
Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

cambridge.org/aie

Research Paper

Cite this article: Li AI-kang (2018). A whole-
grammar implementation of shape grammars
for designers. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing
32, 200–207. https://doi.org/10.1017/
S0890060417000336

Received: 25 October 2016
Revised: 3 May 2017
Accepted: 3 May 2017

Key words:
Computational design; Design computing;
Designers; Shape grammar implementations;
Shape grammar

Author for correspondence:
Andrew I-kang Li, E-mail: andrewli@kit.ac.jp

© Cambridge University Press 2018

A whole-grammar implementation of shape
grammars for designers

Andrew I-kang Li

Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

Abstract

I present an implementation of shape grammars that is aimed at supporting designers. It has
two parts: a grammar editor and a stand-alone interpreter. The editor is the modeling appli-
cation Rhinoceros3d using Python scripts. The interpreter is general, is three-dimensional,
and supports subshape detection. A grammar is a Rhinoceros3d model; thus users can manip-
ulate all its parts directly and immediately. That is, they can modify any shape without select-
ing or invoking an editor, and they can lay out the parts of the grammar in any way they find
meaningful. Using this approach, which I call a whole-grammar approach, users are shielded
from most subdomain tasks, like typing text files or specifying transformations. Informal
observations suggest that users of this implementation can work effectively.

Introduction

The theory of shape grammars was first proposed over 40 years ago (Stiny & Gips, 1972), and
implementations soon followed, from Gips (1975) to Grasl and Economou (2013) and Pauwels
et al. (2015).1

These implementations have demonstrated that several attributes of shape grammars are
technically feasible. The most important of these is subshape detection which, as
Krishnamurti (2015, p. 940) points out, is the sine qua non of any “worthwhile” shape gram-
mar system.

Another important attribute is generality. Whether they are creating a new language of
designs or seeking to characterize an existing language, designers need to be able to create
and use their own grammars, not just those of a type hard-coded in the particular implemen-
tation at hand.

Tapia’s (1999) implementation, known as GEdit and long obsolete, was notable because it
supported not only emergence and generality but also visual interaction. In particular, it
allowed users to specify shapes and rules by drawing them rather than by typing text. This
is a natural approach for designers and has since become common.

This approach can be extended, by allowing users to manipulate, not only shapes and rules,
but also the grammar as a whole. In the present implementation, a grammar is a three-
dimensional (3D) model in the modeling application Rhinoceros3d, commonly known as
Rhino. Rule application is handled by a stand-alone interpreter. Information is shared between
the two applications in the form of text files: users export a grammar file from Rhino to the
interpreter, and they reimport a derivation file from the interpreter into Rhino.

Using Rhino as a grammar editor benefits users in two ways. First, they can manipulate any
element (i.e., line or labeled point) in any shape both directly and immediately. In most other
implementations, users must enter an edit mode or shape editor to manipulate the elements of
a shape; this includes the interpreter presented here when used without Rhino.

Second, they can lay out the parts of the grammar – and new shapes2 – in groups that they
find meaningful, and can rearrange them at any time. That is, they can employ secondary
notation, a capability that has not previously been available.

One way of understanding these benefits is to consider Knight and Stiny’s (2015, original
emphasis) formulation:

making is doing and sensing with stuff to make things.

If users can easily manipulate the whole grammar, including all its parts and new shapes, they
can also easily do and sense with grammars. I call this a whole-grammar implementation.

1See Chase (2010) and Li et al. (2009a) for discussions.
2I use shape for a grammatical emphasis and design in a broader context, but the two terms are essentially interchangeable.

https://doi.org/10.1017/S0890060417000336 Published online by Cambridge University Press

https://www.cambridge.org/aie
https://doi.org/10.1017/S0890060417000336
https://doi.org/10.1017/S0890060417000336
mailto:andrewli@kit.ac.jp
https://doi.org/10.1017/S0890060417000336


About the implementation

The whole-grammar implementation has evolved from the imple-
mentation by Chau et al. (2004), and it is there that the account
begins.

Chau’s implementation

Chau’s implementation is written in Perl. It handles lines and
labeled points in 3D space and, like Tapia’s GEdit, supports
emergence and generality. Users can create, change, save, and
reuse their own grammar files. They see the current shape and
the current rule as drawings (Fig. 1). However, unlike users of
GEdit, they cannot draw shapes; they type text.

