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ABSTRACT
In this paper, a non-linear tracking control algorithm is extended. The control objective of
this research is to track a desired time-varying attitude of a satellite in the presence of inertia
uncertainties and external disturbances, in order to be more suitable for implementation in a
real-world application. In this investigation, the actuators are reaction wheels and the actuator
dynamics are modelled in addition to the spacecraft dynamics. Thus, the control signal is DC
motor voltage which is the most fundamental control variable and can be generated easily
by a motor driver in practical cases. To achieve robust tracking of the desired time-varying
attitude, a sliding mode controller is designed, and adaptive techniques are developed based
on sliding mode control to overcome the inertia uncertainties and to estimate and compensate
external disturbances. The kinematic equations of the satellite are expressed using quaternion
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parameters, and a novel control law will be derived by using a new facilitating approach in
controller design, which is based on quaternion algebra, because of quaternion advantages,
such as singularity rejection. Using this approach it will be more comfortable to deal with
tedious mathematical operations, and on contrary with most of the previous studies, the terms
corresponding to derivatives of the desired attitude are not neglected, and tracking capability
is retained. The global stability of both methods ( Sliding Mode Control (SMC) and adaptive
sliding) is investigated using Lyapunov’s stability theorem. In order to validate the control
methods, first, Simulink-ADAMS co-simulation of a 3-DOF attitude control is used to verify
the algorithm performance and integrity, and finally, the control strategy is implemented on
the Amirkabir University of Technology (AUT) 3-DOF attitude simulator for different types
of non-linear attitudes. Both co-simulation and implementation results clearly illustrate the
designed attitude control algorithm’s excellent performance in the various manoeuvres.

Keywords: Nonlinear attitude tracking; adaptive-sliding control; quaternion algebra; attitude
simulator; actuator dynamics

NOMENCLATURE
J inertia tensor
qd quaternion of desired attitude
s sliding surface
ea reaction wheel’s input voltage
La armature inductance
Ra armature resistance
b viscous friction coefficient
Kb back emf
Km motor’s torque constant
Jω moments of inertia of motor load
KG motor gain
Tm motor time constant
V Lyapunov function

Greek Symbol

ω angular velocity
ωd desired angular velocity
θ rotation angle of motor’s shaft
� reaction wheels’ angular velocity

1.0 INTRODUCTION
The recent generation of spacecraft require accurate attitude control in spite of various
control difficulties. Some of these control difficulties are to overcome inertia uncertainty
and variation, external disturbances, and so on. About inertia challenges, on the one hand,
it is essential to know exact inertia properties of spacecraft to achieve accurate tracking
control; on the other hand, it would be so expensive to obtain highly accurate inertia
properties of a spacecraft(1). In addition, there is a possibility of inertia variation during
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missions in which variable inertia must be detected online to retain control performance.
Also, tracking desired attitude in the presence of disturbances and inheriting high non-
linearities in dynamics of the system is one of the important challenges in spacecraft attitude
control, especially in non-linear attitude tracking objectives(2-6). Moreover, in a spacecraft
in which reaction wheels are used as the main actuators, it is important to consider the
actuators’ dynamics during controller design(7), and the actuator model cannot be ignored
in the controller design process(8). It can be concluded that the main challenges in the
attitude tracking problem are: uncertainties or parameter variations, undesired disturbances,
actuator dynamics consideration, and time varying attitude tracking capability. Covering all of
these challenges, simultaneously, is so difficult in a mathematical and implementation aspect.
Inertia-free attitude tracking is discussed in the literature(1,9-11), but they either did not consider
actuator dynamics(1) or they considered thrusters as actuators(9-11). In addition, to deal with
disturbances, it seems necessary to use a robust and variable structure controller like a sliding
mode controller and an adaption technique to have adequate robustness and overcome inertia
uncertainties, respectively. For industrial purposes, it is worthwhile to develop a controller
which is suitable to implement in the practical uses without neglecting significant effects
such as non-linearities, uncertainties, higher derivatives of desired attitude (to have perfect
tracking), and so on(8,12). Spacecraft attitude control is investigated in a wide range of the
recent researches, but they have not considered some of the significant factors because of
complexities which are mentioned above, and besides, they have derived complex control
strategies which are difficult to implement in real-time applications. Pukdeboon et al.(13)

developed a robust controller for attitude tracking manoeuvres, but during mathematical
operations, they supposed that angular velocities of the desired attitude are zero; consequently,
they missed full tracking. Yee-Jin Cheon(15) derived a robust sliding mode controller with
actuator dynamics, but he omitted time derivatives of the desired quaternions to simplify
stability analysis; thus, the designed controller is not applicable for tracking a desired
time-varying attitude. Yoonmok Park(16) derived an optimal robust controller for attitude
stabilisation and just considered external disturbance. In this paper, in addition to considering
complexities such as actuator dynamics, external disturbances, and non-linearities, a novel
robust controller is derived in order to overcome the disturbances, uncertainties or unknown
inertia effects, while time-varying attitude tracking capability is maintained(17). To derive
the control law, kinematic equations will be represented in quaternion and mathematically
treated by quaternion algebra in the general form to deal with perfect equations in which
derivative terms will not be neglected because of mathematical complexity. Thus, during
the procedure of stability investigation and control effort derivation, some of the quaternion
algebra properties are used which will be proved initially. After deriving and proving sliding
and sliding-adaptive algorithms, finally, the designed controller performance will be verified
by real-time co-simulation and implementation on the AUT 3-DOF attitude simulator(14)

in the presence of external torque disturbances and inertia uncertainties to show tracking
capability of the designed controller in contrary with previous works(2,15). Both simulation
and implementation results show a successful tracking of the desired non-linear attitude.

