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Abstract. Let (M, g) be a compact, smooth Riemannian manifold without conjugate points
whose geodesic flow is expansive. We show that the geodesic flow of (M, g) has the
accessibility property, namely, given two points θ1, θ2 in the unit tangent bundle, there
exists a continuous path joining θ1, θ2 formed by the union of a finite number of continuous
curves, each of which is contained either in a strong stable set or in a strong unstable set
of the dynamics. Since expansive geodesic flows of compact surfaces have no conjugate
points, the accessibility property holds for every two-dimensional expansive geodesic flow.

0. Introduction
The accessibility property of dynamical systems, one of the main subjects of control
theory, is closely related to contact structures and, more generally, to non-integrable
distributions. The classical definition of accessibility refers to a smooth plane field defined
in a differentiable manifold. In control theory, it is said that a point p is accessible
from a point q if there exists a continuous path formed by a finite union of differentiable
curves each of which is tangent to the distribution. This classical notion of accessibility of
points defines an equivalence relation, and it is said that the manifold has the accessibility
property with respect to the plane field if there is only one equivalence class. Brin [2]
introduced a dynamical notion of accessibility, closely related to the classical one, well
suited for the study of geodesic flows of negative curvature and partially hyperbolic
diffeomorphisms: a point p is accessible from q if there exists a us-path connecting p
and q . A us-path, or admissible path, is a continuous curve formed by the union of a
finite number of curves each of which is contained in some strong invariant submanifold
of the dynamics, either some strong stable or some strong unstable one. Accessibility
of points is again an equivalence relation, and the dynamical system has the accessibility
property if there is only one equivalence class. Brin’s idea was used to study the ergodicity
of skew products [2] and frame flows of manifolds of negative curvature [4–6]. After
the work of Grayson, Pugh and Shub [16], the idea of stable accessibility turned out

https://doi.org/10.1017/S0143385707000399 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707000399


230 R. O. Ruggiero

to be crucial to the study of stable ergodicity of partially hyperbolic dynamics, one of
the main fields of research in dynamics in the last ten years. The interest in this latter
dynamical notion of accessibility gave rise to intense research on the subject in the context
of stable ergodicity of partially hyperbolic systems. Some of the main results are: the
stable accessibility of contact Anosov flows proved by Katok and Kononenko [13]; the
generalization of this result obtained by Burns et al [7] assuming that the strong stable
and unstable foliations of an Anosov flow are not jointly integrable; results for algebraic
systems by Pugh and Shub [22]; and stable accessibility in the category of skew products
by Shub and Wilkinson [26], Burns and Wilkinson [9] and others [12, 19]. We recommend
to look at [8] for further references and a good survey about stable ergodicity of partially
hyperbolic systems.

In the present paper we deal with expansive geodesic flows in manifolds without
conjugate points. Given a C∞ Riemannian manifold (N , g), a differentiable flow ft :

N → N without singularities is said to be expansive if there exists ε > 0 such that the
following holds: Let p ∈ N , and suppose that there exist q ∈ N , and a continuous,
surjective reparametrization ρ : R → R, with ρ(0)= 0, of the orbit of q such that
d( ft (p), fρ(t)(q))≤ ε for every t ∈ R; then q belongs to the orbit of p. It is easy to
construct examples of expansive geodesic flows which are not Anosov. Expansive geodesic
flows in manifolds without conjugate points have invariant, continuous foliations by strong
stable and strong unstable sets satisfying a local product structure [24] (for the definition
and a precise statement see §1). The strong invariant sets in general might not be smooth,
they are just C0, locally rectifiable submanifolds of the unit tangent bundle. So the methods
used to study the accessibility of partially hyperbolic systems might not be applied to
expansive systems; we cannot assume the existence of continuous, invariant subbundles
tangent to the strong invariant sets. Our main result is the following.

THEOREM 1. Let (M, g) be a compact, smooth Riemannian manifold without conjugate
points whose geodesic flow is expansive. Then the geodesic flow has the accessibility
property, namely, given two points θ1, θ2 in the unit tangent bundle, there exists a
continuous path joining θ1, θ2 formed by the union of a finite number of continuous curves,
each of which is contained either in a strong stable set or in a strong unstable set of the
dynamics.

We would like to point out that, in the case of surfaces, the expansiveness of the geodesic
flow already implies the absence of conjugate points, as proved by Paternain [20]. So
Theorem 1 holds for surfaces whose geodesic flows are expansive, without the need of the
no conjugate points assumption. As far as we know, Theorem 1 is the first result about
accessibility from the dynamical point of view of a class of systems which include non-
partially hyperbolic systems (namely, the time 1 map of expansive geodesic flows which
are not Anosov). The proof of Theorem 1 is completely topological, since we are not
allowed to assume any C1 regularity of the strong invariant sets.

The main idea of the proof of Theorem 1 is the following. The local accessibility in
the unit tangent bundle is closely related to the fact that the curves formed by a us-path
followed by an su-path do not give closed loops. This leads naturally to the consideration
of the set of points in the universal covering where a horosphere is simultaneously tangent
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to two given horospheres. So to examine the accessibility, a local problem a priori, we
are led to study the global geometry of the universal covering and the configurations
of horospheres which are simultaneously tangent to two given ones. To understand the
global picture of horospheres we use the fundamental fact that the universal covering is a
Gromov hyperbolic space [23]. This line of reasoning allows us to avoid C1 considerations
concerning the strong invariant sets, curiously focusing on the global geometry of the
universal covering to get information about a local problem.

1. Expansive geodesic flows and manifolds without conjugate points
Throughout the paper, (M, g) will be a C∞, compact Riemannian manifold without
conjugate points, (M̃, g̃) will be the universal covering of M endowed with the pullback
of the metric g by the covering map π : M̃ → M , and (T1 M, g) will be the unit tangent
bundle of M endowed with the Sasaki metric induced by g (which we call also by g
to simplify the notation). All the geodesics will be parametrized by arc length, and
given θ = (p, v) ∈ T1 M , the geodesic γθ will denote the geodesic such that γθ (0)= p,
γ ′
θ (0)= v. A very special property of manifolds with no conjugate points is the existence

of the so-called Busemann functions. Given θ = (p, v) ∈ T1 M̃ the Busemann function
bθ : M̃ → R associated to θ is defined by

bθ (x)= lim
t→+∞

(d(x, γθ (t))− t).

