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In this paper we study the effects of the net magnetic helicity density on the
hemispheric symmetry of the dynamo generated large-scale magnetic field. Our study
employs the axisymmetric dynamo model which takes into account the nonlinear
effect of magnetic helicity conservation. We find that, on the surface, the net magnetic
helicity follows the evolution of the parity of the large-scale magnetic field. Random
fluctuations of the α-effect and the helicity fluxes can invert the causal relationship,
i.e. the net magnetic helicity or the imbalance of magnetic helicity fluxes can drive the
magnetic parity breaking. We also found that evolution of the net magnetic helicity
of the small-scale fields follows the evolution of the net magnetic helicity of the
large-scale fields with some time lag. We interpret this as an effect of the difference
of the magnetic helicity fluxes out of the Sun from the large and small scales.

Key words: astrophysical plasmas

1. Introduction

The reflection asymmetry of the solar magnetic activity about the equator is one
of the most important properties of the solar dynamo. The magnetic fields of the
leading and following sunspot groups of the solar bipolar regions have predominantly
opposite polarities in each hemisphere. This is the so-called Hale polarity rule. A
similar asymmetry exist for the polar magnetic fields, which are most prominent
during the sunspot minima. After Parker (1955), it is commonly accepted that the
reflection properties of the large-scale magnetic field are determined by the dynamo
mechanism operating inside the Sun. The essential parts of the large-scale dynamo
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are governed by the differential rotation and the turbulent convective motions. In the
convective zone of a star the global rotation makes turbulent convective motions
helical. This results in the reflection asymmetry of the convective vortices about
the equator and produces the dynamo generation α-effect, which transforms the
global toroidal magnetic field to the poloidal (Parker 1955; Krause & Rädler 1980).
The reflection hemispheric asymmetry of the α-effect results in the hemispheric
asymmetry of the helical properties of the solar magnetic field. This phenomenon is
called the hemispheric helicity rule (hereafter HHR) and it is observed in a number
of the magnetic helicity tracers like the current helicity in the solar active regions,
chirality of the solar prominences etc. The standard HHR suggests a negative sign
of the current helicity of solar active regions (ARs) in the northern hemisphere and
a positive in the southern one. For the global magnetic field the opposite HHR
is expected (Blackman & Brandenburg 2003). In the ideal situation, there is a
hemispheric balance of distributions of the current helicity density and the total
magnetic helicity.

The origin of the HHR and its impact on the dynamo is extensively discussed in
the literature (see, e.g. the recent review Brandenburg (2018)). Recently Singh et al.
(2018) found that in cycle 24 more than 20 % of the vector magnetic field synoptic
maps show violations of the expected hemispheric sign rule. Reversals of the sign
rule of the current helicity of solar active regions during the beginning and the end
of cycles 22 and 23 have been reported by Zhang et al. (2010) and references therein.
Similar reversals have been found at the end of cycle 24 for the magnetic helicity
density by Pipin et al. (2019). The origin of the HHR reversals was addressed in our
previous paper using the mean-field dynamo models (Pipin et al. 2013b). It was found
that the reversal of the sign of the small-scale magnetic helicity follows the dynamo
wave propagating inside the convection zone and the spatial patterns of the magnetic
helicity reversals reflect the processes which contribute to generation and evolution of
the large-scale magnetic fields.

In the paper, the HHR will be characterized by the hemispheric sign distribution
and the net magnetic helicity parameters, such as the current and magnetic helicity
densities. For the perfect HHR the net helicities are about zero and the sign rule
is obeyed. The net helicity can be generated by the hemispheric imbalance of the
magnetic helicity flux from the surface to the outer atmosphere. The existence of the
net helicity flux is still under debate. For example, Georgoulis et al. (2009) found
that the helicity injection through the solar photosphere associated with active region
magnetic fields was well balanced over the solar cycle 23. On the other hand, Yang
& Zhang (2012) reported significant imbalance between the helicity fluxes of northern
and southern hemispheres. Currently, it is unclear to which extent the imbalance of
helicity fluxes impacts the dynamo processes inside the convection zone. It is also
unclear how the imbalance of helicity fluxes affect the net magnetic helicity density.
Another possible reason could be due to redistribution of the magnetic helicity
density over the spatial scale. Both effects (helicity fluxes and helicity cascades)
are governed by the complicated magnetohydrodynamic processes which can easily
destroy the equatorial symmetry from time to time and produce the net magnetic
helicity of the Sun.

