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Molecular detection of parasitic protozoa
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The development of molecular diagnostic methods, particularly those utilizing PCR for the detection of parasitic protozoa

will contribute greatly to the identification and control of these pathogens, by increasing speed of diagnosis, specificity and

sensitivity, reproducibility and ease of interpretation. PCR methods are not without their problems however, and there

is a need for laboratory procedures to be refined before PCR-based assays are accepted as the tools of choice for the routine

detection of protozoan parasites. The application of PCR detection to various parasites is discussed.
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

While microscopy remains the ‘gold’ standard for

the diagnosis of many parasites, it is labour-intensive

and requires well-trained microscopists for accurate

identification and interpretation, particularly for

parasites that are morphologically similar, very small

in size or present in very low numbers (Singh, 1997;

Table 1). In addition, the diagnostic skills of

microscopists can vary greatly from laboratory to

laboratory resulting in some infections being mis-

diagnosed or missed completely.

The in vitro cultivation of infectious agents is

costly and often very slow, and many protozoan

parasites cannot be easily cultured (see Table 1).

Immunodiagnostic tests have been developed which

offer improvements over microscopy for the de-

tection of protozoan pathogens, but these can be

problematic due to cross-reactions with other

organisms and inconsistencies in interpretation be-

tween laboratories (see Table 1). Some of the

limitations of conventional diagnostic detection

methods and the advantages of utilizing molecular

procedures for the detection of protozoan parasites

are summarized in Table 1.

These limitations are well illustrated by con-

sidering Cryptosporidium parvum which is in-

creasingly recognized as an important cause of

diarrhoeal illness in livestock and humans (Fayer,

Speer & Dubey, 1997). The parasite cannot be

amplified in vitro and current laboratory methods for

the diagnosis of cryptosporidial infections generally

rely on microscopic examination of faecal samples

for the presence of Cryptosporidium oocysts. How-

ever, microscopy is time-consuming, insensitive and

requires highly skilled microscopists. The sensitivity

of conventional detection methods has been reported
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to be as low as 50–500000 oocysts per gram of faeces

(Weber et al. 1991). A number of immunodiagnostic

methods have been developed for the detection of

Cryptosporidium. However, antigenic variability be-

tween clinical isolates of Cryptosporidium (Griffin et

al. 1992) can result in some infections remaining

undetected and there are conflicting reports as to the

sensitivity of immunodetection methods over mi-

croscopy (Alles et al. 1995; Kehl, Cicirello & Havens,

1995). Flow cytometry coupled with cell sorting

methods have been developed and improved in

recent years (Vessey et al. 1994; Hoffman et al. 1997)

and have recently been applied to the detection of

oocysts in human stool samples (Valdez, et al. 1997).

However, such procedures are costly, and as flow

cytometry relies on the use of fluorescently labelled

antibodies, it is still subject to the same problems

that apply to immunological detection.

In order to reduce the morbidity caused by

protozoan infections, rapid diagnosis is required so

that appropriate treatment can be given (CDC,

1995; NSTC, 1995; WHO, 1996). Investigations

undertaken during diarrhoeal outbreaks have fre-

quently used limited diagnostic testing that have

tended to incriminate agents that are easily identi-

fiable in standard microbiological laboratories, while

possibly overlooking other more difficult to detect

agents (Thompson, 1994). For example, in 1993, the

United States suffered the biggest outbreak of

diarrhoea in its history with more than 400000

people in Milwaukee affected with watery diarrhoea

due to Cryptosporidium infection (WHO, 1996). The

outbreak in Milwaukee was initially diagnosed as a

viral gastroenteritis, and it was only through careful

analysis by the Centres for Disease Control (CDC)

in Atlanta that Cryptosporidium was diagnosed as the

cause of the diarrhoeal outbreak. It is likely that the

real cause of such outbreaks are misdiagnosed or go

unnoticed (D. Juranek, personal communication; in

Morgan & Thompson, 1998).
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Table 1. Diagnosis of parasitic protozoa

Molecular (PCR) Culture Immunodiagnosis Microscopy

Very rapid (cf culture)

Greatest sensitivity and

specificity

Results easy to interpret

and quantitate

Can detect organism before

antibodies or antigens

produced

Can detect organisms in

latent infections

Can detect intraspecific

differences

Can identify organisms that

can not be cultured

Avoids false positives

(major limitation of

antibody tests)

Not only identification but

also characterization of

particular isolates, e.g.

pathogenicity; sensitivity

to drugs etc.

Need to improve

reproducibility

Can detect organisms in

tissue and vectors

Recent progress in

automating and multiple

sampling; enhanced cost

effectiveness

More PCR kits coming on

to market

Too slow (24 hrsU1

month); require growth

under specific

conditions}special media

High cost

Many organisms}strains

cannot be cultured

Usually need specialist

laboratories; risk of

infection may require

containment facilities

Rapid

Specificity and sensitivity

often not as good as DNA.

