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Abstract

VT (Viterbi training), or hard expectation maximization (EM), is an efficient way of parameter

learning for probabilistic models with hidden variables. Given an observation y , it searches

for a state of hidden variables x that maximizes p(x , y | θ) by coordinate ascent on

parameters θ and x . In this paper we introduce VT to PRogramming In Statistical Modeling

(PRISM), a logic-based probabilistic modeling system for generative models. VT improves

PRISM in three ways. First, VT in PRISM converges faster than EM in PRISM due to

VT’s termination condition. Second, parameters learned by VT often show good prediction

performance compared with those learned by EM. We conducted two parsing experiments

with probabilistic grammars while learning parameters by a variety of inference methods, i.e.

VT, EM, MAP and VB. The result is that VT achieved the best parsing accuracy among them

in both experiments. Also, we conducted a similar experiment for classification tasks where

a hidden variable is not a prediction target unlike probabilistic grammars. We found that

in such a case VT does not necessarily yield superior performance. Third, since VT always

deals with a single probability of a single explanation, Viterbi explanation, the exclusiveness

condition imposed on PRISM programs is no more required if we learn parameters by VT.

Last but not least, we can say that as VT in PRISM is general and applicable to any PRISM

program, it largely reduces the need for the user to develop a specific VT algorithm for a

specific model. Furthermore, since VT in PRISM can be used just by setting a PRISM flag

appropriately, it makes VT easily accessible to (probabilistic) logic programmers.

KEYWORDS: Viterbi training, PRISM, exclusiveness condition

1 Introduction

Viterbi training (VT) has been used for a long time as an efficient parameter learning

method in various research fields such as machine translation (Brown et al. 1993),

speech recognition (Juang and Rabiner 1990; Strom et al. 1999), image analysis

(Joshi et al. 2006), parsing (Spitkovsky et al. 2010) and gene finding (Lomsadze

et al. 2005). Although VT is NP-hard even for probabilistic context free grammars

(PCFGs), which is proved by encoding the 3-SAT problem into PCFGs (Cohen and
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Smith 2010), and is biased unlike maximum likelihood estimation (MLE) (Lember

and Koloydenko 2007), it often outperforms and runs faster than the conventional

expectation maximization (EM) algorithm.

We introduce this VT to PRogramming In Statistical Modeling (PRISM), which is

a probabilistic extension of Prolog (Sato and Kameya 2001; Sato and Kameya 2008).1

There are already multiple parameter learning methods available in PRISM. One

is the EM algorithm, or more generally maximum a posteriori (MAP) estimation

(Sato and Kameya 2001). Another is variational Bayes (VB) (Sato et al. 2009),

which approximately realizes Bayesian inference and learns pseudo counts assuming

Dirichlet priors over parameters. These are implemented on PRISM’s data structure

called explanation graphs representing AND/OR Boolean formulas made up of

probabilistic ground atoms. Probabilities used in EM, MAP and VB are all computed

by running the generalized inside–outside algorithm (Sato and Kameya 2001) or its

variant on explanation graphs.

Viterbi training in PRISM runs on explanation graphs just like EM, MAP

and VB, but always deals with a single probability of a single explanation called

Viterbi explanation or most probable explanation. Compared with EM that updates

only parameters, VT alternately updates the Viterbi explanation and parameters,

computing one from the other and vice versa, until the Viterbi explanation stops

changing. Note that this results in the earlier termination of the algorithm than EM

because a small perturbation in parameters does not change the Viterbi explanation

whereas it keeps EM running. Actually, we found in our experiments in Section 3

that EM required eight to 15 times more cycles to stop than VT. Also, since VT

updates parameters so that they maximize the probability of the Viterbi explanation,

it is possible and probable that the final parameters by VT give a higher probability

to the Viterbi explanation than those learned by EM. This intuitively explains why

VT tends to yield superior performance to EM in prediction tasks such as parsing

that computes the Viterbi explanation as a predicted value, as we see in Section 4.

In addition, VT brings about a favorable side effect on PRISM. VT does not

require the exclusiveness condition imposed on PRISM programs to ensure efficient

sum–product probability computation. This is because VT always deals with a

single probability of Viterbi explanation, and hence there is no need for summing

up probabilities of the non-exclusive explanations. Consequently, PRISM can learn

parameters by VT for programs that do not satisfy the exclusiveness condition. We

will discuss more about the exclusiveness condition in Section 6.

Viterbi training thus improves PRISM as follows:

• Faster convergence due to a less number of iterations compared with EM.

• Ability to learn parameters good for prediction.

• Elimination of the exclusiveness condition imposed on programs.

From the viewpoint of statistical machine learning and probabilistic logic pro-

gramming (PLP), we can first say that PRISM generalizes VT. That is, the VT

1 Viterbi training is available in PRISM2.1. PRISM2.1 is the latest version of PRISM, downloadable
from http://sato-www.cs.titech.ac.jp/prism/
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algorithm implemented in PRISM works for arbitrary probabilistic models described

by PRISM, a Turing complete language, including Bayesian networks (BNs), Hidden

Markov Models (HMMs) and PCFGs, and hence eliminates the need for the user

to derive and implement a specific VT algorithm for a specific model that can be

described as a PRISM program. Also, it makes VT easily accessible to probabilistic

logic programmers because they can use VT just by setting learn mode, one of

PRISM’s flags, appropriately. As a result, by switching the learn mode flag he/she

can choose the best parameter learning method for their models from EM, MAP, VB

and VT, all available in PRISM2.1, without rewriting and adapting their programs

to each parameter learning method. Indeed, the exhaustive comparisons among EM,

MAP, VB and VT done in our experiments seem quite costly in other environments.

In what follows, we first review PRISM in Section 2 and then explain the basic

idea of VT and reformulate it for PRISM in Section 3. We then apply VT to two

probabilistic grammars in Section 4 using the ATR corpus, where a hidden variable

in a model is a prediction target. In Section 5, we deal with a different situation

using a naive Bayes with a hidden variable (NBH) model whose hidden variable

is not a prediction target. We explain the implication of VT on the exclusiveness

condition in Section 6. Section 7 discusses the related work. Section 8 contains the

conclusions.

2 Reviewing PRISM

For the self-containedness we review PRISM focusing on its computation mecha-

nism. PRISM is one of the statistical relational learning (SRL)/probabilistic logic

learning (PLL) languages (Getoor and Taskar 2007; De Raedt and Kersting 2008)

which aim at using rich expressions such as relations and first-order logic for

complex probabilistic modeling. It is a probabilistic extension of Prolog enhanced

with various built-in predicates for statistical machine learning such as predicates for

parameter learning, Viterbi inference, model scoring, Markov Chain Monte Carlo

(MCMC) sampling and so on in addition to standard predicates equipped with

Prolog.