In the paper we model effects of the net magnetic helicity using the mean-field
magneto-hydrodynamic framework. In this case it is important to distinguish magnetic
helicity of the small-scale and large-scale (global) fields of the Sun. We represent the
magnetic field B and its vector potential A (B=∇×A) as the sum of the mean and
fluctuating parts: B=B+ b, A=A+ a, where the overbar denotes the mean quantities.
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Next, the magnetic helicity is defined as the integral over the closed domain H =∫
A ·B dV , and the A ·B is the magnetic helicity density. Assuming the validity of the

Reynolds rule for averaging of the products and sum of a turbulent quantity, we can
distinguish between the contributions of the large-scale and small-scale magnetic fields
to the magnetic helicity density

χ (tot)
=A ·B=A ·B+ a · b. (1.1)

Hereafter, we denote the small-scale and large-scale parts of the magnetic helicity
density as follows,

χ = a · b, (1.2)
χ (m) =A ·B. (1.3)

Following Hubbard & Brandenburg (2012), Pipin et al. (2013a), we employ the
conservation law for χ (tot)

d
dt

∫
χ (tot) dV =−2η

∫
{B · J+ b · j} dV −

∫
∇ ·Fχ dV, (1.4)

where the Fχ denotes the helicity flux. In the above cited papers it was shown that,
with this formulation of the magnetic helicity conservation, the dynamo evolution
avoids the catastrophic quenching regimes. The differential equation that corresponds
to (1.4) is

∂χ (tot)

∂t
=−

χ

Rmτc
− 2ηB · J−∇ ·Fχ

− (U · ∇)χ (tot). (1.5)

In the (1.4) we assumed 2ηb · j= χ/Rmτc (see, Kleeorin & Rogachevskii 1999;
Kleeorin et al. 2016), where the magnetic Reynolds number Rm = 103−6 and η is the
microscopic diffusivity. Note that conservation law given by (1.4) takes into account
the possibility of magnetic helicity fluxes out of the dynamo domain. In the stationary
state we have locally

χ ≈−A ·B=−χ (m). (1.6)
This balance can be changed in any direction by the helicity fluxes either on the small
or the large scales.

We assume that the magnetic helicity density balance is following (1.5) and (1.6).
Clearly, there are important unknown details in (1.5), in particular, those are related
to the helicity density fluxes. Further, it will be shown that breaking of the equatorial
symmetry of the global magnetic field can result in the hemispheric imbalance of the
magnetic helicity density, as well. We study the mutual effect of this imbalance and
the magnetic parity breaking using mean-field dynamo models.

In § 2 we describe our dynamo model. Section 3 is devoted to description of the
main results and to discussion of those results in light of the available observational
proxies. Section 4 summarizes our findings.

2. Basic equations
2.1. Dynamo model

In this paper we will discuss the kinematic version of the mean-field dynamo model
developed recently by Pipin (2018) and Pipin & Kosovichev (2019). We study the
mean-field induction equation in a turbulent perfectly conducting medium

∂B
∂t
=∇× (E +U×B), (2.1)
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where E = u× b is the mean electromotive force, with u, b being the fluctuating
velocity and magnetic field, respectively, U is the mean velocity field, which is
represented by the differential rotation and meridional circulation. We assume that the
large-scale flow as well as the global thermodynamics of the convection zone remain
unaffected by the solar dynamo. Those effects were discussed in the above cited
papers. A large-scale axisymmetric magnetic field is represented by decomposition of
the sum of the toroidal and poloidal parts

B= eφB+∇×
Aeφ

r sin θ
, (2.2)

where θ is the polar angle. The mean electromotive force E is expressed as follows:

Ei = (αij + γ
(Λ)
ij )Bj + ηijk∇jBk. (2.3)

The tensor αij represents the α-effect, γ (Λ)ij is the turbulent pumping and ηijk is
the diffusivity tensor. The α effect includes hydrodynamic and magnetic helicity
contributions,

αij =Cα(1+ ξ (α)(t, θ))α
(H)
ij + α

(M)
ij , (2.4)

