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Abstract

By using reductive perturbation technique we have studied the linear and non-linear proper-
ties of ion-acoustic solitary structures in a three-component plasma containing non-thermal
electrons and Boltzmann positrons and a comparatively cold ion which has got a streaming
motion. The Korteweg–de Vries equation has been obtained and the dependence of small
amplitude solitary structures on various plasma parameters such as streaming velocity (v0),
non-thermal parameter (β), reciprocal of electron temperature (χ), positron density ( p),
Mach number (M), and ion density (δ) have been studied. The possibility of formation of
enveloping soliton and its characteristic features are further investigated by deriving the
non-linear Schrödinger equation.

Introduction

In general, space plasmas, can be broadly modeled with Maxwellian velocity distribution. But
with the advancement of satellite-based technologies and data therein it has been found in
recent years, that most of these plasmas, especially those near to earth plasmas have high-
energy tails and heat-flux shoulders, which may be due to the fact that these plasmas are
quite inhomogeneous and semi-collisionless (Marsch et al. 1982; Summers et al., 1994; Ma
and Summers, 1998). As a result, it has been established that these plasmas (especially the elec-
tron distributions) if modeled by a generalized Lorentzian or kappa distribution gives proper
result rather than by a pure Maxwellian (Summers and Thorne, 1991; 1992). Dispersion rela-
tion in various multicomponent plasma has been investigated (Bala & Kaur, 2013). Lorentzian
distribution has a spectral index κ which accounts for its high-energy tail. In the limit of
κ→∞, it leads to a Maxwellian distribution function. Astrophysical plasma shows features
and phenomena that prove that they contain non-thermal distributed electrons. For instance,
the solar wind plasmas are usually found to be non-thermal distributed. In close proximity to
earth, the solar wind plasmas usually have a density of ∼30–100 cm−3 with velocity ∼500 km/s
and temperature reaching up to∼ 50 eV (Baumjohann and Treumann, 1997). With the pio-
neering work of Zabusky and Kruskal (1965) on the one-dimensional (1D) solitary structure
of the celebrated Korteweg–de Vries (KdV) equation in plasma physics, it has also played a
major role in analyzing the non-linear phenomena in physical and biological sciences.
Solitons are defined as spatially localized pulsed shape stable non-linear construct which
retains their shape, identity, and energy in the mutual collision and is, therefore, the exact sol-
ution of a large number of the non-linear partial differential equation. They are formed due to
the balance between the non-linear effects (that causes the steeping) and dispersive effects (that
causes the broadening).

The KdV equation and the non-linear Schrödinger equation (NLSE) along with their dif-
ferent variants having used in the study of a large number of non-linear phenomena in astro-
physical and laboratory produced plasma. Nakamura and Sarma (2001) and Nakamura et al.
(1999) have used this concept in their study of laboratory-produced plasma. The reductive per-
turbation technique which is used to derive the KdV equation describes the evolution of a non-
modulated wave (a bare pulse without fast oscillation). The NLSE that governs the dynamics of
a modulated wave packet deals with the fact that the non-linearity arising within the packet is
balanced by the group dispersion resulting in the formation of a stationary envelope structured
solution.

The electron–positron plasma exists in the magnetosphere of pulsars (Michel 1982, 1991)
the early universe (Gibbons et al. 1983), the bi-polar outflow in active galactic nuclei (Miller &
Witta, 1987). Though the astrophysical plasma dominantly contain electron and positron cre-
ate a finite proportion of ion may be present forming effective electron–positron–ion (e–p–i)
plasma. Similarly a small fraction of positron may be present in plasmas containing electrons
and ions viz. tokamak plasma: in such cases the positron may be generated by the mechanism
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of pair production which may have possibly occurred due to col-
lision between ran away electron (few MeV) and thermal particles
(Helander & Ward, 2003). It has been also reported when ultra-
intense laser pulses interact with matter as in case of internal
confinement fusion, the plasma produced there may also contain
positron (Liang et al., 1998; Gahn et al., 2000). The presence of
ions may lead to the formation of the number of low-frequency
mode which otherwise does not propagate in an electron–
positron plasma. Therefore an e–p–i plasma is important in
case of a laboratory plasma apart from the cosmological plasmas.
The non-linear behavior in e–p–i plasma is more interesting from
theoretical as well as experimental point of view.