The level sets of bθ are the horospheres Hθ (t), where the parameter t means that γθ (t) ∈

Hθ (t). We have that γθ (t) intersects each level set of bθ perpendicularly at only one point
in Hθ (t), and that bθ (Hθ (t))= −t for every t ∈ R. Next, we list some basic properties
of horospheres and Busemann functions that will be needed in the forthcoming sections
(see [11, 21], for instance, for details).

LEMMA 1.1. The following hold.
(1) The Busemann function bθ is a C1 function for every θ .
(2) The gradient ∇bθ has norm equal to one at every point.
(3) Every horosphere is a C1+K , embedded submanifold of dimension n − 1 (C1+K

means K -Lipschitz normal vector field), where K is a constant depending on
curvature bounds.

(4) The orbits of the integral flow of −∇bθ , ψθt : M̃ → M̃, are geodesics which are
everywhere perpendicular to the horospheres Hθ . In particular, the geodesic γθ is
an orbit of this flow and we have that

ψθt (Hθ (s))= Hθ (s + t)

for every t, s ∈ R.

A geodesic β is asymptotic to a geodesic γ in M̃ if there exists a constant C > 0 such
that d(β(t), γ (t))≤ C for every t ≥ 0. We shall denote by Busemann asymptotes of γθ the
orbits of the flow ψθt . Busemann asymptotes of γθ might not be asymptotic to γθ , so the
relation between geodesics given by

‘γRβ if and only if β is a Busemann asymptote of γ ’
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might not be an equivalence relation. Observe that in all known examples of manifolds
without conjugate points (non-positive curvature, no focal points, metrics on surfaces
without conjugate points), the relation R is an equivalence relation. Lemma 1.1(4) implies
that the horospheres Hθ (t) are equidistant, i.e. given any point p ∈ Hθ (s), then the distance
d(p, Hθ (t)) is equal to |t − s|. The canonical lift in T1 M̃ of Hθ (0) is the set

F̃s(θ)= {(p,−∇pbθ ), p ∈ Hθ (0)},

and the canonical lift Fs(π̄(θ)) of Hθ (0) in T1 M is the projection of F̃s(θ) in T1 M by the
natural covering map π̄ : T1 M̃ → T1 M induced by the covering map π : M̃ → M . The
canonical lifts Fs(θ), F̃s(η) are often called stable horospheres of θ ∈ T1 M , η ∈ T1 M̃
respectively, although the behavior of Busemann asymptotes might be very different from
the hyperbolic behavior. The set

F̃u((p, v))= {(p, ∇pb(p,−v)), p ∈ H(p,−v)(0)}

is called the unstable horosphere of θ = (p, v) ∈ T1 M̃ , and its projection Fu(π̄(θ)) in
T1 M by the map π̄ is called the unstable horosphere of π̄(θ) ∈ T1 M . The topological
dynamics of expansive geodesic flows in compact manifolds without conjugate points is
well understood. We give next a survey of results contained in [20, 23–25], which show
essentially that the topological dynamics of such flows is practically the same as in the case
of Anosov geodesic flows.

THEOREM 1.1. [23, 24] The geodesic flow of (M, g) is expansive if and only if for every
pair of geodesics γ , β in (M̃, g) with d(γ, β)≤ D we have that γ = β. Moreover, two
geodesics are Busemann asymptotic in M̃ if and only if they are asymptotic, and two
horospheres H(p,v)(t), H(p,−v)(s) have points of tangency if and only if s = −t and the
only point of tangency is γ(p,v)(t). The sets Fs(θ), Fu(θ) are the stable and unstable sets
of θ ∈ T1 M according to the usual notion: if ψ ∈ Fs(θ) then

lim
t→+∞

d(φt (θ), φt (ψ))= 0,

and if ψ ∈ Fu(θ) then
lim

t→−∞
d(φt (θ), φt (ψ))= 0.

THEOREM 1.2. [23, 24] If the geodesic flow of (M, g) is expansive then the fundamental
group of M is a Gromov hyperbolic group and the universal covering endowed with the
pullback of the metric g is a visibility manifold.

For the definitions and basic facts of Gromov hyperbolic groups and visibility manifolds
we refer to [14, 15, 17]. If M̃ is a visibility manifold, geodesic rays diverge uniformly
(see [14, 24] for a precise definition), and this implies that large spheres approach
horospheres uniformly on compact sets in M̃ , as well as the continuity of H(p,v)(0) with
respect to (p, v) in the compact-open topology. The next result is found in [24].

LEMMA 1.2. Suppose that the geodesic rays in M̃ diverge uniformly. Given a compact
ball B ⊂ M̃, and ε > 0, there exist δ > 0 and R > 0 such that if (q, w), (p, v) ∈ T1 M̃,
where p, q ∈ B, satisfy d((p, v), (q, w))≤ δ, then the distance in the C1 topology
between H(q,w)(0) ∩ B and the spheres Sr (γ(p,v)(r)) centered at γ(p,v)(r) is less than ε
for every r ≥ R in the set B.
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Given a foliation F in a manifold N let us call by F(p) the leaf of F containing the
point p ∈ N . A pair of φt -invariant foliations F1, F2 in T1 M has a local product structure
if there exists an atlas {8 j : U j ⊂ T1 M → R2n−1

} of T1 M such that the following hold.
(1) Every 8 j is continuous.
(2) Each local chart is of the form 8 j = (xi , yi , t), t ∈ (−ε, ε), where 6 =

8−1
j {(xi , yi , 0), (xi , yi ) ∈ R2n−2

} is a local transversal section of the flow, and the

coordinate sets x i
= c, yi

= c are respectively the preimage by 8 j of the connected
component of

φ|t |<ε(F1(8 j (c, 0, 0))) ∩6,

containing the point 8 j (c, 0, 0), and the preimage by 8 j of the connected component of

φ|t |<ε(F2(8 j (0, c, 0))) ∩6,

containing the point 8 j (0, c, 0).