The names of initial shapes and of rules are displayed in scrol-
lable lists. Users select an initial shape and rule, which are graphi-
cally displayed on the current shape and rule canvases.

Applying the rule to the current shape involves several steps.
Users first propose a transformation t under which the rule is
to be applied. They do this by selecting one triple of points in
the left shape A and another in the current shape C, and querying
whether the two triples, in fact, specify a transformation. If there
is a transformation, users query the system whether the rule can
be applied under that transformation [i.e., whether t(A)⩽ C]
and, if so, direct the system to apply the rule and update the cur-
rent shape. Users repeat this process as necessary, selecting rules
as desired.

In terms of shape grammar, Chau’s implementation works
reliably, but it is not so easy for designers to use. Chau kindly
shared his source code, and I assembled a team. My team and I
essentially wrapped Chau’s implementation in what we hoped
would be an easier interface for users. This wrapped version (Li
et al., 2009a) is the stand-alone interpreter of the whole-grammar
implementation.

The stand-alone interpreter

In a screenshot (Fig. 2) of the stand-alone interpreter, known as
Grammar Environment, the most obvious change from Chau’s
implementation is that initial shapes, rules, and next shapes are
now graphically displayed. In this way, users interact with draw-
ings, not with text.

Less obvious is the simplification of rule application. We con-
solidate the steps mentioned above into a single user command,
known as show distinct (next shapes). Users specify a rule and
invoke this command to obtain all next shapes, if any, resulting
from applying the rule to the current shape.3

The interpreter does this by dealing with the point triples as
follows. First, it considers only endpoints and intersections, to
prevent infinite matches. It finds a point triple in A, and tests it
against all point triples in C. It keeps a list of all transformations
t confirmed by a match of triples. Then it calculates all next
shapes C′ and displays the results as drawings in a scrollable
list. Users select one, and the current shape is updated
accordingly.

This is a straightforward automation of Chau’s procedure. It is
not very efficient and can surely be optimized, but it performs the
essential function of shielding users from non-grammatical work.

The shape editors

For specifying shapes, we provide two tools. One is an internal
shape editor (Li et al., 2009b). It is primitive but, again, it allows
users to work with drawings.4

The other tool is an Autocad applet. With this applet, users
specify an initial shape or a rule by drawing one or two shapes,
and the applet creates a text file. They import individual files
into Grammar Environment, where they assemble a grammar
which can be saved as a single text file and reused. Users can
use any capability of Autocad to create 3D shapes composed of
lines and labeled points.

However, this Autocad applet has become unusable, because of
repeated changes in file format. In making a replacement, I5 not
only use a different modeling application – Rhino – but also
take the whole-grammar approach. Users do not export individual
initial shapes and rules; they export the whole grammar. This is
the grammar editor of the present implementation.

The grammar editor

In developing the grammar editor, I seek a balance between two
opposing aims. On the one hand, I want to minimize the structure
of the Rhino document in order to maximize the “WYSIWYG-
iness” and manipulability of the grammar. On the other hand,
the document needs structure to be parsable.

My approach is to put initial shapes and rules (which for brev-
ity I will call components) on their own layers. This imposes some
effort on users, but it preserves their freedom to control the lay-
out. Users choose the layer names (and hence the component
names), which can be displayed near the components.

In addition, the coordinate system of each shape in a rule must
be specified, a step that users frequently overlook. Cubic frames
specify the local coordinate systems. They also demarcate the vol-
ume within which users should draw the shapes and provide the
means for the system to distinguish left and right rule shapes,
which are on the same layer.6 Frames are block instances –
instances of a master object – so users can hide them when
appropriate. Left and right shapes in a rule are identified by
their relative x-positions, so users can rearrange them freely (as
long as they have different x-positions).7

In this way, the system can distinguish initial shapes from rules
and, within a rule, left and right shapes. Initial shapes and rules
have names. This is enough structure to make the grammar
parsable.

As for user actions, those involving the editing of components
are native Rhino actions; there is nothing to add. What does need
to be implemented are actions involving the structure of the gram-
mar. These actions create new layers and frames: new grammar,
new initial shape, and new rule. There are also scripts for input
and output: export grammar, import derivation, and import
final shape.8

These actions are implemented as Python scripts. For ease of
installation by users, they are not wrapped in icons or dedicated

3That is, given A→B and C, all C′ = [C− t(A)] + t(B) for all t such that t(A)≤ C.