1.1 Mathematical model

The governing dynamic equation of a spacecraft, without considering the actuators dynamics,
can be expressed as follows(19):

Jω̇ = [Jω×]ω + u, … (1)
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where ω shows angular velocity of the spacecraft expressed in the body frame, J is spacecraft
inertia tensor, and u is external torque which is included in actuator control torque and
disturbances. The [a × ] operator is defined as follows:

[a×] =
⎡
⎣ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎦ … (2)

1.1.1 Quaternion algebra properties

Before going through the control law derivation, it is necessary to clarify the quaternion
algebra properties which will be used in upcoming mathematical calculations.

Proposition 1. In this paper, quaternion is defined as follows:

q = [
w x y z

]T = [
w r

]T
, … (3)

where the bold letter is used as a vector sign.

Proposition 2. Quaternion multiplication:

q1 ⊗ q2 =
[

w1w2 − r1 · r2

w1r2 + w2r1 − r1 × r2

]

=

⎡
⎢⎢⎣

w1 −x1 −y1 −z1

x1 w1 z1 −y1

y1 −z1 w1 x1

z1 y1 −x1 w1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

w2

x2

y2

z2

⎤
⎥⎥⎦ = [q1]Mq2

=

⎡
⎢⎢⎣

w2 −x2 −y2 −z2

x2 w2 −z2 y2

y2 z2 w2 −x2

z2 −y2 x2 w1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

w1

x1

y1

z1

⎤
⎥⎥⎦ = [q2]Nq1,

… (4)

where [q1]M and [q2]N are called quaternion matrix form.

Proposition 3. The condition in which the quaternion matrix form is negative definite:
if ( w < 0) then →
[q]M is Negative Definite Matrix.

Proposition 4. Quaternion inverse that gives the unity property of quaternion.

q−1 = [
w −x −y −z

]T

q ⊗ q−1 = [
1 0 0 0

]T
… (5)

Proposition 5. Quaternion form of a vector:

v is a Vector → v =
[

0
v

]

K is a Matrix → K =
[

1 0
0 K

]
,

… (6)

where over bar shows quaternion form.
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Proposition 6. Quaternion derivative(16,17):

q̇ = 1
2
ω ⊗ q … (7)

Proposition 7. Neutral quaternion in multiplication:

q ⊗ i = i ⊗ q = q; i =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ … (8)

Proposition 8. Quaternion and dot product accompany:

(qA ⊗ q) · q = wqA … (9)

2.0 QUATERNION-BASED KINEMATICS AND ERROR
DYNAMICS EQUATIONS

Expressing kinematic equations based on quaternion is useful in some aspects like singularity
avoidance or using quaternion algebra to derive control effort, especially while it is necessary
to achieve non-linear attitude tracking. To determine error dynamics, it is necessary to express
error based on quaternion algebra, it can be shown from the unity property of quaternion
algebra that deviation from a desired quaternion (qd) or error is evaluated as follows(20,21):

δq = q ⊗ q−1
d … (10)

To derive error dynamics, the time derivative of Equation (10) will be evaluated in a general
form as the following equation.

d
dt (δq) = 1

2ω ⊗ δq − δq ⊗ q̇d ⊗ q−1
d

= 1
2ω ⊗ δq − δq ⊗ ( 1

2ωd ⊗ qd
) ⊗ q−1

d

= 1
2 [ω ⊗ δq − δq ⊗ ωd ]

… (11)

Thus, the control objective is to converge δq to the unit quaternion (±i). This purpose must be
satisfied for both constant desired quaternion which is called regulation or time varying and
non-linear desired quaternion which is called tracking in literature.

3.0 SLIDING MODE CONTROLLER DESIGN
Sliding mode control is one of the most robust control methods which is convenient for the
control procedure dealing with disturbance and uncertainties. Sliding mode controller design
inherits two steps, switching surface design and sliding condition design(22). During both of
these steps, quaternion algebra is used in mathematical operations.
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3.1 Switching surface design

As mentioned in the previous section, the control objective is to converge δq to the unit
quaternion (±i). According to this fact, the following change of the variables will be
considered:

qi = δq − sgn
(
wδq

) [
1 0 0 0

]T

= δq − sgn
(
wδq

) · i
… (12)

Therefore, by using this change of variables, qi will be used instead of error (δq); therefore,
the control objective is to converge qi to zero ([ 0 0 0 0 ]T ).

