable group with periodic cohomology. Furthermore,
the result of Johnson [12, Theorem on p. 387] states:
Let G be a group. Then the following are equivalent:

(i) there is a manifold M of type K(G, 1);

(ii) there is a covering action of G on Rm for some m;

(iii) G is countable and has finite cohomological dimension.

Consequently, such a group G acts freely and properly discontinuously on Rm × Sn for
any n > 0. For more about this subject, we refer the reader to the papers [2,5,15,18,30].

By [26], a group G is said to have periodic cohomology after d-steps with d ≥ 0 if there
is a positive integer q such that the functors Hi(G,−) and Hi+q(G,−) are naturally
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equivalent for i > d. It is a conjecture by Talelli [27] that the two notions above of
periodicity are the same.

It is not clear how to apply most of the results and techniques which appear in [2,5]
for the cases n = 1 and n even. The study of properly discontinuous and cellular actions
of discrete groups on a homotopy circle Σ(1) was done in [9] using different methods than
those in the papers mentioned above.

The purpose of this paper is to study free, properly discontinuous and cellular actions
of infinite groups G on Σ(2n). This also takes into account the induced homomorphism
G → Aut (H2n(Σ(2n), Z)).

By virtue of [13, Proposition 7.1]: the group G is torsion-free or G ∼= G0 � Z2, where G0

is a torsion-free group, provided G acts freely and properly discontinuously on Rm × S2n.
Let G be a group and ϕ : G → Aut (Z) a homomorphism. We say that the pair (G,ϕ)

is realizable if there is an action G × Σ(2n) → Σ(2n) that the induced homomorphism
G → Aut (H2n(Σ(2n), Z)) coincides with ϕ : G → Aut (Z).

For actions of virtually cyclic groups we show the following.

Proposition 1.1. Let G × Σ(2n) → Σ(2n) be an action of a non-trivial virtually cyclic
group G on any Σ(2n) and ϕ : G → Aut (H2n(Σ(2n), Z)) the induced homomorphism.
Then:

(1) G is isomorphic to one of the groups: Z2, Z, Z ⊕ Z2 or Z2 ∗ Z2
∼= Z � Z2;

(2) any of the groups above admits an action on some Σ(2n) and the pair (G,ϕ)
is realizable if and only if:
(i) G ∼= Z2 and ϕ is non-trivial. The homotopy type of Σ(2n)/G is RP 2n;

(ii) G ∼= Z and ϕ is any homomorphism. The homotopy type of Σ(2n)/G is S1 × S2n

in case ϕ is trivial and it is S1×̃S2n (the only non-trivial S2n-bundle over S1

being the mapping torus of the antipodal map S2n → S2n) otherwise;

(iii) G ∼= Z ⊕ Z2 and, for a suitable automorphism of Z ⊕ Z2, the restriction ϕ|Z is
trivial and ϕ|Z2 non-trivial. The homotopy type of Σ(2n)/G is S1 × RP 2n;

(iv) G ∼= Z � Z2, the restriction ϕ|Z is trivial and ϕ|Z2 are non-trivial. The
homotopy type of Σ(2n)/G is RP 2n+1�RP 2n+1.

Let F be a free group. Given homomorphisms θ : Z2 → Aut (F ) and ϕ : F �θ Z2 →
Aut (Z) ∼= Z2 with ϕ|Z2 = idZ2 , we say that the pair (θ, ϕ) is realizable if (F �θ Z2, ϕ)
is realizable. The key Lemma 4.1 states a necessary and sufficient conditions for a pair
(θ, ϕ) to be realizable.

For a free group Fm of finite rank m ≥ 1, we define m × m-matrices A(k, r, s) over the
integers which satisfy A(k, r, s)2 = Im and are given by k matrices ( 0 1

1 0 ), the identity
matrix Ir and −Is on the diagonal for m = 2k + r + s. Then, we make use of the well-
known representation ρm : Aut (Fm) → GLm(Z) to prove the following:

Theorem 1.2. Let Fm =
〈
x1, . . . , xm

〉
be a free group with m ≥ 1, θ : Z2 → Aut(Fm)

and ϕ : Fm �θ Z2 → Aut(Z) be homomorphisms such that ρm(θ(12)) = A(k, r, s) and
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ϕ|Z2 = idZ2 . Then the pair (θ, ϕ) is realizable if and only if ϕ(xl, 0) = 0 for l = 2k +
r + 1, . . . , 2k + r + s.

The result [7, Theorem 3] shows that given a free group Fm and a homomorphism θ :
Z2 → Aut(Fm), it is always possible to find a basis {x1, . . . , xm} for Fm which satisfies
ρm(θ) = A(k, r, s).

This paper is organized into four sections, in addition to this Introduction.
In § 2 basic facts on actions of groups on Σ(2n) are presented.
Section 3 aims to determine all realizable pairs (G,ϕ), where G is a virtually cyclic

group and ϕ : G → Aut (Z) is a homomorphism, and homotopy types of orbit spaces.
The main result is Proposition 3.4 and then Corollary 3.5 classifies orbit spaces of free
and properly discontinuous actions of finite groups on certain manifolds having universal
covering R × S2n.

Section 4 determines all realizable pairs (G,ϕ), where G is either a free group or iso-
morphic to F �θ Z2, where F is a free group. We prove Theorem 4.4 on the realisability
of the pair (θ, ϕ), where θ : Z2 → Aut(Fm) and ϕ : Fm �θ Z2 → Aut(Z) are homomor-
phisms. Then, we make some comments in Corollary 3.5 about a version of this theorem
for F a free group of infinite rank.

Finally, in § 5 we discuss actions of groups G on Σ(n), where G has infinite virtual
cohomological dimension, or closely related to this case. Then, we pose Question 5.3 on
the virtual cohomological dimension of a group acting on Rm × S2n.

2. Preliminaries

A CW -complex Σ(n) is said to be an n-homotopy sphere, if dim Σ(n) < ∞ and there is
a homotopy equivalence Σ(n) 
 Sn for the n-sphere Sn with n ≥ 1.

From now on, we assume that any action G × Σ(n) → Σ(n) of a group G on a Σ(n)
is free, properly discontinuous and cellular. In the beginning of [9, Section 1], we have
stated the following.

Remark 2.1. Notice that n ≤ dim Σ(n) and for an action G × Σ(n) → Σ(n) there is
a fibration

Σ(n) → Σ(n)/G → K(G, 1).

Consequently, there are isomorphisms πk(Σ(n)) ∼= πk(Σ(n)/G) for k > 1 and n ≥ 1,
π1(Σ(n)/G) ∼= G for n > 1 and there is an extension

e → Z → π1(Σ(1)/G) → G → e

of groups.

Write cdG (respectively vcd G) for cohomological (respectively virtual cohomological)
dimension of a group G [3, Chapter VIII].

Given an action G × Σ(2n) → Σ(2n), we consider the induced homomorphism

G → Aut (H2n(Σ(2n), Z)) ∼= Z2,

which we call from now on the orientation of the G-action.
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Then, we make use of [13, Proposition 7.1] and [24] to show the following.