where ξ (α)(t, θ) is the fluctuating part of the α-effect. Further details about the kinetic
part of the α effect, α(H)ij , as well as γ (Λ)ij , α(M)ij and ηijk can be found in Pipin &
Kosovichev (2019). The nonlinear feedback of the large-scale magnetic field to the
α-effect is described by a dynamical quenching due to the constraint of magnetic
helicity conservation given by (1.5). Similar to that paper, the integration domain
includes the overshoot layer, which bottom is at rb = 0.68R�. The convection zone
extends from rb = 0.728R� to re = 0.99R�. We matched the dynamo solution to the
potential field outside, and assume zero magnetic field at the bottom boundary. The
numerical scheme employs a spatial mesh with 100 nodes in the radius. We use the
pseudo-spectral approach for the differentiation operators along latitude and the 64
nodes in latitude are located at the collocation points of the Legendre polynomial.
Turbulent coefficients in the bulk of the convection zone are calculated from solution
of the mean-field thermodynamic equation using the mixing-length approximation
and the mean entropy distribution. It is assumed that in the overshoot layer all the
turbulent coefficients except the eddy diffusivity are exponentially quenched. For
numerical stability we keep the finite eddy diffusivity in the overshoot layer. More
details can be found in Pipin & Kosovichev (2019). Distributions of the angular
velocity profile, the kinetic part of the α effect tensor and the rotationally anisotropic
eddy diffusivity in our model are shown in figure 1. The meridional circulation has
the magnitude 13 m s−1 at the surface and it has the stagnation point in the upper part
of the convection zone, near 0.9R. The given model describes the dynamo distributed
in the bulk of the convection zone. In this model the new dynamo wave starts at the
bottom and drifts toward the surface and equator in the main part of the convection
zone, below 0.9R. The model of the large-scale flow gives the equatorward meridional
circulation in that region. The equatorial drift of the toroidal magnetic field in the
subsurface shear layer, i.e. above 0.9R, is provided by the Parker–Yoshimura law
(Yoshimura 1975) and the latitudinal turbulent pumping; see the detailed discussion
of these effects in Pipin (2018). Similar mechanisms are also suggested by direct
numerical simulations, e.g. Warnecke et al. (2016, 2018). The given model is one of
the numerous variants of the mean-field dynamo models discussed in the literature
(Charbonneau 2011). The possible choice of the solar dynamo scenario includes the
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(a) (b) (c)

FIGURE 1. (a) The reference angular velocity and the streamlines of the meridional
circulation distribution; (b) the radial profiles of the α-effect tensor at latitude 45◦;
(c) radial profiles of the total, ηT + η‖ and the rotationally induced part, η‖, of the eddy
magnetic diffusivity.

cases with and without the effect of the meridional circulation with the dynamo
effects distributed over the convection zone and concentrated in the convection zone
boundaries (Choudhuri & Dikpati 1999; Brandenburg 2005; Cameron & Schüssler
2017). In particular, the models without the meridional circulation (see, e.g. Pipin
et al. (2013b) and their earlier papers) seems to be outdated. Despite the qualitative
agreement, the modelled time–latitude evolution of the surface radial magnetic field
in is not very consistent with observations. The dynamo model with shallow return
flow, such as suggested by Pipin & Kosovichev (2019) and considered here, gives
qualitatively similar results to our previous models without the meridional circulation.
Also, the given model allows us to explain the so-called ‘extended’ mode of the
torsional oscillation. The meridional flow can be one of the key factors causing
the existence of this mode. This justifies application of the particular variant of the
dynamo model for our study.

2.2. Random sources of the helicity density imbalance
In our model we explore a few possible sources of the net helicity density. The first
is the, non-symmetric about the equator, fluctuations of the kinetic α-effect (see (2.4)).
For deterministic problems like the dynamo equation system, the equations (1.5) and
(2.1), which are solved by the standard numerical integration schemes, the spatial
and temporal fluctuations of the model parameters are sources of potential numerical
pitfalls because the meaning of the derivative is rather different for the deterministic
and the random functions. Practically, without going deep into details, we are safe if
the typical spatial and temporal scales of the fluctuations are much larger than the
size of the spatial mesh and the size of the time step. To simulate the randomness
of the α-effect distribution over hemispheres we generate spatially random Gaussian
sequences, ξ (α)(θj), where θj are the collocation points of the Legendre polynomials,
and 〈ξ (α)(θj)〉 = 0, σ(ξ (α)(θj))= 0.5. Then, we decompose the sequence ξ (α)(θj) in the
Legendre polynomials and filter out all the Legendre modes higher than ` = 5. The
resulted latitudinal fluctuations of the α-effect are described via the smooth functions.
The ensemble of ξ (α)(θ) follows the Gaussian probability distribution with a mean
approximately equal to 0 and a standard deviation σ ≈ 0.2. The renewal time for
the sequences ξ (α) is also taken in the form of a random sequence. We loosely pick
up the values larger than 0.5 year intervals, which is safe for the numerical scheme
with a time step of approximately a few hours. The low boundary of the renewal
time interval is close to the typical evolution time of the large solar active region
(Stenflo 2013). The probability distribution of the renewal time is shown in figure 2(a).
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(a) (b)

FIGURE 2. (a) Probability distribution of the renewal time intervals of ξ (α)(t, θ); (b) red
lines show three realizations of ξ (α)(t, θ), the vertical bars show the standard deviations
for particular latitudes and the blue line shows the mean over ensemble of realizations,
〈ξ (α)(t, θ)〉 ≈ 0.

The fluctuations of the α-effect in latitude are illustrated in figure 2(b). Note that
contribution of ξ (α)(t, θ) in (2.4) is multiplied by a factor cos θ caused by α(H)ij .