Cross-reactions and

inability to detect certain

antigenic variants are

common problems

Interpretation difficult due

to background interference;

inconsistency between

laboratories and lack of

reproducibility

False positives common

Quantitation often difficult

to perform

Serology cannot

differentiate between

current and previous

infections

Identifying current

infections may be difficult

in individuals in endemic

areas

High cost of purified

reagents

Kits available; easy to use

and have a good shelf life

Rapid

Simple

Lacks sensitivity

Low cost but labour
intensive

Does not differentiate

between morphologically

similar

species}intraspecific

variants

Organisms may not be

resolved due to small size,

and}or low numbers

Lack of specific stains

The control and prevention of many protozoan

infections also depends upon knowledge of how the

aetiological agents survive and are transmitted in

different environments. Such information would

contribute to the development of effective prevention

and control measures but is incomplete for the

aetiological agents of many protozoan diseases.

Current prevalence data are often lacking or in-

accurate and may, in part, be due to variation in

diagnostic protocols between diagnostic laboratories.

Furthermore, information that is available has

usually been collected during outbreak investigations

and may not be reflective of conditions during non-

outbreak periods. Future studies need to be coupled

with the newer, more sensitive diagnostic tech-

niques, that can provide an accurate picture of

prevalence in asymptomatic and symptomatic indi-

viduals and in non-outbreak as well as outbreak

situations. The development of more sensitive assays

could also contribute greatly to our understanding of

the role of environmental reservoirs such as water

and fomites as sources of protozoan infections. Such

information is clearly essential to the development of

effective prevention and control measures.

New technologies

A number of new technologies such as the electro-

rotation assay (ERA) and fluorescent-in-situ

hybridization (FISH) have been developed in recent

years which may assist in the diagnosis of protozoan

parasites in the future. ERA involves the binding of

micro-organisms to antibody-coated particles which

are then spun in a rotating electric field. Different

micro-organisms have characteristic rotations which

can be detected using image analysis technology

(Newman, 1995). The method also reportedly

differentiates between live and dead organisms, as at

low frequencies, viable specimens rotate in the

opposite direction to the applied field. Dead proto-

zoans rotate at higher frequencies, but spin in the

same direction as the field (Beardsley, 1993; see

Goater and Pethig, 1998, this supplement). The

technology is currently being miniaturised to create

a desktop tester with the area of a Pentium chip and

a few millimetres high. Aspects of the chip are

currently being tested by Genera Technology,

however a marketable item is still a number of years

away (Ward, 1997). In addition, this technique still
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suffers from the problems of lack of specificity and

cross-reactivity that affect all antibody-based tech-

niques.

FISH is a technique in which fluorescently labelled

oligonucleotide probes are hybridized to ribosomal

RNA within cells and detected using fluorescent

microscopy or confocal-laser scanning microscopy.

Depending on the discriminatory power of the target

sequence, the technique can identify pathogens to

species level and the simultaneous detection of

multiple pathogens is possible by using probes

labelled with different fluorescent markers (Rochelle,

1995).

Recently, a FISH technique has been developed

for the fluorescent labelling of Cryptosporidium

parvum oocysts (Vesey et al. 1998). However, due to

background fluorescence problems, immunofluores-

cent staining was required in addition to FISH in

order to detect C. parvum oocysts in water samples

(Vesey et al. 1998).

    ()

PCR has provided the basis for the development of

a new generation of diagnostics. Sensitivity, ease of

use and the ability to analyse large numbers of

samples simultaneously make PCR an attractive

option for the detection of parasitic protozoa and it is

increasingly being used as a diagnostic and epidemio-

logical tool in veterinary and human parasitology.

The development of diagnostic assays based on PCR

have the added advantage of being able to detect

infectious agents directly in clinical or environmental

samples without the need to produce large quantities

of the agent by in vitro or in vivo laboratory

amplification.

Development of diagnostic PCR primers for

protozoan parasites

Diagnostic PCR primers can be developed using a

number of different approaches. Sequence infor-

mation for the 18S rDNA gene is now available for

a large number of protozoa and can be retrieved from

the rRNA WWW server (http:}}rrna.uia.ac.be})

(van de Peer et al. 1994). Diagnostic primers can

easily be designed from this sequence information,

however, due to the conserved nature of the 18S

gene, the problem of cross-reactions with other

organisms can occur. An alternative method is via

the construction and screening of genomic DNA

libraries. However, this method is expensive and

time-consuming and requires relatively large

amounts of DNA which can be difficult to generate

when working with protozoan parasites. Use of the

Random Amplified Polymorphic DNA (RAPD)

technique allows a much simpler approach to be

taken. RAPD or arbitrarily primed PCR (AP-PCR)

was independently developed by Williams et al.

