
J. Fluid Mech. (2012), vol. 706, pp. 597–606. c© Cambridge University Press 2012 597
doi:10.1017/jfm.2012.292

On boundary-layer flows induced by the motion
of stretching surfaces
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We investigate laminar boundary-layer flows due to translating, stretching,
incompressible sheets. Unlike the classical problem in the literature where the
mechanics of the sheet are neglected, and kinematics are prescribed, the dynamics
of both the fluid and the sheet are herein coupled. Two types of stretching sheets
are considered: an elastic sheet that obeys linear elasticity and a sheet that deforms
as a viscous Newtonian fluid. In both cases, we find self-similar solutions to the
coupled fluid/sheet system. These self-similar solutions are only valid under limiting
conditions.
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1. Introduction
Drawing a sheet of material through a fluid medium at a high velocity occurs

in many industrial settings such as extrusion processes. The sheet stretches in the
direction of drawing, and consequently the velocity along the sheet increases. In this
process, the sheet induces a flow in the surrounding fluid. The characteristics of the
flow around the stretching sheet, which in the existing literature is mostly treated
as a flat surface, have been studied extensively by means of boundary-layer theory,
which typically allows for self-similar solutions for the velocity distribution in the
surrounding fluid. The first solution of this type was given by Sakiadis (1961) who
introduced boundary-layer flows driven by a flat surface moving at a constant speed
U0. In this case, the laminar boundary-layer equations reduce to the well-known
Blasius equation, but with a different set of boundary conditions. The work of Sakiadis
was then extended to flat stretching sheets.

Over the years, there have been many studies of boundary-layer flows induced
by impermeable stretching sheets with prescribed kinematics, as summarized in
table 1. Specifically, when the sheet is impermeable and its velocity increases linearly
in the direction of stretching, which is also referred to as linear stretching, the
surrounding fluid flow admits both an exact analytical solution to the Navier–Stokes
equations (Crane 1970) and a similarity solution to the Navier–Stokes equations (Wang
1984; Surma Devi, Takhar & Nath 1986). The first comprehensive investigation of
boundary-layer flows driven by impermeable stretching sheets was contributed by
Banks (1983). Recently, Weidman & Magyari (2009) have shown how to extend
Crane’s solution to permeable sheets and, by that, have recovered other known
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Year Authors Sheet velocity Outer fluid State

1961 Sakiadis Uniform U(x)= U0 Newtonian Steady-state
1969 Fox, Erickson & Fan Uniform Power-law Steady-state
1970 Crane Linear U(x)∝ x Newtonian Steady-state
1977 Vleggaar Power-law U(x)∝ xλ Newtonian Steady-state
1983 Banks Power-law Newtonian Steady-state
1984 Rajagopal, Na & Gupta Linear Viscoelastic Steady-state
1984 Wang Linear Newtonian Steady-state
1986 Surma Devi et al. Linear Newtonian Time-dependent
1995 Gorla, Dakappagari & Pop Linear Power-law Steady-state
1996 Andersson et al. Linear Power-law Time-dependent
1999 Magyari & Keller Exponential U(x)∝ ex Newtonian Steady-state
2002 Wang and Andersson Linear (with slip) Newtonian Steady-state
2006 Liao Power-law Newtonian Eime-dependent
2006 Andersson & Kumaran Power-law Power-law Steady-state

TABLE 1. A chronological representative summary of the literature on boundary-layer
flows due to stretching impermeable sheets. In all cases, the kinematics of the sheet are
prescribed.

results (Gupta & Gupta 1977; Lage & Bejan 1990; Kumaran & Ramanaiah 1996).
In addition, Magyari (2010) generalized and extended well-known solutions to
boundary-layer flows due to stretching, impermeable surfaces (e.g. Crane’s solution,
Bickley’s solution, etc.)