THEOREM 1.3. [24, 25] The geodesic flow of (M, g) is expansive if and only if the
collections

Fs
=

⋃
θ∈T1 M

Fs(θ),

Fu
=

⋃
θ∈T1 M

Fu(θ)

are continuous foliations, invariant by the geodesic flow, with a local product structure.

THEOREM 1.4. [20] A compact surface whose geodesic flow is expansive has no
conjugate points.

2. Horospheres in visibility manifolds
The purpose of this section is to show that certain geometric properties of horospheres in
the hyperbolic space generalize in a natural way to horospheres in the universal covering
of compact manifolds without conjugate points and expansive geodesic flows. Actually,
the main results of the section can be shown in the case of surfaces of genus greater than
two using the ideas of Morse [18] (see also Eberlein [14]). In order to deal with manifolds
of dimension n ≥ 3 we shall profit from the hyperbolicity of the global geometry of M̃
granted by Theorem 1.2.

By Theorem 1.2, if the geodesic flow of (M, g) is expansive the universal covering
M̃ endowed with the pullback of the metric g is a visibility manifold, so we begin the
section by recalling some basic notions concerning such manifolds (for the details we refer
to [1, 14]). First of all, the universal covering M̃ admits a compactification M̃(∞) whose
points are the points of M̃ together with the asymptotic classes of geodesics in M̃ . There is
a natural topology in M̃(∞), called the cone topology, such that M̃(∞) is homeomorphic
to the closed n-ball of radius one in Rn . An asymptotic class ω represents a point in the
boundary ∂ M̃(∞) of the compact space M̃(∞); given p ∈ T1 M̃ there is a unique geodesic
ray starting at p whose ω-limit is ω; and each pair of different points ω, α in ∂ M̃(∞)

determines a geodesic γ ∈ M̃ whose α-limit is α and whose ω-limit is ω. The points
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α(θ) and ω(θ) will be called the endpoints of the geodesic γθ at infinity. Notice that, in
the case of expansive geodesic flows, each pair of points at infinity determines a unique
geodesic. Given θ ∈ T1 M̃ , the compactification of the horosphere Hθ (0) is the sphere
Hθ (0) ∪ {ω(θ)}, where ω(θ) is the asymptotic class of the geodesic γθ . We gather some
basic features of the global geometry of horospheres in the next lemma; such features will
be helpful in the forthcoming sections.

LEMMA 2.1. Assume that the geodesic flow of (M, g) is expansive. Let θ, η ∈ T1 M̃ such
that ω(θ) 6= ω(η). Then the following assertions hold.
(1) There exists t (θη) ∈ R such that Hθ (0) and Hη(t (θη)) are tangent at a single point

p(θη). Moreover, the sets

Hθη(t)= Hθ (0) ∩ Hη(t)

are non-empty for every t ≤ t (θη).
(2) The set Hθη(0)= Hθ (0) ∩ Hη(0) is a compact, connected set. When this set is not

empty, it is either a single point z (and Hθ (0), Hη(0) must be tangent at z), or we
have the following cases:
• if dim M = 2, Hθη(0) consists of two points; and
• if dim M > 2, Hθη(0) is an (n − 2) submanifold diffeomorphic to a sphere.
In any case, the complement of Hθη(0) in Hθ (0) consists of two (n − 1)-open,
connected subsets A+

θ , A−

θ of Hθ (0), characterized by bη(p) > 0 for every p ∈ A+

θ ,
and bη(p) < 0 for every p ∈ A−

θ . Moreover, the set A−

θ has compact closure.

Proof. Let us begin with the proof of item (1). Since the universal covering M̃ is a visibility
manifold, the points at infinity ω(θ) and ω(η) determine a geodesic γσ ⊂ M̃ , for some
σ = (q, w) ∈ T1 M̃ , whose ω-limit is ω(θ) and whose α-limit is α(η). The horosphere
Hθ (0) coincides with one of the horospheres Hσ (r) for some r ∈ R, and the horosphere
Hη(0) is one of the unstable horospheres of γσ , Hη(0)= H(q,−w)(s) for some s ∈ R. Since
the flow is expansive, the geodesic γσ is unique by Theorem 1.2. Now, two horospheres
H(q,w)(r), H(q,−w)(s) intersect each other if and only if s ≤ −r . At s = −r the intersection
consists of points of tangency, and every point of H(q,w)(r) ∩ H(q,−w)(−r) is contained
in a geodesic that is bi-asymptotic to γσ , according to Theorem 1.2. Hence, the set
H(q,w)(r) ∩ H(q,−w)(−r) consists of only one point, namely γσ (r). This clearly proves
the existence of the number t (θη) and the point p(θη). If s >−r , the intersection between
these horospheres is obviously empty, thus finishing the proof of item (1).

Let us proceed to show item (2). According to Theorem 1.2, the intersections
H(q,w)(r) ∩ H(q,−w)(s) for s <−r are transversal. So by the implicit function theorem
the set H(q,w)(r) ∩ H(q,−w)(s) is an (n − 2) smooth submanifold of both H(q,w)(r) and
H(q,−w)(s). Let us assume without loss of generality that the intersecting horospheres
are H(q,w)(0) ∩ H(q,−w)(s), where s < 0. Let us denote by the interior of the horosphere
Hθ (0) the set

{p ∈ M̃, bθ (p) < 0}.

The horosphere H(q,−w)(s) has some subset A− in the interior of H(q,w)(0) bounded by
the connected components of the intersection H(q,w)(0) ∩ H(q,−w)(s). Let

H(q,−w)(s)= (H(q,w)(0) ∩ H(q,−w)(s)) ∪ A+
∪ A−
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be a disjoint union where b(q,w)(p) < 0 for every p ∈ A−, b(q,w)(p) > 0 for every p ∈ A+.
Clearly, the closure of the set A− is compact in M̃ . In fact, there exists an open
neighborhood V of ω((q,−w))= α((q, w)) in the cone topology such that

V ∩ H(q,w)(0)= ∅.