4It also turns out to be convenient and sufficient for novice users.
5The team is no more.
6The size of the frames corresponds to the size of the canvases in the interpreter: an

object that fits into a frame fits into a canvas.
7I am assuming that users organize grammars in two dimensions, particularly for pub-

lication. However, the space is 3D, and users may indeed take advantage of this.
8By final shape I mean the last shape in a derivation. A new shape is any newly created

shape.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 201

https://doi.org/10.1017/S0890060417000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000336


menu items, and users run them with the run PythonScript com-
mand or from the Python script editor.

Using the implementation

To demonstrate how users work with the implementation, I
describe a typical scenario: developing a simple grammar and
using the resulting shapes.

Editing the grammar

The users open a new Rhino document and set it up as a gram-
mar document by running the new grammar script. The script
creates two layers: one with one frame for an initial shape and
another with two frames for the two shapes of a rule. Now they
can draw 3D shapes with lines and annotation text dots as labeled
points.9

To add components, they run the new initial shape and the
new rule scripts, which create new layers and frames. To delete
or revise components, they use native Rhino commands. They
can arrange and rearrange components to help their thinking.

Let us suppose that they have drawn a two-rule grammar for
generating Sierpiński gaskets (Fig. 3). They export the grammar
by running the export grammar script, which generates a text file.

Testing the grammar

To test the grammar, the users switch to the interpreter and
imports the grammar file with the import grammar command.
The interpreter displays all the initial shapes and rules on scrolla-
ble canvases (Fig. 2). They select the initial shape,10 and the inter-
preter displays it as the current shape, ready to be transformed
into a rule application.

To see the possible next shapes – given the rules and the cur-
rent shape – the users click show distinct (all rules). The inter-
preter displays all the possible next shapes in a scrollable
window (Fig. 2). They select one to replace the current shape
and continues transforming the current shape until they are sat-
isfied. The interpreter retains a record of the derivation.

If they want to undo or redo a rule application, they can move
backward and forward through the derivation, as in a browser.
They may also decide that they will not get a satisfactory result
with the grammar as it stands. In this case, they simply switch
back to Rhino, revise the grammar, and run the revised version
in the interpreter.

Let us assume that the users are satisfied with the final shape.
They export their results by invoking the save derivation com-
mand, which creates a text file. They import the file into Rhino
using the import derivation script, and the script draws the

Fig 1. Chau’s implementation. The current shape and the rule to be applied are graphically displayed in the center. On the right, from top to bottom: the list of
initial shape names, the list of rule names, and the buttons for each step of rule application (enter two-point triples to specify a transformation t, query whether the
rule is applicable under t, and, if so, apply the rule under t). (With the permission of Hau Hing CHAU.)

9In published grammars, labels are often shapes that are not subject to transformation,
that is, symbols. Text may be less appealing to look at, but it is functionally equivalent.

10In this implementation, a grammar may have more than one initial shape, so the
user must select one as the first current shape.

202 Andrew I-kang Li

https://doi.org/10.1017/S0890060417000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000336


Fig. 2. The Sierpiński grammar in the interpreter. The large window on the right displays the initial shape (in plan view on the canvas on the upper left); the current
shape, which at this point is the same as the initial shape (in an isometric view on the large canvas on the right); and the two rules in plan view (on the canvas
below the initial shape). The narrow window on the left displays the two possible next shapes obtainable from the current shape.

Fig. 3. A grammar in Rhino. It consists of one initial shape (back left) and two rules (right, with arrows), and generates Sierpiński gaskets.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 203

https://doi.org/10.1017/S0890060417000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000336


derivation in the document (Fig. 4). The derivation includes the
initial shape, the final shape, and all the intermediate shapes.

Using the resulting shapes

Now that the derivation is a part of the Rhino document, all its
shapes are available to the user. They can, for example, convert
them to surface models or solid models, use them for fabrication,
or render them for publication. They can use them as input for
further manipulation by Grasshopper or any other plug-in in
Rhino.

Experiences with users

I have used the implementation in several types of classes. Most
participants were undergraduate design students. Some had had
experience with Rhino; virtually none had experience with
shape grammar, except in one class.