By considering Equation (12), the error dynamics equation can be rewritten as follows:

q̇i = 1
2ω ⊗ qi + 1

2

[
sgn

(
wδq

)
ω − δq ⊗ ωd

]
q̇i = 1

2 [A ⊗ qi + B]
, … (13)

where A and B are quaternion.
Now, to stabilise qi around zero, B can be factorised as follows:

B = qk ⊗ qi … (14)

By substituting Equation (14) into Equation (13) and using the second property of quaternion
algebra, error dynamics in Equation (13) can be expressed in the following form:

q̇i = 1
2 [ω + qk] ⊗ qi = 1

2 qA ⊗ qi

= 1
2 [qA]Mqi

… (15)

Thus, Equation (13) can be represented in a matrix form. The stability of this dynamic around
zero would be guaranteed if the [qA]M matrix is negative definite. According to the third
property of quaternion algebra, the matrix form of a quaternion is negative definite if the
scalar part of the quaternion (w) is negative. By using this property, to stabilise qi about zero,
and in other words, to satisfy the control objective, the scalar part of qA must be negative
(wqA < 0).

From Equations (14) and (15), the following equations will be obtained:

sgn
(
wδq

)
ω − δq ⊗ ωd = qk ⊗ qi

ω + qk = qA

}
⇒

⇒ sgn
(
wδq

)
ω − δq ⊗ ωd + (ω − qA) ⊗ qi = 0

⇒ ω ⊗ [
sgn

(
wδq

)
.i + qi

] − δq ⊗ ωd − qA ⊗ qi = 0
⇒ ω ⊗ δq − δq ⊗ ωd − qA ⊗ qi = 0

… (16)

According to the last relation of Equation (16), sliding surface will be obtained as follows:

s = ω ⊗ δq − δq ⊗ ωd − qA ⊗ qi = 0; wqA < 0 … (17)
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3.2 Stability proof

In this section, the Lyapunov theorem is used to ensure global stability of the sliding surface
in Equation (17).

The Lyapunov candidate function will be considered as follows:

V = [
δq − sgn

(
wδq

)
.i
] · [

δq − sgn
(
wδq

) · i
]

= qi · qi … (18)

According to the Lyapunov theorem, the time derivative of the candidate function must be
calculated, which is done in the next equation.

V̇ = 2q̇i · qi = 2δq̇ · qi

= {ω ⊗ δq − δq ⊗ ωd } · qi
… (19)

Substituting Equation (17) into Equation (19) leads to the following equations:

V̇ = {[
(δq ⊗ ωd + qA ⊗ qi ) ⊗ δq−1] ⊗ δq − δq ⊗ ωd

} · qi

= {qA ⊗ qi} · qi = wqA … (20)

As mentioned in Equation (17), the scalar part of qA is negative (wqA < 0), so it can be
concluded that

V̇ = wqA ⇒ V̇ < 0 … (21)

Therefore, according to the Lyapunov stability theorem, the designed sliding surface leads to
the global stability of the system. Thus, the control objective will be met by considering the
proposed switching surface in Equation (17).

3.3 Sliding condition design

The general form of the sliding surface is as follows:

d
dt

‖s‖2 = 2sT ds
dt

< 0, … (22)

where, in the present study, the sliding surface is four dimensional.
By calculating the time derivative of the sliding surface to substitute into Equation (22),

angular acceleration appears, so there is a need to define the control effort to investigate the
sliding condition of Equation (22). Thus, according to the sliding control design procedure(1),
and using the sliding surface of Equation (17), it is obvious that,

u = ψ − K3×3s − P3×3sgn (s) , … (23)
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where K and P are diagonal positive definite matrices, and ψ can be obtained as follows:

s = ω ⊗ δq − δq ⊗ ωd − qA ⊗ qi = 0
ds
dt = 0

}
⇒

⇒ ω̇ =
⎡
⎣−ω ⊗ δq̇ + δq̇ ⊗ ωd+

δq ⊗ ω̇d + q̇A ⊗ qi+
qA ⊗ δq̇

⎤
⎦ ⊗ δq−1

… (24)

Substituting Equations (23) and (24) into Equation (23), the control effort will be obtained as
follows:

u = −([Jω×]ω)+⎧⎪⎪⎨
⎪⎪⎩

J

⎡
⎣−ω ⊗ δq̇ + δq̇ ⊗ ωd+

δq ⊗ ω̇d + q̇A ⊗ qi+
qA ⊗ δq̇

⎤
⎦

−Ks − Psgn (s)

⎫⎪⎪⎬
⎪⎪⎭ ⊗ δq−1 … (25)

By substituting Equation (24) into Equation (22), it can be concluded that

d
dt

‖s‖2 = −sT J−1 (
Ks + Psgn

(
wδq

))
< 0 … (26)

In the preceding equations, the sgn(wδq) can be replaced with sat(wδq) to have smooth control
signals.

4.0 ACTUATOR DYNAMICS
In the previous section, due to emphasis on the control effort derivation, the actuator dynamic
has not been considered; but as mentioned before, there is an important and significant
dynamic for reaction wheels. Thus, in the present section, the control effort derivation method
would be applied on overall dynamics of the system (actuator model is considered). As in
the present study, actuators are reaction wheels; DC motor dynamics must be studied first.
The transfer function between the input voltage (ea) and motor shaft angle (θ) in the Laplace
domain can be given as follows(15):

� (s)
Ea (s)

= Km[
LaJws2 + (Lab + RaJw ) s + Rab + KmKb

]
s
, … (27)

where La is the armature inductance, Ra is armature resistance, b is the viscous friction
coefficient, Kb and Km are back emf and motor torque constants, respectively, and Jw is
moment of inertia of motor load.