Since the complement V c of V in H(q,−w)(s) is a compact subset of M̃ , and V c contains
the closure of A−, we conclude that the latter set is compact as claimed.

To finish the proof of item (2) it remains to describe the topology of the set Hθ,η(t).
Since the dimension of Hθ,η(t) is n − 2 where n is the dimension of M , in the case of
surfaces this set is a finite collection of points. The fact that in dimension two Hθ,η(t)
consists of either one or two points, and the existence of a diffeomorphism between
Hθ,η(t) and an (n − 2)-dimensional sphere, are consequences of basic properties of the
Busemann functions. We give a sketch of the argument and leave the details as an
exercise. The gradient of the restriction of bη to Hθ (0) gives a differentiable, complete flow
ψt : Hθ (0)→ Hθ (0) preserving the sets Hθη(t), i.e. ψs(Hθη(t))= Hθη(t (s)) for every
s ∈ R. This flow has a single attracting singularity, namely p(θ, η), so the sets Hθ,η(t)
are deformation retracts of Hθ (0)− p(θ, η) for every t < t (θη). This easily finishes the
proof of item (2). 2

3. Horospheres which are simultaneously tangent to two given horospheres
The purpose of this section is the study of the collection of horospheres which are tangent
to two given ones. The picture that we should have in mind is the configuration of such
horospheres in the hyperbolic space. From this section we shall assume that (M, g) is a
compact Riemannian manifold without conjugate points whose geodesic flow is expansive.
Given a horosphere Hθ (0), we shall denote by the center at infinity of Hθ (0) the ω-limit
ω(θ) of the geodesic γθ . We shall often use the notation [ω1, ω2] to designate the (unique)
geodesic in M̃(∞) whose endpoints are ω1 ∈ M̃(∞) and ω2 ∈ M̃(∞). In the case when
ω1, ω2 ∈ ∂ M̃(∞), we shall often employ the notation (ω1, ω2) to designate [ω1, ω2] ∩ M̃ .
Given θ , η in T1 M̃ with ω(θ) 6= ω(η), let �θη be the set of points ω in ∂ M̃(∞) such
that there exists a horosphere H centered at ω that is simultaneously tangent to Hθ (0)
and Hη(0). In the hyperbolic space, the set �θη is diffeomorphic to an (n − 2) sphere
in ∂ M̃(∞) that is the limit set of a totally geodesic submanifold of M̃ orthogonal to the
geodesic [ω(θ), ω(η)]. However, without assumptions on the local geometry of M it is
not clear that �θη enjoys such regularity. Our goal in this section is to identify a special
submanifold of M̃ whose limit set is just �θη. This natural submanifold might not be a
totally geodesic one, but certain features about its geometry provide some mild regularity
to�θη. We shall follow the notation of the previous section. The main result of the section
is the following.

PROPOSITION 3.1. Let θ, η ∈ T1 M̃ such that ω(θ) 6= ω(η). Then the following assertions
hold.
(1) The set of points which are equidistant from Hθ (0) and Hη(0) is a complete, (n − 1)

smooth submanifold of M̃.
(2) The boundary of this set in ∂ M̃(∞) is closed, non-empty and coincides with �θη.
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(3) Given t ∈ R, the set�θη is the set of centers of horospheres which are simultaneously
tangent to Hθ (t) and Hη(t).

(4) There exist homeomorphisms (in the cone topology)

τθη :�θη → Hθ (0), τηθ :�θη → Hη(0),

such that τθη(ω) and τηθ (ω) are tangent to a horosphere whose center at infinity is
ω ∈�θη. Moreover, the sets τηθ (�θη) and τθη(�θη) are compact sets.

(5) The geodesics (ω(θ), ω), where ω ∈�θη, do not intersect the geodesics (ω(η), ω̄),
where ω̄ ∈�θη. In particular, the interior of �θη in ∂ M̃(∞) is empty, and if
dim M = 2, �θη consists only of two points.

Proof. We shall prove Proposition 3.1 in several steps. Given θ, η ∈ T1 M̃ such that
ω(θ) 6= ω(η), let us define the function

fθη : M̃ → R,
fθη(p)= bθ (p)− bη(p).

The key idea of the proof of Proposition 3.1 is the relationship between the set �θη and
the level sets of the function fθη.

LEMMA 3.1. Let θ, η ∈ T1 M̃ such that ω(θ) 6= ω(η). Then the following assertions hold.
(1) The function fθη is differentiable and its gradient ∇ fθη is everywhere non-zero.
(2) The level set f −1

θη (s) is an (n − 1) submanifold of class C1 that is foliated by the
intersections Hθ (−1/2s + t) ∩ Hη(1/2s + t), for t ∈ R, with just one singular leaf.

(3) The set f −1
θη (s) is the set of points which are equidistant to the horospheres

Hθ (−1/2s) and Hη(1/2s).

Proof. According to Lemma 2.1, the horospheres Hθ (0) and Hη(0) are the stable and the
unstable horospheres respectively of a geodesic γσ , with σ = (q, w), whose endpoints at
infinity are ω(σ)= ω(θ) and α(σ)= ω(η). Up to reparametrization, we can assume that

Hθ (0)= Hσ (r),

Hη(0)= H(q,−w)(r).

In this way, we have that bθ (q)= bη(q), and that bθ = b(q,w) − r , bη = b(q,−w) − r . So
q ∈ f −1

θη (0), and
fθη(x)= f(q,w)(q,−w)(x),

for every x ∈ M̃ . Notice then that f −1
θη (0)− {q} is in the complement of the interiors of

H(q,w)(0) and H(q,−w)(0), i.e. b(q,w)(x) > 0 and b(q,−w)(x) > 0 for every x ∈ f −1
θη (0)−

{q}. Moreover, the set f −1
θη (0) is a C1 submanifold by the implicit function theorem: the

gradient ∇x (bθ − bη) vanishes if and only if ∇x bθ = ∇x bη, which would imply that there
exists a geodesic β in M̃ with β(0)= x and whose ω-limit at infinity is ω(θ)= ω(η),
contradicting the assumption. This shows item (1).