Over the past few years the study of non-linear phenomena
in electron–positron plasma has gained considerable interest.
Ion-acoustic solitary structures and its dependence on various
plasma parameters have been reported by Pillay and Bharuthram
(1992), Ghosh and Bharuthram (2008), Mahmood and Akhtar
(2008), Gill et al. (2003, 2004, 2007), Nejoh (1996a, b), Mushtaq
and Shah (2005), and Popel et al. (2005). In recent times, modula-
tion instabilities of different wave modes have been studied due to
its importance in stable wave propagation. Watanabe (1977)
reported about the modulation instability of monochromatic ion-
acoustic wave in his experiment. Amplitude modulation in e–p–i
plasma has been reported recently by Esfandyari-Kalejahi et al.
(2006), Jehan et al. (2009), Kourakis et al. (2006), and
Salahuddin et al. (2002). Esfandyari studied the non-linear propa-
gation of electrostatic wave packets in e–p–i plasma with varying
positron concentration and other plasma parameters. The findings
of Kourakis are rather interesting. According to him the presence of
background ion species modify the characteristic features of excita-
tion and alter the stability profile of modulated wave packet. Jehan
reported that with an increase in positron condition there is a
decrease in the maximum growth rate of instability.

Energetic electrons are in general non-thermally distributed
and are abundant in space and laboratory plasmas; it has a sig-
nificant effect on non-linear collective phenomena. Such distri-
bution is also found in the magnetosphere. In 1994, Berezhiani
et al. (1994) gave a theory of strong-electromagnetic-wave
propagation in an e–p–i plasma. Cairns et al. (1995) proposed
a non-thermal distribution of electron during their study of ion-
acoustic solitary structure observed by FREJA satellite developed
by Swedish space corporation on behalf of the national Swedish
space board and reported the formation of compressive and rar-
efactive solitons. In the later years, Singh and Lakhina (2004)
reported the modification of electron-acoustic solitary structures
in the presence of non-thermal electrons. In the year 2008,
Verheest and Pillay studied the dust acoustic solitary structures
with positively charged dust particles and non-thermal elec-
trons. They delimited a range of parameter where both positive
and negative solitary structures may coexist. Using the same
non-thermal distribution given by Cairns et al. Modulation
instability in envelop solitary structures in un-magnetized
plasma was reported by Kourakis and Shukla (2005) and Tang
and Xue (2004). Pakzad in 2009 studied ion-acoustic solitary
waves and determined the parametric region for their existence.
Saberian et al. (2011) studied the ion-acoustic solitary waves in a
relativistic e–p–i plasma using Sagdeev’s pseudo-potential
method. The relativistic dynamical equation was initially mod-
eled by Lee and Choi (2007); Baluku and Hellberg (2011) used
the similar pseudo-potential method to study ion-acoustic soli-
tary wave in e–p–i plasma with non-thermal electron and
Boltzmann’s positron.

In this paper, we studied the non-linear behavior of ion-
acoustic solitary structures in an e–p–i plasma consisting non-
thermal electrons and Boltzmann positrons. The findings are
interesting from the theoretical and experimental point of view
(astronomical and laboratory plasma). The novel finding in this
paper is that we studied the small amplitude solitary structures
and investigated the criteria of formation of envelope soliton.
The transformation of the KdV equation into an NLSE to study
amplitude modulation. The paper is organized in the following
manner; section “Basic equations” provides the basic equations
for the particles’ dynamics. Section “Linear dispersion character-
istics” carries out the linear analysis and the linear dispersion rela-
tion is derived. Here we studied the dependence of linear
dispersion on different plasma parameters. Section “KdV
Equation and the solitary wave structures” derives the non-linear
KdV equation and analyzes the formation and properties of ion-
acoustic solitary wave structures. In the section “NLSE and the
envelope soliton”, we investigate the properties of envelop soliton
by transforming our KdV equation into an NLSE. In this section,
we studied the stability criteria and also the growth rate of mod-
ulational instability. Finally, we discuss the results and conclude
with some comments.