As armature inductance is small in most cases and can be neglected, this transfer function
reduces to the following relation:

� (s)
Ea (s)

= KG

(1 + Tms) s
, … (28)
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where KG and Tm are motor gain and time constants, respectively, and these constants are
defined as follows(15):

KG = Km

Rab + KmKb
Tm = RaJw

Rab + KmKb
… (29)

The differential equation of a reaction wheel can be expressed as follows(15):

Jw�̇ + Jw

Tm
� = Jw

KG

Tm
ea … (30)

Now, by considering the effect of a reaction wheel model, the spacecraft dynamic equation
can be obtained as follows:

Jw

(
�̇ + ω̇

) + Jw

Tm
(� + ω) = Jw

KG

Tm
ea … (31)

According to this equation, the applied torque (u) by reaction wheel is given as below:

u = Jw

(
�̇ + ω̇

) = Jw
KG

Tm
ea − Jw

Tm
(� + ω) … (32)

Thus, the dynamic equation of the overall system (Equation (1)) should be modified as
follows:

(Jw − J) ω̇ + (Jw� + Jω) × ω = u, … (33)

where u is calculated by using Equation (32).
By using the sliding surface of Equation (17), and the procedure of Equations (23)–(25),

control effort (applied torque) is obtained as follows:

u = −
(

[(Jω + Jw�) ×]�
)

+ (
J − Jw

) ⎡
⎣−ω ⊗ δq̇ + δq̇ ⊗ ωd+

δq ⊗ ω̇d + q̇A ⊗ qi+
qA ⊗ δq̇

⎤
⎦ ⊗ δq−1

− Ks − Psgn (s)

… (34)

Because control effort must be defined as input voltage, by using Equations (33) and (34),
control effort as the motor input voltage can be computed as follows:

ea =

Tm
KGJw

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Jw

Tm
(ω + �) −

(
[(Jω + Jw�) ×]ω

)
+

(
J − Jw

)⎡
⎣−ω ⊗ δq̇ + δq̇ ⊗ ωd+

δq ⊗ ω̇d + q̇A ⊗ qi+
qA ⊗ δq̇

⎤
⎦ ⊗ δq−1−

Ks − Psgn (s)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

… (35)

It is worthwhile to say that stability of the overall system by applying the control effort of
Equation (35) is the same as in the previous section.
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5.0 ADAPTIVE-SLIDING CONTROLLER DESIGN
Based on the sliding mode controller design, to overcome the inertia variation and
uncertainties, and to achieve an inertia-free attitude tracking, in spite of previous advantages,
the adaptive-sliding control laws are demonstrated as two theorems. The first one is proved
without actuator dynamics and the second control law is derived and proved with actuator
dynamics.

Theorem 1. For the system of Equation (1), by using the sliding surface(s) of Equation (17),
the control effort (u) and adaption law for updating unknown inertia (Ĵ) are as follows:

5.0.1 The control law

u = −
(

[Ĵω×]ω
)

+
⎧⎨
⎩Ĵ

⎡
⎣−ω ⊗ δq̇ + δq̇ ⊗ ωd+

δq ⊗ ω̇d + q̇A ⊗ qi+
qA ⊗ δq̇

⎤
⎦

− Ks − Psgn (s)
} ⊗ δq−1

… (36)

5.0.2 The adaption law

˙̂a6×1 = −�YT s → Ĵ =
⎡
⎣ â1 â2 â3

â2 â4 â5

â3 â5 â6

⎤
⎦ , … (37)

where � is a positive definite diagonal matrix, and Y is defined as follows:

α3×1 = ([ω×]ω) ⊗ δq −
⎡
⎣−ω ⊗ δq̇ + δq̇ ⊗ ωd+

δq ⊗ ω̇d + q̇A ⊗ qi+
qA ⊗ δq̇

⎤
⎦

→ Y =
⎡
⎣α1 α2 α3 0 0 0

0 α1 0 α2 α3 0
0 0 α1 0 α2 α3

⎤
⎦

… (38)

5.1 Proof
Consider the system of Equation (1):

Jω̇ = [Jω×]ω + u,

and the sliding surface of Equation (17):

s = ω ⊗ δq − δq ⊗ ωd − qA ⊗ qi = 0; wqA < 0

Now, we choose the Lyapunov candidate function as follows:

V = 1/2(sT Js) + 1/2(ãT �−1ã)

Thus, by using the control law of Equation (36), the time derivative of this function is obtained
as follows:
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V̇ = sT J
[(

I − J−1Ĵ
)

α
]

+ ãT �−1 ˙̃a − · · ·
sT J {Ks + Psgn (s)}

= sT J̃α + ãT �−1 ˙̂a − sT J {Ks + Psgn (s)}
= sT Yã + ãT �−1 ˙̂a − sT J {Ks + Psgn (s)}
= (Yã)T s + ãT �−1 ˙̂a − sT J {Ks + Psgn (s)}
= ãT YT s + ãT �−1 ˙̂a − sT J {Ks + Psgn (s)}

Now, by applying the adaption law of Equation (37), it can be concluded that

V̇ = −sT J {Ks + Psgn (s)} < 0

Thus, the stability condition is satisfied and the proof is completed.