(1990) and Welsh & McClelland (1990). This

procedure detects nucleotide sequence poly-

morphisms in a PCR-assay without the need for

previously determined nucleic acid sequence in-

formation (see Thompson et al. this supplement). As

it is PCR-based, it requires only small amounts of

material and is therefore suitable for protozoan

parasites. Many of the products generated by

RAPD-PCR are derived from repetitive DNA

sequences (Williams et al. 1990). As these sequences

are frequently species-specific (Klein-Lankhorst et

al. 1991), RAPD-PCR is potentially a quick method

for developing species-specific diagnostic PCR

primers and probes (Crowhurst et al. 1991). Di-

agnostic RAPD bands can be eluted from a gel,

reamplified, their specificity tested by hybridization

analysis, then subcloned and sequenced; diagnostic

PCR primers can subsequently be designed and

synthesized from the RAPD sequence (Fig. 1). As

this approach circumvents the need for the con-

struction and screening of genomic libraries, RAPD-

PCR offers a simple and rapid alternative to

conventional techniques and has successfully been

applied to the development of diagnostic PCR

primers for a number of protozoan parasites (Cere et

al. 1996; Morgan et al. 1996).

Quantitation and automation of PCR-based

diagnosis

It is important, particularly for environmental

laboratories, to be able to detect pathogens reliably

as well as determine the numbers of pathogens

present. Quantitative and semi-quantitative tech-

niques have been developed for a number of

protozoan parasites (Bretagne et al. 1995; Hulier et

al. 1996; Jenkins, Trout & Fayer, 1997) and new

technologies such as the Taqman4 LS-50B PCR

detection system (Perkin-Elmer) will assist in the

quantitation of protozoan pathogens. PCR is par-

ticularly amenable to automation and large

throughput processing, and the use of robotic arms

and 96 well formats will greatly speed up the

detection process in the future.

Problems to be overcome

PCR is not without its problems. Widely recognized

limitations of amplification technology include those

of false-positive and false-negative results and the

difficulty of detecting routinely the wide range of

possible pathogens contained in a clinical sample

(Vaneechoutte & Vaneldere, 1997).

However, false-positive and false-negative results

can be kept to a minimum by adhering to standard

procedures for avoiding contamination (Kwok &

Higuchi, 1989). In addition, the use of hot-start

PCR (Horton, Hoppe & Contitronconi, 1994), can

overcome many of these problems. In conventional

PCR, non-specific annealing can occur at low
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Fig. 1. Description of a method for developing

diagnostic PCR primers for parasites using RAPD

analysis.

temperatures resulting in aberrant product for-

mation and primer dimer. If these non-specific

products are formed early in the PCR-cycle, they

will be amplified through the remaining steps. These

products reduce specificity by decreasing the ampli-

fication of the target signal and compromise sen-

sitivity by causing high background. A thermolabile

agent, originally wax or grease, but now usually an

antipolymerase antibody, holds the enzyme in an

inactive state until the temperature reaches 95 °C,

circumventing the amplification of non-specific

products and improving the sensitivity and

specificity of the PCR. This often results in less

starting material being required and partially de-

graded samples are more likely to be amplified

(Barlow & Ewen, 1998). In addition, contamination

resulting from previous amplifications can be

minimized by the incorporation of Uracil DNA

Glycosylase (UNG) for the pre-amplification

sterilization of PCR products (Longo, Berninger &

Hartley, 1990).

Faecal samples are among the most difficult

clinical specimens for DNA extraction and ampli-

fication. In order for PCR to be routinely accepted as

a diagnostic tool, these problems need to be over-

come, and a reliable, fast, standardized method

developed for extraction of PCR-amplifiable nucleic

acids. Faecal constituents such as bilirubin and bile

salts were thought to be the main inhibitors

(Widjojoatmodjo et al. 1992). However, one group

have recently characterized faecal components and

identified complex polysaccharides as the key

inhibitors (Monteiro et al. 1997). Glassmilk

extractions on faecal samples did not completely

remove inhibition, however, research in our lab-

oratory has shown that boiling faecal samples in

10% polyvinylpolypyrrilidone (PVPP) prior to

glassmilk extraction greatly reduced inhibition

(Morgan et al. 1998a). The inclusion of a cationic

surfactant Catrimox-14 (TM) (Iowa Biotechnology,

Iowa) during extraction of both DNA and RNA has

also been shown to eliminate inhibitory substances

from faecal samples (Uwatoko et al. 1996).



In the following examples, we have tried to illustrate

the value and practical potential of applying mol-

ecular techniques, principally those based on PCR,

for the detection of protozoan parasites. Space

constraints have forced us to be selective but we have

tried to illustrate the diversity of parasitic protozoan

infections to which PCR has been applied, in terms

of life cycle and transmission.