Now, since Hθ (0)= H(q,w)(r), we have that Hθ (t)= H(q,w)(r + t) and hence
b(q,w)(Hθ (t))= −r − t . Analogously, b(q,−w)(Hη(t))= −r − t . Thus we get that

6θη(t)= Hθ (t) ∩ Hη(t)⊂ f −1
(q,w)(q,−w)(0),
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for every t ∈ R. By Lemma 2.1, the sets6θη(t) are (n − 2)-dimensional, C1 submanifolds
for every t <−r , and 6θη(−r)= q . These sets constitute a foliation of f −1

θη (0)− {q} if

dim M > 2 because the horospheres Hθ (t) foliate M̃ and

6θη(t)= f −1
θη (0) ∩ Hθ (t).

This proves item (2) for s = 0. To show item (2) for any s, observe that γ(q,w)(s) is the
only point in the set H(q,w)(s) ∩ H(q,−w)(−s), and hence

fθη(γ(q,w)(s))= f(q,w)(q,−w)(γ(q,w)(s))= −2s.

Moreover, f(q,w)(q,−w)(H(q,w)(s + t) ∩ H(q,−w)(−s + t))= −2s as well, which clearly
implies item (2).

Item (3) is a straightforward consequence of item (2), because the distance between
the horospheres Hθ (−1/2s + t) and Hθ (−1/2s) is |t |, as well as the distance between the
horospheres Hη(−1/2s + t) and Hη(−1/2s). 2

Lemma 3.1 implies item (1) of Proposition 3.1. The above lemma leads to the following
result.

LEMMA 3.2. Let θ, η ∈ T1 M̃ such that ω(θ) 6= ω(η). Then the boundary at infinity
(i.e. the ω-limit set) ∂ f −1

θη (0) of f −1
θη (0) is the set �θη.

Proof. Let us first show that the set ∂ f −1
θη (0) is contained in �θη. Let ω ∈ ∂ f −1

θη (0), and

let xn ∈ M̃ be a sequence of points in f −1
θη (0) converging to ω in the cone topology. By

Lemma 3.1, the points xn are equidistant to Hθ (0) and Hη(0), so if dn is the distance from
xn to one of these horospheres, we have that the sphere Sdn (xn) of radius dn centered at
xn is tangent to both Hθ (0) and Hη(0). Let [ω(θ), xn] be the geodesic whose endpoints
are ω(θ) and xn , and let [ω(η), xn] be the geodesic whose endpoints are ω(η) and xn . It is
clear that

an = Hθ (0) ∩ Sdn (xn)

coincides with (ω(θ), xn] ∩ Hθ (0), and that

bn = Hη(0) ∩ Sdn (xn)

coincides with [ω(η), xn] ∩ Hη(0). Since the universal covering is a visibility manifold,
the sequences [ω(θ), xn] and [ω(η), xn] converge to the geodesics [ω(θ), ω] and
(ω(η), ω)] respectively, which are uniquely defined by their endpoints due to the
expansiveness of the geodesic flow. Hence, we have that

lim
n→+∞

an = [ω(θ), ω] ∩ Hθ (0)

and
lim

n→+∞
bn = [ω(η), ω] ∩ Hη(0).

Hence, all the spheres Sdn (xn) meet a compact ball in M̃ containing the point [ω(θ), ω] ∩

Hθ (0), and by Lemma 1.4 the sequence Sdn (xn) converges uniformly in the C1 topology
to the horosphere H(ω) centered at ω. By the construction, this horosphere is tangent to
both Hθ (0) and Hη(0), showing that ω ∈�θη.
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The converse of the above statement, namely, �θη ⊂ ∂ f −1
θη (0), has a similar proof. Let

ω ∈�θη, and let H(ω) be the horosphere centered at ω that is tangent to Hθ (0) and
Hη(0). Let us parametrize the geodesic (ω(θ), ω) by γσ (t), where σ = (p, v) and p =

H(ω) ∩ Hθ (0). Analogously, let us parametrize (ω(η), ω) by γρ(t), where ρ = (q, w) is
such that q = H(ω) ∩ Hη(0). The sphere Sr (γσ (r)) of radius r with center at γσ (r) is
tangent to Hθ (0) and H(ω) at p. Since the set Br (γσ (r))− {p}, where Br (γσ (r)) is the
(closed) ball of radius r centered at γσ (r), is contained in the interior of H(ω), we get that

d(γσ (r), Hη(0)) > r.

In the same way, we conclude that

d(γρ(r), Hθ (0)) > r.

Let c : [0, 1] → M̃ be the geodesic with endpoints c(0)= γσ (r) and c(1)= γρ(r).
Then the function f (t)= d(c(t), Hθ (0))− d(c(t), Hη(0)) is a continuous function that
changes sign in [0, 1], and therefore there exists tr ∈ (0, 1) such that f (tr )= 0. But now,
the point c(tr ) is equidistant to Hθ (0) and Hη(0), which implies that c(tr ) ∈ f −1

θη (0) by
Lemma 3.1(3). Finally, observe that limr→∞ d(γσ (r), γρ(r))= 0 by the expansiveness of
the geodesic flow, and hence the set of points xn = c(tn) is a sequence of points in f −1

θη (0)
converging to ω in the cone topology. 2

Lemmas 3.1(2) and 3.2 prove item (2) in Proposition 3.1. The next result implies item
(3) in Proposition 3.1.

COROLLARY 3.1. In the hypothesis of Proposition 3.1, given t ∈ R, the set �θη is the set
of centers at infinity of the horospheres which are simultaneously tangent to Hθ (t) and
Hη(t).