Theorem 2. In this theorem, actuators dynamics are considered in the adaptive algorithm.
Thus, for the system of Equations (31)–(32), the control effort law and adaption law are
obtained as follows:

5.1.1 The control law

ea =

Tm
KGJw

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Jw

Tm
(ω + �) −

(
[
(

Ĵω + Jw�
)

×]ω
)

+ · · ·⎧⎨
⎩

(
Ĵ − Jw

) ⎡
⎣−ω ⊗ δq̇ + δq̇ ⊗ ωd+

δq ⊗ ω̇d + q̇A ⊗ qi+
qA ⊗ δq̇

⎤
⎦ − · · ·

Ks − Psgn (s)
} ⊗ δq−1 − τ̂

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

… (39)

5.1.2 The adaption laws

˙̂a6×1 = −�YT s , Ĵ =
⎡
⎣ â1 â2 â3

â2 â4 â5

â3 â5 â6

⎤
⎦

… (40a)

¯̇̂τ = −�1 [δq]TN s̄, … (40b)

where � and �1 are a 6 × 6 and 4 × 4 positive definite diagonal matrix, respectively, and Y
is defined as follows:

α =
(

[
(

Ĵω + Jw�
)

×]ω
)

⊗ δq − · · ·⎡
⎣−ω ⊗ δq̇ + δq̇ ⊗ ωd+

δq ⊗ ω̇d + q̇A ⊗ qi+
qA ⊗ δq̇

⎤
⎦

→ Y =
⎡
⎣α1 α2 α3 0 0 0

0 α1 0 α2 α3 0
0 0 α1 0 α2 α3

⎤
⎦
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5.1.3 Proof
Consider the system of Equations (31) and (32):

(Jw − J) ω̇ + (Jw� + Jω) × ω = u
u = Jw

(
�̇ + ω̇

) = Jw
KG
Tm

ea − Jw

Tm
(� + ω) ,

and the sliding surface of Equation (17):

s = ω ⊗ δq − δq ⊗ ωd − qA ⊗ qi = 0; wqA < 0

Now, we choose the Lyapunov candidate function as follows:

V = 1/2(sT (J − Jw) s) + 1/2(ãT �−1ã) + 1/2(τ̃T �−1
1 τ̃)

Thus, by using the control law of Equation (39), the time derivative of this function is
obtained as follows:

V̇ = sT (J − Jw)
[(

I − (J − Jw)−1
(

Ĵ − Jw

))
α
]

+ · · ·
ãT �−1 ˙̃a − sT J {Ks + Psgn (s)} + · · ·
s̄T [τ̃]Mδq + ¯̃τT

�−1
1

¯̇̂
τ

= sT J̃α + ãT �−1 ˙̂a − sT J {Ks + Psgn (s)} + · · ·
s̄T [δq]N ¯̃τ + ¯̃τT

�−1
1

¯̇̂
τy

= sT Yã + ãT �−1 ˙̂a + s̄T [δq]N ¯̃τ + ¯̃τT
�−1

1
¯̇̂
τ − · · ·

sT J {Ks + Psgn (s)}
= (Yã)T s + ãT �−1 ˙̂a + τ̃T [δq]TN s + ¯̃τT

�−1
1

¯̇̂
τ − · · ·

sT J {Ks + Psgn (s)}
= ãT YT s + ãT �−1 ˙̂a + τ̃T [δq]TN s + ¯̃τT

�−1
1

¯̇̂
τ − · · ·

sT J {Ks + Psgn (s)}

Now, by applying the adaption law of Equation (40), it can be concluded that

V̇ = −sT J {Ks + Psgn (s)} < 0

Thus, the stability condition is satisfied and the proof is completed.

6.0 SIMULATION RESULTS
To verify the controller performance in tracking of a time varying attitude, this controller is
applied to a spacecraft with the following initial condition and parameters which are close to
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a common situation: [
ψ θ ϕ

]∣∣
t=0 = [−5 5 0

]
deg

ω|t=0 = [
0 0 0

]T rad/sec
K = 4I3×3 P = 0.5I3×3

J =
⎡
⎣ 0.4000 −0.0016 0.0174

−0.0016 3.3033 0.0088
0.0174 0.0088 3.3687

⎤
⎦ kg.m2

Jw = diag
[

0.00172 0.00172 0.00172
]

kg.m2

Tm = 5.9935 sec KG = 28.053
�|t=0 = [

0 0 0
]T rad/sec

Absolute value of the input voltage is limited to 40 volts, and disturbance is considered as
well to investigate the controller robustness. Disturbance is also considered to be as follows:

τ (t) =
⎡
⎣ 0.03Cos (0.03t)

0.03Sin (0.03t)
−0.03Cos (0.03t)

⎤
⎦ N.m

In contrary with some of the previous works(15), the control objective here is not only
regulation, and the desired attitude is a non-linear path (trigonometric in simulation) which is
defined in the following equation:⎡

⎣ψ

θ

ϕ

⎤
⎦

desired

=
⎡
⎣ Sin (0.1257t)

Cos (0.0785t)
−Sin (0.1047t)

⎤
⎦ rad

Simulation results of the control procedure with proceeding settings are illustrated in
Figs 1–6. The simulation is applied to six different situations to investigate all of the controller
capabilities. The differences in these six simulations are: controller type which is separated
to pure sliding mode and adaptive-sliding mode, disturbance presence, inertia uncertainty,
disturbance adaption-compensation and inertia adaption.