Environmental detection of Cryptosporidium

The Milwaukee cryptosporidiosis outbreak coupled

with other outbreaks such as the Las Vegas epidemic

in 1994 have raised questions about the prevalence

and regulation of Cryptosporidium in source and

drinking water (States et al. 1997). In July 1997,

water authorities in the US serving more than 10000

began an 18 month monitoring programme for

Cryptosporidium under the Information Collection

Rule (ICR). The currently recommended method

for detecting Cryptosporidium oocysts in water

(Anon, 1993) involves membrane filtration of water

samples via yarn-wound polypropylene cartridge

filters that retain oocysts. Eluted oocysts are concen-

trated and purified using Percoll gradients and

detected using an immunofluorescence assay (IFA).

However, recoveries vary widely (0–80­%) using

this technique and it often results in erroneous data,

with either false-positives or false-negatives being

recorded (Pontius, 1998). A US EPA co-ordinated

performance evaluation in January 1995 involving

nine ‘expert ’ laboratories yielded recoveries ranging

from 0 to 13% (Newman, 1995). Inaccurate assess-

ments will have serious consequences for the water

industry if they are used to develop regulatory

treatment criteria as implied by the ICR (Pontius

1998).

In order to achieve the acceptable risk defined by

the US EPA (one infection per 10000 people),

concentrations of Cryptosporidium oocysts would

have to be !0±005}100 L (Haas & Rose, 1994).

Highly sensitive PCR-based diagnostics are there-

fore required. A variety of PCR tests have been

developed for the detection of Cryptosporidium in

both clinical and environmental samples (Morgan &

Thompson, 1998). In water samples, sensitive

detection of Cryptosporidium oocysts has been
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achieved (Johnson et al. 1995), down to a single

oocyst (Stinear et al. 1996). Environmental samples

are very inhibitory to PCR however, and it has been

reported that the sensitivity of the PCR assay was

reduced by as much as 100–1000 fold for oocyst

seeded environmental samples compared to purified

oocysts (Johnson et al. 1995). Although the use of

immunomagnetic separation removes this inhibition

(Johnson et al. 1995; Deng, Cliver & Mariam, 1997),

by coupling PCR with immunodetection methods

one encounters all the problems associated with

antibody detection. Research investigating para-

meters affecting PCR detection of waterborne

Cryptosporidium indicates that separation of inhibi-

tory solutes might be sufficient to allow PCR

detection of waterborne oocysts for routine ap-

plication, but this approach will need to be tested on

large volumes of water (Sluter, Tzipori & Widmer,

1997).

Recent research has demonstrated that humans

are susceptible to infection with at least 2 distinct,

apparently host-adapted genotypes of Crypto-

sporidium (‘human’ and ‘cattle ’) (Awad-El-Kariem

et al. 1995; Vasquez et al. 1996; Carraway et al.

1997; Morgan et al. 1995; 1997; 1998a, b ; Peng

et al. 1997; Spano et al. 1997; 1998). Increasing

population density and land use for animal pro-

duction enhances the risk of water contamination by

oocysts originating from domestic septic tanks and

dairy farms. In the event of water contamination,

preventative measures to reduce the chance of future

spills can be implemented if the source of oocysts can

be traced (Widmer, Carraway & Tzipori, 1996).

Diagnostic tests which can differentiate between

human and animal isolates of Cryptosporidium will

therefore be of particular benefit in outbreak

situations such as the more recent outbreak in British

Columbia (Anon, 1996), where determination of the

source of infection is important in limiting trans-

mission. Diagnostic primers developed by Morgan

et al. (1997), which directly differentiate between

human and bovine isolates of C. parvum on the basis

of the size of the PCR product, will assist greatly in

understanding the contribution of animal reservoirs

and domestic septic tanks to waterborne infection.

Clinical detection of Cryptosporidium

PCR testing is increasingly being applied to clinical

detection of Cryptosporidium and PCR has been

shown to be more sensitive and accurate than

immunoassays for the detection of Cryptosporidium

in faeces (Leng, Mosier & Oberst, 1996). Com-

parison of PCR with microscopic detection of

Cryptosporidium in human faecal samples revealed a

sensitivity and specificity of 83±7% and 98±9% for

microscopy compared to 100% sensitivity and

specificity for PCR (Morgan et al. 1998a). Approxi-

mately 17% of the positives detected using the PCR

test displayed the ‘cattle ’ genotype, the remaining

positives displayed the ‘human’ genotype (Morgan

et al. 1998a).

In outbreaks of cryptosporidiosis such as those

reported from North America, as well as more

localized ones in day-care centres, it is likely that the

real cause is misdiagnosed or goes unnoticed. Using

PCR-based assays provides public health personnel

with the most appropriate diagnostic tools in such

situations. In addition, as with other enteric proto-

zoan infections such as Giardia, high percentages

of asymptomatic carriers of Cryptosporidium have

been reported, particularly in children (Cordell &

Addiss, 1994). The role of asymptomatic carriage

of Cryptosporidium in the spread of infection is not

clear, although recent studies suggest it is common

(Pettoello-Mantovani et al. 1995). Surveillance of

high risk population groups such as AIDS patients

and children attending day-care using sensitive

diagnostic techniques such as provided by PCR, will

enable treatment regimes to be instituted early in the

infection process thus limiting clinical sequelae and

in the case of asymptomatic children, treatment will

limit the development of symptomatic infection and

its spread.