Proposition 2.2. Let G × Σ(2n) → Σ(2n) be an action of a group G on Σ(2n).
Then:

(1) G ∼= Z2 or G = E, where E is the trivial group, provided G is finite. Further,
Z2 → Aut (H2n(Σ(2n), Z)) is non-trivial;

(2) G is torsion-free or G ∼= G0 � Z2 for some torsion-free subgroup group G0 of G.

Proof. (1) If G is finite, then by [24, Theorem 4.8], G ∼= Z2 or G = E. Suppose
that Z2 → Aut (H2n(Σ(2n), Z)) is trivial. Then the Leray–Serre spectral sequence
Ep,q

2 = Hp(Z2,H
q(Σ(2n), Z)) determined by the fibration

Σ(2n) → Σ(2n)/Z2 → K(Z2, 1)

collapses. Hence, the group H∗(Σ(2n)/Z2, Z) does not vanish for infinite many
values of ∗, which contradicts the fact that dim Σ(2n)/Z2 < ∞.

(2) Suppose G is not torsion-free. Then, in view of (1), the induced action G →
Aut (H2n(Σ(2n)), Z) is onto and G0 = Ker (G → Aut (H2n(Σ(2n), Z)) ∼= Z2) is
torsion-free. Further, the extension

e → G0 → G → Z2 → e

splits. Consequently, there is an isomorphism G ∼= G0 � Z2. �

Notice that from Proposition 2.2 it follows: if

ϕ : G ∼= G0 � Z2 → Aut (H2n(Σ(2n), Z)) ∼= Z2

is the induced action then the restriction ϕ|Z2 = idZ2 .
Let G be a group and ϕ : G → Aut (Z) a homomorphism. We say that the pair (G,ϕ)

is realizable if there is an action G × Σ(2n) → Σ(2n) that the induced homomorphism
G → Aut (H2n(Σ(2n), Z)) coincides with ϕ : G → Aut (Z).

In [9, Proposition 1.7] (see also [16, Proposition 2.5] and [17, Theorem 4.2] for more
generality), we have shown the following.

Proposition 2.3. If vcd G < ∞ and there is an action G × Σ(n) → Σ(n) then vcd G ≤
dim Σ(n) − n for n ≥ 1. In particular, G is finite provided dim Σ(n) = n.

Then, we deduce the following.

Corollary 2.4. If G × Σ(2n) → Σ(2n) is an action with dim Σ(2n) ≤ m + 2n and
vcd G < ∞ then cd G ≤ m or G ∼= G0 � Z2 with cd G0 ≤ m. In particular, if m = 1 then
the group G is free or G ∼= F � Z2 for some free group F .

Proof. For an action G × Σ(2n) → Σ(2n) with dim Σ(2n) ≤ m + 2n and vcdG < ∞,
Proposition 2.3 yields vcd G ≤ m. Then, Proposition 2.2 and [21] lead to cdG ≤ m or
G ∼= G0 � Z2 with cdG0 ≤ m.
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If m = 1 then, by means of the above, [22,25], the group G is free or G ∼= F � Z2 for
some free group F . �

Observe that the result above is sharp in the following sense: there are groups G
such that cd G = m which acts on Σ(2n) with dim Σ(2n) = m + 2n. Namely, given a
homomorphism θ : Z2 → Aut (Zm) ∼= GLm(Z), there is an action

(Zm �θ Z2) × (Rm × S2n) −→ Rm × S2n

determined by (g, 0)(t, x) = (g + t, x) and (0, 12)(t, x) = (θ(12)t,−x) for g ∈ Zm and
(t, x) ∈ Rm × S2n, where Z2 =

〈
12

〉
. Consequently, the free abelian group Zm, which has

cd Zm = m, acts on Σ(2n) = Rm × S2n with dim Σ(2n) = m + 2n.
Now, we show that the family of groups F � Z2 for a free group F is closed with respect

to free products, which has interest in its own right.

Proposition 2.5. If Fi are free groups for i ∈ I then there is an isomorphism

∗i∈I(Fi � Z2) ∼= F � Z2

for some free group F .

Proof. Given Z2 =
〈
ai

〉
for i ∈ I, write F̃ =

〈
xi| i ∈ I\{i0}

〉
for the free group gener-

ated by the set {xi| i ∈ I\{i0}} for a chosen i0 ∈ I. Further, consider the homomorphism
θ : Z2 =

〈
b
〉 → Aut(F̃ ) such that θ(b)(xi) = x−1

i for i ∈ I\{i0}. Then, the map

ϕ : F̃ �θ Z2 −→ ∗i∈IZ2

given by ϕ(xi, 0) = ai ∗ ai0 for i ∈ I\{i0}, and ϕ(e, b) = ai0 leads to an isomorphism F̃ �θ

Z2

∼=→ ∗i∈IZ2. So, the group F̃ can be regarded as a subgroup of the group ∗i∈I(Fi � Z2)
via this isomorphism.

Next, consider the split epimorphism

p : ∗i∈I(Fi � Z2) −→ Z2,

where p|Fi�Z2 : Fi � Z2 → Z2 is the projection map for all i ∈ I.
Notice that

Ker p = {(xi1 , εi1ai1) · · · (xin , εinain); xik ∈ Fik and εik = 0or 1 for k = 1, . . . , n}
with any n ≥ 1, where the number �{k; εik = 1} is even. This implies that Ker p is gener-
ated by the subgroups

〈
(ei, ai)(ei0 , ai0)

〉
i∈I , Fi × {0} ≤ ∗i∈I(Fi � Z2), where ei ∈ Fi is the

identity element of Fi for all i ∈ I. After some straight computations identifying elements
of Ker p with those of F̃ ∗ (∗i∈I(Fi × {0})), it is not difficult to derive an isomorphism
Ker p ∼= F̃ ∗ (∗i∈I(Fi × {0})) and the proof is complete. �

3. Virtually cyclic groups acting on Σ(2n)

Recall that a virtually cyclic group is a group that has a cyclic subgroup of finite index.
In this section we classify all pairs (G,ϕ) which are realizable, where G is a virtually
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cyclic group. Further, homotopy types of the orbit spaces for all possible action of G on
an arbitrary homotopy sphere Σ(2n) are studied as well.

The main part of the following criterion, namely that (1) is equivalent to (2) and (3),
is due to Wall [30, Lemma 4.1] (see also Scott and Wall [20]).

Theorem 3.1. Let G be a finitely generated group. Then, the following are equiva-
lent:

(1) G is a group with two ends;

(2) G has an infinite cyclic group of finite index;

(3) G has a finite normal subgroup F � G with the quotient G/F ∼= Z or
Z2 	 Z2

∼= D∞, the infinite dihedral group.

Equivalently, G is of the form:

(1) a semi-direct product F � Z with F finite, or

(2) G1 	F G2 with F finite, where [Gi : F ] = 2 for i = 1, 2.

Given an action G × Σ(n) → Σ(n), we follow [19, Section 4] to consider the Moore–
Postnikov system

Σ(n)/G → · · · → Xm+1 → Xm → · · · → X2 → X1 = K(G, 1)

of the fibration Σ(n) → Σ(n)/G → K(G, 1), where the fibration Xm+1 → Xm has fiber
K(πm(Σ(n)),m) and characteristic class km+1(Σ(n)/G) ∈ Hm+1(Xm, π̆m(Σ(n))) (called
the Postnikov- or k-invariant) for π̆m(Σ(n)) as πm(Σ(n)) with the induced G-module
structure for m ≥ 1.