I did not aim to conduct rigorous usability studies. Rather, I
took advantage of the classes to observe participants informally
as they learned to use the implementation and then did design
work with it. I aimed to understand how the implementation
was helping or hindering them in doing their work, how “trans-
parent” it was.

The classes

The classes all began with the same activities. First, participants
did a set of short shape grammar exercises by hand: specify and

apply rules; given rules, find the outcome; given the outcome,
find the rule. Next, they used the interpreter to run pre-written
grammars. Then, in Rhino, they learned basic operations (draw-
ing lines and text dots, handling layers and views) and how to
run the Python scripts. After these activities, the program varied,
according to the length and focus of the class.

1. Two short workshops on shape grammar. Because these work-
shops were so short (2 and 3 h), participants did the hand
exercises and used the interpreter only; they did not use
Rhino. They worked on screen and produced no physical
output.

2. A 1-day (7-h) workshop on shape grammar. Most participants
were experienced designers, and several knew how to use shape
grammars. Once they had learned how to use the implementa-
tion, they experimented with it freely. They worked on screen
and produced no physical output.

3. A 1-week intensive course in computer-aided design, covering
Rhino, Grasshopper, and shape grammar. Participants used
all these tools to design and render a pavilion. They produced
no physical output.

4. Two workshops on mass customization. In the shorter work-
shop (2 days), groups of participants designed and laser-cut
families of products like eyeglass frames and watch bands. In
the longer workshop (5 days), the subject was housing.
Groups of participants studied corpora of dwelling plans,
derived grammars, and created new designs. They produced
models with laser cutters and 3D printers.

Fig. 4. The Sierpiński grammar and a derivation in Rhino. The grammar is on the lower left; the derivation is on the right and consists of the initial shape, the final
shape, and four intermediate shapes.

204 Andrew I-kang Li

https://doi.org/10.1017/S0890060417000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000336


5. A one-term course on designing and making with shape gram-
mars (15 sessions of 90 min). Participants implemented ver-
sions of grammars in the literature [e.g., Knight’s (1980)
Hepplewhite-style chair back grammar], created and laser-cut
new designs (Fig. 5). The final assignment was to design and
laser-cut a family of products. Participants created objects
such as brooches, place mats, and flat-pack Christmas trees.

Observations

From these classes, I report a number of informal observations.
Here I focus on the grammar editor; for observations on the inter-
preter, see Li et al. (2009a). Many observations were of common
problems; I compiled these into an FAQ on the implementation’s
website11 and used it in later classes.

Setting up
In most cases, setting up had to be done by the users themselves.
This involves three main steps: installing the interpreter, installing
the Python scripts, and setting the Python module search path in
Rhino. These steps in turn sometimes involve details that were
unfamiliar to users, so the process was time-consuming. This
was a problem in the short workshops.

Using Rhino
Of Rhino’s native capabilities, users need to know very little.
Beyond basic interaction (e.g., manipulating views and layers),
they need to know only how to draw lines and text dots. Only
Rhino novices encountered difficulties; these mostly related to
drawing in three dimensions. For example, they sometimes drew
lines that appeared to be parallel to the xy-plane but were not.

Structuring grammars
To ensure parsability, users must structure their grammars
according to a few guidelines.

• A shape must be composed only of individual straight lines.
Users sometimes used objects such as polylines and rectangles.

• A shape must be composed of maximal lines. Users sometimes
drew overlapping or abutting lines.

• Components must be located on their own layers. Users –
mostly Rhino novices – sometimes neglected to do this.

• A frame specifies a local coordinate system for the shape it
encloses. Users sometimes positioned shapes inconsistently.

Users made use of the ability to rearrange components, going
through periods of relative messiness and then tidying up. This
they did, for example, by grouping rules by left shape or by
order of application. They usually grouped rules vertically, with
the arrows aligned, and kept the relative positions of the two
shapes and the arrow unchanged. This clearly suggests that arran-
ging components is a way for users to think about the grammar. It
is possible to lay out the components using three dimensions, but
no users did this.

Switching between editing and testing
Users developed their grammars iteratively and easily mastered
the steps involved in transferring files between Rhino and
Grammar Environment. Nevertheless, the steps are unrelated to

grammars and therefore are distractions that should be minimized
or eliminated.

