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SUMMARY
The paper deals with the kinematic redundancy control of a
3DOF linear hydraulic manipulator moving in the vertical
plane. The analysis is carried out in actuator coordinates so
as to make the results usable in control schemes with
actuator position feedback. The idea is to use the initial
manipulator configuration as an optimization parameter in
order to: (I) further minimize the actuator velocities
obtained by a pseudoinverse solution, (II) simultaneously
avoid actuator limits without recourse to a gradient
projection approach. An improved pseudoinverse redun-
dancy solution is thus obtained and implemented in a
simple, non-iterative algorithm suitable for real-time appli-
cations. Simulations of a typical task with the proposed
method show that minimizing the actuator velocity norm
yields better results than minimizing the manipulator kinetic
energy.
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1. INTRODUCTION
Redundancy resolution of robotic mechanisms by local or
global optimization has been extensively discussed in the
literature. Most methods for solving redundancy by local
optimization use the pseudoinverse-based solution intro-
duced in reference 1 and extended by a gradient projection
method in reference 2 illustrated below

u̇=J+ ẏ+(I2J+ J)z (1)

where y is the m-vector of Cartesian coordinates of the end-
effector, u denotes the n-vector of joint variables, (n>m), J+

denotes the Moore-Penrose pseudoinverse of the Jacobian
matrix, J, (I2J+ J) is the null-space projection matrix and z
is an arbitrary vector in the null-space of the Jacobian. The
first term of Eq. (1) is the pseudoinverse solution fulfilling
the primary goal of following a given trajectory, while in the
second term the null-space vector can be set to correspond
to the gradient of various optimization functions F(u), i.e.,
z=a=F(u). It is thus possible to specify a number of
secondary optimization objectives, such as joint limit
avoidance,2,3 obstacle avoidance,4,5 joint torque minimiza-
tion,6 joint acceleration optimization,7 and maximization of
various end-effector dexterity measures.8,9 All these solu-

tions are local, in the sense that they deal with the
instantaneous kinematics of motion, i.e., motion that is
locally optimized by incremental movement from the
current manipulator state. Motivation for the present study
has been provided by the fact that the influence of the initial
robot configuration on the redundancy solution has not yet
been considered. In this context, the contributions of the
present study dealing with the redundancy resolution of a
3DOF hydraulic manipulator are as follows. First, the initial
configuration is used in a non-iterative optimization algo-
rithm that improves the pseudoinverse solution and
simultaneously avoids the actuator limits. Second, the
solution is developed in actuator coordinates, thus making it
usable in computed-force control algorithms with actuator
position feedback.10,11 The approach is illustrated by sim-
ulating a typical task using two improved pseudoinverse
solutions, one minimizing the norm of actuator velocities
and the other the kinetic energy.

2. ANALYSIS
Consider the common type of serial hydraulic manipulator
driven by linear actuators shown in Figures 1a and 1b and
moving in the vertical plane. Here W denotes the load, W1,
W2 and L1, L2 – the weight of booms 1 and 2 and their
lengths, respectively, W3 and L3 – the weight and length of
the telescope, u1, u2 – the manipulator angles (positive
counterclockwise), e, c, L11, L12, L21, L22, a1, a2, b1, b2 –
specified lengths and angles, and x1, x2, x3–the actuator
lengths, where L2 +x3 =L3 +d3. From Figs. 1a and 1b the
relationships between the manipulator angles u1, u2 and the
joint coordinates q1, q2 are obtained as follows

u1 =q1 +c1, c1 =2p/2+(a1 +a2) (2)

u2 =q2 +c2, c2 =b1 +b2 2p (3)

In the y1 2y2 coordinate system of Figure 1, the joint-to-
Cartesian transformation is expressed by

y1 =L1 cos u1 +(L3 +d3) cos(u1 +u2)2e
=L1 cos (q1 +c1)+(L3 +d3) cos(q1 +q2 +c1 +c2)2e (4)

y2 =L1 sin u1 +(L3 +d3) sin(u1 +u2)+c
=L1 sin (q1 +c1)+(L3 +d3) sin(q1 +q2 +c1 +c2)+c (5)

which can be written in a more compact form and
differentiated twice to give

y=h1(q) (6)

ẏ=
­h1

­q
q̇=J(q)q̇ (7)
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ÿ=J(q)q̈+ J̇(q)q̇ (8)

where J denotes the Jacobian of the joint-to-Cartesian
transformation (6). The joint-to-actuator transformation is
obtained from Figure 1 as

xi =ÏL2
i1 +L2

i2 22Li1Li2 cos qi, i=1,2, x3 =d3 2L2 +L3 (9)

which can also be rewritten in a more compact form and
differentiated twice to give

x=h2(q) (10)

ẋ=
­h2

­q
q̇=A(q)q̇ (11)

ẍ=A(q)q̈+Ȧ(q)q̇ (12)

where the Jacobian A takes the form

A=
a1

0
0

0
a2

0

0
0
1

(13)

ai, i=1,2 being the torque arms of actuator forces F1 and F2

given by

ai =L1iL2i sin qi/xi (14)