For a G-module π and n ≥ 1, consider the twisted Eilenberg-MacLane space K̂G(π, n) =

K̃(G, 1) ×G K(π, n), where K̃(G, 1) is the universal covering of K(G, 1). Then, the
Postnikov invariant km+1(Σ(n)/G) is the homotopy class of a map

Xm −→ K̂G(π̆m(Σ(n)),m + 1).

Because the space Σ(n) is (n − 1)-connected, we get

k2(Σ(n)/G) = · · · = kn(Σ(n)/G) = 0

and consequently,

K(G, 1) = X1 = X2 = · · · = Xn.

Further, kn+1(Σ(n)/G) ∈ Hn+1(Xn, π̆n(Σ(n))) = Hn+1(G, Z̆) is the first possibly non-
trivial Postnikov invariant of the orbit space Σ(n)/G.

In the sequel we need the following.

Lemma 3.2. Let a discrete group G act on Σ1(n) and Σ2(n) with dim Σ1(n)/G ≤
n + 1 for n ≥ 2, and dim Σ2(n)/G arbitrary.
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The orbit spaces Σ1(n)/G and Σ2(n)/G have the same homotopy type if and only if
there is an automorphism ϕ ∈ Aut(G) with ϕ∗(kn+1(Σ2(n)/G)) = kn+1(Σ1(n)/G).

Proof. If the orbit spaces Σ1(n)/G and Σ2(n)/G have the same homotopy type, then
certainly there is ϕ ∈ Aut(G) with ϕ∗(kn+1(Σ2(n)/G)) = kn+1(Σ1(n)/G).

Now, suppose that there is ϕ ∈ Aut(G) with ϕ∗(kn+1(Σ2(n)/G)) = kn+1(Σ1(n)/G).
Write Σ1(n)/G → · · · → Xm+1 → Xm → · · · → X2 → X1 = K(G, 1) and Σ2(n)/G →
· · · → Ym+1 → Ym → · · · → Y2 → Y1 = K(G, 1) for the the Moore–Postnikov systems of
Σ1(n)/G and Σ2(n)/G, respectively.

Because kn+1(Σ1(n)/G) : K(G, 1) → K̂G(Z̆, n + 1) and kn+1(Σ2(n)/G) : K(G, 1) →
K̂G(Z̆, n + 1) are characteristic classes of the fibrations Xn+1 → Xn = K(G, 1) and
Yn+1 → Yn = K(G, 1), respectively, we derive that the commutative square

Xn = K(G, 1)

��

ϕ̄
�� Yn = K(G, 1)

��

K̂G(Z̆, n + 1)
idK̂G(Z̆,n+1)

K̂G(Z̆, n + 1)

leads to a homotopy equivalence

fn+1 : Xn+1 −→ Yn+1,

where ϕ̄ is the induced map by ϕ ∈ Aut(G) of the Eilenberg-MacLane space K(G, 1).
But dim Σ1(n)/G ≤ n + 1 and kn+2(Σ2(n)/G) : Yn+1 → K̂G(π̆n+2(Σ2(n)), n + 2) is

characteristic class of the fibration Yn+2 → Yn+1, so there is no obstruction to a lifting

Σ1(n)/G

��

�������� Yn+2

��
Xn+1

fn+1
�� Yn+1.

Repeating the argument above mutatis mutandis we get a map

f : Σ1(n)/G −→ Σ2(n)/G

with the commutative square

Σ1(n)/G

��

f
�������� Σ2(n)/G

��
Xn+1

fn+1
�� Yn+1.
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Then, the lifting f̃ : Σ1(n) ����� Σ2(n) of f : Σ1(n)/G → Σ2(n)/G leads to a map

of fibrations

Σ1(n)

f̃

���
�
�

�� Σ1(n)/G

f

��

�� K(G, 1)

ϕ̄

��
Σ2(n) �� Σ2(n)/G �� K(G, 1).

But the commutative diagram

πn(Σ1(n)/G)

��

πn(f)
�� πn(Σ2(n)/G)

��
πn(Xn+1)

πn(fn+1)
�� πn(Yn+1)

implies an isomorphism

πn(f) : πn(Σ1(n)/G) −→ πn(Σ2(n)/G)

which yields an isomorphism

πn(f̃) : πn(Σ1(n)) → πn(Σ2(n)).

Since the spaces Σ1(n) and Σ2(n) have the homotopy type of the n-sphere, we have iso-
morphisms Hm(f̃) : Hm(Σ1(n)) → Hm(Σ2(n)) of homology which lead to isomorphisms
πm(f̃) : πm(Σ1(n)) → πm(Σ2(n)) for m ≥ 0. Therefore the map of fibrations above yields
isomorphisms

πm(f) : πm(Σ1(n)/G) −→ πm(Σ2(n)/G)

for m ≥ 0. Consequently, f : Σ1(n)/G → Σ2(n)/G is a homotopy equivalence and the
proof is complete. �

Now, consider an arbitrary free action Z2 × Σ(2n) → Σ(2n). In the next proposi-
tion, the main result of this section, we need to know that the Postnikov invariant
k2n+1(Σ(2n)/Z2) �= 0. To aim at that take the 2n-Postnikov–Moore stage X2n 
 K(Z2, 1)
and fibration q2n : Σ(2n)/Z2 → X2n associated with the fibration

Σ(2n) −→ Σ(2n)/Z2 −→ K(Z2, 1),

and apply [19, Theorem 2.2] with π = π1(Σ(2n)/Z2) ∼= Z2 and κ = idZ2 . There results a
map of fibrations

Σ(2n)/Z2

q2n

��

ψ
�� PK̂Z2(Z̆, 2n + 1)

��

X2n

φ
�� K̂Z2(Z̆, n + 1),
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where PK̂Z2(Z̆, 2n + 1) is the path-space on K̂Z2(Z̆, 2n + 1). Then, the pullback construc-
tion yields fibration p2n+1 : X2n+1 → X2n with fibre K(Z, 2n) and q2n : Σ(2n)/Z2 → X2n

factorises into

Σ(2n)/Z2
q2n+1−→ X2n+1

p2n+1−→ X2n.

The map φ : X2n → K̂Z2(Z̆, n + 1) represents the characteristic class k2n+1(Σ(2n)/Z2) ∈
H2n+1(X2n, Z̆) of X2n+1 → X2n which is sent by the map q2n : Σ(2n)/Z2 → X2n 

K(Z2, 1) into the trivial class in H2n+1(Σ(2n)/Z2, Z̆).

Further, let E be a path-connected space such that π1(E) ∼= Z2, π2n(E) ∼= Z and
πm(E) = 0 for m �= 1, 2n with a non-trivial action of π1(E) on π2n(E). A space E with the
properties above is called a two-stage Postnikov system.

Lemma 3.3. There are two homotopy types of such two-stage Postnikov sys-
tems: one represented by K̂Z2(Z̆, 2n) with k2n+1(K̂Z2(Z̆, 2n)) = 0 and the other by the
(2n + 1)-Postnikov–Moore stage X2n+1 with k2n+1(X2n+1) = k2n+1(Σ(2n)/Z2) �= 0.