In the previous studies, the sheet dynamics are ignored; rather, the stretching sheet
velocity U(x) is prescribed as a function of position in the stretching direction, e.g.
linear stretching U(x) ∝ x, power-law stretching U(x) ∝ xλ, etc. Unlike the standard
problem of this type considered in the literature, our motivation in this paper is to
include the sheet mechanics via the stress balance in the sheet. Thus, due to the
coupling of the momentum equations in both the fluid and the sheet, we obtain as part
of the solution to the problem the velocity of the stretching sheet, which decreases
in thickness along the direction of stretching. When the sheet mechanics are included,
the self-similar solutions of the system only exist under restrictive conditions that we
identify.

In § 2, we formulate the dynamics of the sheet and the surrounding flow. We
consider two cases for the nature of the stretching sheet. Sections 3.1 and 3.2 cover,
respectively, the results for a sheet that obeys linear elasticity and for a viscous sheet
that deforms as a viscous Newtonian fluid.

2. Problem formulation and governing equations
We analyse a process where a stretching sheet is supplied at a velocity U0 at x = 0

and is collected at a velocity UL > U0 at x= L: see figure 1. An example configuration
is a system where an elastic sheet immersed in a fluid is supplied and collected by
two wind-up rollers operating at different speeds. The stretching sheet of density ρs

is assumed incompressible and is supplied with half-thickness h0 and at a constant
volumetric flow rate per unit width q. The surrounding fluid has a density ρ, viscosity
µ and kinematic viscosity ν = µ/ρ.

Since the width W of the sheet in the lateral direction is assumed large such
that W � h0, we treat the two-dimensional dynamics of the system. We consider the
system (the sheet and the surrounding fluid) to be at steady state. Assuming that the
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L
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x

FIGURE 1. Schematic of a stretching sheet immersed in a fluid. The thin sheet is assumed
to have a large width W � h0 in the lateral, or spanwise, direction and so only the two-
dimensional, steady dynamics are analysed.

half-thickness h(x) of the sheet varies slowly, |dh/dx| � 1, the velocity profile in the
sheet is nearly uniform in the y-direction, i.e. the horizontal velocity of the sheet
is denoted U(x). Hence, the Lagrangian acceleration of an element of the sheet is
U(dU/dx). Finally, we assume that the fluid is at rest far away from the stretching
sheet. We next give the governing equations for the sheet and the surrounding fluid,
respectively.

2.1. Momentum equation for the sheet
We assume that the sheet is incompressible and therefore has a constant rate of supply
q such that

2h(x)U(x)= 2h0U0 = q. (2.1)

The steady-state momentum balance in the sheet is written in the x-direction as

∂σxx

∂x
+ ∂σyx

∂y
= ρsU

dU

dx
, (2.2)

where σij are the components of the stress tensor in the sheet. Assuming σxx is a
function of x only since |dh/dx| � 1, we integrate (2.2) through the thickness of the
sheet. Using the Leibniz rule and taking advantage of the symmetry of the system, we
obtain

d
dx
(hσxx)+ τyx = ρshU

dU

dx
, (2.3)

where τyx is the fluid shear stress at the upper surface of the sheet y = h(x).
For a Newtonian fluid surrounding the sheet, and consistent with |dh/dx| � 1,
τyx ' µ (∂u/∂y)|y=h(x), the momentum balance for the sheet becomes

d
dx
(hσxx)+ µ ∂u

∂y

∣∣∣∣
y=h(x)

= ρshU
dU

dx
. (2.4)

2.2. An elastic sheet
We assume that the elastic sheet is incompressible with Poisson ratio equal to 1/2.
We next need to evaluate σxx for the sheet. We start from the known time variation
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of strain in terms of the velocity distribution for unidirectional motion (Malvern 1969,
p. 150):

dεxx

dt
= dU

dX
, (2.5)

where εxx(x) is the strain along the sheet and X denotes the material points. Assuming
small deformations, ∂/∂X ' ∂/∂x, and steady-state motion, d/dt = U(d/dx), we find