Basic equations

We consider an e–p–i plasma with non-thermal electrons and
Boltzmann positrons. The dynamical equations for unidirectional
propagation in such plasma are given by

∂ni
∂t

+ ∂

∂x
nivi( ) = 0, (1)

∂vi
∂t

+ vi
∂

∂x
vi = − e

m
∂w

∂x
− 1

mni

∂p
∂x

, (2)

∂2w

∂x2
= 4pe(ne − ni − np). (3)

The first equation is the fluid equation of continuity for the
ions, the second one is the equation of motion for the ions.
Equation (3) is the Poisson’s equation.

Again, the ion pressure is given by

p = nkTi, (4)
where k is the Boltzmann’s constant.

Now, using normalization conditions, �t � vcit, �x � ((xvci)/
(VTe )), vi � (vi/VTe ), and �w � ((ew)/(kTTe)), na � (na/na0).

(where vci =
���������������
((4pn0e2)/c2)

√
= the electron plasma oscilla-

tion frequency.VTe = Fermi thermal speed of electrons), we get
the set of normalized equations are given by

∂ni
∂t

+ ∂

∂x
nivi( ) = 0, (5)

∂vi
∂t

+ vi
∂

∂x
vi = ∂w

∂x
− 1

ni

∂ni
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, (6)

∂2w

∂x2
= ne − dni − pnp. (7)
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Here δ = (ni0/ne0) and p = (np0/ne0) represent the equilibrium
density ratios of ion-to-electron and positron-to-electron.

The non-thermal electron density is given by

ne = ne0 1− b
ew
kTe

[ ]
+ b

ew
kTe

( )2
{ }

exp
ew
kTe

( )

= ne0 1− bxw
[ ]+ bx2w2
{ }

exp(xw). (8)

Here β is the non-thermal parameter.
The Boltzmann distributed positron density is given by

np = np0 exp
−sew
kTe

( )
= np0 exp −sxw

( ) (9)

where χ = (e/(kT)) is the reciprocal of electron temperature and σ
= (Te/Tp) is the reciprocal of positron temperature.

For charge neutrality, we have therefore

np + ni = ne. (10)

Using the same normalization it can be written as

p+ d = 1. (11)

Linear dispersion characteristics

In order to investigate the linear and non-linear behavior of ion-
acoustic wave in the e–p–i plasma, we make the following pertur-
bation expansions for the field quantities ni,ne,np,vi, and w about
their values

ni
vi
w

⎛
⎝

⎞
⎠ =

1
v0
w0

⎛
⎝

⎞
⎠+ 1

n(1)i
v(1)i
w(1)

⎛
⎝

⎞
⎠+ 12

n(2)i
v(2)i
w(2)

⎛
⎝

⎞
⎠+ · · · . (12)

Now, assuming that all the field variables are varying as
exp[i(kx−ωt)], we get for normalized wave frequency ω and wave-
number k, we get the following dispersion relation:

k2 = k2 − (v− kv0)2
d− k2 − (v− kv0)2

[ ]
× x+ psx− bx+ bx2w0 + 2bx3w2

0

( )
. (13)

The dispersion relation exists for a particular range of wavenum-
ber for given values of parameters where k is given by
k .