Proof. The first possibly non-trivial Postnikov invariant of such a two-stage Postnikov
system E lies in H2n+1(Z2, Z̆) ∼= Z2. Thus, we have two Postnikov invariants k2n+1(E)
which provide two-stage Postnikov systems with different homotopy types.

Certainly, the spaces K̂Z2(Z̆, 2n) and X2n+1 are two-stage Postnikov systems with
the properties above. The characteristic class of the fibration K̂Z2(Z̆, 2n) → K(Z2, 1)
is determined by the trivial class in H2n+1(Z2, Z̆), because its pullback, according to
[19, Section 4], should have the cohomology of the path-space PK̂Z2(Z̆, 2n). Consequently,
we can state that k2n+1(K̂Z2(Z̆, 2n)) = 0.

For k2n+1(X2n+1) = 0, the space X2n+1 has the homotopy type of K̂Z2(Z̆, 2n).
Because of the sectioned fibration K(Z, 2n) → K̂Z2(Z̆, 2n) → K(Z2, 1), the cohomology
H1(K̂Z2(Z̆, 2n), Z2) contains a class such that its cup (2n + 1)-power is non-trivial. But,
this cup (2n + 1)-power is sent by the fibrations Xm → X2n+1 for m > 2n + 1 into a
non-trivial class in H2n+1(Xm, Z2) which is a contradiction, because of the cohomology
algebra H∗(Σ(2n)/Z2, Z2) ∼= Z2[t]/(t2n+1) and the result follows. �

Now, we are in a position to show the following.

Proposition 3.4. Let G × Σ(2n) → Σ(2n) be an action of a non-trivial virtually cyclic
group G on any Σ(2n) and ϕ : G → Aut (H2n(Σ(2n), Z)) the induced homomorphism.
Then:

(1) G is isomorphic to one of the groups: Z2, Z, Z ⊕ Z2 or Z2 ∗ Z2
∼= Z � Z2;

(2) any of the groups above admits an action on some Σ(2n) and the pair (G,ϕ)
is realizable if and only if:
(i) G ∼= Z2 and ϕ is non-trivial. The homotopy type of Σ(2n)/G is RP 2n;

(ii) G ∼= Z and ϕ is any homomorphism. The homotopy type of Σ(2n)/G is S1 × S2n

in case ϕ is trivial and it is S1×̃S2n (the only non-trivial S2n-bundle over S1

being the mapping torus of the antipodal map S2n → S2n) otherwise;
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(iii) G ∼= Z ⊕ Z2 and, for a suitable automorphism of Z ⊕ Z2, the restriction ϕ|Z is
trivial and ϕ|Z2 non-trivial. The homotopy type of Σ(2n)/G is S1 × RP 2n;

(iv) G ∼= Z � Z2, the restriction ϕ|Z is trivial and ϕ|Z2 are non-trivial. The
homotopy type of Σ(2n)/G is RP 2n+1�RP 2n+1.

Proof. (1) Follows immediately from Proposition 2.2 and Theorem 3.1.

(2) Write Z̆ for the G-module structure on H2n(Σ(2n), Z) ∼= Z for G being one of the
groups from (1). Now, we show simultaneously the items of (2).
(i) G ∼= Z2. By [24], the orientation of any Z2-action is non-trivial. Certainly,

the antipodal action Z2 × S2n → S2n yields S2n/Z2 = RP 2n for any n ≥ 1. In
view of Lemma 3.3, the Postnikov invariant k2n+1(Σ(2n)/Z2) �= 0. Because
k2n+1(Σ(2n)/Z2) = k2n+1(RP 2n), Lemma 3.2 yields a homotopy equivalence
Σ(2n)/Z2 
 RP 2n.
We point out that the above yields a new proof of the result [11, Lemma 2.5]
in the even case.

(ii) G ∼= Z. There are only two possible orientations of any Z-action and any of
them can be realized. Namely, consider the Z-actions:

◦, ◦̄ : Z × (R × S2n) → R × S2n

given by m ◦ (t, x) = (t + m,x) and m◦̄(t, x) = (t + m, (−1)mx), respectively
for m ∈ Z and (t, x) ∈ R × S2n. The corresponding orbit spaces are S1 × S2n or
S1×̃S2n, respectively.
To study the homotopy type of the orbit spaces for an arbitrary action, we
first observe that H2n+1(Z, Z̆) = H2n+1(Z, Z) = 0. Therefore, we can apply
Lemma 3.2 using one of the two explicit actions provided above, since Σ(2n) =
R × S2n is a homotopy sphere with dim Σ(2n) = 2n + 1 and the result follows.

(iii) G ∼= Z ⊕ Z2. By Proposition 2.2 the action of Z ⊕ Z2 on the cohomology
H2n(Σ(2n), Z) ∼= Z restricted to Z2 is non-trivial, so Z ⊕ Z2 acts non-trivially
on H2n(Σ(2n), Z) ∼= Z. Hence, we have an epimorphism

ϕ : Z ⊕ Z2 −→ Aut(H2n(Σ(2n), Z)) ∼= Z2

such that ϕ(0, 12) = 12 and ϕ(1, 0) = 0 or ϕ(1, 0) = 12. Since there is an auto-
morphism Z ⊕ Z2

∼=→ Z ⊕ Z2 given by: (1, 0) �→ (1, 12) and (0, 12) �→ (0, 12), we
can assume that the homomorphism ϕ is as in the statement of (iii).
There is an action

◦ : (Z ⊕ Z2) × (R × S2n) −→ R × S2n

given by (1, 0) ◦ (t, x) = (t + 1, x) and (0, 12) ◦ (t, x) = (t,−x) for (t, x) ∈ R ×
S2n with the corresponding quotient space homeomorphic to S1 × RP 2n, where
Z =

〈
1
〉
. This action provides the orientation of a Z ⊕ Z2-action stated in (iii).
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Now, we show that Hm(Z ⊕ Z2, Z̆) ∼= Z2. For this purpose, we can use either
the action of Z ⊕ Z2 on Z given by ϕ above or by

ϕ′ : Z ⊕ Z2 −→ Aut(H2n(Σ(2n), Z)) ∼= Z2

defined by: ϕ′(0, 12) = 12 and ϕ′(1, 0) = 12.
We use ϕ′ : Z ⊕ Z2 → Aut(H2n(Σ(2n), Z)) ∼= Z2 to simplify the calculation of
the Lyndon–Hochschild–Serre spectral sequence

Ep,q
2 = Hp(Z2,H

q(Z, Z̆)) ⇒ Hp+q(Z ⊕ Z2, Z̆)

corresponding to the extension

0 → Z −→ Z ⊕ Z2 −→ Z2 → 0.

Since Hq(Z, Z̆) ∼=
{

Z2, if q = 1,
0, otherwise, this is a one line spectral sequence which

implies that Hp(Z2, Z2) ∼= Hp+1(Z ⊕ Z2, Z̆) and so Hm(Z ⊕ Z2, Z̆) ∼= Z2 for
m > 0. In particular, H2n+1(Z ⊕ Z2, Z̆) ∼= Z2 and there are two possible values
for the Postnikov invariant

k2n+1(Σ(2n)/(Z ⊕ Z2)) : K(Z ⊕ Z2, 1) −→ K̂Z⊕Z2(Z̆, 2n + 1).