In addition, users preferred the import final shape script and
rarely used the import derivation script. This suggests that they
were more interested in accumulating and developing new shapes
in a non-linear way. This was inconsistent with the model I had in
mind, in which users would explore the design space by uncover-
ing branches of the derivation tree. I consider this point more in
the discussion below.

Using Rhino for post-production
In the term-long course, students fabricated objects on the laser
cutter regularly. They imported new shapes from the interpreter
to Rhino, and then exported them as Illustrator files. The shapes,
which had been grammatically created, were not always exactly
what had to be in the Illustrator files, so students often had to
manipulate the shapes by hand or other non-grammatical
means, such as a Python script.

In some cases, the shapes were diagrams that had to be devel-
oped further. Students converted straight lines to curved lines, off-
set single lines to create double lines, and trimmed lines. In other
cases, they assigned colors to distinguish cutting lines and etching
lines for the laser cutter. Post-processing is convenient because it
is straightforward to move the shapes into Rhino.

One student laser-cut dozens of brooches. Another student,
designing flat-pack Christmas trees, used a fractal approach that
could generate many designs. But even a single design, after just
a few iterations, became so complex that the interpreter became
intolerably slow. He had no time to create another design.

Discussion

Next step: integration into Rhino

On the whole, users of the whole-grammar implementation worked
effectively: they focused on design tasks and were minimally dis-
tracted by sub-domain tasks. One reason is that editing is transpar-
ent. Users can manipulate all parts of a grammar directly and
immediately. Another reason is that post-processing is also transpar-
ent. Users can manipulate shapes non-grammatically, for example
by replacing straight lines with curves.

Clearly, the next step is to take greater advantage of Rhino.
One way is to abandon the external interpreter and build a new
one inside Rhino. Testing can be direct and immediate, just as
editing is already. New shapes would be drawn in Rhino in the
first instance and would be immediately available for non-
grammatical processing.

The result would not be a dedicated grammar tool; rather, it
would be a new functionality in Rhino. All that is needed is stan-
dards for parsability and the ability to apply rules.

In making such a move, of course, I run the same risk that I
met with the Autocad applet, namely that Rhino may change in
ways that I cannot keep up with. I think this is inevitable; Gips
(1999) has said as much. The only alternative to relying on an
existing modeling application is to develop my own, a task for
which I have neither time nor talent. I think that, on balance,
the advantages outweigh the disadvantages.

Other questions

At this point, I would like to speculate a little about some of the
observations above.11http://andrew.li/interpreter/create-grammar.html

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 205

https://doi.org/10.1017/S0890060417000336 Published online by Cambridge University Press

http://andrew.li/interpreter/create-grammar.html
http://andrew.li/interpreter/create-grammar.html
https://doi.org/10.1017/S0890060417000336


One of those observations is that users did not draw very pre-
cisely. For example, they drew shapes that they expected to match
but did not, because the shapes differed slightly. (The problem
was usually that they had not used a snap or other appropriate
drafting tool.) Or, they had not paid attention to the local coordi-
nate system. This is not so surprising since most users were new to
both shape grammar and Rhino.

To the extent that this is the reason for imprecision, the imple-
mentation serves to “train” users by enforcing shape grammar
conventions, just as an interpreter of a programming language
enforces that language’s conventions. Eventually, users assimilate
the conventions.

Another observation is that users imported more final shapes
than derivations. Again, a possible explanation is that they had
not yet acquired grammatical models of thought because they
were novices.

But there is another explanation for these observations: ama-
teur or designerly pragmatism. Woodbury (2010, p. 9) has written
about the pragmatism of amateur programmers, and I think it
applies equally well to amateur grammar users.

Amateurs satisfice – they leave abstraction, generality and reuse mostly for
“real programmers”. … Amateurs program because they have a task to
complete for which programming is a good tool. The task is foremost,
the tool need only be adequate to it. Amateurs write most programs
used in our world. Yet almost all programming tools are designed for
the professional and are overly complex for the tasks amateurs attempt.

Woodbury’s observation is consistent with my own and suggests
several points for consideration while preparing to build an inter-
preter inside Rhino.

Formality versus dynamism
Once the internal interpreter is implemented, the Rhino work-
space will be the scene of all the grammatical action, and new

shapes will appear alongside existing ones. How will users orga-
nize them all? It is too early to know, but just raising the question
suggests other ways to work with grammars.