�������������������(d/(1− b+ ps))√
(for v0 = 0.2, β = 0.2, δ = 0.3, χ = 0.5, p

= 0.7 σ = 0.3; k > 0.545).
If we consider there is no streaming velocity of ion, that is, v0

= 0 and considering quasi-linearity condition that is, w0 = 0, then
by replacing x = (1/l2D) we get

v2

k2
= 1

l2D
− d

k2l2D(1− b+ ps) . (14)

This is the linear dispersion relation which has an extra term
on the right-hand side when compared with Baluku and
Hellberg (2011). The extra term is the result of the inclusion
of ion pressure in the momentum equation. Apart from this

when we compare our dispersion relation with that obtained
by Baliku et al. everything is same. Also when we consider β
= 0 this gives in per perfect correspondence with the findings
of Popel et al. (1995). While comparing the DR with that
obtained by Pakzad (2009) the interpretation may be due to
the fact that the distribution is a deviation from the
Maxwellian one and the deviation is measured by a term β,
and similarly, there exists a minimum value of M which is dis-
cussed in detail by Baluku.

It is found that the linear dispersion characteristics become
steeper with an increase in the value of χ. It implies that as
the electron temperature decreases the frequency increases
with increase in wavenumber (Fig. 1). However, it has been
found that there is no significant change in the dispersion char-
acteristics with change in non-thermal parameter β (Fig. 2) or
positron temperature because electrons provide the neutralizing
effect.

Fig. 1. Dispersion relation for different value of χ.

Fig. 2. Dispersion curve for different value of non-thermal parameter β.
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KdV Equation and the solitary wave structures

To investigate the behavior of small amplitude ion-acoustic wave,
in the e–p–i plasma we need to study the KdV equation. The KdV
equation describing the non-linear behavior of e–p–i plasma
waves is derived by using the standard reductive perturbation
technique. We introduce the usual stretching of space and time
variables

j = 11/2(x −Mt) and t = 13/2t, (15)

where ε is a small dimensionless expansion parameter as a mea-
sure of the weakness of non-linearity, and M is a constant repre-
senting the phase velocity of the waves.

Now Eqs (5)–(7) are written in terms of the stretched coordi-
nates ξ and τ, and the perturbation expansion given in Equation
(12) is substituted. Solving for the equations lowest order in ε
with the boundary condition that all the variables, that is, n(1)i ,
v(1)i , and w(1) tends to zero as |ξ|→∞

v(1)i = (M − v0)
{1− M − v0( )2}w

(1) and n(1)i = w(1)

{1− M − v0( )2} (16)

Going to the next higher order terms in ε and after a few algebraic
operations we get the KdV equation as

∂w

∂t
+ A

∂w

∂j
+ B

∂3w

∂j3
= 0 (17)

where

A = 1
2(M − v0) −

d

Cne0(M − v0){1− M − v0( )2}

and

B = {1− M − v0( )2}
2(M − v0)C .

Here C is given by C = ne0 [(1− β)χ + 3βχ3w0− p2σχ].
The second and third terms of Eq. (17) are respectively the

non-linear and dispersive terms. The coefficients A and B corre-
sponding to non-linear and dispersive effect both depend onv0.
The solitary structure is the result of a balance between the non-
linear and dispersive effects. While the non-linear effect steepens
the solitary wave profile, the dispersive effect tries to broaden the
solitary wave.

The solitary profiles depend heavily on the streaming velocity.
With the increase in streaming velocity the width and amplitude
of the solitary structures increase (Fig. 3). Similarly, with an
increase in the positron density p (equivalent to a decrease in
ion density) the solitary profiles become steeper (Fig. 4). This
may be accounted for the fact that the positrons being lighter
move faster than ions and they lead the solitary profiles of ion-
acoustic waves. In either case, the ion density and positron density
are complementary to each other and considering the mass of
positrons or positive ions is immaterial as suggested by
Verheest and Pillay (2008) and Baluku and Hellberg (2011).

It is clear from Figure 5 that with a slight change in Mach
number M both the amplitude and width of the solitary profile
increases manifold. The reason behind this is simple. Because of

the wave velocity the bulk of the plasma moves in unison thereby
reflecting the high potential profiles. The width is also more due
to the fact that when more particles form the wave structure there
is more possibility that the particles disperse from it. Figure 6
shows that as the electron temperature decreases (which is equiv-
alent to increase in χ) the solitary profiles become steeper.
However, there is no significant change in the width. This is the
result of the fact that as the temperature of the electrons is less,
the randomness is also low which positively affects the ion con-
centration in the solitary profile thereby increasing its amplitude.