Next, we study the homotopy type of orbit spaces. Given an action

(Z ⊕ Z2) × Σ(2n) −→ Σ(2n),

its restriction to Z2 leads to the non-trivial (in view of Lemma 3.3) Postnikov
invariant k2n+1(Σ(2n)/Z2). Recall that the orientation of a Z ⊕ Z2-action can
be given by the map ϕ : Z ⊕ Z2 → Z2 defined above. Then, the commutative
diagram

K(Z2, 1)

��

�� K̂Z2(Z̆, 2n + 1)

��
K(Z ⊕ Z2, 1) �� K̂Z⊕Z2(Z̆, 2n + 1)

with horizontal arrows determined by appropriate Postnikov invariants shows
that k2n+1(Σ(2n)/(Z ⊕ Z2)) is non-trivial. Now, we are in a position to apply
Lemma 3.2, as in the proof of (ii), to conclude that there is only one homotopy
type S1 × RP 2n of the orbit space Σ(2n)/(Z ⊕ Z2).

(iv) G ∼= Z � Z2
∼= Z2 ∗ Z2. Given an orientation ϕ : Z � Z2 → Z2 of a Z � Z2-

action, Proposition 2.2 implies that ϕ(1, 12) = ϕ(1, 0) + ϕ(0, 12) = ϕ(1, 0) +
12 = 12 since the orders of (0, 12), (1, 12) ∈ Z � Z2 are two. Hence, ϕ restricts
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to the trivial one on Z and to the identity map on Z2. Next, consider
Σ(2n) = R × S2n with dim Σ(2n) = 2n + 1 and the action

◦ : (Z � Z2) × (R × S2n) −→ R × S2n

given by (1, 0) ◦ (t, x) = (t + 1, x) and (0, 12) ◦ (t, x) = (−t,−x) for (t, x) ∈ R ×
S2n. Then, the corresponding orbit space is homeomorphic to RP 2n+1�RP 2n+1.
Given an action of (Z � Z2) × Σ(2n) → Σ(2n), by Proposition 2.2, the induced
action of Z � Z2

∼= Z2 ∗ Z2 on the cohomology H2n(Σ(2n), Z) ∼= Z restricts to
non-trivial on both copies of Z2 ⊆ Z2 ∗ Z2. Next, the isomorphism Z � Z2

∼=
Z2 ∗ Z2 leads to

H2n+1(Z � Z2, Z̆) ∼= H2n+1(Z2 ∗ Z2, Z̆)

∼= H2n+1(Z2, Z̆) ⊕ H2n+1(Z2, Z̆) ∼= Z2 ⊕ Z2.

Because the Postnikov invariants k2n+1(Σ(2n)/Z2) associated with restricted
actions Z2 × Σ(2n) → Σ(2n) of both copies of Z2 ⊆ Z2 ∗ Z2 are (in view of
Lemma 3.3) non-trivial, the commutative diagram

K(Z2, 1)

��

�� K̂Z2(Z̆, 2n + 1)

��
K(Z2 ∗ Z2, 1) �� K̂Z2∗Z2(Z̆, 2n + 1)

K(Z2, 1)

��

�� K̂Z2(Z̆, 2n + 1)

��

with horizontal arrows determined by appropriate Postnikov invariants
shows that only one class of H2n+1(Z � Z2, Z̆) ∼= Z2 ⊕ Z2 corresponds to
k2n+1(Σ(2n)/(Z � Z2)).

Finally, like in the proof of (iii), we can apply Lemma 3.2, to conclude that there is
only one homotopy type RP 2n+1�RP 2n+1 of the orbit space Σ(2n)/(Z � Z2) and the
proof follows. �

In view of [29, Corollary 2], the classification of all free of finite groups on S1 × S2

follows from the observation that there exist only four compact 3-manifolds which have
R × S2 as a universal covering space.

Now, we deduce below that any manifold with the universal covering space R × S2n

has the homotopy type one of the following manifolds: S1 × S2n, S1×̃S2n, S1 × RP 2n or
RP 2n+1�RP 2n+1.

Corollary 3.5. Suppose that a finite non-trivial group G acts freely on one of the
manifolds: S1 × S2n, S1×̃S2n, S1 × RP 2n or RP 2n+1�RP 2n+1. Let M be the orbit space
by G.
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(1) If G acts on S1 × S2n then:
(i) M 
 S1 × S2n for G ∼= Zm with m ≥ 2;

(ii) M 
 S1×̃S2n for G ∼= Z2m with m ≥ 1;

(iii) M 
 S1 × RP 2n for G ∼= Zm ⊕ Z2 with m ≥ 1;

(iv) M 
 RP 2n+1�RP 2n+1 for G ∼= Zm � Z2 = Dm with m > 2, the dihedral group
of order 2m.

(2) If G acts on S1×̃S2n then:
(i) M 
 S1×̃S2n for G ∼= Zm with m ≥ 2;

(ii) M 
 S1 × RP 2n for G ∼= Zm ⊕ Z2 with m ≥ 1.

(3) If G acts on S1 × RP 2n then M 
 S1 × RP 2n for G ∼= Zm with m ≥ 2.

(4) If G acts on RP 2n+1�RP 2n+1 then M 
 RP 2n+1�RP 2n+1 for G ∼= Z2.

Further, in all four cases above, the groups described act on the corresponding
manifold.

Proof. First, we point out that R × S2n is the universal covering space of the mani-
folds listed above and hence the orbit spaces M as well. In virtue of Proposition 3.4, we
deduce that M has the homotopy type of one of those manifolds.

(1) If G acts on S1 × S2n then the covering

S1 × S2n → S1 × S2n/G

determines an extension of groups

e → Z → π → G → e,

where π = π1(S1 × S2n/G).
If M 
 S1 × S2n then G ∼= Zm for some m ≥ 2.
If M 
 S1×̃S2n then we have a finite covering

S1 × S2n −→ S1×̃S2n.

Since S1 × S2n is orientable, it follows that the image of the induced homomor-
phism π1(S1 × S2n) → π1(S1×̃S2n) is determined by orientable loops in π1(S1×̃S2n).
Therefore, G ∼= Z2m for some m ≥ 1.
If M 
 S1 × RP 2n then G ∼= Z2 ⊕ Zm for some m ≥ 1.
If M 
 RP 2n+1�RP 2n+1 then π ∼= Z � Z2 and so G ∼= Zm � Z2, the dihedral group
of order 2m for some m ≥ 2.
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(2) If G acts on S1×̃S2n then the covering

S1×̃S2n → S1×̃S2n/G

determines an extension of groups

e → Z → π → G → e,

where π = π1(S1×̃S2n/G). Because S1×̃S2n is non-oriented, M 
 S1×̃S2n or M 

S1 × RP 2n.
If M 
 S1×̃S2n then G ∼= Zm for some m ≥ 2.
If M 
 S1 × RP 2n then G ∼= Zm ⊕ Z2 for m ≥ 1.