Entamoeba

Amoebiasis is caused by 2 distinct species, a

pathogenic form (Entamoeba histolytica) and a non-

pathogenic form (E. dispar) which are morpho-

logically identical. Although the distinction between

these 2 species is of great clinical importance,

conventional methods developed for this purpose are

time-consuming and labour intensive. A number of

PCR tests for the detection of E. histolytica have

been developed in recent years (Tachibana et al.

1992; Acuna-Soto et al. 1993). Simple differential

detection of E. histolytica and E. dispar in fresh stool

specimens by sodium acetate}acetic acid}formalin

concentration and PCR, which can also detect mixed

infections even at a 1:10000 ratio, has recently been

reported (Troll, Marti & Weiss, 1997). Comparison

of PCR and 3 commercially available enzyme-linked

immunosorbent assay-based kits (ELISAs) for the

detection of Entamoeba revealed that 2 of the 3

ELISAs cross-reacted with E. dispar and were 100

times less sensitive than PCR (Mirelman,

Nuchamowitz & Stilarsky, 1997). Sensitivity, and

the ability to discriminate between pathogenic and

non-pathogenic species is a powerful advantage of

the PCR technique for diagnosing Entamoeba

infections.

Plasmodium

Four species of Plasmodium cause malaria in man: P.

falciparum, P. vivax, P. malariae and P. ovale.

Conventional diagnosis of malarial infections relies
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on laborious microscopic examination of thin and

thick blood smears after staining with Giemsa,

Firld’s stain or Diff Quick (Smits & Hartskeerl,

1995). Newly developed tests such as the QBC

method for the fluorescent staining of parasites after

an enrichment step of the infected erythrocytes, and

the ParaSight2F test for antigen detection by a dip-

stick are available. However, when parasitaemias are

low, particularly in patients with cerebral malaria, it

is difficult to detect parasites, and where there is a

mixed infection and one species dominates, mi-

croscopy fails to detect all the species of parasites

present (Singh, 1997). The correct, specific identi-

fication of Plasmodium is very important, as the

choice of antimalarials prescribed depends on the

species of malaria parasite.

The development of PCR-based diagnostics for

Plasmodium spp. has enabled the specific, sensitive

and rapid detection of malaria. The majority of PCR

tests have been developed for falciparum malaria,

although a generic PCR test capable of detecting all

Plasmodium species has also been developed

(Ayyanathan & Datta, 1996). A recent field study in

which a total of 410 blood samples from patients in

Thailand was analysed, confirmed the superior

sensitivity of PCR over conventional diagnosis.

Blood samples were analysed by PCR and mi-

croscopy for the presence of P. falciparum ; 53%

were positive using the DNA-based assay, while

only 32% were positive using conventional micro-

scopic analysis (Seesod et al. 1997). A blinded

evaluation of the ParaSight2F antigen capture assay

(dipstick test) and PCR for the detection of P.

falciparum infection carried out on 151 febrile

travellers revealed that compared with the PCR, the

dipstick test had a sensitivity of 88% and a specificity

of 97% (Humar et al. 1997). The superior sensitivity

of the PCR technique was utilized to screen for levels

of P. falciparum infections that were below the

threshold of detection of blood film examination

(Roper et al. 1996). The results revealed a substantial

group of asymptomatic, sub-microscopically patent

infections within the population of a Sudanese village

present throughout the year, although clinical ma-

laria episodes were almost entirely confined to the

transmission season (Roper et al. 1996). Reservoir

parasite populations were therefore higher than was

previously believed in this region, an important

finding for understanding the epidemiology of this

disease. PCR-RFLP analysis of the dihydrofolate

reductase (dhfr) gene has been used to detect

pyrimethamine susceptibility of P. falciparum in

Thailand (Zindrou et al. 1996). This method could

therefore be used to study the epidemiology of

pyrimethamine resistance in P. falciparum. In order

to study malaria in all geographical locations it is

important that specimen collection and DNA ex-

traction for PCR be kept simple. A method for

extracting DNA from dried blood spots on filter

paper which is capable of detecting one P. falciparum

and two P. vivax parasites}µl of whole blood by

nested PCR without compromizing the simplicity of

specimen collection or DNA extraction has been

reported (Cox-Singh et al. 1997).

PCR genotyping also has practical potential for

distinguishing a recrudescent from a new infection

when treatment studies are conducted in areas with

active malaria transmission (Ohrt et al. 1997).