But in contrast to other parameters, it is found in Figure 7 that
with the increase in non-thermal parameter the amplitude of the
solitary wave decreases but its width does not change. As the non-
thermal parameter directly relates to the deviation from equilib-
rium it is evident that as we move from equilibrium conditions
the particle density falls and the dispersive forces act more effec-
tively compared with the non-linear effects. Figure 8 further
shows that the positron temperature enhances the peak of the sol-
itary waves. This is due to the fact that as the temperature of the

Fig. 3. Solitary profiles for different values of streaming velocity v0.

Fig. 4. Solitary profiles for different values of ion (δ) and positron ( p) density.
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positron increases, its randomness is enhanced. Positrons being
lighter than positive ions offshoot the bulk and push the ions to
maintain charge neutrality. The comparatively inertial ions thus
stick to their positions thereby creating a rather stable ion-acoustic
solitary wave profile.

NLSE and the envelope soliton

In order to study the modulational instability and the conditions
of formation and properties of envelope soliton we transform our
KdV equation into an NLSE by expanding Eq. (16) into a Fourier
series and thereafter following regular technique:

Fourier expansion of a field quantity F is

F = 12F0 +
∑1
s=1

1s{Fs exp(isc) + F∗
s exp(−isc). (18)

F0 and Fs are assumed to vary very slowly with space and time.

Expanding w as a Fourier series we get

w = 12w0 + 1w1e
ic + 1w

∗
1e

−ic + 12w2e
2ic + 12w

∗
2e

−2ic. (19)

Using perturbation expansion and using the stretched
variables as

r = 1[j− ct] and u = 12t. (20)

Therefore,

∂

∂t
= −isv− 1c

∂

∂r
+ 12

∂

∂u
, (21)

and

∂

∂j
= isk+ 1

∂

∂r
. (22)

Fig. 5. Solitary profiles for different values of Mach number M.

Fig. 6. Solitary profiles for different values of electron temperature reciprocal factor (χ).

Fig. 7. Solitary profiles for different values of non-thermal parameter (β).

Fig. 8. Solitary profiles for different values of positron temperature reciprocal factor (σ).
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Equating the coefficient of the higher order of first harmonics
we get

i
∂w

∂t
− 3kB

∂2w

∂r2
+ A2

6Bk
w2w∗ = 0. (23)

This is the NLSE. If we consider P =−3Bk and Q = (A2/(6Bk))
where P represents the group dispersion coefficient and Q repre-
sents the non-linear coefficient in a regular NLSE, we obtain
PQ =−(A2/2); which is always negative so that the wave is always
stable thus creating dark solitons.

The growth rate of non-linear effects depends on a lot of
parameters. It has been found that with the increase in streaming
velocity (v0), the non-thermal parameter (β), reciprocal of elec-
tron temperature (χ) and positron density ( p) the non-linearity
increases whereas it decreases with increase in the value of
Mach number (M) and ion density (δ). The width of the envelop
soliton is studied by the dependence of P/Q on different plasma
parameters (Figs 9–12).

Figure 9 shows that width of the soliton decreases with
increase in the value of χ. Or in short, as the electron temperature
decreases the width of the envelop soliton shrinks and vice versa.
This may be due to the fact that the effect due to electron temper-
ature is reduced due to streaming of ions which prevents localiza-
tion of thermally graded electrons. Similarly, as the ion density
increases the envelop soliton shrinks. It widens with the increase
in positron concentration (Fig. 10).

In contrary to these, Figure 11 shows that the width of the sol-
iton increases with increase in Mach number. This is true because
of the fact that if the solitary wave is moving with a high velocity it
can only propagate if the dispersive effects are less (manifested by
small width).

Figure 12 is rather interesting in nature. It shows that for
streaming velocity v0 = 0.5, the graph suddenly becomes less
sleep. It implies that the width of the soliton suddenly decreases.
This may be due to the fact that there exist some kind of reso-
nance action between the velocity of the oscillating particles and
the streaming velocity. This may result in energy dissipation
and the slackening of the solitary structures.