It can be understood from the simulation results of Fig. 1 that pure sliding mode control law
is capable of tracking the desired varying attitude successfully in the absence of disturbance
and inertia uncertainties.

Attitude errors and switching surface in Fig. 2 clearly shows the disturbance effects
on attitude tracking errors in pure sliding mode control method without disturbance
compensation. In Fig. 3, it is illustrated that the undesirable effects of the external disturbances
are rejected by disturbance adaption-compensation of the adaption law (Equation (40b)).
The inertia-free capability of the adaptive-sliding algorithm is shown in the simulations with
results which are depicted in Figs 4 and 5. In Fig. 4, the sliding mode controller is not able
to control a system with unknown inertia, while in Fig. 5, the adaptive-sliding controller is
successful to satisfy the same objective in the same condition.

Finally, during the last simulation, the functionality of the complete adaptive-sliding
controller is investigated to track non-linear attitude in the presence of disturbance and
unknown inertia properties. The results are verification of the mathematical proofs of the
designed control and adaption laws. As it is obvious in Figs 1–6, the designed controller is
capable of tracking a non-linear or time varying attitude in the presence of disturbance and
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Figure 1. (Colour online) Simulation results of the pure sliding mode control without disturbance and with
known inertia.

Figure 2. (Colour online) Simulation results of the pure sliding mode control with disturbance and known
inertia uncertainty.
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Figure 3. (Colour online) Simulation results of sliding mode control with disturbance adaption and
compensation with known inertia.

Figure 4. (Colour online) Simulation results of pure sliding mode control with unknown inertia and without
disturbance.
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Figure 5. (Colour online) Simulation results of adaptive-sliding control with unknown inertia and without
disturbance.

Figure 6. (Colour online) Simulation results of adaptive-sliding control with unknown inertia and with
disturbance adaption and compensation.
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Figure 7. (Colour online) Validation procedure using ADAMS-Simulink Co-simulation.

unknown inertia by using control efforts which are applicable to common instruments. It is
worthwhile to mention that in all the simulations, control efforts are limited to a reasonable
saturation which is common in DC motors.

7.0 VALIDATING BY ADAMS-SIMULINK CO-SIMULATION
In order to validate the designed controller performance, the control plant is modelled and
simulated dynamically in ADAMS software which is running in a separate environment
from the software in which the designed control law is applied and run simultaneously
(Matlab/Simulink). The control plant in the validation procedure is a dumbbell shape
simulator which is used to attitude determination and control tests frequently(14). Since the
controlling actuators in control design are reaction wheel, three reaction wheels are modelled
on the dumbbell shape attitude determination and control system simulator. The geometry and
assembling of the whole model of the simulator is design by CATIA V5 then is imported to the
ADAMS software environment. The modelled simulator is shown in Fig. 7 in both software
environments. After defining the joints, constrains, sensors and actuators, the dynamic model
is exported to use for co-simulating in the Simulink environment. The co-simulation scheme
is illustrated in Fig. 7. In addition to simulating the controlling plant in a different software
environment, the plant’s physical properties are chosen differently from the previous part’s
simulation in order to ensure that the designed controller is applicable for a wide range of
physical properties like mass, dimension, mass moment inertia tensor, and so on. Thus, these
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Figure 8. (Colour online) ADAMS-Simulink co-simulation results.

different properties are considered as follows:

K = 8I3×3 P = 0.5I3×3

J =
⎡
⎣ 8.37 0.144 2.34 × 10−2

0.144 5.87 0.338
2.34 × 10−2 0.338 8.44

⎤
⎦ kg.m2

Jw = diag
[

1.5 1.5 1.5
]

kg.m2

The desired non-linear attitude and disturbances are also considered the same as the
previous simulation, but again, to show applicability of the designed controller, for desired
attitude, all three paths are expressed in cosines here in order to have more initial deviation
from desired magnitude. After extracting the co-simulation results in either involved software
environments, it can be concluded that the control objective is satisfied as well as the previous
case. In Fig. 8, it is obvious that after almost 15 seconds, the simulator attitude is approached
to the desired attitude. Along with acceptable rise time, settling time, and overshoot, input
voltage plot in Fig. 8 shows that the saturated control effort (voltage) is smooth enough
without high-frequency sudden changes, which make it more applicable by a simple DC motor
driver.

8.0 IMPLEMENTATION ON THE AUT 3-DOF ATTITUDE
SIMULATOR

In this section, the control algorithm performance and accuracy has been investigated by the
actual testbed which is the most valid procedure. This testbed here is the AUT 3-DOF attitude
simulator which is a dumbbell shape ground attitude simulator around three axes. In order to
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Figure 9. (Colour online) Complementary features applied to AUT attitude simulator.

understand the implementation procedure, it is required to review the AUT simulator features
concisely.