2.1 Probability naively computed

Syntactically a PRISM program DB looks like a usual Prolog program except the

use of probabilistic built-in predicate of the form msw(i,v) called “multi-valued

random switch” (with switch name i ) that represents a probabilistic choice using

simple probabilistic events such as dice throwing; msw(i,v) says that throwing a

dice named i yields an outcome v . Let Vi = {v1, . . . , v|Vi |} be the set of possible

outcomes for i . The set msw(i , ·) def
= {msw(i,v) | v ∈ Vi } of msw atoms is given a joint

distribution such that one of the msw(i , ·)′s, say msw(i,v), becomes exclusively true

(others false) with probability θi ,v (v ∈ Vi ) where
∑

v∈Vi
θi ,v = 1. In other words,

msw(i , ·) stands for a discrete random variable Xi taking v with probability θi ,v

(v ∈ Vi ). In this sense we identify msw(i , ·) with Xi and its distribution.
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The θi ,v ’s are called parameters associated with i . These are directly specified by

the user, or learned from data. We define Pmsw(· | θ) as an infinite product of such

distributions for msws, where θ stands for the set of all parameters. Then Pmsw(· | θ)

is uniquely extended by way of the least model semantics for logic programs to a

σ-additive probability measure PDB (· | θ) over possible Herbrand interpretations of

DB , which we consider as the denotation of DB (distribution semantics) (Sato 1995;

Sato and Kameya 2001). In the following we omit θ when the context is clear for

the sake of brevity.

Let G be a non-msw atom which is ground. PDB (G), the probability of G , can be

naively computed as follows. First reduce the top-goal G using Prolog’s exhaustive

top-down proof search to an equivalent propositional DNF formula expl0(G) =

ε1 ∨ · · · ∨ εk ,2 3 where εi (1 � i � k ) is a conjunction msw1 ∧ · · · ∧ mswn of msw atoms

such that msw1 ∧ · · · ∧ mswn ,DB � G . Each εi is called an explanation for G. Then

assuming

[Independence condition] msw atoms in an explanation are independent:

PDB (msw ∧ msw′) = PDB (msw)PDB (msw′)

[Exclusiveness condition] Explanations are exclusive:

PDB (εi ∧ εj ) = 0 if i �= j

we compute PDB (G) as

PDB (G) = PDB (ε1) + · · · + PDB (εk )

PDB (εi ) = PDB (msw1) · · · PDB (mswn ) for εi = msw1 ∧ · · · ∧ mswn ·

Recall here that msws with different switch names are independent by construction

of Pmsw(· | θ). We may further assume that msw atoms with the same switch name are

independent and identically distributed (iid). That is, when msw(i,v) and msw(i,v ′)

occur in a program, we consider they are the results of sampling the same msw(i,·)
twice. This is justified by hypothetically adding an implicit argument, trial-id t (Sato

and Kameya 2001) to msw(i,·) and assuming that msw(i,t,·)s have a product of joint

distributions just like the case of msw/2, which makes msw(i,t,·) and msw(i,t ′,·)
(t �= t ′) iid. So, in what follows we assume that the independence condition is

automatically satisfied.

Contrastingly, the exclusiveness condition cannot be automatically satisfied. It

needs to be satisfied by the user, for example, by writing a program so that it

generates an output solely as a sequence of probabilistic choices made by msw

atoms (modulo auxiliary non-probabilistic computation). Although most generative

models, including BNs, HMMs and PCFGs, are written this way naturally, but there

are models which are unnatural or difficult to write this way (De Raedt et al. 2007).

Relating to this, observe that Viterbi explanation , i.e. the most likely explanation

ε∗ for G , is computed similarly to PDB (G) just by replacing sum with argmax:

ε∗ def
= argmax

ε∈expl0(G)
PDB (ε), and does not require the exclusiveness condition to

2 The equivalence means that G and expl0(G) denote the same Boolean random variable in view of the
distribution semantics of PRISM.

3 When convenient, we treat expl0(G) as a bag {ε1, . . . , εk } of explanations.
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compute because it only deals with the probability of a single explanation. We will

discuss more about the exclusiveness condition in Section 6.

2.2 Tabled search, dynamic programming, probability computation and

Viterbi inference

So far our computation is naive. Since there can be exponentially many explanations,

naive computation would lead to exponential time computation. PRISM avoids this

by adopting tabled search in the exhaustive search for all explanations for the

top-goal G and applying dynamic programming to probability computation. By

tabling, a goal once called and proved is stored (tabled) in memory with answer

substitutions and later calls to the goal return with stored answer substitutions

without processing further. Tabling is important to probability computation because

tabled goals factor out common sub-conjunctions in expl0(G), which results in

sharing probability computation for the common sub-conjunctions, thereby realizing

dynamic programming, which gives exponentially faster probability computation

compared with naive computation.

As a result of exhaustive tabled search for all explanations for G , PRISM obtains

a set of propositional formulas called defining formulas of the form H ⇔ B1 ∨ . . .∨Bh

for every tabled goal H 4 that directly or indirectly calls msws. We call the heads of

defining formulas defined goals. Each Bi (1 � i � h) is recursively a conjunction

C1 ∧ . . . ∧ Cm ∧ msw1 ∧ . . . ∧ mswn (0 � m , n) of defined goals {C1, . . . ,Cm} and msw

atoms {msw1, . . . , mswn}. We introduce a binary relation H � C over defined goals

such that H � C holds if H is the head of some defining formula and C occurs

in the body. Assuming “�” is acyclic, we extend it to a partial ordering over the

defined atoms. We denote by expl(G) the whole set of defining formulas and call

expl(G) the explanation graph for G like the non-tabled case.

Once expl(G) is obtained, since defined goals are layered by the “�” relation

by our assumption where the defining formula in the bottom layer has only msws

in the body whose probabilities are known, we can compute probabilities by sum-

product operation5 for all defined goals from the bottom layer upward in a dynamic

programming manner in time linear in the size of expl(G), i.e. the number of atoms

appearing in expl(G).

Compared with naive computation, dynamic programming on expl(G) can reduce

time complexity for probability computation from exponential time to polynomial

time. For example, PRISM’s probability computation for HMMs takes O(L) time

for a given sequence with length L and coincides with the well-known forward–

backward algorithm for HMMs. Likewise, PRISM’s probability computation for

PCFGs takes O(L3) time for a sentence with length L and coincides with the

computation of inside probability for PCFGs. More interestingly, belief propagation

(BP), one of the standard algorithms for probability computation for BNs, coincides

4 The top-goal G is a tabled goal. Tabled goals except the top-goal are called “intermediate goals” in
Sato and Kameya (2001) and Zhou et al. (2008).