However, it is advisable not to use a single primer

pair in epidemiological field studies for the detection

of falciparum malaria since the sensitivity of the

PCR can vary between different geographic areas

(Jelinek et al. 1996).

Tritrichomonas

Tritrichomonas foetus is a sexually transmitted proto-

zoan parasite which causes infertility and spon-

taneous abortion in cattle (Levine, 1973), and on

recent molecular evidence appears to be identical to

the intestinal trichomonad of pigs, T. suis (Felleisen,

1998). Effective control of trichomoniasis in cattle

has been impeded by the insensitivity of traditional

diagnostic procedures, which require the isolation

and cultivation of the parasite (Ho et al. 1994).

Diagnosis is also hampered by putative contami-

nation of samples with intestinal or coprophilic

trichomonad protozoa which might be mistaken for

T. foetus (Felleisen et al. 1998). An immuno-

histochemical staining technique has been developed

for the detection of T. foetus which is relatively

specific but which did cross-react with Trichomonas

gallinae (Rhyan et al. 1995). An antigen-detecting

enzyme immunoassay (EIA) has also been developed

for T. foetus (Yule et al. 1989). However, while

highly sensitive for the detection of antigen derived

from cultured organisms, the assay showed poor

sensitivity in the detection of antigen in the cervico-

vaginal mucus of artificially infected heifers, with

only 75% of culture-positive samples being con-

sidered positive for antigen. In a direct comparison,

23}122 samples from a naturally infected dairy herd

gave positive cultures, while only 10}122 samples

were considered antigen positive by EIA (Yule et al.

1989).

A PCR test for T. foetus was developed by Ho et

al. (1994), which could detect as few as one T. foetus

organism in culture media or 10 parasites in bovine

preputial washings. Analysis of 52 clinical samples

showed that 47 (90±4%) of the 52 samples were

correctly identified, with no false-positive reactions.

In comparison, the traditional cultivation method

detected 44 (84±6%) of the 52 samples from T.

foetus-infected and uninfected bulls. However,

hybridization of a chemiluminscent internal T. foetus

sequence to the amplification product was necessary

in order to achieve this sensitivity which adds greatly

to the length and cost of the assay. More recently, a
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diagnostic PCR test has recently been developed

based on rRNA gene units of T. foetus which can

directly detect a single organism in diagnostic culture

medium or about 50 parasites per ml of preputial

washing fluid (Felleisen et al. 1998). Documentation

and interpretation of results was facilitated by

including a DNA enzyme immunoassay for the

detection of amplification products which obviated

the need for gel electrophoresis. These results

indicate that the PCR-based amplification system

could be a useful alternative method for the diagnosis

of bovine trichomoniasis.

Toxoplasma}Neospora

Neospora caninum is recognized as a frequent cause

of foetal abortion and neonatal mortality in cattle,

goats and horses as well as causing hind limb

paralysis in dogs (Dubey, 1992; Dubey & Lindsay,

1993). It is therefore responsible for significant

economic and reproductive losses to the livestock

industry. Morphological similarities and serological

cross-reactivity between N. caninum and the very

closely related parasite Toxoplasma gondii, have

resulted in the frequent misdiagnosis of neosporosis

as toxoplasmosis (Ellis et al. 1994; Lally, Jenkins &

Dubey, 1996). Slight differences in the structure of

the tachyzoite organelles known as rhoptries have

been detected and these now provide a method for

distinguishing N. caninum from T. gondii, by

electron microscopy (Dubey, 1992; Dubey &

Lindsay, 1993). In the last few years, diagnosis of

neosporosis and toxoplasmosis has been much

improved by the development of PCR tests which

allow fast and sensitive identification of the parasites

(Lally, Jenkins & Dubey, 1996; Yamage, Flechner &

Gottstein, 1996; Muller et al. 1996). Lally, Jenkins

& Dubey (1996), developed a nested PCR reaction

based on a N. caninum cDNA clone encoding a 14-

3-3 protein homologue. The 14-3-3 proteins are a

class of proteins which show a high degree of amino

acid sequence conservation across several eukaryotic

taxa. Using less conserved regions of the N. caninum

cDNA clone, nested primers were designed for the

amplification of a 614-bp N. caninum DNA fragment

by PCR. The DNA fragment was amplified from N.

caninum genomic DNA, but not from T. gondii,

Sarcocystis muris, S. tenella, or S. cruzi genomic

DNA. Additionally, the fragment was amplified

from DNA prepared from the brains of N. caninum-

infected mice, but not from the brain of a mouse

infected with T. gondii. These results suggest that

this PCR assay may be useful for the diagnosis of

neosporosis.

Trypanosomes

Trypanosomes are the causative agents of major

parasitic diseases such as Chagas’ disease in South

America and sleeping sickness of humans and nagana

disease of cattle in Africa. They are transmitted to

mammalian hosts by specific insect vectors

(Vanhamme & Pays, 1995). Parasitological diagnosis

is often difficult because of the low numbers of

blood-stream trypanosomes present (Chance &

Molyneux, 1995). Numerous PCR tests have been

developed in recent years for the detection of

trypanosomes (Katakura et al. 1997; Masake et al.