8.1 The AUT attitude simulator

The AUT attitude simulator is of the dumbbell shape ground simulators which initially
developed in 2010. This attitude simulator has been used for one or two axes manoeuvres
in some previous studies(14) in which simulator components and technical specifications are
widely discussed. The AUT simulator performance was not ideal and it was faced with
some important defects such as, third axis malfunction, low accuracy for regulation in the
other two axes, lack of accurate time varying tracking, torque control (which causes an inner
control loop to provide required voltage from calculated control effort), and lack of reaction
wheels velocity feedback for use in the control algorithm. Thus, in order to overcome these
drawbacks and have a more complete and perfect attitude simulator, some extra instruments
and specifications are added to the AUT simulator which are listed in Fig. 9. New drivers are
much more accurate relative to previous drivers. The input signal to the drivers is a voltage
which is transferred through serial protocols. As is illustrated in Fig. 11, motor drivers and
reaction wheels are maintained in the same side, and because each Sabertooth driver is able
to drive two separate DC motors, one driving channel is free (to have four actuator simulators
in case of use). The performing diagram of the AUT attitude simulator with all components is
shown in Fig. 11.
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Figure 10. (Colour online) Implementation procedure in AUT 3-DOF attitude simulator.

Table 1.
Non-linear attitude tracking error (RMS) comparison in the presence of

external disturbance and inertia uncertainty

Simulation Implementation

Axis Roll (deg) Pitch (deg) Yaw (deg) Roll (deg) Pitch (deg) Yaw (deg)

SMC 0.16 0.12 0.12 1.53 1.51 1.55
Adaptive-Sliding 0.11 0.07 0.08 0.42 0.33 0.31

8.2 Implementation results

Non-linear regulation and tracking is implemented on an actual simulator to investigate
algorithm performance, which is the same as in section 7. The desired attitude (Euler
angles) and control algorithms are developed in personal computer (the same as in Ref. 14).
Sensor data are imported and control effort signals are transferred by using serial ports. The
implementation is illustrated in Figs 12 and 13. As it is obvious from the results, the control
objective is satisfied by reasonable and applicable control effort (voltage). In addition, the
oscillations in Figs 12 and 13 are because of the sat function inherit feature. However, these
oscillations are considerably small relative to the sign function, but this property is because
of an oscillation about the origin. About undesirable peaks which rarely emerged in results,
like a peak around 12 sec in Fig. 13, it should be mentioned that rotary encoders, which are
used in the AUT simulator, randomly give a large exaggerated signal. However, this signal is
filtered but rarely affects the control effort signal and causes some peaks in the error signal or
switching surface magnitude, as shown in Fig. 13.

In order to compare the performance of the SMC and adaptive-sliding control algorithms,
the Root Mean Square (RMS) values of attitude tracking error for 12 tests of non-linear
attitude tracking are listed in Table 1. According to these values, it is clear that simulation
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Figure 11. (Colour online) AUT attitude 3-DOF simulator.

Figure 12. (Colour online) Pure SMC implementation on AUT attitude simulator.
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Figure 13. (Colour online) Adaptive-SMC implementation on AUT attitude simulator.

error values are almost 10 times smaller than implementation results, which are caused by
gimbal disturbance. An important conclusion which can be obtained from this comparison
is the better performance of adaptive-sliding algorithms against SMC algorithms in all three
axes, in both simulation and implementation results. The RMS values of attitude errors show
almost 2 times smaller error for the adaptive-sliding algorithm in simulation and three to five
times improvement for the adaptive-sliding algorithm in implementation. According to these
results, the adaptive-sliding algorithm performance is successfully improved in comparison
with the pure SMC algorithm.

9.0 CONCLUSION
The designing and implementation of a comprehensive control algorithm to track a desired
time varying attitude of a satellite, in the presence of external disturbances and unknown
inertia properties, in spite of simplicity in order to be more applicable in real-time
implementation, is one of the most challenging areas in literature. In this investigation,
initially, a novel adaptive-sliding controller was developed using the quaternion approach.
This control effort term was obtained and proved using the Lyapunov stability theorem. In
order to investigate the performance of a derived controller, a simulation strategy was designed
to compare situations in which the adaptive-sliding controller is applied or is not applied. The
external torque disturbance in the simulation section is considered to be in order of 0.03 and
harmonic. According to the simulation results, the adaptive-sliding controller is significantly
able to overcome the inertia uncertainties 10 to 20 times different from actual magnitudes
relative to acceptable common controllers. Results show that the average error percentage
in four different situations of regulation task, simple non-linear attitude tracking, non-linear
attitude tracking with and without disturbance and inertia uncertainties is almost the same and
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in order of 0.20%, while in common algorithms this error gets worse. The designed adaptive-
sliding controller leads to effective consequences in both regulation and tracking control tasks.
In addition to effective control results, using a mathematical approach facilitates controller
designers a wide range of control problems which suffer from complicated mathematical
operations. In the present study, this method was successful to overcome these challenges in
the control of non-linear attitude tracking of a spacecraft system, in spite of implementation
simplicity.

REFERENCES

1. Weiss, A., Kolmanovsky, I., Bernstein, D.S. and Sanyal, A. Inertia-free spacecraft attitude
control using reaction wheels, J of Guidance, Control, and Dynamics, 2013, 36, (5), pp 1425-1439.

2. Wu, B., Wang, D. and Poh, E. K. High precision satellite attitude tracking control via iterative
learning control, J of Guidance, Control, and Dynamics, 2014, 38, (3), pp 528-534.