5 The exclusiveness and independence conditions are inherited from the naive case.
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with PRISM’s probability computation applied to PRISM programs that describe

junction trees (Sato 2007).

Viterbi inference, i.e. the computation of the Viterbi explanation and its prob-

ability, is similarly performed on expl(G) in a bottom-up manner like probability

computation stated above. The only difference is that we use argmax instead of sum.

In what follows, we look into how the Viterbi explanation is computed. We use θ for

the set of all parameters. Let H be a defined goal and H ⇔ B1 ∨ . . .∨Bh the defining

formula for H in expl(G). Write Bi = C1 ∧ . . . ∧ Cm ∧ msw(i1,v1) ∧ . . . ∧ msw(in,vn)

(1 � i � h) and suppose recursively that the Viterbi explanation ε∗
Cj

(1 � j � m)

has been already calculated for each defined goal in Cj in Bi . Then the Viterbi

explanation ε∗
Bi

for Bi and the Viterbi explanation ε∗
H for H are respectively

computed by

ε∗
Bi

= ε∗
C1

∧ · · · ∧ ε∗
Cm

∧ msw(i1,v1) ∧ . . . ∧ msw(in,vn)

ε∗
H = argmaxBi

PDB (ε∗
Bi

| θ)

where PDB (ε∗
Bi

| θ) = PDB (ε∗
C1

) · · · PDB (ε∗
Cm

)θi1 ,v1
· · · θin ,vn

·

Here θi1 ,v1
is a parameter associated with msw(i1,v1) and so on. In this way the

Viterbi explanation for the top-goal G is computed in a bottom-up manner by

scanning expl(G) once in time linear in the size of expl(G), i.e. exactly the same time

complexity as probability computation; for example, O(L) for HMMs and O(L3)

for PCFGs, where L is respectively the length of sequence and that of sentence.

Parameter learning in PRISM, be it EM, MAP, VB or VT (explained next), is based

on computation by dynamic programming on expl(G). For example, EM in PRISM

computes generalized inside probabilities and generalized outside probabilities for

defined goals in expl(G) using dynamic programming and calculates expectations of

the number of occurrences of msw atoms in a Selective Linear Definite (SLD) proof

for the top-goal to update parameters in each iteration, similar to the inside–outside

algorithm for PCFGs (Sato and Kameya 2001). MAP estimation and VB inference

are also performed similarly (Sato and Kameya 2008; Sato et al. 2009).

3 Viterbi training and PRISM

In this section we adapt VT to the distribution semantics of PRISM and derives the

VT algorithm for PRISM.

3.1 Viterbi training

Here we explain the basic idea of VT without assuming specific distributions. Let

x be hidden variables, y observed ones and p(x , y | θ) their joint distribution with

parameters θ. We assume x and y are discrete. MLE estimates parameters θ from

y as the maximizer of the (log) likelihood function LEM (y | θ):

LEM (y | θ) def
= log

∑
x

p(x , y | θ)·
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In the case of MAP estimation, we add a prior distribution p(θ) and use LMAP (y | θ)
below as an objective function:

LMAP (y | θ) def
= log

∑
x

p(x , y | θ)p(θ)·

What VT does is similar to MLE and MAP, but it uses a different objective

function LVT (y | θ) defined as

LVT (y | θ) def
= log maxx p(x , y | θ)p(θ)·

Viterbi training estimates parameters as the maximizer of LVT (y | θ) by coordi-

nate ascent that alternates the maximization of log p(x , y | θ) w.r.t. x and the

maximization of log p(x , y | θ) w.r.t. θ:

x (n) = argmaxx log p(x , y | θ(n)) (1)

θ(n+1) = argmaxθ log p(x (n), y | θ)p(θ) (2)

Starting with appropriate initial parameters θ(0), VT iterates the above two steps

and terminates when x (n+1) = x (n) holds (recall that random variables x and y are

discrete). Proving the convergence property of VT is straightforward,

LVT (y | θ(n+1)) = log p
(
x (n+1), y | θ(n+1)

)
p(θ(n+1))

� log p
(
x (n), y | θ(n+1)

)
p(θ(n+1))

� log p
(
x (n), y | θ(n)

)
p(θ(n))

= LVT

(
y | θ(n)

)
So LVT (y | θ(n)) � LVT (y | θ(n+1)) � 0 for every n = 0, 1, . . . Since {LVT (y | θ(n))}n is

a monotonically increasing sequence with an upper bound, it converges as n goes to

infinity.

3.2 VT for PRISM

Here we reformulate VT in the context of PRISM. Let DB be a PRISM program

with parameters θ and PDB (· | θ) a probability measure defined by DB . Also,

let G = G1, . . . ,GT be observed goals, and expl(Gt ) (1 � t � T ) be the set of

all explanations εt for Gt such that εt ,DB � Gt . G = G1, . . . ,GT corresponds to

observed variables y and ε1, . . . , εT corresponds to hidden variables x in p(x , y | θ)
respectively in equations (1) and (2) in Section 3.1.

Let msw(i,·) be the set of msw atoms for a multi-valued random switch i as before

that represents a probabilistic choice from a finite set Vi of possible outcomes

such that msw(i,v) (v ∈ Vi ) becomes exclusively true with probability θi ,v .
6 Since∑

v∈Vi
θi ,v = 1 holds, θi is a point in the probability simplex. We put θi = {θi ,v }v∈Vi

and θ =
⋃

i θi where i ranges over possible switch names.

6 In PRISM, Vi is declared by values/2-3 predicate.
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We introduce as a prior distribution Dirichlet distribution PDir(θi ) ∝
∏

v∈Vi
θ
αi ,v −1
i ,v

with hyper parameters {αi ,v }v∈Vi
over θi and their product distribution PDir(θ)

def
=∏

i PDir(θi ). In the following, to avoid the difficulty of zero-probability encountered

in parameter learning, we assume pseudo count δi ,v
def
= αi ,v − 1 > 0 and use δi ,v in

place of αi ,v .

Finally, recall that the Viterbi explanation ε∗
t for a goal Gt is the most probable

explanation for Gt given by

ε∗
t = argmaxεt ∈expl(Gt )PDB (εt | θ)· (3)

By substituting G = G1, . . . ,GT for y and ε1, . . . , εT for x in the definition of

LVT (y | θ), the objective function LVT (G | θ) for VT in PRISM is now computed as

follows:

LVT (G | θ)

= log maxε1∈expl(G1),...,εT ∈expl(GT )

T∏
t=1

PDB (εt ,Gt | θ)PDir(θ)

= log

T∏
t=1

maxεt ∈expl(Gt )PDB (εt | θ)PDir(θ)

= log

T∏
t=1

PDB (ε∗
t | θ)PDir(θ)

= log
∏
i ,v

θ
∑T

t=1 σi ,v (ε
∗
t )+δi ,v

i ,v

=
∑
i ,v

(
T∑

t=1

σi ,v (ε
∗
t ) + δi ,v

)
log θi ,v (4)

where “i , v” ranges over these such that msw(i,v) appears in some ε∗
t and σi ,v (ε

∗
t ) is

the count of msw(i,v) in ε∗
t .