U
dεxx

dx
= dU

dx
. (2.6)

The integral of (2.6) yields εxx = ln(U/U0) for a sheet with zero strain at x = 0. For
small variations in speed, which is also consistent with small sheet deformations, we
approximate the strain–velocity relation as

εxx = U(x)

U0
− 1. (2.7)

The sheet is assumed linearly elastic and thus obeys Hooke’s law for unidirectional
plane stress σxx ' Eεxx, where E is the effective modulus of the sheet. We rearrange
the sheet momentum balance (2.4) and we use (2.1) and (2.7) to obtain(

E

ρsU2
− 1

)
dU

dx
+ µ

ρsh0U0

∂u

∂y

∣∣∣∣
y=h(x)

= 0. (2.8)

Next, we consider the limit where the elastic forces in the sheet are much larger
than the inertial forces E/ρsU2 � 1. To check the validity of this assumption, a soft
synthetic rubber sheet, for instance, has E ≈ 107 Pa and ρs ≈ 1200 kg m−3, so that for
stretching with an end velocity, UL = 20 m s−1, then E/ρsU2 ≈ 20. In this limit, the
momentum balance for an elastic sheet reduces to

Eh0U0

µU2

dU

dx
+ ∂u

∂y

∣∣∣∣
y=h(x)

= 0. (2.9)

2.3. A viscous sheet

As an alternative description, we assume the stretching sheet to be a viscous
Newtonian fluid (e.g. melts), in which case the stress is proportional to the strain
rate: σxx = µsh(dU/dx), where µsh is the constant extensional viscosity, also known
as the Trouton viscosity, and in two dimensions is equal to four times the actual
viscosity of the sheet. The viscosity of the surrounding fluid is assumed to be much
smaller than the viscosity of the sheet: µ� µsh. For high velocities, we expect that
the effects of surface tension are negligible. To check, we can estimate a capillary
number Ca = µshU/γ , which measures the relative importance of surface tension
γ with respect to viscous forces. For example, for fluids with µsh = 100µH2O and
γ ≈ 10 × 10−3 N m−1 (common for viscous oils in water), and UL = 20 m s−1 as
above, we get Ca ≈ 200� 1. Furthermore, we note that the process of drawing a
viscous sheet is susceptible to the draw resonance instability (Denn 1980; Scheid et al.
2009) that occurs above a critical draw ratio UL/U0. In this paper, the system is
assumed to be operating below the critical draw ratio for instability.
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On boundary-layer flows induced by the motion of stretching surfaces 601

After substituting (2.1) in (2.4) and rearranging, the momentum balance for a
viscous sheet becomes

d
dx

(
µsh

U

dU

dx
− ρsU

)
+ µ

h0U0

∂u

∂y

∣∣∣∣
y=h(x)

= 0. (2.10)

2.4. The dynamics of the surrounding fluid
The sheet is immersed in a surrounding fluid whose velocity vector is u =
(u(x, y), v(x, y)). Within laminar boundary-layer theory, which assumes that a suitably
defined Reynolds number is large and |∂2u/∂x2| � |∂2u/∂y2|, and neglecting the
pressure gradient term since the far-field velocity of the fluid is zero, the continuity
and momentum equations for the steady, incompressible flow of a Newtonian fluid
surrounding the stretching sheet are

∂u

∂x
+ ∂v
∂y
= 0, (2.11a)

u
∂u

∂x
+ v ∂u

∂y
= ν ∂

2u

∂y2
. (2.11b)

We note that here we choose to use the (x, y) coordinate system not only for the
mechanics of the sheet, but also for the boundary-layer description of the surrounding
fluid. For sufficiently slow shape changes |dh/dx| � 1, the solution procedure we
present next is equivalent to the familiar boundary-layer approach of using coordinates
parallel and normal to the slowly varying surface h(x) (e.g. Acrivos, Shah & Petersen
1960; Rosenhead 1963). The discrepancy between our Cartesian formulation and the
traditional curvilinear formulation is of the order of (dh/dx)2.