Proof. Indeed, each point ω ∈�θη gives rise to two geodesics: the unique geodesic
γθ1 , where θ1 ∈ Fs(θ), with endpoints at infinity ω(γθ1)= ω(θ) and α(γθ1)= ω; and the
unique geodesic γη1 , where η1 ∈ Fs(η), whose endpoints at infinity are ω(γη1)= ω(η)

and α(γη1)= ω. Letting H(ω) be the horosphere centered at ω, we have that Hθ (0) is
the stable horosphere of γθ1 , and H(ω) is the unstable horosphere of both γθ1 and γθ2 .
By the choice of θ1, η1, Hθ1(0)= Hθ (0) and Hη1(0)= Hη(0); besides, if θ1 = (q1, w1),
η1 = (p1, v1) then H(q1,−w1)(0)= H(ω), H(p1,−v1)(0)= H(ω). But now observe that the
horospheres Hθ (t)= H(q1,w1)(t) and H(q1,−w1)(−t) are tangent for every t ∈ R at the point
γθ1(t); as well as the horospheres Hη(t)= H(p1,v1)(t) and H(p1,−v1)(−t) are tangent at
the point γη1(t). Since H(ω)= H(q1,−w1)(0)= H(p1,−v1)(0), we have that H(q1,−w1)(t)=

H(p1,−v1)(t) for every t ∈ R and hence the horosphere H(q1,−w1)(t)= H(p1,−v1)(t) is
simultaneously tangent to Hθ (t) and Hη(t). The corollary follows from the fact that the
horospheres H(q1,−w1)(t)= H(p1,−v1)(t) are centered at infinity at the point ω ∈�θη. 2

The proof of item (4) in Proposition 3.1 is straightforward from the previous arguments.
In fact, given ω ∈�θη, let τθη(ω) ∈ Hθ (0) be the point of intersection between Hθ (0) and
the geodesic [ω(θ), ω]. Since the geodesic [ω(θ), ω] is unique, the map

τθη :�θη → Hθ (0)
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is well defined and injective, and it is easy to show that it is continuous in the cone topology.
In particular, τθη(�θη) is a compact subset of Hθ (0) since it is included in the complement
of a neighborhood at infinity of ω(θ) relative to Hθ (0). It remains to show item (5) of
Proposition 3.1. Let us begin with the following remark.

COROLLARY 3.2. Let θ, η ∈ T1 M̃ such that ω(θ) 6= ω(η). Then, the set

3θ =

⋃
ω∈�θη

(ω(θ), ω)

is contained in the set f −1
θη ((−∞, 0)), and

3η =

⋃
ω∈�θη

(ω(η), ω)

is contained in f −1
θη ((0,∞)). In particular, 3θ ∩3η = ∅.

Proof. The proof follows straightforwardly from Lemma 3.2. Indeed, since ∂ f −1
θη (0)=

�θη, we have that the geodesics in3θ are limits of geodesics contained in f −1
θη ((−∞, 0)),

and the geodesics in 3η are limits of geodesics contained in f −1
θη ((0,∞)). 2

So to get item (5) of Proposition 3.1 it is enough to show that the interior of ∂ f −1
θη (0)

in ∂ M̃(∞) is empty in the cone topology. Otherwise, we would get a point p ∈ M̃ and an
open cone of geodesic rays starting at p whose endpoints at infinity contain an open subset
V of ∂ f −1

θη (0). By the continuity of the endpoints with respect to the initial conditions

of geodesics, given ω ∈ V there exists an open neighborhood W ⊂ M̃(∞) containing ω
such that every q ∈ W ∩ M̃ satisfies the following property: the geodesics [ω(θ), q] and
[ω(η), q] have their ω-limits in V (recall that a basis of open neighborhoods of ω in
the compactification M̃(∞) can be obtained by taking the complements of open cones
of geodesics starting at p ∈ M̃ with respect to large spheres centered at p). But this
contradicts Corollary 3.2, since two geodesics of the form [ω(θ), ω1] and [ω(η), ω2] where
ωi ∈�θη cannot meet in M̃ . In the case when M is a surface, the set f −1

θη (0) is a curve,
which has two endpoints at infinity due to Corollary 3.2; therefore �θη consists only of
two points as claimed.

This completes the proof of Proposition 3.1. 2

Combining Corollary 3.2 and Proposition 3.1, we get the following corollary.

COROLLARY 3.3. Let θ, η ∈ T1 M̃ such that ω(θ) 6= ω(η). Then the sets

τθη(�θη)⊂ Hθ (0), τηθ (�θη)⊂ Hη(0)

of points where Hθ (0) and Hη(0) are simultaneously tangent to some horosphere centered
at a point in �θη have empty interior relative to Hθ (0) and Hη(0) respectively. If
dim M = 2, then τθη(�θη) consists of only two points, as well as τηθ (�θη).
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4. The accessibility property
In this section we finish the proof of Theorem 1. The main step toward its proof is to show
that, given θ ∈ T1 M , there exists an open neighborhood V of θ where every point η ∈ V
is accessible from θ . The accessibility in our context means the existence of a continuous
path joining θ and η that is contained in a finite union of leaves of the invariant foliations
Fs , Fu .

Given θ ∈ T1 M , let Fs(θ), Fu(θ) be respectively the (strong) stable and the (strong)
unstable set of θ ∈ T1 M . Let U ⊂ T1 M be an open product neighborhood of θ , namely,
there exists a local continuous chart

8 : U ⊂ T1 M → (−1, 1)n−1
× (−1, 1)n−1

× (−ε, ε),

8(η)= (x i (η), yi (η), t), where we can suppose without loss of generality that 8(θ)=

(0, 0, 0), which trivializes the central foliations according to §1. The set 6 =

8−1
i {(xi , yi , 0), (xi , yi ) ∈ R2n−2

} is a local transversal section of the flow, and the level
sets x i

= constant, yi
= constant are the connected components of the intersections of the

central stable and unstable foliations respectively, with 6 (like in Theorem 1.3). Given
η ∈ U , let W s(η) be the connected component of Fs(η) ∩ U containing η, and let W u(η)

be the connected component of Fu(η) ∩ U containing η. Let

0su(θ)=

⋃
η∈W s (θ)

W u(η), 0us(θ)=

⋃
η∈W u(θ)

W s(η).