Likewise, by substituting G = G1, . . . ,GT for y and ε1, . . . , εT for x in equations

(1) and (2) respectively and using the definition of ε∗
t , we obtain the VT algorithm

for PRISM which alternately executes (5) and (6) where θ(n) stands for the set of

parameters {θ(n)
i ,v } at step n ,

ε
∗(n)
t = argmaxεt ∈expl(Gt ) PDB (εt | θ(n)) (1 � t � T ) (5)

θ
(n+1)
i ,v ∝

T∑
t=1

σi ,v (ε
∗(n)
t ) + δi ,v (6)

Here (5) corresponds to (1) and (6) to (2) respectively.

Using (5) and (6), VT in PRISM is performed as follows. Given observed goals G =

G1, . . . ,GT , we first perform tabled search for all explanations to build explanation

graphs expl(Gt ) for each t (1 � t � T ). Then starting from the initial parameters

θ(0), we repeat (5) and (6) alternately while computing the Viterbi explanations
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Table 1. Average number of iterations and learning time for convergence

Iterations Learning time (sec)

VT EM VT EM

PCFG 8.10 (2.28) 123.6 (3.23) 0.45 (0.11) 6.29 (0.16)

PLCG 15.80 (4.73) 144.2 (43.51) 1.55 (0.36) 11.686 (3.64)

ε
∗(n)
t in (5) by dynamic programming over expl(Gt ) as explained in Section 2 until

ε
∗(n+1)
t = ε

∗(n)
t holds for all t (1 � t � T ). {θ(n+1)

i ,v } are then learned parameters.

Having derived the VT algorithm for PRISM, we examine the effect of the

termination condition ε
∗(n+1)
t = ε

∗(n)
t (1 � t � T ) on the convergence of VT. As we

have remarked in Section 1, this condition means that VT terminates as soon as

the Viterbi explanations converge, i.e. there is no change in the Viterbi explanations

between steps n and n + 1 whereas EM always runs until the convergence of

parameters. As a result, since a small change of parameters does not affect the

Viterbi explanation but keeps EM running, VT tends to converge in much less

number of iterations than EM.

To empirically check this, we conducted parameter learning of probabilistic

grammars by VT and EM using PRISM and compared their convergence behavior.7

We used two probabilistic grammars, PCFG and probabilistic left-corner grammar

(PLCG), for the ATR corpus (Uratani et al. 1994) (their details are described in the

next section), and measured the average number of iterations and learning time8

required for convergence over 10 runs. Table 1 summarizes the results with standard

deviations in parentheses.

Looking at the table, we see that VT required only a small number of iterations

to converge compared with EM; the ratio of average number of iterations of VT

to EM is 1:15.2 w.r.t. the PCFG and 1:8.3 w.r.t. the PLCG. We also note that

the ratio of average learning time9 is similar to that of iterations: 1:13.8 w.r.t. the

PCFG and 1:7.4 w.r.t. the PLCG. It therefore seems natural to conclude that VT

learns parameters with much less number of iterations, and thereby much faster

than EM.10

Since VT is a local maximizer, it is sensitive to the initial condition such as EM.

So we need to carefully choose θ(0). Uniform distributions for θ(0) (Spitkovsky et al.

7 All experiments in this paper are done on a single machine with Core i7 Quad 2.67 GHz×2 CPU and
72-GB RAM running OpenSUSE 11.2 using PRISM2.1.

8 We used a built-in predicate prism statistics(em time,x) to measure learning time, which returns
in x time used by the learning algorithm.

9 Learning time displayed by the PRISM system after learn is “total learning time” which includes
search time for explanations and other overhead time such as copying msws in the memory, in addition
to actual learning time reported by prism statistics(em time,x). Since such extra-time accounts
for a large percentage of total learning time, it can happen that the difference in total learning time
between EM and VT is smaller than that in Table 1.

10 In the table, the difference of VT and EM in the number of iterations is statistically significant for
both grammars by unpaired t-test at the 5% significance level with the Bonferroni correction. This
applies to learning time as well.
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values(’S’,[[’S’,’S’],[a],[b]],[0.4,0.3,0.3]).

pcfg(L):- pcfg([’S’],L,[]).

pcfg([A|R],L0,L2):-

( get_values(A,_) -> % msw(A,_) exists, so

msw(A,RHS), % A is a nonterminal

pcfg(RHS,L0,L1)

; L0=[A|L1] ),

pcfg(R,L1,L2).

pcfg([],L,L).

Fig. 1. A PCFG program.

2010) and ε
∗(0)
t (1 � t � T ) (Cohen and Smith 2010) are possible choices. In practice,

we further add random restart to alleviate the sensitivity problem. For example, in

the experiments in the next section, we repeated parameter learning 50 times with

random restart for each learning and selected the parameter set giving the largest

value of the objective function LVT (G | θ) computed by (4).

4 Learning experiments with probabilistic grammars

In this section we apply VT to parsing tasks in natural language processing where

observable variables are sentences and hidden variables are parse trees. We predict

parse trees for given sentences using probabilistic grammars (PCFG and PLCG)

whose parameters are learned by VT and compare the parsing performance with

EM, MAP and VB.11

4.1 VT for PCFGs

Prior to describing the parameter learning experiment with a PCFG by VT, we briefly

review how to write PCFGs in PRISM. In PCFGs, sentence derivation is carried

out probabilistically. When there are k PCFG rules θ1 : A → β1, . . . , θk : A → βk for

a nonterminal A with probabilities θ1, . . . , θk (θ1 + · · · + θk = 1), A is expanded by

A → βi into βi with probability θi . The probability of a parse tree τ is the product

of probabilities associated with occurrences of CFG rules in τ, and the probability

of a sentence is the sum of probabilities of parse trees for the sentence.

Writing PCFG programs is easy in PRISM. Figure 1 is a PRISM program for

a PCFG { 0.4:S→S S, 0.3:S→a, 0.3:S→b }. In general, PCFG rules such as

{θ1 : A → β1, . . . , θk : A → βk } are encoded by values/3 declaration as

values(’A’,[β1, . . . , βk],[θ1, . . . , θk])

where βi (1 � i � k ) is a Prolog list of terminals and nonterminals.