Since the system is symmetric, we only consider its upper half y > 0. The no-slip
and kinematic boundary conditions ensure that the velocity of the fluid at the surface
of the sheet, y = h(x), is equal to the sheet velocity. In addition, as stated previously,
the fluid is assumed to be at rest far away from the sheet, so that we have the
conditions

u(x, h(x))= U(x), v(x, h(x))= U(x)
dh

dx
, u(x, y→∞)= 0. (2.12)

To avoid confusion, observe that the stretching sheet is impermeable and the non-
homogeneous kinematic boundary condition on the transverse velocity v is due to the
Lagrangian thinning of the sheet. We note that Fang, Zhang & Zhong (2012) studied
boundary-layer flows induced by impermeable stretching sheets that vary in thickness,
yet again with prescribed kinematics; moreover, their formulation fails to account for
the Lagrangian acceleration of the sheet.

Returning to (2.11), we seek a self-similar solution by using a transformation of the
form

u(x, y)= U(x)f ′(η) where η = y− h(x)

h0g(x)
, (2.13a)

v(x, y)=−h0
d(gU)

dx
f (η)+ U(x)

(
dh

dx
+ h0η

dg

dx

)
f ′(η). (2.13b)

This similarity ansatz, which identically satisfies the continuity equation in (2.11a),
naturally accounts for the unknown shape h(x) of the sheet. The velocity of the
sheet U(x) and the dimensionless function g(x) are to be determined from coupling
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602 T. T. Al-Housseiny and H. A. Stone

the mechanics of the sheet and the surrounding fluid. Substituting the transformation
(2.13) into the fluid momentum balance (2.11), the latter reduces to the standard
equation that results from wall-driven boundary-layer flows in an otherwise quiescent
fluid (e.g. Rosenhead 1963; Banks 1983),

f ′′′ +
(

h2
0g2

ν

dU

dx
+ h2

0Ug

ν

dg

dx

)
ff ′′ − h2

0g2

ν

dU

dx
(f ′)2 = 0. (2.14)

We note that (2.14) involves U(x) and g(x) but not the unknown shape of the sheet
h(x). In the case of a sheet moving at constant speed, i.e. U(x) = U0, (2.14) reduces
to the familiar Blasius equation with g(x) ∝ √x. In the case of a stretching sheet,
i.e. dU/dx 6= 0, for a similarity solution to exist and without loss of generality, we
must have

h2
0g2

ν

dU

dx
= 1 and

h2
0Ug

ν

dg

dx
= c, (2.15)

where c is a constant to be determined from coupling both the fluid and the sheet
dynamics. The resulting ODE, and the corresponding boundary conditions, are

f ′′′ + (1+ c) ff ′′ − (f ′)2 = 0, f (0)= 0, f ′(0)= 1, f ′(η→∞)= 0. (2.16)

Equation (2.15) restricts U(x) and g(x) to power-law functions of the form
(Ax+ B)p, except when c = −1/2, in which case U(x) and g(x) must be exponential
functions. For any value of c, U(x) and g(x) are related by g ∝ Uc. Therefore, if the
system admits a self-similar solution, then for c 6= −1/2 and to satisfy U(0)= U0,

U(x)= U0

(
−m

x

L
+ 1

)−α
, (2.17a)

g(x)= Re−1/2
(
−m

x

L
+ 1

)−αc
. (2.17b)

By substituting (2.17) into (2.15), the constants α and c are related such that
α = −1/(1 + 2c). The positive parameters m and Re are determined respectively from
the end velocity UL and from substituting (2.17) into (2.15),

m= 1−
(

U0

UL

)1/α

, Re= αmU0h2
0

νL
, (2.18)

where 0 < m < 1 for stretching to take place and Re is the effective Reynolds
number of the system. The self-similar velocity profile of the sheet/fluid system is
characterized by the constants α and c, and the dimensionless parameters m and Re.
Henceforth, the constants and parameters corresponding to the elastic sheet and the
viscous sheet are denoted by subscripts e and v respectively.