1997), some of which do not even require DNA

purification and with a sensitivity threshold of 1

parasite in 1 ml of blood (Penchenier et al. 1996).

PCR diagnosis has also been used to determine the

prevalence of various species and subgroups of

trypanosomes in their intermediate host, the tsetse

fly. For example, in the Sinfra area of Co# te d’Ivoire

a PCR assay was able to detect mixed infections and

facilitated the easy identification of mature trypano-

some infections in tsetse flies, providing a reliable

estimation of trypanosomiasis challenge (Masiga et

al. 1996).

Chagas’ disease is caused by Trypanosoma cruzi,

which is predominantly found in South and Central

America and Mexico. Chagas’ disease has a variable

clinical course, ranging from symptomless infection

to severe chronic disease with cardiovascular or

gastrointestinal involvement or even overwhelming

acute episodes (Macedo & Pena, 1998). In the acute

phase of Chagas’ disease, when the parasitaemia is

high, diagnosis can be easily made using conven-

tional parasitological methods. During the chronic

phase, due to the low parasitaemia, diagnosis is

performed mainly by immunological methods. Con-

ventional serological techniques however, are limited

by cross-reactivity with other parasitic diseases,

non-standardization of reagents, and the diversity of

technical procedures (Gomes, 1997). Methods are

being developed to improve the sensitivity and

specificity of diagnosis using molecular approaches

and PCR tests have been compared with conven-

tional microscopy for the detection of T. cruzi

(Kirchhoff et al. 1996). In this study, eight mice were

challenged with T. cruzi, and on 31 days over a 380-

day period, the ability of PCR to detect parasites in

blood was compared with oil immersion microscopic

examination. During the acute phase of the

infections, parasites were detected on average 3±9
days earlier by the PCR method than by microscopy.

Furthermore, the infected mice were consistently

positive by PCR during the chronic phase, while

parasites were intermittently detected by micro-

scopic examination during that period (Kirchhoff et

al. 1996). PCR detection of T. cruzi has also been

applied in epidemiological studies (Silber et al. 1997;

Wincker et al. 1997), but improvements are required

to increase sensitivity.

The most serious manifestation of chronic Chagas’

disease is a progressive inflammatory cardio-

myopathy (Lane et al. 1997). However, T. cruzi has
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not been consistently demonstrated with histological

techniques in inflammatory cardiac lesions. A recent

study used both PCR amplification of extracted

DNA from haematoxylin and eosin-stained tissue

scrapings, and in situ hybridization to detect the

presence of T. cruzi in infected murine cardiac tissue

sections (Lane et al. 1997). Three T. cruzi-specific

DNA sequences were used: a 122-basepair (bp)

sequence localized within the minicircle network

(MCS), a 188-bp nuclear repetitive sequence (RS),

and a 177-bp sequence within the open reading

frame of a gene coding for a flagellar protein (FPS).

All 3 sequences were amplifiable from scrapings of

murine cardiac tissue. The MCS and RS were

detected at 0±167 and 0±24 amastigote DNA equi-

valents, while FPS was barely detected at 0±24

amastigote DNA equivalents. On the other hand, in

situ hybridization with all three sequences allowed

for the detection of T. cruzi amastigotes within the

tissue. The MCS and FPS, however, consistently

yielded a more intense signal. These results indicate

that PCR and in situ hybridization may prove useful

in establishing the prevalence of T. cruzi in human

chagasic cardiomyopathy (Lane et al. 1997).

Microsporidia

Microsporidia are obligate intracellular spore-

forming protozoa which have gained attention as

important opportunistic pathogens in the evolving

pandemic of HIV infection (Weber & Deplazes,

1995). At least 5 different genera of microsporidia

are known to infect humans (Weber & Deplazes,

1995), therefore species- and strain-specific detection

is important in determining sources of infection and

chemotherapeutic protocols (Sobottka et al. 1995;

Mathis et al. 1997). Detection of these organisms in

a clinical laboratory poses significant challenges

because of their small size and difficulty in distin-

guishing them from artifacts with the use of available

staining techniques (Hines & Nachamkin, 1996).

The situation is further complicated by the fact that

clinical specimens of different origin may be sub-

mitted for investigation including faeces, urine,

sputum, nasal discharges, cerebrospinal fluid and

various tissue biopsies. Electron microscopy is the

definitive procedure for identification of micro-

sporidia to the species level, however, this is very

time-consuming and requires specialized and ex-

pensive equipment (Kock et al. 1997). Recently,

PCR and subsequent restriction fragment length

polymorphism (RFLP) analysis (Katzwinkel-

Wladarsch et al. 1997) and also nested PCR (Koch et

al. 1997) have been used successfully for species-

specific detection of microsporidia in a variety of

clinical specimens. PCR amplification and species

determination of microsporidia in formalin-fixed

faeces has also been achieved (Dowd et al. 1998).