(3) If G acts on S1 × RP 2n then the covering

S1 × RP 2n → S1 × RP 2n/G

determines an extension of groups

e → Z ⊕ Z2 → π → G → e,

where π = π1(S1 × RP 2n/G). Because S1 × RP 2n is non-oriented, M 
 S1×̃S2n or
M 
 S1 × RP 2n.
If M 
 S1×̃S2n then π = π1(S1×̃S2n) ∼= Z and any monomorphism 0 → Z ⊕ Z2 →
Z does not exit.
If M 
 S1 × RP 2n then any monomorphism 0 → Z ⊕ Z2 → Z ⊕ Z2 restricts to the
identity map on Z2 and consequently G ∼= Zm for some m ≥ 2.

(4) If G acts on RP 2n+1�RP 2n+1 then the covering

RP 2n+1�RP 2n+1 → RP 2n+1�RP 2n+1/G

determines an extension of groups

e → Z � Z2 → π → G → e,

where π = π1(RP 2n+1�RP 2n+1/G). Because π1(RP 2n+1�RP 2n+1) ∼= Z � Z2 is non-
abelian, we have only to analyse the extension

e → Z � Z2 → Z � Z2 → G → e.

Since Z � Z2 must be sent to its normal subgroup by the monomorphism e →
Z � Z2 → Z � Z2, we deduce that G ∼= Z2 and the proof is complete. �

Let n ≥ 2 and let τ be a free involution on S1 × Sn. Then, in view of [11, Theorem 2.1]
the quotient S1 × Sn/τ belongs to one of the four homotopy types: S1 × Sn, S1×̃Sn,
S1 × RPn and RPn+1�RPn+1 realized by the standard involutions.

Now, we are in position to conclude the following generalization of the above, provided
n is even.

Corollary 3.6. Let n ≥ 1 and τ be a free involution on one of the four manifolds:
S1 × S2n, S1×̃S2n, S1 × RP 2n or RP 2n+1�RP 2n+1. Then, the corresponding orbit space
also belongs to one of their homotopy types.
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4. Other groups acting on Σ(2n)

Here, we analyse actions G × Σ(2n) → Σ(2n) with vcdG = 1. By Corollary 2.4, the group
G is free or G ∼= F � Z2 for some free group F with an arbitrary rank.

Let F be a free group and Aut (F ) its automorphism group. For a homomorphism
θ : Z2 → Aut (F ) we consider the semidirect product G ∼= F �θ Z2 which is completely
determined by θ. Given also ϕ : F �θ Z2 → Aut (Z) ∼= Z2 with ϕ|Z2 = idZ2 , we say that
the pair (θ, ϕ) is realizable if (F �θ Z2, ϕ) is realizable (see Introduction and § 2).

Notice that any free group F acts on the homotopy 2n-sphere (
∨̃
i∈I S1) × S2n for any

n ≥ 1, where
∨̃
i∈I S1 is the universal covering of the wedge

∨
i∈I S1 provided F =

〈
xi;

i ∈ I
〉
. Consequently, for the trivial homomorphism θ0 : Z2 → Aut (F ), any pair (θ0, ϕ)

is realizable by the action

◦ : (F �θ0 Z2) ×
((∨̃

i∈I
S1

)
× S2n

)
→

(∨̃
i∈I

S1

)
× S2n

given by: (g, 0) ◦ (t, s) = (gt, sgn(g)s, ) and (g, 12) ◦ (t, s) = (gt,−sgn(g)s) for g ∈ F and

(t, s) ∈ (
∨̃
i∈I S1) × S2n, where sgn : F → Z2 = {±1} is the homomorphism determined

by the restriction of ϕ : F �θ0 Z2 → Aut (Z) ∼= Z2 to the group F .
Writing Z2 =

〈
12

〉
, we show a general fact, as follows.

Lemma 4.1 (fundamental Lemma). The pair (θ, ϕ) is realizable if and only if it
does not exist g ∈ F such that {

θ(12)(g) = g−1,

ϕ(g, 0) = 12.

Proof. Let θ : Z2 → Aut (F ). By the 1-dimensional analog of the Nielsen realization
problem [6, Theorems 2.1 and 4.1], the automorphism θ(12) ∈ Aut(F ) can be realized by
a homeomorphism h : Γ → Γ of a graph Γ with the fundamental group π1(Γ) ∼= F such
that h has a fixed point x0 ∈ Γ and h2 = idΓ. Choose a base point x̃0 ∈ Γ̃, where Γ̃ is the
universal covering of Γ. The homeomorphism h : Γ → Γ admits several liftings, but we
consider the unique lifting h̃ : Γ̃ → Γ̃ such that h̃(x̃0) = x̃0. Certainly, h̃2 covers h2 = idΓ

and h̃2(x̃0) = x̃0. But idΓ̃ also covers h2 and fixes the point x̃0. Therefore, it follows that
h̃2 = idΓ̃.

Then, we are in a position to consider a map

◦ : (F �θ Z2) × (Γ̃ × S2n) → Γ̃ × S2n

given by: (g, 0) ◦ (t, s) = ((θ(12)g)t, sgn(g)s) and (g, 12) ◦ (t, s) = ((θ(12)g)(h̃(t)),−sgn
(g)s) for g ∈ F and (t, s) ∈ Γ̃ × S2n. Now, we prove that the map defined above is an
action of the group F �θ Z2. So for any two elements w1, w2 ∈ F �θ Z2 and (t, s) ∈
Γ̃ × S2n we must show that w2(w1(t, s)) = (w2w1)(t, s).
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Notice that sgn(gθ(12)g′) = sgn(gg′) and (g, 12)(s, t) = ((g, 0)(e, 12))(t, s) = (g, 0)
(h̃(t),−s) = ((θ(12)g)h̃(t),−sgn(g)s). In the case, where w1 = (g, 0) and w2 = (g′, 0)
i = 1, 2 we have:

(i) ((g, 0)(g′, 12))(t, s) = (gg′, 12)(t, s) = ((θ(12)(gg′))h̃(t),−sgn(gg′)s) and (g, 0)((g′,
12)(t, s)) = (g, 0) = ((g, 0)(g′, 12))(t, s) = (g, 0)((θ(12)g′)h̃(t),−sgn(g′)s) = ((θ(12)
g)(θ(12)g′)h̃(t),−sgn(g)sgn(g′)s) = (g, 0)(g′, 12))(t, s);

(ii) ((g, 12)(g′, 0))(t, s) = (gθ(12)g′, 12)(t, s) = (θ(12)(gθ(12)g′)h̃(t),−sgn(gθ(12)g′)s) =
((θ(12)g)g′h̃(t), sgn(gg′)s) and (g, 12)((g′, 0)(t, s)) = (g, 12)((θ(12)g′)t, sgn(g′)s) =
(θ(12)gh̃(θ(12)g′)(t),−sgn(g) sgn(g′)s) = ((θ(12)g)g′h̃(t), −sgn(g) sgn(g′)s) = ((g,
12)(g′, 0))(t, s);

(iii) ((g, 12)(g′, 12))(t, s) = (gθ(12) g′, 0)(t, s) = ((θ(12) gθ(12)g′)t, −sgn(gθ(12)g′)s) =
(((θ(12)g)g′)t,−sgn(gg′)s) and (g, 12)((g′, 12)(t, s)) = (g, 12)((θ(12)g′)h̃(t),−sgn(g′)
s) = ((θ(12)g) h̃((θ(12)g′)h̃(t)), −sgn(g) sgn(g′)s) = (((θ(12)g)g′)t,−sgn(g)
sgn(g′)s) = ((g, 12)(g′, 12))(t, s).