Another source of the net helicity density can be due to the asymmetry about
the equator of the flux of helicity density from the dynamo domain to the corona.
Following the suggestions by Guerrero, Chatterjee & Brandenburg (2010) we model
this by subtracting the fraction of the helicity density from the local helicity density
in the upper parts of the convection zone. Thus, the modified equation for the helicity
density evolution is

∂χ (tot)

∂t
= −

χ

Rmτc
− 2ηB · J−∇ ·F

−
τξ (r)
τ0r

sin2 θ(ξ (χ)(t, θ)χ + ξ (m)(t, θ)χ (m)), (2.5)

where, F=−ηχ∇χ , with ηχ = 0.1η(I). Similarly to Pipin et al. (2013b), we employ
Rm = 106. The last term in (2.5) takes into account the helicity density flux out of
the solar convection zone. In the paper we study the fluxes of the small-scale and
large-scale magnetic helicities. They are ξ (χ)χ and ξ (m)χ (m), respectively. It is assumed
that the fluxes are due to the near surface magnetic activity. Therefore, we apply the
factor sin2 θ and introduce the function

τξ (r)= 1
2 [1− erf(100(r0 − r))], (2.6)

where r0 = 0.9R� and the dimension factor corresponds to the maximum of the
probability density function (PDF) of the renewal time, τ0r = 0.5 Yr (see figure 2a).
In our model we assume that the renewal times for both the large- and small-scale
helicity fluxes are the same. This seems counter-intuitive. However, introducing
another longer renewal time for the large-scale helicity will introduce a additional
free parameter in the model. This is postponed to a future study.

The sequence of the renewal times of the helicity density outflows will be
determined in the same way as for the α-effect except for the low limit, which is
approximately ten times smaller and is equal to one month. Thus, the net helicity
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density flux over a hemisphere is computed as integral over the shell, which includes
the subsurface region between r0 and R�. Functions ξ (χ) and ξ (m) are random in
latitude, and they are defined in the same way as ξ (α) and we use the ensembles of
the spatial fluctuations with the Gaussian probability function distribution, the mean
value of ξ (χ,m) = 0 and the standard deviation of σ(ξ (χ,m)) = 1. These fluctuations
are driven with the random renewal time interval, which has the same probability
distribution as the α effect fluctuations. For the magnetic helicity density we employ
χ =0 at the bottom and ∇rχ =0 at the top of the convection zone domain. We neglect
the magnetic helicity evolution in the overshoot region for the sake of simplicity.

For the purpose of analysis we introduce the total energy of the dynamo generated
magnetic field,

EB =
1

8π

∫
B2

dV, (2.7)

where integration is over the dynamo domain. Following Pipin, Sokoloff & Usoskin
(2012), we mimic the sunspot number using parameters of the toroidal magnetic field
in the subsurface shear layer

W = Bmax(t) exp
(
−

Bmax(t)
B0

)
, (2.8)

where B0 = 600 G and Bmax(t) = maxµ=−1:1((B(µ, t)|0.95R)). In (2.8), we assume that
sunspots are produced from the toroidal magnetic fields by means of some nonlinear
instability.

The properties of the equatorial symmetry of the magnetic activity is characterized
by the parity index. Let us define the parameters characterizing the energy of the
symmetric and antisymmetric parts of the radial magnetic field at the surface

ES
B =

1
4

∫ 1

−1
[Br(µ, t)+ Br(−µ, t)]2 dµ, (2.9)

EN
B =

1
4

∫ 1

−1
[Br(µ, t)− Br(−µ, t)]2 dµ. (2.10)

Then, the parity index, or the reflection symmetry index for this component of the
magnetic activity, is

P=
ES

B − EN
B

ES
B + EN

B
. (2.11)

Also, we define the parameters characterizing the helicity fluxes of the large- and
small-scale magnetic fields. In the model, these fluxes are determined by the random
parameters ξ (χ) and ξ (m). For the large-scale magnetic field we define the latitudinal
helicity density flux

FL =−2π sin2 θξ (m)(t, θ)
∫ R

.9R

τξ (r)
τ0r

χ (m)r2 dr. (2.12)

The small-scale magnetic helicity density flux includes the diffusive flux as well, see
(2.5),

FS =−2πR2ηχ∇χ |
R
.9R − 2π sin2 θξ (χ)(t, θ)

∫ R

.9R

τξ (r)
τ0r

χr2 dr. (2.13)
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(a)

(b)

FIGURE 3. (a) Current helicity density imbalance of the solar ARs (blue colour) and
the large-scale magnetic field helicity density imbalance (shown in red colour), and their
representation via the first three empirical modes; lines show positions of maxima of the
solar cycles 22 and 23; (b) shows the relative power of each mode in the empirical mode
decomposition (EMD), where the results are normalized to the maximum of the magnitude
of the signal.

Following Berger & Ruzmaikin (2000) and Hawkes & Yeates (2019) we define the
latitudinal helicity density flux due to the differential rotation

FΩ =−4πR3 sin θA Br Uφ, (2.14)

where A is the vector potential and Uφ = R sin θΩ(R, θ) is the large-scale azimuthal
flow at the surface. This helicity flux does not enter directly in the helicity evolution
equation. Its effect on the dynamo is determined by the boundary conditions.