    

 

Protozoan parasites such as Cryptosporidium, Giardia

and newly emerging pathogens such as Cyclospora

constitute important public health problems

throughout the world. The development of a multi-

plex PCR assay which would enable the simul-

taneous detection of all 3 protozoan parasites would

be an extremely useful public health tool, and an

attractive, cost-effective procedure for clinical di-

agnostic laboratories. Previous research by Rochelle

et al. (1997a) on the development of a multiplex test

for Giardia and Cryptosporidium reported that none

of the primers examined had the ideal combination

of specificity, sensitivity and compatibility with

multiplex PCR, and that additional primers need to

be urgently evaluated. More recent analysis of a

multiplex assay detecting Cryptosporidium and

Giardia heat shock protein (hsp) genes holds promise

for the future (Rochelle et al. 1997b). Another

example of the need for such a multiplex PCR assay

is in pig production facilities, where both Isospora

and Cryptosporidium have been shown to be im-

portant causes of diarrhoea in young piglets, yet the

sources of infection remain to be resolved

(Christensen & Henriksen, 1994; Xiao, Herd &

Bowman, 1994; Otten et al. 1996; Olson et al. 1997).

The rapid detection and discrimination of these 2

parasites in young pigs is essential in terms of

treatment and control, and the development of a

multiplex PCR assay would be a valuable alternative

to tedious and insensitive microscopy.

There are other situations where the availability of

sensitive, rapid means of detecting protozoan

parasites is required. Surveillance in geographical

areas currently free of infections may require

sensitive techniques capable of detecting low levels

of infection in asymptomatic carrier animals, or in

potential hosts in areas bordering endemic regions.

For example, the introduction of Trypanosoma evansi

into Australia from south east Asia (Luckins, 1988)

would have enormous economic consequences and

thus quarantine authorities regularly screen feral

animals in the north of Australia using serological

procedures. However, studies in Thailand have

found PCR to be more sensitive than both mi-

croscopy and serology (Wuyts et al. 1995), and PCR

techniques may thus prove to be more value in other

geographical areas. Similarly, a major limitation in

studying the epidemiology of canine visceral leish-

maniasis is the inability to identify and count

asymptomatic carriers because conventional diag-

nostic tests are insufficiently sensitive (Berrahal et al.

1996). This is very significant because of the zoonotic

potential of this disease and the fact that it is an

emerging issue in both Europe and the USA. Several

groups have now developed PCR-based procedures

for the detection of Leishmania from dogs and
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humans and the results have shown that PCR offers

a better gold standard that either in vitro or in vivo

assays for diagnosis, and will be a valuable tool for

surveillance (Ashford et al. 1995; Mathis &

Deplazes, 1995; Berrahal et al. 1996). There is also

a need for the development of sensitive, PCR-based

assays for both equine and bovine babesiosis. They

would provide useful screening tools for the de-

tection of carrier animals thus preventing the

introduction of these diseases into areas where the

respective hosts are currently free of infection and at

risk of contracting clinical disease.

   



Molecular diagnostics are fast, efficient and are

more amenable to large through-put processing.

Since conventional microscopic parasitological ex-

aminations are amongst the most time-consuming

procedures in a clinical laboratory, the use of

molecular based tests may lead to more cost-effective

and clinically efficient use of the diagnostic para-

sitology laboratory. In the USA, it is estimated that

more than 4 million tests for bacteria and parasites

are performed annually; thus, ‘efficient use of the

laboratory in an era of cost containment is critical ’

(Siegel, Edelstein & Nachamkin, 1990). However,

many PCR methods will need improvement before

reliable diagnostic methods become available. Clini-

cal applicability will depend on the availability of

highly standardized detection systems including

methods and ingredients for sample collection,

sample preparation and detection, and identification

of PCR products (Smits & Hartskkeerl, 1995).

Recent advances using silicon chip technology

have the potential to greatly improve diagnosis and

detection of pathogens. A team at the University of

California, Berkeley has designed a chip to carry out

both PCR and electrophoresis. The PCR takes place

in a 2 cm-high silicon reaction vessel that sits on top

of a flat electrophoresis wafer. Enzymes are added to

cut up the DNA and, when the PCR is complete,

electric fields draw the fragments into gel-filled

capillaries beneath the reaction vessel. Using the

Berkeley chip, the team identified Salmonella DNA

in less than 45 min (Woolley et al. 1996; Ward,

1997). Although, there are numerous technical

difficulties to be overcome, this type of technology

has the potential to greatly speed up the detection of

pathogens and because the reaction is more efficient

than conventional thermo-cyclers, it will enable

more sensitive detection in the future.
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