The case, where wi = (gi, 0) for some gi ∈ F with i = 1, 2 is easier and we leave
that to the reader.

Consequently, ◦ : (F �θ Z2) × (Γ̃ × S2n) → Γ̃ × S2n is a well-defined action. Because it

does not exist g ∈ F such that
{

θ(12)(g) = g−1

ϕ(g, 0) = 12
, for any g ∈ F , the action ◦ : (Fm �θ

Z2) × (Γ̃ × S2n) → Γ̃ × S2n is free. Otherwise suppose that (g, 12) ◦ (t, s) = (t, s). Then
we have (t, s) = ((θ(12)g)(h̃(t)),−sgn(g)s) = (h̃(gt),−sgn(g)s) which implies sgn(g) =
−1 and t = (θ(12)g)(h̃(t)). The second equation is equivalent to h̃(t) = h̃2(gt) = gt =
gθ(12)(g)h̃(t) or gθ(12)(g) = 1. So the system of equations has a solution which is a con-
tradiction. So we have a free, properly discontinuous and cellular action. Further, the
induced homomorphism ϕ : F �θ Z2 → Aut (H2n(Γ̃ × S2n), Z) coincides with the given
one ϕ : F �θ Z2 → Aut (Z).

Next, suppose that
{

θ(12)(g) = g−1

ϕ(g, 0) = 12
, for some g ∈ F and there is an action (F �θ

Z2) × Σ(2n) → Σ(2n). Then, on one hand we have that ϕ(g, 12) = ϕ(g, 0)ϕ(e, 12) = 0
and on the other hand, Proposition 2.2(1) leads to ϕ(g, 12) = 12, because the order of
(g, 12) ∈ F �θ Z2 is two. This contradiction completes the proof. �

Corollary 4.2. The group F �θ Z2 acts on Σ(2n) = Γ̃ × S2n for any n ≥ 1, where Γ
is a graph (a finite graph provided F is of finite rank) with π1(Γ) = F .

Proof. Given the group F �θ Z2, consider the homomorphism ϕ : F �θ Z2 → Aut (Z)
given by the projection map onto the second factor. Then, in view of Lemma 4.1, the
pair (θ, ϕ) is realizable and this leads to an action of F �θ Z2 on Σ(2n) = Γ̃ × S2n for
any n ≥ 1, where Γ is a graph (a finite one provided F is of finite rank) with π1(Γ) = F ,
and the result follows.

Now, let Fm be the free group with finite rank m ≥ 1. For θ : Z2 → Aut (Fm) and
ϕ : Fm �θ Z2 → Aut (Z) with ϕ|Z2 = idZ2 , we aim to classify realizable pairs (θ, ϕ), i.e.,
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in view of Lemma 4.1, pairs (θ, ϕ) for which it does not exist g ∈ Fm such that{
θ(12)(g) = g−1,

ϕ(g, 0) = 12.

First, we recall a very useful result by Dyer and Scott [7, Theorem 3]. �

Theorem 4.3. Let F be any free group, θ : Z2 → Aut(F ) a homomorphism and
F θ(12) < F the fixed point subgroup of the automorphism θ(12). Then there is a
decomposition

F = F θ(12) ∗ (∗i∈IFi) ∗ (∗λ∈ΛFλ)

into the free product, where each factor is θ(12)-invariant and:

(1) for each i ∈ I, Fi =
〈
xi,1, xi,2

〉
such that

θ(12)(xi,1) = xi,2 and θ(12)(xi,2) = xi,1;

(2) for each λ ∈ Λ, there is a set Jλ with Fλ =
〈
xλ, yj | j ∈ Jλ

〉
such that

θ(12)(xλ) = x−1
λ and

θ(12)(yj) = x−1
λ yjxλ for j ∈ Jλ and λ ∈ Λ.

Based on Lemma 4.1 and Theorem 4.3, we can provide a criterion to decide whether a
pair (θ, ϕ) is realizable or not. For this purpose the following is useful.

A well-known representation of Aut (Fm) is given by

ρm : Aut (Fm) → Aut (Fm/F ′
m) ∼= GLm(Z),

where F ′
m is the commutator subgroup of Fm, GLm(Z) the group of all invertible m × m-

matrices over Z and ρm(θ) is the automorphism of the free abelian group Fm/F ′
m

∼= Zm

induced by θ ∈ Aut (Fm).
Write Im for the identity m × m-matrix and define m × m-matrices:

A(k, r, s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
0 1
1 0

)
0

. . .

0
(

0 1
1 0

)
0

0 Ir 0
0 −Is

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
over integers which satisfy A(k, r, s)2 = Im with k matrices

(
0 1

1 0

)
and m = 2k + r + s.

Given θ : Z2 → Aut(Fm) with Fm =
〈
x1, . . . , xm

〉
, by ρm(θ(12)), we denote the

matrix of the automorphism of the abelianization F ab
m

∼= Zm with respect to the basis
{x̄1, . . . , x̄m}, where x̄i is the projection of xi onto F ab

m
∼= Zm for i = 1, . . . , m. Because

θ2(12) = idFm
we have that ρm(θ(12))2 = Im.
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Notice that for any automorphism Θ : Fm → Fm with Θ2 = idFm
, applying

Theorem 4.3, we can always assume that F =
〈
y1, . . . , ym

〉
and ρm(θ) = A(k, r, s) with

m = 2k + r + s.
Given g ∈ Fm =

〈
x1, . . . , xm

〉
, write |g|xi

for its xi-exponent, i.e., |g|xi
=

∑t
k=1 rk pro-

vided xrk
i appears in g for i = 1, . . . ,m, rk �= 0 and k = 1, . . . , t, and zero otherwise. Now,

we are in a position to state the following.

Theorem 4.4. Let Fm =
〈
x1, . . . , xm

〉
be a free group with m ≥ 1, θ : Z2 → Aut(Fm)

and ϕ : Fm �θ Z2 → Aut(Z) be homomorphisms such that ρm(θ(12)) = A(k, r, s) with
m = 2k + r + s and ϕ|Z2 = idZ2 . Then the pair (θ, ϕ) is realizable if and only if ϕ(xl, 0) =
0 for l = 2k + r + 1, . . . , 2k + r + s.

Proof. Given g ∈ G, write ḡ ∈ F ab
m for its image by the quotient map Fm → F ab

m
∼= Zm.

If A(k, r, s)ḡ = −ḡ then we get:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
0 1
1 0

)
0

. . .

0
(

0 1
1 0

)
0

0 Ir 0
0 −Is

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|g|x1

...
|g|x2k

...
|g|x2k+r

...
|g|x2k+r+s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−|g|x1

...
−|g|x2k

...
−|g|x2k+r

...
−|g|x2k+r+s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Consequently,

⎧⎪⎨⎪⎩
|g|x1 = −|g|x2 ,
...
|g|x2k−1 = −|g|x2k

and

⎧⎪⎨⎪⎩
|g|x2k+1 = 0,
...
|g|x2k+r

= 0.