3. Hu, Q., Li, B., Huo, X. and Shi, Z. Spacecraft attitude tracking control under actuator magnitude
deviation and misalignment, Aerospace Science and Technology, 2013, 28, (1), pp 266-280.

4. Sun, H. and Li, S. Composite control method for stabilizing spacecraft attitude in terms of
Rodrigues parameters, Chinese J of Aeronautics, 2013, 26, (3), pp 687-696.

5. Zhang, X., Liu, X. and Zhu, Q. Attitude stabilization of rigid spacecraft with disturbance
generated by time varying uncertain exosystems, Communications in Nonlinear Science and
Numerical Simulation, 2016, 36, pp 25-36.

6. Fazlyab, A.R., Saberi, F.F. and Kabganian, M. Adaptive attitude controller for a satellite based
on neural network in the presence of unknown external disturbances and actuator faults, Advances
in Space Research, 2013, 57, (1), pp 367-377.

7. Mazinan, A.H., Pasand, M. and Soltani, B. Full quaternion based finite-time cascade attitude
control approach via pulse modulation synthesis for a spacecraft, ISA Transactions, 2015, 58,
pp 567-585.

8. Lu, K., Xia, Y. and Fu, M. Controller design for rigid spacecraft attitude tracking with actuator
saturation, Information Sciences, 2013, 220, pp 343-366.

9. Junkins, J.L., Akella, M.R. and Robinett, R.D. Nonlinear adaptive control of spacecraft
maneuvers, J of Guidance, Control, and Dynamics, 1997, 20, (6), pp 1104-1110.

10. Ahmed, J., Coppola, V.T. and Bernstein, D.S. Adaptive asymptotic tracking of spacecraft attitude
motion with inertia matrix identification, J of Guidance, Control, and Dynamics, 1998, 21, (5),
pp 684-691.

11. Sanyal, A., Fosbury, A., Chaturvedi, N. and Bernstein, D. Inertia-free spacecraft attitude
tracking with disturbance rejection and almost global stabilization, J of Guidance, Control, and
Dynamics, 2009, 32, (4), pp 1167-1178.

12. Gao, J. and Cai, Y. Fixed-time control for spacecraft attitude tracking based on quaternion, Acta
Astronautica, 2015, 115, pp 303-313.

13. Pukdeboon, C. and Kumam, P. Robust optimal sliding mode control for spacecraft position and
attitude maneuvers, Erospace Science and Technology, 2015, 43, pp 239-342.

14. Kabganian, M., Nabipour, M. and Saberi, F.F. Design and implementation of attitude control
algorithm of a satellite on a three-axis gimbal simulator, Proceedings of the Institution of Mech
Engineers, Part G: J of Aerospace Engineering, 2015, 229, (1), pp 72–86.

15. Cheon, Y.-J. Sliding mode control of spacecraft with actuator dynamics, Int J of Control,
Automation, and Systems (IJCAS), 2002.

16. Park, Y. Robust and optimal attitude stabilization of spacecraft with external disturbances,
Aerospace Science and Technology, 2005, 9, (3), pp 253-259.

17. Pukdeboon, C. Optimal output feedback controllers for spacecraft attitude tracking, Asian J of
Control, 2013, 15, (5), pp 1284-1294.

18. Utkin, V.I. Sliding mode control design principles and applications to electric drives, IEEE Trans.
Electron., 1993, 40, (1), pp 23-36.

19. Spacecraft Dynamics and Control: A Practical Engineering Approach, vol. 7, Cambridge
University Press, 1997, pp 81-93.

https://doi.org/10.1017/aer.2017.122 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2017.122


Reza Alipour ET AL 171Modelling, design and experimental…

20. Markley, F.L. Attitude error representations for Kalman filtering, J of Guidance, Control, and
Dynamics, 2013, 36, (2), pp 311-317.

21. Sola, J. Quaternion kinematics for the error-state KF, Laboratory for Analysis and Architecture of
Systems (LAAS-CNRS), Toulouse, France, Tech Rep, 2012.

22. Crassidis, J.L. and Markley, F.L. Sliding mode control using modified Rodrigues parameters,
J of Guidance, Control, and Dynamics, 1996, 19, (6), pp 1381–1383.

https://doi.org/10.1017/aer.2017.122 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2017.122

	1.0 INTRODUCTION
	1.1 Mathematical model
	1.1.1 Quaternion algebra properties


	2.0 QUATERNION-BASED KINEMATICS AND ERROR DYNAMICS EQUATIONS
	3.0 SLIDING MODE CONTROLLER DESIGN
	3.1 Switching surface design
	3.2 Stability proof
	3.3 Sliding condition design

	4.0 ACTUATOR DYNAMICS
	5.0 ADAPTIVE-SLIDING CONTROLLER DESIGN
	5.0.1 The control law
	5.0.2 The adaption law
	5.1 Proof
	5.1.1 The control law
	5.1.2 The adaption laws
	5.1.3 Proof


	6.0 SIMULATION RESULTS
	7.0 VALIDATING BY ADAMS-SIMULINK CO-SIMULATION
	8.0 IMPLEMENTATION ON THE AUT 3-DOF ATTITUDE SIMULATOR
	8.1 The AUT attitude simulator
	8.2 Implementation results

	9.0 CONCLUSION
	REFERENCES