3. Observational proxies of the net magnetic helicity
In the Introduction we defined the hemispheric helicity rule by the surface integral

of the magnetic helicity proxies. Figure 3(a) shows the integral of the current helicity
density of the solar active regions obtained from the reduced data set of the Huairou
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Solar Observing Station given in Zhang et al. (2010),

δhC =

∫ 1

0
hC dµ, (3.1)

where µ= cos θ and θ is the polar angle, and the same for the net magnetic helicity
density over large and small scales which was reconstructed by Pipin & Pevtsov
(2014) using the SOHO/MDI data set,

δχ (m) =

∫ 1

0
χ (m) dµ. (3.2)

We observe the solar cycle variations of the HHR parameters in both cases. The low
cadence of the data set of δhC and the limited time interval in both data sets result in
uncertainty in our conclusions about the long-term behaviour of these parameters. To
get a rough idea we apply the empirical mode decomposition (EMD) method, using
the standard PYTHON package, which is available from the SCIPY distribution sets
(http://scipy.org). Because of the mentioned issue of our data sets, our analysis is
rather rough and it can be subject to systematic aliasing errors. We show the results in
the same figure 3(a). The information about the contribution of the empirical modes to
the energy of the signal is shown in figure 3(b). In the signal of δhC, the ‘small-scale’
modes of short periods, 1–3 years, are the strongest. Their effect on the whole δhC is
rather strong over the sunspot minima. The first three modes of δhC show the variation
with the solar cycle period. The large-scale magnetic helicity density imbalance has a
strong signal with a period of approximately 9 years and the first three modes quite
accurately reproduce the total signal. The sum of the first three modes of current
helicity density imbalance

∑2
0 δhC i has a similar period. It is seen that

∑2
0 δhC i goes

ahead of
∑2

0 δχ
(m)
i with a phase shift of approximately π. This rough analysis shows

the possibility of the quasi-regular variations of δhC and δχ (m) in the dynamo cycle.
We shall see whether this effect can be reproduced in our dynamo models.

4. Results
The dynamo model governing parameters are the same as in the paper of Pipin &

Kosovichev (2019). In all the runs we consider a slightly overcritical dynamo regime
using the same dynamo parameter set as in the our previous papers. Similar to those
papers, our models are weakly nonlinear with βmax= |B|/

√
4πρ̄u′2 < 0.4. The random

parameters in the models are applied following table 2. Also, table 2 shows some
output parameters, like the amplitude of the helicity flux variations, the amplitude of
the total magnetic energy and maximum amplitudes of the net helicity in our models.

Figures 4 and 5 illustrate the time–latitude diagram of the toroidal magnetic field
in the upper part of the solar convection zone, the radial magnetic field at the surface,
the time–latitude evolution of the small-scale magnetic helicity density and the fluxes
FL, FS, as well as the flux from the differential rotation, FΩ , see figures 4 and 5(d).
The series include episodes of relatively high and weak magnetic activity for the
models M2 and M3 (see, also, figure 6). Similar evolution diagrams were found for
the models M1 and M4. Evolution patterns of the magnetic field and the HHR for
the large- and small-scale magnetic helicity densities are qualitatively similar to our
previous results which were discussed in Pipin et al. (2013b). In particular, for the
episodes of high activity, e.g. during years 380–400, our models show the standard
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Model ξ (α) ξ (χ) ξ (m)

M1 Yes No No
M2 〈ξ (α)〉 No Yes
M3 〈ξ (α)〉 Yes No
M4 〈ξ (α)〉 Yes Yes

TABLE 1. Random parameters of the model runs. In the models M2, M3 and M4
we neglect the hemispheric asymmetry of the α-effect fluctuations. In these cases the
fluctuating part of the α-effect is equal to 〈ξ (α)〉(t) where we use average over latitudes,
see the (2.4).

Model FL, 1040 FS, 1042 FΩ , 1043 EB
RMS, 1037 σδχ , 1012 σδχm, 1012 χRMS, 1012 χm

RMS, 1012

(Mx2/d) (Mx2/d) (Mx2/d) (G2) (G2 M) (G2 M) (G2 M) (G2 M)

M1 — 7 1.9 2.1± 0.57 2.4 2.9 5.9± 2.1 13.2± 6.1
M2 — 8.8 2.7 1.8± 0.63 1.6 1.7 5.3± 2.1 9.9± 5.1
M3 0.8 7 1.5 2.5± 0.75 1.5 2.1 5.7± 2.4 15.8± 8.0
M4 0.7 7 2 2.1± 0.61 1.0 1.3 5.2± 2.0 12.5± 6.7

TABLE 2. The integral parameters of the model runs, from left to right: the magnitude
of the large-scale helicity flux, FL; FS is the same for the small-scale helicity density; FΩ
stands for magnitude of the helicity flux by the differential rotation; the total magnetic
energy root mean square (RMS) and its standard deviation (STD); the STD of the net
small-scale and large-scale helicity densities, σδχ and σδχm, respectively; the last two
columns show the RMS and STD of the small-scale and large-scale helicity densities.