Then, we derive that

ḡ =
k∑
i=1

|g|xi
(x̄2i−1 − x̄2i) +

s∑
j=1

|g|x2k+r+j
x̄2k+r+j . (4.1)

Because ϕ(xi, 0) = ϕ(θ(12)(xi), 0) =
∑2n+r
l=1 |θ(12)(xi)|xl

ϕ(xl, 0) for i = 1, . . . , 2k, we get
that

ϕ(xi, 0) =
{

ϕ(xi+1, 0) if i is odd
ϕ(xi−1, 0) if i is even.

Now, we show one implication. Suppose that ϕ(xl, 0) = 0 for l = 2k + r + 1, . . . , 2k +
r + s and assume that θ(12)(g) = g−1 for some g ∈ Fm. Then, A(k, r, s)ḡ = −ḡ and
by means of the above, we get ϕ(g, 0) =

∑2k+r+s
i=1 |g|xi

ϕ(xi, 0) =
∑2k
i=1 |g|xi

ϕ(xi, 0) =
|g|x1ϕ(x1, 0) − |g|x1ϕ(x1, 0) + · · · + |g|x2k−1ϕ(x2k−1, 0) − |g|x2k−1ϕ(x2k−1, 0) = 0. There-
fore, the system given by Lemma 4.1 has no solution and the result follows.

To show the converse suppose that the pair (θ, ϕ) is realizable. Let

{x′
1, x

′
2, . . . , x

′
2k′ , x

′
2k′+1, . . . , x

′
2k′+s′ , x

′
2k′+s′+1, . . . , x

′
2k′+s′+r′}
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be a basis of Fm given by Theorem 4.3, where certainly 2k′ + r′ + s′ = m. The matrix
A′(k′, r′, s′) of the induced automorphism ρm(θ(12)) : F ab

m → F ab
m , with respect to the

associated basis of F ab
m , satisfies A(k, r, s) = B−1A′(k′, r′, s′)B for some matrix B ∈

GLm(Z). This implies that k = k′, r = r′ and s = s′. Because θ(12)(x′
l) = x

′−1
l and

A(k, r, s) = B−1A′(k′, r′, s′)B, we get that A(k, r, s)x̄l = −x̄l for l = 2k + r + 1, . . . , 2k +
r + s. From (4.1) we get

x̄l =
k∑
i=1

|xl|x′
i
(x̄′

2i−1 − x̄′
2i) +

s∑
j=1

|xl|x′
2k+r+j

x̄′
2k+r+j

for l = 2k + r + 1, . . . , 2k + r + s. But, the pair (θ, ϕ) is realizable, so θ(12)(x′
l) = x

′−1
l , in

view of Lemma 4.1, leads to ϕ(x′
l, 0) = 0 for l = 2k + r + 1, . . . , 2k + r + s. Consequently,

ϕ(x′
2i−1, 0) = ϕ(x′

2i, 0) for i = 1, . . . , k and the above imply ϕ(xl, 0) = 0 for l = 2k + r +
1, . . . , 2k + r + s, and the proof is complete. �

Remark 4.5. Since Theorem 4.3 holds for any free group F , it is not difficult to show
that Theorem 4.4, with obvious suitable changes, holds for any such a group as well.

5. Miscellanea

In this section we discuss actions of groups G on Σ(n), where G has infinite virtual
cohomological dimension, or closely related to this case.

In view of Petrosyan [16], a discrete group G has jump cohomology over a ring R if
there exists an integer k ≥ 0 such that if H ≤ G is any subgroup of G with cdR H < ∞
then cdR H ≤ k. The bound k is called the jump height over R. If R = Z then it is said
that G has jump cohomology and a jump height k. That is related with a problem if the
group G acts freely on a certain finite dimensional CW -complex. By the naturality of
the cup product it follows that if a group G has periodic cohomology in the sense of [2]
over R, then G has jump cohomology over R. More precisely, [16, Lemma 2.7] states: If a
group G has periodic cohomology over R starting in dimension k + 1, then G has a jump
cohomology of height k over R. Consequently, jump cohomology is a weaker condition
than periodic cohomology in the sense of [2].

We recall that by [15, Corollary 5.6], the Thompson group

F =
〈
x0, x1, . . . |xixjx−1

i = xj+1, i < j
〉

with cd F = vcd F = ∞ does not act freely and properly discontinuously on any Rm × Sn.
In fact, in view of [16, Example 3.8], it is also true that F does not act freely and properly
discontinuously on any homotopy sphere Σ(n).

By means of [4], this countable group F has periodic cohomology in the sense that
Hk(F, Z) ∼= Hk+2(F, Z) for all k > 1. Nevertheless, in view of [16, Lemma 2.7 and Exam-
ple 3.8], the group F cannot have periodic cohomology in the sense defined by Talleli [26]
neither jump cohomology over any ring, since it has an infinite rank abelian subgroup
Z∞ ∼= 〈

x0x
−1
1 , x2x

−1
3 , . . .

〉 ≤ F . The fact that a group not having jump cohomology can-
not act on Σ(n) it follows from a more general result, namely by [17, Theorem 4.2]:
‘a group not having jump cohomology implies that it cannot act freely and properly
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discontinuously on a finite dimensional CW -complex whose first top non-trivial integral
homology is finitely generated and infinite’.

Prassidis has shown in the paragraph after [18, Theorem 10] the following.

Theorem 5.1. There exist discrete groups G with vcdG = ∞ which act freely and
properly on some Rm × Sn.

The action given in [18] is free, properly discontinuous but not co-compact. Then
Farrell and Stark [8, Theorem 1] showed the following.

Theorem 5.2. For each m ≥ 2 and n ≥ m(m + 1), there are smooth closed manifolds
with universal covering spaces Rm × S2n−1 and fundamental group of infinite virtual
cohomological dimension.

Groups from the results above are torsion with vcdG = ∞ and, in view of Proposition 2.2,
they cannot act on any Σ(2n), in particular on any Rm × S2n. But it is natural to ask: can
a torsion-free group G with cd G = ∞ act (possibly co-compactly), freely and properly
discontinuously on some Rm × Sn? By a private communication with F.X. Connolly and
S. Prasidis this question is not settled. Further, the proposed question above is related
to a conjecture by O. Talelli which will be described after Question 5.3 below.

Several of the questions and results above can be studied if we restrict ourselves to the
family of homotopy spheres Σ(2n). Taking into account [13, Theorem 5.2], we close this
paper with the following.

Question 5.3. Suppose that a group G acts, freely and properly discontinuously
(possibly co-compactly) on some Σ(2n) with dim Σ(2n) ≤ m + 2n. Does it follow that
vcd G ≤ m?

At the end of [27] Talelli states: ‘if G has periodic cohomology after some steps and
is torsion-free, then G has finite cohomological dimension, which we expect to be true’.
Next, this has been transformed by Talelli in [28, Conjecture III, p. 304] into a conjecture:
‘If G has periodic cohomology after some steps and G is torsion-free then cd G < ∞’.

Therefore, in view of Proposition 2.2(2), Question 5.3 would follow affirmatively from
Talelli’s conjecture above. Also notice that Proposition 3.4 yields vcd G ≤ 1 for any vir-
tually cyclic group G acting on some Σ(2n). Further, by Corollary 2.4 and [16, Theorem
4.2] the answer to Question 5.3 is affirmative for m = 0, 1.

Regarding other aspects of group actions on homotopy spheres, a very good survey can
be found in [10], where several questions are posed and discussed.
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