11 We assume, the reader is familiar with the basics of parsing theory.
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We wrote a PCFG program as shown in Figure 1 for the ATR corpus (Uratani

et al. 1994) using an associated CFG.12 The corpus contains labeled parse trees for

10,995 Japanese sentences whose average length is about 10. The associated CFG13

comprises 861 CFG rules (168 non-terminals and 446 terminals) and on average

yields 958 parses/sentences. We applied four learning algorithms, i.e. VT, EM, MAP

and VB (Sato et al. 2009) available in PRISM2.1 to the PCFG program for the

ATR corpus14 and compared the performance of VT with other learning methods.

We conducted eight-fold cross-validation (CV) for each algorithm15 to evaluate

the quality of learned parameters in terms of three performance metrics, i.e. labeled

tree (LT), bracketed tree (BT) and zero crossing brackets (0-CB) (Goodman 1996).

These metrics are computed from Tc , the set of parse trees in a test corpus which

are considered correct and Tg , the set of parse trees predicted for sentences in

the test corpus by a parsing algorithm. LT is defined as |Tc ∩ Tg |/N , where |S |
denotes the number of elements in a set S and N = |Tg | = |Tc |. It is the ratio of

correctly predicted labeled parse trees to the total number of labeled parse trees.

Compared with LT, BT is a less strict metric that ignores nonterminals in parse trees.

Let T ′
g be the set of unlabeled trees obtained by removing nonterminals from Tg

which coincide with the corresponding unlabeled trees in Tc . Then BT is defined as

|T ′
g |/N . Finally, 0-CB is the least strict metric in the three metrics. We say brackets

(wi , . . . ,wj ) in a tree τ is inconsistent with another tree τ′ if τ′ contains brackets

(ws , . . . ,wt ) such that s < i � t < j or i < s � j < t , otherwise they are consistent

with τ′. Let T ′′
g be the set of trees in Tg which have no inconsistent brackets with

the corresponding trees in Tc . Then 0-CB is given by |T ′′
g |/N .

To perform CV, the entire corpus is partitioned into eight sections. In each fold,

one section is used as a test corpus and sentences in the remaining sections are

used as training data. For each of EM, MAP, VT and VB, parameters (or pseudo

counts) are learned from the training data. A parse tree is predicted, i.e. the Viterbi

explanation is computed for each sentence in the test corpus using learned parameters

or using the approximate posterior distribution learned by VB. The predicted trees

are compared with answers, i.e. the labeled trees in the test corpus to compute LT,

BT and 0-CB respectively. The final performance figures are calculated as averages

over eight folds and summarized in Table 2 with standard deviations in parentheses.

12 In the experiment, to speed up parsing, we partially evaluated the PCFG program with individual
CFG rules and used the resulting specialized program.

13 Copyrights protected.
14 In PRISM, EM is a special case of MAP inference. We used random but almost uniform initialization

of parameters and set uniformly pseudo counts δi ,v to 1.0−9 for EM and 1.0 for MAP and VT,
respectively. Similarly, we uniformly set hyper parameters αi ,v to 1.0 for VB. The number of candidates
for re-ranking in VB (Sato et al. 2009) was set to 5.

In all the cases, we set the number of random restart to 50 and used the best parameter set that gave
the largest value of objective functions, i.e. LEM for EM, LMAP for MAP and LVT for VT. For the case
of VB that learns pseudo counts, we chose the best set of pseudo counts giving the highest free energy
(Sato et al. 2009).
15 We chose eight-fold CV for parallel execution of learning by our machine.
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Table 2. Parsing performance by PCFG

Learning method

Metric VT EM MAP VB

LT (%) 74.69 (0.87) 70.02 (0.88) 70.31 (1.13) 72.13 (1.10)

BT (%) 77.87 (0.84) 73.10 (1.01) 73.45 (1.20) 75.46 (1.13)

0-CB (%) 83.78 (0.92) 84.44 (0.89) 84.89 (0.84) 87.08 (0.87)

We statistically analyzed the parsing performance by Dunnett’s test.16 The result

is that VT outperformed EM, MAP and VB in terms of LT and BT at the 5%

level of significance, but not in terms of 0-CB. This is understandable if we assume

that there are many parse trees that can give high scores in terms of less restrictive

metrics such as 0-CB, but since VT concentrates probability mass on a single tree,

those promising trees are allocated little probability mass by VT, which results in

relatively low performance of VT in terms of 0-CB.

So far we have examined parsing performance by parameters obtained from

incomplete data (sentences in the corpus). We also examined parsing performance

using 8-fold CV by parameters learned from complete data, i.e. by parameters

obtained by counting occurrences of CFG rules in the corpus. The result is LT:

79.06% (1.25), BT: 85.28% (0.69), 0-CB: 95.37% (0.26) (figures in parentheses are

standard deviations). These figures are considered as the best possible performance.

We note that the gap in parsing performance between the complete data case and

the incomplete data case tends to become wider as the performance metric gets less

restrictive in the order of LT, BT and 0-CB.

Another thing to note is that the objective functions for EM, MAP and VB are

similar in the sense that they all sum out hidden variables whereas the objective

function for VT retains them. This fact together with Figure 2 seems to suggest that

parsing performance is more affected by the difference among objective functions

than the difference among learning methods.

4.2 VT for PLCGs

Probabilistic context free grammars assume top-down parsing. Contrastingly, there

is a class of probabilistic grammars based on bottom-up parsing for CFGs called

probabilistic left-corner grammars (PLCGs) (Manning 1997; Roark and Johnson

1999; Van Uytsel et al. 2001). Although they use the same set of CFG rules as

PCFGs, they attach probabilities not to expansion of nonterminals but to three

elementary operations in bottom-up parsing, i.e. shift, attach and project. As a result

they define a different class of distributions from PCFGs. In this section we conduct

an experiment for parameter learning of a PLCG by VT.

16 We used Dunnett’s test for multiple comparisons of means with VT as the control to avoid inflating
the significance level. Figures in bold indicate the best performance.
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values(lc(’S’,’S’),[rule(’S’,[’S’,’S’])]).
values(lc(’S’,a),[rule(’S’,[a])]).
values(lc(’S’,b),[rule(’S’,[b])]).
values(first(’S’),[a,b]).
values(att(’S’),[att,pro]).

plcg(L):- g_call([’S’],L,[]).

g_call([],L,L).
g_call([G|R],[Wd|L],L2):-

( G = Wd -> L1 = L % shift operation
; msw(first(G),Wd),lc_call(G,Wd,L,L1) ),
g_call(R,L1,L2).

lc_call(G,B,L,L2):- % B-tree is completed
msw(lc(G,B),rule(A,[B|RHS2])),
( G = A -> true ; values(lc(G,A),_) ),
g_call(RHS2,L,L1), % complete A-tree
( G = A -> att_or_pro(A,Op),

( Op = att -> L2 = L1 ; lc_call(G,A,L1,L2) )
; lc_call(G,A,L1,L2) ).

att_or_pro(A,Op):-
( values(lc(A,A),_) -> msw(att(A),Op) ; Op=att ).