For instance, given that designers seem to work in a nonlinear
way, it is easy to imagine that they might feel confined by a static
grammar. They might prefer to associate any three shapes (cur-
rent, before, and after) to generate a fourth. That is, they would
choose the current shape from among the shapes in the work-
space, and create a rule on the fly to transform it. Parsing
might be simplified, and the need for structure reduced.
Heisserman et al. (2004) use such an approach.

Fuzziness versus imprecision
If we say that designers work fuzzily rather than imprecisely, then
how and to what extent should an implementation accommodate
this fuzziness?

Take, for instance, non-maximal shapes, those with overlap-
ping or abutting lines. If a user draws a non-maximal shape, it
seems reasonable for the system to maximize it. This is consistent
with shape grammar theory, where restructuring is dynamic and
instantaneous.

What about matching? How close does a match have to be? I
suspect that designers often find rules too strict and prefer what
they call moves. Technically, moves can be characterized as sche-
mas, but they lack the precise assignments associated with sche-
mas. Perfectly general schemas are difficult to implement, but
fuzzy rules may be easier and almost as useful.

In any case, this suggests that the theoretical definition of sche-
mas may not be a complete guide to action. In this respect, Jowers
et al.’s (2010) visual implementation is an interesting example of
fuzzy rule application.

Synthesis versus analysis
Up to this point, my observations have been about designers: peo-
ple who create designs, or synthesists. But there is another

Fig. 5. Hepplewhite-style chair back diagrams after
Knight (1980) by a student, NAKABE Kazutaka. Above
are the diagrams with straight lines as generated by
the grammar; below are the diagrams with the straight
lines replaced by curved lines. (With the permission of
NAKABE Kazutaka.)

206 Andrew I-kang Li

https://doi.org/10.1017/S0890060417000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000336


category of grammar users that I have not observed: those who
look at existing designs and try to understand them by describing
them grammatically. They are known as analysts, and they fre-
quently study style; Stiny and Mitchell (1978) have given a clear
framework for this type of problem.

I suspect that analysts are more likely to be interested in formal
structures like derivations and the design space since the task itself
is formal. They might want to use the implementation differently
from synthesists. For example, they might like to work with the
derivation tree specified by a grammar.

Users may also do both synthesis and analysis. For example,
they may analyze a sample of designs, formulate a grammar, mod-
ify the grammar, and create new designs. In this case, they would
probably want to make use of all the capabilities that can be
provided.

All of these are intriguing questions and should be investigated
in the future.

Conclusion

The whole-grammar approach already helps users with develop-
ing grammars, creating new shapes, and further processing
those shapes.12 The next step in this direction is to build an inter-
preter inside Rhino; work has already begun. Users will use this
interpreter, not as a single tool in a grammatical universe, but
as another tool in the Rhino toolbox. This change of emphasis
suggests new ways to support grammar users, ways that are less
formal than what is usually seen in the literature and perhaps
more congenial to designers. Like so many things grammatical,
the results could be surprising.

Acknowledgments. I would like to thank Hau Hing CHAU (University of
Leeds, UK) for sharing his code in the first instance; the Hong Kong
Research Grants Committee, for supporting the development of Grammar
Environment; CHANG Teng-wen (National Yunlin University of Science
and Technology, Taiwan), HUANG Weixin (Tsinghua University, China),
LEE Ji-hyun (KAIST, Korea), and Kyoto Design Lab (Kyoto Institute of
Technology, Japan) for supporting the workshops and classes; and the anon-
ymous reviewers, not only for their comments on the paper, but also for their
suggestions for future work.

References

Chase S (2010) Shape grammar implementations: the last 35 years. DCC
Workshop, Stuttgart, 11 July 2010. Available at http://www.slideshare.net/
schase56/dcc-2010-grammars-workshop-chaserevisedcompresseshape-
grammar-implementations-the-last-35-years (Accessed 25 April 2017).

Chau HH, Chen XJ, McKay A and de Pennington A (2004) Evaluation of a
3D shape grammar implementation. In Gero JS (ed.). Design Computing
and Cognition ’04. Dordrecht: Kluwer, pp. 357–376.

Gips J (1975) Shape Grammars and Their Uses: Artificial Perception, Shape
Generation and Computer Aesthetics. Basel: Birkhäuser.

Gips J (1999) Computer Implementations of Shape Grammars. Workshop on
Shape Computation. Cambridge, Mass: MIT.