The sets 0su(θ) and 0us(θ) are continuous 2n − 2 submanifolds of T1 M , and the sets

Bsu
=

⋃
|t |<ε

φt (0
su(θ)), Bus

=

⋃
|t |<ε

φt (0
us(θ))

are open subsets of T1 M by Brouwer’s invariance of domain theorem (see for
instance [24]). Let us assume without loss of generality that our ambient manifold is T1 M̃ .

Let us start with some preliminaries concerning the accessibility of points in 0su(θ)

and 0us(θ). Given a smooth manifold N , the composition c2 ◦ c1 : [0, 1] → N of two
continuous curves c1 : [0, 1] → N , c2 : [0, 1] → N satisfying c1(1)= c2(0) is given by the
usual formula: c2 ◦ c1(t)= c1(2t) for every t ∈ [0, 1/2], and c2 ◦ c1(t)= c2(2t − 1) for
every t ∈ [1/2, 1]. Given an admissible path c : [0, 1] → T1 M̃ , we say that c is elementary
if c is obtained by either a composition of the form cs ◦ cu , or a composition of the form
cu ◦ cs , where cs ⊂ W s(c(0)), cu ⊂ W u(c(1)) are two continuous curves. Let us denote by
csu an elementary path obtained as csu = cs ◦ cu , and by cus an elementary path obtained as
cus = cu ◦ cs . We say that two elementary paths csu , cus with csu(0)= cus(0)= θ commute
if csu(1)= cus(1). Inspired by contact geometry, we look for non-commuting elementary
paths if we want to show the accessibility of an open neighborhood from a point. From the
definition of the sets 0su(θ) and 0us(θ) it is easy to check that the following result holds.

LEMMA 4.1. If two elementary paths csu : [0, 1] → T1 M̃, cus : [0, 1] → T1 M̃, with
csu(0)= cus(0)= θ , commute, then the point csu(1)= cus(1)= η ∈ T1 M̃ is an element
of 0su(θ) ∩ 0us(θ).

The following result is fundamental for the proof of the main theorem.
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LEMMA 4.2. Let θ ∈ T1 M̃, and consider η ∈ W u(θ), η 6= θ . Suppose that there exists a
continuous curve Cη : [−ε, ε] → W s(η) such that:

(1) Cη(0)= η = Cη ∩ 0su(θ); and
(2) Cη(t) crosses topologically the set 0su(θ), namely, Cη(ε) ∈ 0su(φε(θ)) and

Cη(−ε) ∈ 0su(φ−ε(θ)).

Then there exists an open neighborhood V (θ) of θ in T1 M̃ whose points are accessible
from θ by admissible paths.

Proof. We just sketch the proof for the sake of completeness. Since Cη(ε) ∈ 0su(φε(θ)),
Cη(−ε) ∈ 0su(φ−ε(θ)), and Cη is continuous, the curve Cη must intersect 0su(φt (θ)) for
every t ∈ (−ε, ε) (observe that 0su(φt (θ)) separates the product neighborhood Bsu defined
in §4 for each small t). The set

V (θ)=

⋃
|t |<ε

0su(φt (θ))

is an open neighborhood of θ by the local product structure. The point is that V (θ) is
accessible from θ through admissible paths. Indeed, if κ ∈ V (θ), then the unstable set
W u(κ) is in V (θ), say W u(κ)⊂ 0su(φt0(θ)). Hence, by the local product structure, the
sets W u(κ) and W u(Cη(t0))⊂ 0su(φt0(θ)) intersect the stable set W s(φt0(θ)). So we can
construct a continuous path cu

1 joining κ to a point κ1 ∈ W s(φt0(θ)); then a continuous path
cs

1 from κ1 to κ2 = W s(φt0(θ)) ∩ W u(Cη(t0)); and a continuous path cu
2 from κ2 to Cη(t0).

Let cs
2 : [0, t0] → W s(η) be the curve cs

2(t)= Cη(t0 − t), and let cu
3 be a continuous path

in W u(θ) joining η and θ . Consider the continuous path joining κ and θ formed by the
composition

c = cu
3 ◦ cs

2 ◦ cu
2 ◦ cs

1 ◦ cu
1 .

Since c is admissible and V (θ) is an open neighborhood of θ , this shows the lemma. 2

Let τθη(�θη) ∈ Hθ (0) be the set defined in §3, where θ ∈ T1 M̃ . When ω(θ) 6=

ω(η), the set τθη(�θη) is a topological (n − 2)-dimensional submanifold according to
Proposition 3.1.

LEMMA 4.3. For every θ ∈ T1 M̃ and each product neighborhood U of θ we have

0su(θ) ∩ 0us(θ)= W s(θ) ∪ W u(θ)
⋃

η∈W u(θ)

τηθ (�ηθ ) ∩ U.

If (M, g) is a compact surface, then 0su(θ) ∩ 0us(θ)= W s(θ) ∪ W u(θ).