Fig. 1. 3-DOF hydraulic manipulator in the vertical plane.
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The diagonal matrix A thus gives the relationship between
joint torques t and actuator forces F as (AT =A)

t=AF

Combining Equations (7)–(8) and (11)–(12) yields the
following actuator-to-Cartesian kinematic relationships
between velocities and accelerations

ẏ=JA21ẋ (16)

ÿ=JA21ẍ+(J̇2JA21Ȧ)A21ẋ (17)

A novel approach used in this study consists in developing
the manipulator kinematics and dynamics in actuator
coordinates rather than in the usual joint space coor-
dinates.10,11 This was done with a view toward the real-time
implementation of model-based computed-force control
laws, since actuator coordinates can easily be measured and
used for position feedback. Neglecting joint friction and

disturbance terms, the equations of motion of a serial n-joint
manipulator can be written in joint coordinates q as

M(q)q̈+V(q,q̇)+G(q)=t (18)

where M(q) is the inertia matrix, V(q,q̇) is the matrix of
centrifugal and Coriolis terms, and G(q) is the gravitation
torque vector. Solving Equation (12) for q̈ and replacing q̇
from Equation (11) gives

q̈=A21(ẍ2 Ȧq̇)=A21(ẍ2 ȦA-1ẋ) (19)

Replacing t and q̈ from Equations (15) and (19), respec-
tively, in Equation (18) and solving for the actuator forces,
the manipulator equations of motion in terms of the actuator
linear coordinates x and forces F are obtained as

F=A21MA21ẍ2A21MA21ȦA21ẋ+A21N (20)

where the vector term N(q,q̇)=V(q,q̇)+G(q) includes the
nonlinear terms. Equation (20) can be rewritten in a more
compact form as

FH =MH ẍ+NH (21)

where

MH =A21MA21 (22)

NH =A21N2Mh ȦA21ẋ, (23)

and the subscript H indicates hydraulic actuator coor-
dinates.

Specializing Equation (1) to actuator coordinates, the
unweighted pseudoinverse redundancy solution yielding the
actuator velocities required to follow a desired trajectory
yd(t) is obtained from Equation (16) as

ẋ=J+
Hẏd (24)

Fig. 2. HIAB 031 hydraulic crane.

Fig. 3. HIAB 031 workspace and test task.
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where

JH =JA21 =J
1/a1

0

0

0

1/a2

0

0

0

1

(25)

J+
H =JT

H(JHJT
H)21 (26)

which results in a minimum velocity norm solution
(min ẋTẋ). Since in this way the sum of squares of actuator
velocities is minimized, the kinetic energy is also approx-
imately minimized. A different way to realize desired
performance characteristics is the weighted pseudoinverse.
The pseudoinverse that minimizes the cost ẋTWx is

J+
W =W21JT(JW21JT)21 (27)

where W is an appropriately chosen weighting matrix. For a
true minimization of the kinetic energy, the pseudoinverse
must be weighted with the manipulator inertia matrix MH.
The kinetic energy is

TH =
1
2

ẋTMHẋ (28)

and the weighted pseudoinverse that instantaneously mini-
mizes ẋTMHẋ is given by Equation (27) with W=MH

J+
MH =M21

H JT
H(JHM21

H JT
H)21 (29)

where the mass matrix in actuator coordinates is given by

MH =A21MA21 =
m11/a2

1

m21/a1a2

m31/a1

m12/a1a2

m22/a2
2

m32/a2

m13/a1

m23/a2

m33

(30)

m11 =2L1M cos u2(d3 +L3)+M[(d3 +L3)
2 +L2

1]+
1
3

r1L
3
1

+
1

3
(L3

2r2 +L3
3r3)+L1 cos 2(r2L

2
2 +r3L

2
3)+L2

1(L2r2 +L3r3)

+2L3r3L1d3 cos u2 +L3r3d
2
3 +L2

3r3d3

m12 =m21 =M(L1d3 cos u2 +(d3 +L3)
2 +L1L3 cos u2

+
1
3

(L3
2r2 +L3

3r3)
1
2

L1 cos u2(L
2
2r2 +L2

3r3) (31)

+L3r3L1d3 cos u2 +L3r3d
2
3 +L2

3r3d3

m13 =m31 =(L1L3r3 +L1M)sinu2

m22 =
1
3

(r2L
3
2 +r3L

3
3)+L3r3d

2
3 +L2

3r3d3 +M(d3 +L3)
2

m23 =m32 =0

m33 =L3r3 +M

Thus, the weighted pseudoinverse solution is

ẋ=J+
MHẏd (32)

which is a minimum kinetic energy solution (min ẋT MHẋ).
An improved pseudoinverse solution is proposed now

which further reduces the peak min ẋTẋ or minẋTMH ẋ values
and simultaneously avoids the actuator bounds. The idea is
to use to this end the initial manipulator configuration as an
optimization parameter and the algorithm proceeds as
follows:

(i) Define the desired trajectory yd(t).
(ii) Choose the initial telescope extension x3init as an

optimization parameter defining the initial manipulator
configuration (the initial extensions x1init or x2init of
actuators 1 or 2, respectively, can be chosen as well).