HHR for the small- and the large-scale magnetic fields. The inversions of the HHR
occur during the relatively short periods of the growing and decaying phases of the
magnetic cycles. In the weak cycles these episodes last a longer time. There is a
similar tendency in the hemispheric behaviour of the helicity fluxes. The results for
the helicity flux due to the differential rotation, i.e. FΩ , are qualitatively similar to
the surface flux transport simulations of Hawkes & Yeates (2019). The amplitude of
this flux in our case is an order of magnitude smaller than in theirs because we are
restricted to the contribution of the axisymmetric magnetic field. In our simulations
the dynamo regimes show that FL < FS < FΩ .

It is found that in the given range variations of the parameters, ξ (χ), ξ (m), the
variations of the dynamo efficiency are weak. The magnitude of the maximum total
energy of the generated magnetic field among the models varies by approximately
20 % (see table 1). This is likely because the maximum of the dynamo wave is
located near the bottom of the convection zone and the dynamo efficiency does not
change much because the helicity flux from the surface. On the other hand, it is
assumed that random variations of the α-effect are uniform in radius. Therefore, the
effect of random variations of the α-effect is more profound than the effect of the
helicity flux variations.

Figure 6 shows the simulated value of the sunspot number, W, and the parity index,
P, for the models M2 and M3. The model M3 shows a higher cycle magnitude than
the model M2 because the helicity flux from the small-scales increases the dynamo
efficiency. The helicity flux from the large-scale magnetic field works in the opposite
direction. In contrast, the parity variations are higher in the model M2 than in the
model M3.
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(a)

(b)

(c)

(d)

FIGURE 4. The model M2: (a) the time–latitude diagram of the toroidal magnetic field
in the subsurface shear layer (contours in range of ±600 G) and the radial magnetic field
at the surface (colour image); (b) the time–latitude evolution of the small-scale (colour
image) and the large-scale magnetic helicity densities (contours are drawn for the same
range of magnitudes ±20 × 1010 G2 M); (c) the small-scale magnetic helicity density
flux, FS; (d) the time–latitude diagram of the toroidal magnetic field (same as a) and the
magnetic helicity density flux from differential rotation, FΩ (colour image).

Figure 7 shows the EMD-smoothed series for simulated value of the sunspot
number, W, the parity index, P, and the net magnetic helicity density at the surface
for the small-scale and large-scale magnetic fields, δχ and δχ (m), respectively, for our
models. In this figure we filter out all variations with periods smaller than 20 years
using the EMD. The net magnetic helicity densities were normalized to the current
RMS helicity densities.

The results of the model M2 show that, during epochs of the centennial magnetic
activity minima, corresponding to periods of around 100, 500 and 900 years,
the distributions of the magnetic field and the large-scale magnetic helicity density
are not symmetric about the equator and the parity index is greater than −1 during
most of the cycle, oscillating around [−0.8 : −0.6]. In contrast, the model M3 shows
a tendency for strong deviations of parity during the centennial maximum episodes.
This model shows the strongest variations of the sunspot number parameter, W. Our
models show the increase of the parity index seems to be accompanied by and
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(a)

(b)

(c)

(d)

FIGURE 5. The same as figure 4 for the model M3.

connected with the increase of the oscillation magnitudes of the net helicities δχ
and δχ (m). Variations of these parameters on the short time scale, including those
within the range of 1 year, go in anti-phase. This effect is quantified by the Pearson
correlation coefficient 〈δχ(t)δχ (m)(t+ τ)〉. It is further illustrated by figure 8(a), where
we show results for 〈δhC(t)δχ (m)(t + τ)〉 computed from our observational data sets
and from the models using the original data sets and the smoothed ones where we
filter out all variations with periods smaller than 20 years.

We see that in all the models there is an anti-correlation between δχ(t) and
δχ (m)(t+ τ) if τ = 0. The effect of the anti-phase synchronization is largest in models
M1 and M3. The same effect is present in the data as well, in particular, when
we restrict ourselves to the first three empirical modes of hC and χ (m) (the curve
D2). This conclusion is not robust because the correlation coefficient changes sign to
positive after adding the fourth empirical mode (see the curve D1). Also, we have
to take into account that the quality of the observational data is not sufficient for
a robust conclusion. The anti-phase synchronization δχ(t) and δχ (m)(t) persists in
the model M3 over the centennial time scales as well. Oppositely, the model M4
shows synchronization on the long time scales. The results of the models M1 and
M2 show the anti-phase behaviour over the range of scales from 50 to 100 years and
they show the absence of significant correlations on the longer time intervals. The
anti-phase synchronization in models M1 and M3 is further illustrated by the phases
of the analytical signals of δχ(t) and δχ (m)(t), which are computed using the Hilbert
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(a)