Fig. 2. A PLCG program.

The objective of this section is two-fold. One is to apply VT to a PLCG, which, as

far as we know, is not attempted before, and to examine the parsing performance.

The other is to empirically demonstrate the universality of our approach to VT that

subsumes differences in probabilistic models as differences in explanation graphs

and applies a single VT algorithm to the latter.

Programs for PLCGs look very different from those for PCFGs. Figure 2 is a

PLCG program, a dual version of the PCFG program in Figure 1 with the same

underlying CFG {S→S S, S→a, S→b}. It generates sentences using the first set

of ’S’ and the left-corner relation for this CFG (values/2 there only declares

the space of outcomes). The program works as follows: Suppose nonterminals G

and B are in the left-corner relation and G is waiting for a B-tree, i.e. a subtree

with the root node labeled B, to be completed. When a B-tree is completed, the

program probabilistically chooses a CFG rule of the form A → Bβ to further grow

the B-tree using this rule. Upon the completion of the A-tree and if G = A, the

attach operation or the projection is probabilistically chosen. By replacing values

declarations appropriately, this program is applicable to any PLCG.

We have developed a PLCG program similarly to the PCFG program for the

ATR corpus and applied VT, EM, MAP and VB to it to learn parameters. We

measured parsing performance by learned parameters in terms of LT, BT and 0-CB

by eight-fold CV for each of VT, EM, MAP and VB as shown in Table 3 (standard

deviations in parentheses). We compared the parsing performance of VT with EM,

MAP and VB by Dunnett’s test at the 5% level of significance similar to the PCFG
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Table 3. Parsing performance by PLCG

Learning method

Metric VT EM MAP VB

LT (%) 76.26 (0.96) 71.81 (0.91) 71.17 (0.93) 71.15 (0.90)

BT (%) 78.86 (0.70) 75.17 (1.15) 74.28 (1.12) 74.28 (1.00)

0-CB (%) 87.45 (1.00) 86.49 (0.97) 86.03 (0.67) 86.04 (0.71)

Fig. 3. Bayesian network for an NBH model.

case. This time, however, VT outperformed all of EM, MAP and VB by all metrics,

i.e. LT, BT and 0-CB.

5 Applying VT to classification tasks

In the previous section, we conducted learning experiments with PCFG and PLCG

in which the prediction target was parse trees that coincide with a hidden variable

in a probabilistic model. In this section, we deal with a different situation where

a prediction target differs from a hidden variable. We apply VT to classification

tasks using an NBH model whose hidden variable is summed out and instead an

observable variable, class label, is predicted for the given data.

Before explaining classification tasks, we review NBH for completeness (Sato

2011). NBH is an extension of NB (naive Bayes) with a hidden class variable HC

as illustrated in Figure 3. It defines a joint distribution

P (A1, . . . ,An ,HC ,C | θ) =

n∏
j=1

P (Aj |HC ,C , θ)P (HC |C , θ)P (C | θ)

where θ is model parameters, Aj ’s are attributes of the observed data,17 C is a class

and HC is a hidden class. It is easily seen from the equation (7) that NBH represents

data distribution in class C as a mixture of data distributions indexed by HC .

P (A1, . . . ,An | C , θ) =
∑
HC

P (A1, . . . ,An |HC ,C , θ)P (HC |C , θ)

=
∑
HC

n∏
j=1

P (Aj |HC ,C , θ)P (HC |C , θ) (7)

17 We interchangeably use the attributes A1, . . . ,An as data when the context is clear.
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values(class,[democrat,republican]). % class labels are democrat or republican

values(attr(_A,_C,_HC),[y,n]). % attribute values are y or n

nbayes(C,Vals):-

msw(class,C),msw(hclass(C),HC),nbh(1,C,HC,Vals).

nbh(J,C,HC,[V|Vals]):-

( V == ’?’ -> msw(attr(J,C,HC),_) % ’?’ indicates missing value

; msw(attr(J,C,HC),V) ),

J1 is J+1,

nbh(J1,C,HC,Vals).

nbh(_,_,_,[]).

Fig. 4. An NBH program.

The role of HC is to cluster data in a class C so that a distribution P (A1, . . . ,An |
HC ,C , θ) in each cluster HC satisfies the independent condition P (A1, . . . ,An |
HC ,C , θ) =

∏n
j=1 P (Aj | HC ,C , θ) imposed on NB as much as possible. NBH was

introduced in Sato (2011) as a simple substitute for more complicated variants of

NB such as TAN (Friedman et al. 1997), AODE (Webb et al. 2005), BNC (Castillo

and Gama 2005), FBC (Su and Zhang 2006) and HBN (Jiang et al. 2009).

Given data A1, . . . ,An , we classify A1, . . . ,An as a class C ∗ by

C ∗ = argmaxC P (C | A1, . . . ,An , θ)

= argmaxC

∑
HC

P (C | HC ,A1, . . . ,An , θ)P (HC | A1, . . . ,An , θ)· (8)

Note here that the hidden variable, HC , is not a prediction target unlike probabilistic

grammars. It is just summed out. However, we expect that a sub-classifier P (C |
HC ,A1, . . . ,An , θ) indexed by HC performs better than P (C | A1, . . . ,An , θ), the

original NB, in each cluster and so does their mixture (see equation (8)).

To evaluate the quality of parameters learned by VT for classification tasks,

we conducted a learning experiment with NBH using 10 data sets from the UCI

Machine Learning Repository (Bache and Lichman 2013). In the experiment training

data are given as a set of tuples C ,A1, . . . ,An consisting of a class C and attributes

A1, . . . ,An . Parameters (or pseudo counts) are learned by a PRISM program shown in

Figure 4,18 which is also used for predicting class labels in the test data. A values/2

declaration values(class,[democrat,republican]) in the program tells PRISM

to introduce two msw atoms, msw(class,democrat) and msw(class,republican)

that represent a probabilistic choice between democrat and republican as a class,

implicitly together with their parameters θclass ,democrat and θclass ,republican such that

θclass ,democrat + θclass ,republican = 1. This program assumes that attributes are numbered

and missing values in a data set are replaced with ’?’.