Fig. 9. P/Q plots for different value of reciprocal electron temperature (χ).

Fig. 10. P/Q plots for different value of ion density (δ).

Fig. 11. P/Q plots for different value of Mach number (M).

Fig. 12. P/Q plots for different value of streaming velocity (v0).
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Results and conclusion

In this paper, we have studied the linear and non-linear character-
istics of a three-component plasma consisting non-thermal elec-
trons and Boltzmann positrons. The linear dispersion
characteristics have been found to depend on electron tempera-
ture mainly and almost independent of other plasma parameters.
The KdV equation that describes the small amplitude solitary
waves have been derived and its dependence on plasma parame-
ters such as streaming velocity (v0), non-thermal parameter (β),
reciprocal of electron temperature (χ), positron density ( p),
Mach number (M), and ion density (δ) have been studied in
details. Whereas it increases in amplitude (and/or) width for
some it decreases with the others. Further, we have studied the
conditions of formation and characteristic features of envelop
soliton by deriving the NLSE and found out that only stable
but compressive envelop solitons are formed. The dependence
of the width of these solitons on various plasma parameters was
also analyzed. The linear dispersion relation was found to agree
with those obtained previously [Baluku]. Similarly, the properties
of envelop solitons were also in consonance with previous find-
ings. This work may further be extended with variable charges
on the ions and incorporating dust particles.
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APPENDIX

The normalized basic equations are

∂ni
∂t

+ ∂(nivi)
∂x

= 0, (A1)

∂vi
∂t

+ vi
∂

∂x
vi = ∂f

∂x
− 1

ni

∂ni
∂x

, (A2)

∂2f

∂x2
= ne − dni − pnp. (A3)

The perturbation expansion of the field variables are given by

ni
vi
w

⎛
⎝

⎞
⎠ =

1
v0
w0

⎛
⎝

⎞
⎠+ 1

n(1)i
v(1)i
w(1)

⎛
⎝

⎞
⎠+ 12

n(2)i
v(2)i
w(2)

⎛
⎝

⎞
⎠+ · · · . (A4)

The electrons have the non-thermal distributions is given by

ne = ne0 1− b
ew
kTe

( )
+ b

ew
kTe

( )2
{ }

exp
ew
kTe

( )

= ne0 1− bxw
( )+ b xw

( )2{ }
exp xw

( )

1− v− kv0
k

( )2
{ }

ni = w(1).

(A5)

The positron has the Boltzmann distribution and which is given by

np = np0
−sew
kTe

( )
= np0 −sxw

( )
. (A6)

Assuming space–time dependence of the field variables as ei(kx−ωt) we get,

∂

∂x
; ik, (A7)

∂

∂t
; −iv. (A8)

From Continuity equations, we get by linearizing ε

− ivn(1)i + ikv(1)i − ikv0n
(1)
i = 0,

Or,

v(1)i = v− kv0
k

( )
n(1)i . (A9)

From momentum equation of positron by linearizing ε we get

− ivv(1)i + ikv0v
(1)
i = ikw(1) − ikn(1)i (A10)

From these two equations, we get

1− v− kv0
k

( )2
{ }

n(1)i = w(1).

From Poisson’s equation

− k2w(1) = {x+ (1+ xw0)(−bx+ 2bx2w0) + psx}w(1) − dn(1)i . (A11)

Replacing the value of n(1)i we get,

k2 = k2 − (v− kv0)2
d− k2 − (v− kv0)2

[ ]
(x+ psx− bx+ bx2w0 + 2bx3w2

0).

Laser and Particle Beams 143

https://doi.org/10.1017/S0263034618000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034618000058

	Study of small amplitude ion-acoustic solitary wave structures and amplitude modulation in e--p--i plasma with streaming ions
	Introduction
	Basic equations
	Linear dispersion characteristics
	KdV Equation and the solitary wave structures
	NLSE and the envelope soliton
	Results and conclusion
	References
	APPENDIX