(b)

(c)

(d)

FIGURE 6. (a) The simulated value of the sunspot number, W for the model M2; (b) the
same for the parity index; (c,d) show the same as (a,b) for the model M3.

transform, and denoted as Φ(χ) and Φ(χ (m)), respectively. In the model M1 the
synchronization persists on the longer time intervals than in the model M3. This likely
due to absence of the forced magnetic helicity fluxes. The effect of synchronization
is reflected in the clustering of the points in the phase diagram to the two bands. The
effect is less for the model M3. The relation of the synchronization between δχ(t)
and δχ (m)(t) with the magnetic parity is further illustrated in figure 8(c,d). We see
that the dispersion of the difference Φ(χ) − Φ(χ (m)) is large (and possibly random
nature) when the parity index varies around 1. The dispersion decreases when the
parity index grows.

5. Discussion and summary
Results of our models predict the anti-correlation between variations of the net

magnetic helicity on the small and large scales on the short time intervals. A similar
effect is demonstrated by the observational data (see figure 3). However, observations
are rather noisy and cover a small period of time which is not enough to robustly
determine the given effect. It is found that the hemispheric asymmetry of the magnetic
helicity flux can affect the hemispheric asymmetry of the magnetic activity. The latter
is characterized the parity parameter P (see (2.11)), and the helicity imbalance
parameters. In our models the relative variations of the net helicities are weak. They
are typically less than 20 per cent of the RMS helicity density. The parity parameter
of the dynamo generated magnetic field is related to mixing of the fundamental
dynamo modes, which is corresponding to the symmetric and antisymmetric about
the solar equator magnetic field (Sokoloff & Nesme-Ribes 1994).
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(a) (c)

(b) (d)

FIGURE 7. (a) The smoothed simulated value of the sunspot number; (b) the same for the
parity index; (c) the same for the total magnetic energy; (d) the same the net magnetic
helicity density at the surface.

The net magnetic helicity density of the large-scale magnetic field can be related to
the parity parameter P as well. To see it, let us decompose the r and φ components
of the magnetic field and its vector potential in a series of Legendre polynomials Pn

and P1
n (also see Pipin & Pevtsov (2014))

Āφ(t, θ)=
N∑

n=1

a(n)φ (t)P
1
n(cos θ), (5.1)

B̄r(t, θ)=
N∑

n=1

b(n)r (t)Pn(cos θ), (5.2)

B̄φ(t, θ)=
N∑

n=1

b(n)φ (t)P
1
n(cos θ), (5.3)

Ār(t, θ)=
N∑

n=1

a(n)r (t)Pn(cos θ). (5.4)

Using the standard relations between Pn and P1
n we can find expressions for the

coefficients of the vector potential

a(n)φ (t)=−
Rb(n)r (t)
n(n+ 1)

, (5.5)

a(n)r (t)=−Rb(n)φ (t). (5.6)
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(a) (b)

(c) (d)

FIGURE 8. (a) The cross-correlations 〈δχ(t)δχ (m)(t + τ)〉 for the dynamo models and
the 〈δhC(t)δχ (m)(t + τ)〉 from the observational data sets of hC and χ (m) (D1) and the
same correlations computed from the first 3 empirical modes (D2); (b) the same as (a)
calculated from the smoothed series of the model runs see figure 7; (c) the phase diagram
for phases of the analytical signals of the δχ(t) and δχ (m)(t) in the models M1 and M3;
(d) the parity index in the models M1 and M3 versus the difference of the phases of the
analytical signals of δχ(t) and δχ (m)(t).

Then, restricting ourselves only to the two first terms of expansions we have

Āφ(t, θ)=−
R�b(1)r (t)

2
P1

1 −
R�b(2)r (t)

6
P1

2 + · · · , (5.7)

B̄φ(t, θ)= b(1)φ (t)P
1
1 + b(2)φ (t)P

1
2 + · · · . (5.8)

Note that
∫ 1
−1 ĀφB̄φ dµ=

∫ 1
−1 ĀrB̄r dµ because of the symmetry properties (Blackman

& Brandenburg 2003). Therefore, the net magnetic helicity density will be

δχ (m) = 2
∫ 1

−1
ĀφB̄φ dµ≈−

4R�
3

b(1)r (t)b
(1)
φ (t)−

8R�
15

b(2)r (t)b
(2)
φ (t)+ · · · . (5.9)