Proof. We leave the proof to the reader; it is straightforward from the definitions of the
sets involved. 2

So our goal is to exhibit a continuous family of curves satisfying the hypothesis
of Lemma 4.2. In order to do this, we have to look at the points of intersection
W s(η) ∩ 0su(φt (θ)) for t 6= 0. We can assume without loss of generality that the ambient
manifold is T1 M̃ . The next result improves Proposition 3.1.
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LEMMA 4.4. Let θ, η ∈ T1 M̃ such that ω(θ) 6= ω(η). Let fθη(p)= bθ (p)− bη(p), and
let �φt (θ)η = ∂ f −1

φt (θ)η
(0). Then the following all hold:

(1) �φt (θ)η = ∂ f −1
θη (−t), in particular, �φt (θ)η ∩�φr (θ)η = ∅ if t 6= r;

(2) ∂ M̃(∞)=�θη ∪ V +
∪ V −, where V + is an open neighborhood of ω(θ), V − is an

open neighborhood of ω(η), V +
∩ V −

= ∅, and

V +
=�+

∪ {ω(θ)} =

(⋃
t>0

�φt (θ)η

)
∪ {ω(θ)},

V −
=�−

∪ {ω(η)} =

(⋃
t<0

�φt (θ)η

)
∪ {ω(η)};

(3)
⋃

t∈R τηφt (θ)(�ηφt (θ))= Hη(0)− {p(ηθ)}, where p(ηθ) ∈ Hη(0) is the point
defined in Lemma 2.1(1);

(4) the sets
B+

=

⋃
t>0

τηφt (θ)(�ηφt (θ)), B−
=

⋃
t<0

τηφt (θ)(�ηφt (θ))

are disjoint, connected open subsets of Hη(0)− {p(ηθ)}.

Proof. First of all, observe that fφt (θ)η = fθη + t , which implies that f −1
φt (θ)η

(0)=

f −1
θη (−t). Hence, we can apply Lemmas 3.1 and 3.2 to the sets f −1

φt (θ)η
(0). In particular,

they are C1, complete, pairwise disjoint submanifolds varying continuously in the C1

topology uniformly on compact sets. Besides, the sets

L+
=

⋃
t>0

f −1
φt (θ)η

(0), L−
=

⋃
t<0

f −1
φt (θ)η

(0)

are disjoint, open, connected subsets of M̃ . It is clear that �φt (θ)η ∩�φr (θ)η = ∅ if t 6= r :
a horosphere that is simultaneously tangent to Hη(0) and Hθ (t) cannot be simultaneously
tangent to Hη(0) and Hθ (r) if t < r because Hθ (r) is contained in the interior of Hθ (t).
This yields item (1) in the statement.

To show item (2), let us consider ω ∈ ∂ M̃(∞), with ω 6= ω(θ), ω 6= ω(η). The
geodesic [ω(η), ω] meets Hη(0) at a unique point q(ω), and there exists a horosphere
H(ω) centered at ω that is tangent to Hη(0) at q(ω). By an analogous reasoning,
there exists a horosphere Hθ (t0) that is tangent to H(ω). Therefore, ω ∈�φt0 (θ)η

, and
q(ω) ∈ τηφt0 (θ)

(�φt0 (θ)η
). Recall that the point p(ηθ) defined in Proposition 3.1 is the

point of intersection between the geodesic [ω(θ), ω(η)] and Hη(0), so it is clear that
q(ω) 6= p(ηθ) under the assumptions for ω. This shows that⋃

t∈R
�φt (θ)η = ∂ M̃(∞)− {ω(θ), ω(η)}.

The set �θη is closed and connected, and separates ∂ M̃(∞) into two disjoint open,
connected subsets V + and V −. Namely, V + is the union of ω(θ) and the set of centers
at infinity of horospheres which are tangent to Hη(0) and Hθ (t) for some t > 0, and V −

is the union of ω(η) and the set of centers at infinity of horospheres which are tangent to
both Hη(0) and Hθ (t) for some t < 0. So we get

V +
=�+

∪ {ω(θ)}, V −
=�−

∪ {ω(η)},

thus proving item (2).
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Moreover, if x ∈ Hη(0) is not p(ηθ) the ω-limit of the geodesic [ω(η), x] is not ω(θ),
and the above argument shows that there exists t (x) ∈ R such that x ∈ τηφt (x)(θ)(�ηφt (x)(θ)).
This yields ⋃

t∈R
τηφt (θ)(�ηφt (θ))= Hη(0)− {p(ηθ)},

as claimed in item (3). Combining items (2) and (3) we get item (4). 2

Proof of Theorem 1. Let θ = (p, v) ∈ T1 M̃ , and consider η = (q, w) ∈ W u(θ), with η 6= θ .
We shall construct a curve Cη satisfying the assumptions of Lemma 4.2.

Given a small open ball B(q) containing q there exist ε > 0, and a continuous curve
cη : [−ε, ε] → Hη(0) satisfying:
(1) cη(ε) ∈ τηφε(θ)(�ηφε(θ));
(2) cη(0)= q ∈ τηθ (�ηθ ); and
(3) cη(−ε) ∈ τηφ−ε(θ)(�ηφ−ε(θ)).

This curve exists by Lemma 4.4(4) and the fact that the interior of τηθ (�ηθ ) is empty in
Hη(0). Let bη be the Busemann function of the geodesic γη, and define

Cη(t)= (cη(t),−∇cη(t)b
η),

for t ∈ [−ε, ε]. For a suitably small ball B(q) the curve Cη is a subset of W s(η). Moreover,
Cη crosses 0su(θ) in the sense of Lemma 4.2. Indeed, by the construction of the map
τηφt (θ), we have that the α-limits α(Cη(ε)) and α(Cη(−ε)) satisfy

α(Cη(ε)) ∈�φε(θ)η, α(Cη(−ε)) ∈�φ−ε(θ)η.

Moreover, α(Cη(0))= α(η)= α(θ) by the choice of η. The geodesic γCη(ε) is forward
asymptotic to ω(η) and backward asymptotic to a point in �φε(θ)η. Thus, its α-limit is the
α-limit of a point ψ ∈ W s(φε(θ)) and therefore α(Cη(ε)) ∈ W u(ψ)⊂ 0su(φε(θ)). The
same claim holds on replacing ε by −ε.

Therefore, the curve Cη satisfies the hypothesis of Lemma 4.2. If π : M̃ → M is the
covering map, we conclude that there exists an open neighborhood V (π(θ)) of π(θ) in
T1 M where every point is accessible from π(θ) by admissible paths. Since the covering
map is surjective, given any point σ ∈ T1 M there exists an accessible open neighborhood
V (σ ). By the compactness of T1 M and the local product structure of expansive systems,
we get that the geodesic flow satisfies the accessibility property, thus proving Theorem 1.
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