3. Results
3.1. Case I: elastic sheet

Since we are seeking a solution of the self-similar form, we use the transformation in
(2.13) to rewrite the elastic sheet momentum balance (2.9) as

Eh2
0U0

µU3

dU

dx
+ f ′′(0)

g(x)
= 0. (3.1)
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FIGURE 2. (a) Solution of the BVP in (3.3) and (b) highlights the algebraic decay of f ′ for
large η.

Substituting the form of (2.17) into (3.1) and using αe = −1/(1 + 2ce), we obtain a
system of two equations for the two unknowns αe and ce, which yields

αe = 1
5 , ce =−3. (3.2)

We confirm that our system does not admit an exponentially varying sheet velocity by
substituting U(x) ∝ ex and g(x) ∝ ec?x, where c? is a constant, into the elastic sheet
stress balance (3.1). It is evident that the resulting expression cannot be balanced for
c∗ = −1/2; our power-law solution is therefore unique. Using the results in (3.2), the
ODE corresponding to the self-similar boundary-layer flow over a stretching elastic
sheet is given by

f ′′′ − 2ff ′′ − (f ′)2 = 0, f (0)= 0, f ′(0)= 1, f ′(η→∞)= 0 (3.3)

subject to f ′′(0)=−
(

E

ρU2
0

)
Re1/2

e where Ree = meU0h2
0

5νL
. (3.4)

The numerical solution to the BVP in (3.3), shown in figure 2(a), was obtained
using a relaxation method (the MATLAB routine BVP4c), and required a large domain
due to the slow algebraic decay of f ′(η). For η� 1, the dominant terms in (3.3) are
ff ′′ and (f ′)2, from which we find f ′ = O(η−1/3) (see figure 2b).

The condition on f ′′(0) in (3.4) results from simplifying the momentum equation
of the sheet (3.1) using (2.17) and (3.2). It is the necessary condition for which the
coupled fluid/sheet system admits a self-similar solution. From the numerical solution
of (3.3), we have f ′′(0) ' −0.6038. Therefore, a system where an elastic (Hookean)
sheet is drawn through a Newtonian fluid only admits a self-similar boundary-layer
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solution if (
E

ρU2
0

)
Re1/2

e ' 0.6038. (3.5)

Effectively, (3.5) determines the draw ratio (via me) and the sheet dimensions (h0, L)
for which a self-similar solution is possible for both the velocity of the sheet and
that of the fluid. We remind the reader that the inertia of the elastic sheet had to be
neglected (refer to (2.9)) to allow for a similarity solution.

After solving for the velocity profile, the shape of the sheet h(x) is obtained from
the incompressibility condition (2.1),

h(x)= h0

(
−me

x

L
+ 1

)1/5
. (3.6)

We also verify that our obtained results for the elastic sheet hold for small sheet
deformations or, equivalently, small variations in speed; this can be checked by
examining (2.17a) and (3.6).

3.2. Case II: viscous sheet
Following the same steps as § 3.1, the constants of the viscous sheet case are
determined by substituting (2.17) into the viscous sheet momentum balance (2.10)
and using αv =−1/(1+ 2cv). We find

αv = 1, cv =−1. (3.7)

Again, using the same reasoning as previously, we check that our system does not
admit an exponentially increasing sheet velocity. It is also important to note that in
the case of a viscous sheet, we find a similarity solution without having to neglect the
inertia of the sheet. The ODE of the self-similar boundary-layer flow over a stretching
viscous sheet, along with the boundary conditions, is given by

f ′′′ − (f ′)2 = 0, f (0)= 0, f ′(0)= 1, f ′(η→∞)= 0 (3.8)

subject to f ′′(0)=−
(
ρs

ρ

) (
mv

(
µsh

ρsU0L

)
− 1

)
Re1/2

v where Rev = mvU0h2
0

νL
. (3.9)