In this equation, b(1)r is the dipole mode of the radial magnetic field and b(1)φ is the
quadrupole mode of the toroidal magnetic field. Therefore, the magnetic parity P is
readily related to the magnetic helicity imbalance. In the recent paper of Pipin &
Kosovichev (2018), the parameter P was calculated from the data set including the
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last 4 solar cycles. It was found that P≈0 (strong asymmetry of the magnetic activity)
near the maxima of the sunspot activity. Taking into account the data presented in
figures 3 and 6 we conclude that the model prediction about the connection of the
parity and the net helicity parameter qualitatively agrees with observations. The best
agreement is for the model M3. This model shows the relatively high deviations
of the parity index during the magnetic cycles maxima. The parity variations are
accompanied by variations of the net hemispheric helicity. On the other hand, in the
long-term variations there may exist a correlation of magnetic helicity imbalance on
the small and large scales. The specific situation depends on the nature of the helicity
fluxes. The mix of the short-time random fluxes FL and FS results in a correlation of
χ and χ (m) on long-term intervals of more than 100 years. While the predominance
of one of FL or FS can result in anti-correlation over this time interval.

In our dynamo model we set the magnitude of the helicity flux variations to
be much less than the helicity flux due to differential rotation. Our results show
that the problem of the magnetic helicity flux from the dynamo domain can be a
delicate question. The helicity flux due to differential rotation is determined by the
top boundary condition. In our model we use the boundary conditions that provide
penetration of the toroidal magnetic field into the surface and the potential poloidal
magnetic outside the dynamo domain (see Pipin & Kosovichev 2019). The effect
of such a condition on the helicity conservation is not well studied. The results of
this paper show that the relatively small magnitude of the helicity fluxes from the
subsurface of the Sun can affect the dynamo evolution.

The predicted patterns of the small- and large-scale magnetic helicity in our dynamo
model are in qualitative agreement with results of observations of the current helicity
of solar active regions (see Zhang et al. 2010) and the results of Pipin et al. (2019).
The time–latitude evolution of the helicity fluxes FS, FL are similar to those shown
by χ and χ (m), which is expected by the model design. The helicity flux due to the
differential rotation, FΩ , evolves a bit differently, and its evolution in our models is
in agreement with the results of Hawkes & Yeates (2019) (cf. our figure 3a and 3d
in their paper). The interesting feature of the helicity flux found in both papers is the
presence of both signs of FΩ simultaneously as the dynamo cycle progresses from
high to low latitudes. The equatorial parts of the diagrams satisfy the standard HHR.
In our models the given effect can be explained by the magnetic cycles overlapping.
This effect was discussed recently by Pipin & Kosovichev (2019) and this discussion
can be extended to the results of our paper as well. It is interesting that a rather
similar pattern can be found in the non-axisymmetric dynamo model of Pipin &
Kosovichev (2018). Pipin et al. (2019) used this model as a benchmark prior to
processing the magnetic vector synoptic maps of helioseismic and magnetic imager
(HMI) for solar dynamic observatory (SDO).

For the given parameters of the helicity flux variations the amplitude of the dynamo
wave does not change strongly. The biggest effect is found for the magnetic field
equatorial symmetry and the magnetic helicity imbalance variations. According to
dynamo theory (Blackman & Brandenburg 2003), the magnetic helicity of the
large-scale field is, in general but not completely, determined by the sign of α-effect
and the opposite helicity sign is expected for the small-scale magnetic field. A
complicated connection between small- and large-scale properties of the magnetic
helicity fluxes in solar cycles 23–24 was discussed earlier by Yang & Zhang (2012)
and Zhang & Yang (2013). Results of Brandenburg, Petrie & Singh (2017), Singh
et al. (2018) and Pipin et al. (2019) show that the bi-helical property can be violated
and it was violated in solar cycle 24. As a result, the sign of the surface magnetic
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helicity density of the large- and small-scale field can be the same. The origin of
this phenomenon is unclear. In particular, from the results of Brandenburg et al.
(2017), the mono-helical magnetic helicity spectrum was shown to become bi-helical
by Singh et al. (2018) when data from SOLIS were used instead of HMI. Also,
Singh et al. (2018) found almost always bi-helical spectra, mono-helical ones being
clearly very rare. In a qualitative agreement with the results of Pipin et al. (2013b)
and the results of this paper, Singh et al. (2018) found that the sign rule in between
the large- and small-scale helicities can reverse, especially during the declining and
minimum phases. In general, we can assume the sign rule is related with fluctuations
of magnetic helicity fluxes. Our results about anti-correlation between variations of
magnetic helicity imbalance on the small and large scales support this idea. With
some reservation, it can be suggested that there is a relationship between violation
of the bi-helical property on the surface and the equatorial parity breaking of the
magnetic activity evolution. In this study we show the theoretical possibility of such
a relation. However, the strength of our prediction is rather limited because the
amplitude of the helicity flux fluctuations remains unconstrained in the model. This
opens interesting theoretical and observational prospects for future studies.
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