Grasl T and Economou A (2013) From topologies to shapes: parametric shape
grammars implemented by graphs. Environment and Planning B: Planning
and Design 40(5), 905–922.

Heisserman J, Mattikalli R and Callahan S (2004) A grammatical approach
to design generation and its application to aircraft systems. In Akın Ö,
Krishnamurti R and Lam KP (eds). Generative CAD Systems. Pittsburgh:
Carnegie Mellon University, pp. 403–418.

Jowers I, Hogg DC, McKay A, Chau HH and de Pennington A (2010) Shape
detection with vision: implementing shape grammars in conceptual design.
Research in Engineering Design 21(4), 235–247.

Knight TW (1980) The generation of Hepplewhite-style chair-back designs.
Environment and Planning B: Planning & Design 7, 227–238.

Knight T and Stiny G (2015) Making grammars: from computing with shapes
to computing with things. Design Studies 41, 8–28.

Krishnamurti R (2015) Mulling over shapes, rules and numbers. Nexus
Network Journal 17(3), 925–945.

Li AI, Chau HH, Chen L and Wang Y (2009a) A prototype system for devel-
oping two- and three-dimensional shape grammars. In Proceedings of the
14th International Conference on Computer-Aided Architectural Design
Research in Asia, CAADRIA 2009, pp. 717–726.

Li AI, Chen L, Wang Y and Chau HH (2009b) Editing shapes in a prototype
two- and three-dimensional shape grammar environment. In Computation:
The New Realm of Architectural Design (27th eCAADe Conference
Proceedings), Istanbul, pp. 243–250.

Pauwels P, Strobbe T, Eloy S and DeMeyer R (2015). Shape grammars for
architectural design: the need for reframing. In Celani G, Sperling DM,
Moara J and Franco S (eds). Computer-Aided Architectural Design
Futures: The Next City – New Technologies and the Future of the Built
Environment: 16th International Conference, CAAD Futures 2015, São
Paulo, Brazil, July 8–10, 2015. Selected Papers. Berlin: Springer, pp. 507–526.

Stiny G and Gips J (1972) Shape grammars and the generative specification of
painting and sculpture. In Frieman CV (ed.) Information Processing ’71.
Amsterdam: North-Holland, pp. 1460–1465.

Stiny G and Mitchell WJ (1978) The Palladian grammar. Environment and
Planning B: Planning & Design 5, 5–18.

Tapia MA (1999) A visual implementation of a shape grammar system.
Environment & Planning B: Planning & Design 26, 59–73.

Woodbury R (2010) Elements of Parametric Design. London: Routledge.

Andrew I-kang Li is an Associate Professor of Design and Architecture at
Kyoto Institute of Technology, Kyoto, Japan.

12The interpreter, scripts, and documentation are available at http://andrew.li/
interpreter/

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 207

https://doi.org/10.1017/S0890060417000336 Published online by Cambridge University Press

http://www.slideshare.net/schase56/dcc-2010-grammars-workshop-chaserevisedcompresseshape-grammar-implementations-the-last-35-years
http://www.slideshare.net/schase56/dcc-2010-grammars-workshop-chaserevisedcompresseshape-grammar-implementations-the-last-35-years
http://www.slideshare.net/schase56/dcc-2010-grammars-workshop-chaserevisedcompresseshape-grammar-implementations-the-last-35-years
http://www.slideshare.net/schase56/dcc-2010-grammars-workshop-chaserevisedcompresseshape-grammar-implementations-the-last-35-years
http://andrew.li/interpreter/
http://andrew.li/interpreter/
http://andrew.li/interpreter/
https://doi.org/10.1017/S0890060417000336

	A whole-grammar implementation of shape grammars for designers
	Introduction
	About the implementation
	Chau's implementation
	The stand-alone interpreter
	The shape editors
	The grammar editor

	Using the implementation
	Editing the grammar
	Testing the grammar
	Using the resulting shapes

	Experiences with users
	The classes
	Observations
	Setting up
	Using Rhino
	Structuring grammars
	Switching between editing and testing
	Using Rhino for post-production


	Discussion
	Next step: integration into Rhino
	Other questions
	Formality versus dynamism
	Fuzziness versus imprecision
	Synthesis versus analysis


	Conclusion
	Acknowledgments
	References