We obtained the classification accuracy of NBH for each combination of data

set, learning method (VT, EM, MAP, VB), the number of clusters #HC in a class

18 This program is for the vote data set from the repository.
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Table 4. Accuracy by VT, EM, MAP and VB

NBH: Learning method
NB

Data set Size EM (%) VT (%) EM (%) MAP (%) VB (%)

nursery 12,960 90.23 92.93 99.40 99.65 97.45

mushroom 8,124 99.57 100.00 100.00 100.00 99.99

kr-vs-kp 3,196 87.86 88.69 91.59 92.34 88.90

car 1,728 85.86 90.97 97.67 97.82 94.68

votes 435 90.29 96.00 95.66 96.51 96.05

dermatology 336 97.73 97.98 97.51 98.06 98.17

glass 214 72.82 75.86 76.84 76.66 76.53

iris 150 94.40 95.07 95.13 95.07 95.07

breast cancer 150 72.52 72.52 70.07 72.76 72.83

zoo 101 95.07 96.55 97.42 96.95 96.62

C (from 2 to 15) and hyper parameters ({0.1,1.0} as αi ,v for VB, and the same as

pseudo counts δi ,v for VT, MAP) as the average over 10 times ten-fold CV19 except

nursery, mushroom and kr-vs-kp data sets in which case ten-fold CV was used. We

similarly obtained the classification accuracy of NB as baseline.20

Table 4 summarizes classification accuracies of NB and NBH. Accuracy for NBH

in the table is the best accuracy obtained by varying #HC and hyper parameters as

we mentioned for the given learning method and data set. Figures in bold indicate

the best accuracy achieved in each data set. The table shows that for most data sets

NBH performed better than NB as we expected. Actually the difference in accuracy

between NB and the best one for NBH is statistically significant by unpaired t-test at

the 5% level with the Bonferroni correction21 for all data sets except dermatology,

iris and breast cancer. The superiority of NBH over NB demonstrated in this

experiment is interpreted as an effect of clustering in a class by introducing a hidden

variable HC .

Comparing classification accuracies by four parameter learning methods applied

to NBH, we note that VT’s performance is comparable with the other three, i.e.

EM, MAP and VB except for the case of nursery, kr-vs-kp and car data sets. For

these data sets VT’s accuracy is worse than the best one achieved by one of the

three learning methods, which is statistically confirmed by unpaired t-test at the

5% level of significance with the Bonferroni correction. So from the viewpoint of a

learning experiment with NBH, we cannot say that, regrettably, VT outperformed

EM, MAP and VB for all data sets. However, the result is understandable if we

recall that while the predication target in the experiment is a class variable C , VT

optimizes parameters not for C but for the hidden variable HC which is summed

out and hence only indirectly affects prediction.

19 We used 10 times ten-fold CV when possible to have robust estimates, although computationally
expensive (Japkowicz and Shah 2011).

20 We used the EM algorithm for parameter learning of NB as there are missing data in some data sets.
21 As 10 data sets are used, the significance level is set to 5%/10 = 0.5%.
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values(d_e(1,2),[on,off],[0.9,0.1]). values(d_e(2,3),[on,off],[0.8,0.2]).
values(d_e(3,4),[on,off],[0.6,0.4]). values(d_e(1,6),[on,off],[0.7,0.3]).
values(d_e(2,6),[on,off],[0.5,0.5]). values(d_e(6,5),[on,off],[0.4,0.6]).
values(d_e(5,3),[on,off],[0.7,0.3]). values(d_e(5,4),[on,off],[0.2,0.8]).

d_e(1,2):- msw(d_e(1,2),on). d_e(2,3):- msw(d_e(2,3),on).
d_e(3,4):- msw(d_e(3,4),on). d_e(1,6):- msw(d_e(1,6),on).
d_e(2,6):- msw(d_e(2,6),on). d_e(6,5):- msw(d_e(6,5),on).
d_e(5,3):- msw(d_e(5,3),on). d_e(5,4):- msw(d_e(5,4),on).

path(X,Y) :- path(X,Y,[X]).

path(X,X,_).
path(X,Y,A):- X\==Y, (d_e(X,Z) ; d_e(Z,X)), absent(Z,A), path(Z,Y,[Z|A]).

absent(_,[]).
absent(X,[Y|Z]):- X\==Y, absent(X,Z).

Fig. 5. A graph program violating the exclusiveness condition.

6 Removing the exclusiveness condition

PRISM assumes the exclusiveness condition on programs to simplify probability

computation as explained in Section 2. It means, we cannot write a program clause

H ⇐ B ∨ B ′ unless PDB (B ∧ B ′ | θ) = 0 is guaranteed (Sato and Kameya 2001).

Although most of generative probabilistic models such as BNs, HMMs and PCFGs

are naturally described as PRISM programs satisfying the condition, removing it

certainly gives us more freedom of probabilistic modeling. Theoretically, it is possible

to remove it by introducing binary decision diagrams (BDDs ) as ProbLog (De Raedt

et al. 2007; Kimmig et al. 2008) and PITA (Riguzzi and Swift 2011) do, and their

related systems, LeProbLog (Gutmann et al. 2008), LFI-ProbLog (Gutmann et al.

2011) and EMBLEM (Bellodi and Riguzzi 2012), offer parameter learning based

on probability computation by BDDs, although with different learning frameworks

from PRISM. If, however, we are only interested in obtaining the Viterbi explanation

after parameter learning as we were in many cases, VT gives us a way of doing it

without BDDs even for programs that do not satisfy the exclusiveness condition.

This is because VT does not require the exclusiveness condition to execute equations

(5) and (6) that always deal with a single explanation and a single probability.

We next give an example of parameter learning by VT followed by the com-

putation of the Viterbi explanation for a program that violates the exclusiveness

condition. Figure 5 is a PRISM program translated from a ProbLog program22

that computes a path between two nodes (and its probability) in a graph. The

graph has six nodes. Edges are assigned probabilities and we express this fact by

attaching an msw atom to an atom d e(x,y) representing an edge x − y in the

program. For example, (directed) edge d e(1,2) between nodes 1 and 2 is assigned

probability 0.9 as indicated by msw(d e(1,2),on) following its value declaration

values(d e(1,2),[on,off],[0.9,0.1]) in the program.

22 The program is taken from the tutorial at http://dtai.cs.kuleuven.be/problog/
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?- viterbif(path(1,4),P,_X),viterbi_switches(_X,VE)

P = 0.432

VE = [msw(d_e(1,2),on),msw(d_e(2,3),on),msw(d_e(3,4),on)]

?- set_prism_flag(learn_mode,ml_vt).

?- learn([path(1,4),path(1,3),path(2,4),path(2,5),path(3,6)]).

...

?- viterbif(path(1,4),P,_X),viterbi_switches(_X,VE)

P = 0.104

VE = [msw(d_e(1,6),on),msw(d_e(6,5),on),msw(d_e(5,4),on)]

Fig. 6. A sample session.

Observe that a ground top-goal path(X,Y) causes a call to d e(X,Z) with X

ground and Z free that calls more than one clause, which leads to the violation

of the exclusiveness condition. Nonetheless, we can learn parameters by VT and

compute the Viterbi explanation for this program.