(iii) Start a loop sampling x3init values in the specified
admissible range [x3min, x3max].

(iv) For each x3init value, find by inverse kinematics the
initial manipulator configuration and compute the time-
histories of actuator velocities, displacements and
actuator velocity norm or kinetic energy along the
desired trajectory from t=0 to t= tf using either
Equation (24) or (32). Then:
• If x1 P[x1min, x1max]&x2 P[x2min, x2max] along the entire

trajectory, find the maximum value of the velocity
norm or kinetic energy and save it together with the
corresponding x3init value. Then, go to the next x3init

value.
• Else, go to the next x3init value.

(v) When the x3init loop is finished, the optimal x3init value is
the one corresponding to the lowest velocity norm or
kinetic energy, which automatically also satisfies the
actuator displacement constraints along the whole
path.

As it appears, the above algorithm is both simple (it involves
only a search of the pseudoinverse redundancy solution
along the specified path) and fast (it is noniterative, in
contrast to the gradient projection approach), being there-
fore most suitable for real-time control.

3. EXAMPLE
The proposed solution was tested through simulations
performed with the HIAB 031 hydraulic crane shown in
Figure 2. The crane parameters and joint limits (see notation
in Figure 1) are given below:

L1 =1.600 m; L2 =1.650 m; L3 =1.470 m;
L11 =1.037 m; L12 =0.376 m; L21 =1.130 m;
L22 =0.310 m; e=0.228 m; c=0.957 m;
a1 =21.7°; a2 =10.6°; b1 =27.1°; b2 =2.93°; r1 =80/
L1 kg/m; r2 =100/L2 kg/m; r3 =36/L3 kg/m;
x1P[0.830,1.375]m; x2P[0.830,1.375]m;
x3P[0,1.090]m; d3 =0.180÷1.270 m; u1 min =210.3°;
u1 max =92.1°; u2 min =2137.6°; u2 max =212.4°.

Using the specified joint limits in conjunction with the
direct kinematics Equations (4)–(5), the crane workspace
takes the shape shown in Figure 3. On the same figure is
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Fig. 4a. Variation of peak ẋTẋ with the initial telescope extension.

Fig. 4b. Min(ẋTẋ) actuator displacements and velocities along segment 1-2.

Fig. 4c. Nonoptimal actuator displacements and velocities along segment 1-2.
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displayed a typical task consisting of three linear segments
connecting points 1 (3.5,-0.5), 2 (1,-0.5) and 3 (2.25,3). The
work cycle is as follows: 1-2 (horizontal scraping action),
2-3 (extension to a dumping position), and 3-1 (return to the
starting position). For ease of comparison, it is assumed that
the end-effector tracks all segments with a constant velocity
of 0.5 m/sec. Accordingly, the parametric equations of a
linear trajectory P–Q traveled uniformly in a time tf are

yd =F y1d

y2d
G=F y1Q +(12 t/tf)(y1P 2y1Q)

y2Q +(12 t/tf)(y2P 2y2Q) G (33)

yielding by differentiation

ẏd =F ẏ1d

ẏ2d
G=F 2 (y1P 2y1Q)/tf

2 (y2P 2y2Q)/tf
G (34)

Simulations of the motion along the test task have been
performed using the improved min ẋTẋ and min ẋTMH ẋ
solutions. The results are presented in Figs. 4 and 5,
respectively.

• Improved min ẋTẋ solution: Figure 4a reveals the main
finding, namely that the peak actuator velocity norm
clearly depends on the initial manipulator configuration,
decreasing substantially with the initial telescope exten-

sion x3init along all task segments. Accordingly, the best
initial configuration for minimizing actuator velocities is
always with the telescope extended as much as feasible
for a specific task segment. The ranges of feasible x3init

values indicated for each segment ensure that none of the
actuator limits is exceeded. Reduction of the peak
velocity norm results in lower and smoother actuator
velocities and displacements, as shown by comparing an
optimal solution (Figure 4b) with a non-optimal one
(Figure 4c).

• Improved min ẋT MH ẋ solution: Figure 5a shows that
only a marginal reduction of the peak kinetic energy
norm and a narrow feasible x3init range are obtained in
this case. Furthermore, the algorithm tends to minimize
the kinetic energy by using the actuator x1 the least and
the telescope x3 the most, which results in higher and
steeper telescope velocities and displacements (Figure
5b).

4. CONCLUSION
An improved pseudoinverse solution for a 3DOF redundant
crane with linear hydraulic actuators has been presented.
The analysis has been performed in the actuator space so as
to make the results applicable in control schemes with
actuator position feedback. It is shown that by using the
initial manipulator configuration as an optimization parame-
ter, it is possible to reduce the actuator velocities obtained
by a pseudoinverse solution and simultaneously avoid the
actuator limits. The solution is implemented in a simple and
noniterative algorithm. Simulations of a typical task show
that the best initial configuration is with the telescope
extended as much as feasible. A comparison between the
improved min(actuator velocity norm) and min(kinetic
energy) solutions indicates that the former results in lower
and smoother actuator velocities and displacements than the
latter.
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