Using (3.7) and (2.17), we note that the product g(x)U(x) = U0Re−1/2
v is constant in

the case of a Newtonian sheet. Thus, the velocities in (2.13) are independent of f (η).
Therefore, it is sufficient to solve (3.8) for f ′(η), which admits two exact solution
branches, one of which is singular. For η > 0, the physically relevant solution is

f ′(η)= 6(
η +√6

)2 with f ′′(0)=− 2√
6
. (3.10)

We note that asymptotically the fluid velocity f ′ decays away from the sheet as η−2,
which is much faster than the η−1/3 decay obtained in the previous section. From the
solution (3.10), given a viscous sheet drawn through a surrounding Newtonian fluid,
the coupled system admits a self-similar solution provided that(

ρs

ρ

) (
mv

(
µsh

ρsU0L

)
− 1

)
Re1/2

v =
2√
6
. (3.11)

Again, for given fluids and flow parameters, self-similarity for all x, from input to take-
up, only occurs for a draw ratio (directly related to mv) and sheet dimensions (h0, L)
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that satisfy (3.11). We also note that the half-thickness h(x) of the viscous sheet
decreases at a constant rate dh/dx=−mv(h0/L).

Although we considered in this section the case of a viscous sheet, the results can
be generalized to a sheet composed of a power-law fluid with a constitutive relation
of the form σxx = µsh(dU/dx)n. However, it can be shown that our chosen case of a
viscous Newtonian fluid is the only case that allows for a self-similar solution when
the sheet inertia is kept in the stress balance (2.10). For a sheet consisting of an
arbitrary power-law fluid, and using the ansatz given in (2.13), the sheet stress balance
in (2.10) becomes

d
dx

(
µsh

U

(
dU

dx

)n

− ρsU

)
+ µ

U0h2
0

U(x)

g(x)
f ′′(0)= 0. (3.12)

After substituting (2.17) into (3.12) and using α = −1/(1 + 2c), it becomes clear
that one cannot simultaneously balance all three terms in the power-law sheet stress
balance (3.12) unless n = 1. Therefore, for n 6= 1, a self-similar solution is only
possible if we neglect the inertia of the sheet, i.e. for large µsh/ρsU

2−n
0 L, which is a

quantity that also appears in the similarity condition (3.11) where n= 1.
An examination similar to that above reveals that the system in this study does

not admit a self-similar solution if the surrounding fluid is Newtonian and the
stretching sheet is viscoelastic obeying a Kelvin–Voigt-type model of the form
σxx = Eεxx + µsh (dU/dx)n for unidirectional stretching. However, a system consisting
of a viscoelastic sheet of a given exponent n immersed in a power-law fluid of a given
shear index might allow a solution of the self-similar form since a new degree of
freedom is introduced.

4. Concluding remarks
In this study, we revisited the classical boundary-layer flow over a stretching sheet.

To the best of our knowledge, all previous studies have prescribed the kinematics of
the sheet. Here we treated the coupled fluid/sheet system and showed that it allows for
a self-similar solution provided that a certain condition is satisfied. The mechanics of
two types of stretching sheets are considered: an elastic sheet and a viscous sheet. The
similarity condition is expressed, respectively, in (3.5) and (3.11) for the elastic sheet
and the viscous sheet cases. These self-similar solutions could serve as a benchmark
for computational studies.

The problem we considered in this paper can be extended to study the heat transfer
between a stretching sheet and the surrounding fluid across a thermal boundary layer.
Another possible extension would be to study the mass transfer from or to a permeable
stretching sheet. However, we believe that the main contribution of our work is that
our analysis provides a framework for studying boundary-layer flows over deformable
surfaces that are shaped due to the stress induced by the outer fluid. Such problems
occur in systems where there is fluid flow over various types of soft surfaces.
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