Figure 6 is a sample session doing this. In this figure we first compute the Viterbi

path VE, i.e. the most probable path between nodes 1 and 4 and its probability P by

applying the built-in predicate viterbif/3 to goal path(1,4).23 We next renew pa-

rameters by learning them using VT from observed goals path(1,4),path(1,3)...24

Finally, we compute the Viterbi path again that is determined by learned parameters

and see whether the learning changes the Viterbi path or not. In the session, the

Viterbi path changed after learning from 1 -> 2 -> 3 -> 4 to 1 -> 6 -> 5 -> 4

together with their probabilities from 0.432 to 0.161.

Viterbi training thus enables us to learn parameters from programs that violate

the exclusiveness condition. However, we have to recall at this point that VT has an

objective function different from likelihood and is biased (Lember and Koloydenko

2007), and the effect of removing the exclusiveness condition on the quality of

parameters estimated by VT is unknown at the moment, which remains as a future

research topic.

7 Related work and discussion

Viterbi training is closely related to K-means (MacQueen 1967), which is a standard

clustering method for continuous data. If we apply VT to a Gaussian mixture for

the clustering of continuous data with an assumption of a common variance to all

composite Gaussian distributions, the resulting algorithm is identical to K-means.

In this sense, the usefulness of VT is established. Actually, VT has been used in

23 viterbif(path(1,4),P, X) returns the Viterbi explanation in X and its probability in P.
viterbi switches( X,VE) extracts the Viterbi path VE as a conjunction of msw atoms.

24 set prism flag(learn mode,ml vt) tells the PRISM system to use VT when learn/1 is invoked.
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various settings (Juang and Rabiner 1990; Brown et al. 1993; Strom et al. 1999;

Lomsadze et al. 2005; Joshi et al. 2006; Spitkovsky et al. 2010) and also in the SRL

frameworks that deal with structured data (Singla and Domingos 2005; Huynh and

Mooney 2010) where the algorithmic essence of VT, coordinate ascent on parameters

and target variables with argmax operation applied to the latter are used.

Despite its popularity, however, it seems that VT so far has been model-specific

and only model-specific VT algorithms have been implemented. To our knowledge,

in this paper we have given a unified treatment to VT for discrete models for

the first time, and derived the VT algorithm for PRISM which is a single generic

algorithm applicable to any discrete model as long as the model is described by a

PRISM program. Since our derivation of VT is based on the reduction of goals

to AND-OR propositional formulas, it seems quite possible for other logic-based

modeling languages that use BDDs such as ProbLog (De Raedt et al. 2007; Kimmig

et al. 2008) and PITA (Riguzzi and Swift 2011) to introduce VT as a parameter

learning routine.

One of the unique features of VT is its affinity with discriminative modeling. Write

the VT’s objective function LVT (y | θ) as follows:

LVT (y | θ) = log p(x ∗, y | θ)p(θ)

x ∗ = argmaxx p(x , y | θ)p(θ)

= argmaxx p(x | y , θ)·

This means that although PRISM is intended for generative modeling, VT in PRISM

computes the Viterbi explanation x ∗ that gives the highest conditional probability

p(x ∗ | y , θ) for y whose form is identical to the objective function in discriminative

modeling, and the Viterbi explanation is chosen in the same way as the discriminative

modeling, provided the hidden variable is a prediction target. When this condition is

met VT shows good performance as demonstrated by the experiments in Section 4,

but if not, then VT does not necessarily outperform other parameter learning

methods as exemplified in Section 5. It therefore seems reasonable to say that VT

is effective for prediction tasks when the prediction target coincides with hidden

variables in a probabilistic model, though we obviously need more experiments.

As a coordinate ascent local hill-climber, VT is sensitive to initial parameters

and also to the Viterbi explanation. To mitigate the sensitivity problem with initial

parameters, we used 50 time random restart in the learning experiments in Section 4.

To cope with sensitivity to the Viterbi explanation, it is interesting to introduce k -

best explanations as discussed in Gutmann et al. (2008) and replace the Viterbi

explanation in VT with them. This approach will give us control over the sensitivity

and computation time by choosing k and seems not very difficult to implement

in PRISM as k -best explanations for a goal G are already computed by built-in

predicates such as n viterbi(k,G).

Since VT in PRISM runs on explanation graphs obtained from all solution search,

it requires time for all solution search (by tabling) and also space to store discovered

explanation graphs. It is possible, however, to implement VT without explanation

graphs, and to realize much more memory saving VT by repeating search for a

https://doi.org/10.1017/S1471068413000677 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000677


166 T. Sato and K. Kubota

Viterbi explanation in each cycle of VT. We note that this approach particularly fits

well with mode-directed tabling (Zhou et al. 2010). In mode-directed tabling, we can

search for partial Viterbi explanations for subgoals efficiently without constructing

explanation graphs and put them together to form a larger Viterbi explanation for

the goal. Currently, however, mode-directed tabling is not available in PRISM. We

are planing to incorporate it in PRISM in the near future.

8 Conclusions

We introduced VT to PRISM to enhance PRISM’s probabilistic modeling power.

To our knowledge, PRISM becomes the first SRL language (Getoor and Taskar

2007; De Raedt and Kersting 2008) in which VT is available for parameter learning.

Although VT has already been used in various models under various names

(Juang and Rabiner 1990; Brown et al. 1993; Strom et al. 1999; Lomsadze et al.

2005; Joshi et al. 2006; Spitkovsky et al. 2010), we made the following contributions

to VT. One is the generalization by deriving a generic VT algorithm for PRISM,

thereby making it uniformly applicable to a very wide class of discrete models

described by PRISM programs ranging from BNs to probabilistic grammars. The

other is an empirical clarification of conditions under which VT performs well. We

conducted learning experiments with PCFG and PLCG using VT, and confirmed

VT’s excellent parsing performance compared with EM, MAP and VB. We also

conducted a learning experiment with NBH for classification tasks. Putting together

the results of these experiments, we may say that VT performs well when hidden

variables are a prediction target.

From the viewpoint of PRISM, VT improves PRISM, first by realizing faster

convergence compared with EM, second by providing the user with a parameter

learning method that can learn parameters good for prediction, and finally by

providing a solution to the problem of exclusiveness condition that hinders PRISM

programming. Thanks to VT, we are now able to use arbitrary programs with

inclusive-or for probabilistic modeling.

Last but not least, we can say that as VT in PRISM is general and applicable to

any PRISM program, it largely reduces the need for the user to develop a specific VT

algorithm for a specific model. Furthermore, since VT in PRISM can be used just by

setting a PRISM flag appropriately, it makes VT easily accessible to (probabilistic)

logic programmers.
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