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A random intersection graph is constructed by assigning independently to each vertex
a subset of a given set and drawing an edge between two vertices if and only if their
respective subsets intersect. In this article a model is developed in which each vertex is
given a random weight and vertices with larger weights are more likely to be assigned
large subsets. The distribution of the degree of a given vertex is characterized and is
shown to depend on the weight of the vertex. In particular, if the weight distribution
is a power law, the degree distribution will be as well. Furthermore, an asymptotic
expression for the clustering in the graph is derived. By tuning the parameters of the
model, it is possible to generate a graph with arbitrary clustering, expected degree,
and—in the power-law case—tail exponent.

1. INTRODUCTION

During the last decade there has been a large interest in the study of large complex
networks; see, for example, Dorogovtsev and Mendes [7] and Newman, Strogatz, and
Watts [16] and the references therein. Due to the rapid increase in computer power,
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it has become possible to investigate various types of real networks such as social
contact structures, telephone networks, power grids, the Internet, and the World Wide
Web. The empirical observations reveal that many of these networks have similar
properties. For instance, they typically have power-law degree sequences, that is, the
fraction of vertices with degree k is proportional to k−τ for some exponent τ > 1.
Furthermore, many networks are highly clustered—meaning roughly that there is a
large number of triangles and other short cycles. In a social network, this is explained
by the fact that two people who have a common friend often meet and become friends,
creating a triangle in the network. A related explanation is that human populations are
typically divided into various subgroups—working places, schools, associations, and
so forth—which gives rise to high clustering in the social network, since members of
a given group typically know each other; see Palla, Derényi, Farkas, and Vicsek [17]
for some empirical observations.

Real-life networks are generally very large, implying that it is a time-consuming
task to collect data to delineate their structure in detail. This makes it desirable to
develop models that capture essential features of the real networks.A natural candidate
to model a network is a random graph, and, to fit with the empirical observations, such
a graph should have a heavy-tailed degree distribution and considerable clustering.
We will quantify the clustering in a random graph by the conditional probability that
three given vertices constitute a triangle, given that two of the three possible links
between them exist. Other (empirical) definitions occur in the literature—see, for
example Newman [14]—but they all capture essentially the same thing.

Obviously, the classical Erdős–Rényi graph will not do a good job as a network
model, since the degrees are asymptotically Poisson distributed. Moreover, existing
models for generating graphs with a given degree distribution—see, for example,
Molloy and Reed [12,13]—typically have zero clustering in the limit. In this article,
we propose a model, based on the so-called random intersection graph, in which both
the degree distribution and the clustering can be controlled. More precisely, the model
makes it possible to obtain arbitrary prescribed values for the clustering and to control
the mean and the tail behavior of the degree distribution.

1.1. Description of the Model

The random intersection graph was introduced by Singer [18] and Karoński, Schein-
erman, and Singer-Cohen [11] and has been further studied and generalized by
Fill, Scheinerman, and Singer-Cohen [8], Godehardt and Jaworski [9], Stark [19],
and Jaworksi, Karoński, and Stark [10]. Newman [14] and Newman and Park [15]
discussed a similar model. In its simplest form the model is defined as follows.

1. Let V = {1, . . . , n} be a set of n vertices and A a set of m elements. For
p ∈ [0, 1], construct a bipartite graph B(n, m, p) with vertex sets V and A by
including each one of the nm possible edges between vertices from V and
elements from A independently with probability p.
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2. The random intersection graph G(n, m, p) with vertex set V is obtained by
connecting two distinct vertices i, j ∈ V if and only if there is an element
a ∈ A such that both i and j are adjacent to a in B(n, m, p).

When the vertices in V are thought of as individuals and the elements of A as social
groups, this gives rise to a model for a social network in which two individuals are
joined by an edge if they share at least one group. In the following, we frequently
borrow the terminology from the field of social networks and refer to the vertices as
individuals and the elements of A as groups, with the understanding that the model
is, of course, much more general.

To get an interesting structure, the number of groups m is typically set to m = �nα�
for some α > 0; see Karoński et al. [11]. We will assume this form for m in the
following. Let Di be the degree of vertex i ∈ V in G(n, m, p). The probability that two
individuals do not share a group in B(n, m, p) is (1 − p2)m. It follows that the edge
probability in G(n, m, p) is 1 − (1 − p2)m and, hence, the expected degree is

E[Di] = (n − 1)(1 − (1 − p2)m)

= (n − 1)
(
mp2 + O(m2p4)

)
.

To keep the expected degree bounded as n → ∞, we let p = γ n−(1+α)/2 for some
constant γ > 0. We then have that E[Di] → γ 2.

Stark [14, Thm. 2] showed that in a random intersection graph with the above
choice of p, the distribution of the degree of a given vertex converges to a point mass at
zero, a compound Poisson distribution or a Poisson distribution depending on whether
α < 1, α = 1, or α > 1. This means that the current model cannot account for the
power-law degree distributions typically observed in real networks.

In the above formulation of the model, the number of groups that a given individual
belongs to is binomially distributed with parameters m and p. A generalization of the
model, allowing for an arbitrary group distribution, is described by Godehardt and
Jaworski [9]. The degree of a given vertex in such a graph is analyzed by Jaworski
et al. [10], for which conditions on the group distribution are specified under which
the degree is asymptotically Poisson distributed.

In the current article, we are interested in obtaining graphs where non-Poissonian
degree distributions can be identified. To this end, we propose a generalization of
the original random intersection graph where the edge probability p is random and
depends on weights associated with the vertices. Other work in this spirit include, for
instance, Chung and Lu [4,5], Yao, Zhang, Chen, and Li [20], Britton, Deijfen, and
Martin-Löf [3], Bollobás, Janson, and Riordan [1] and Deijfen, van den Esker, van
der Hofstad, and Hooghiemstra [6]. The model is defined as follows:

1. Let n be a positive integer and define m = �βnα� with α, β > 0. As earlier,
take V = {1, . . . , n} to be a set of n vertices and A a set of m elements. Addi-
tionally, let {Wi} be an independent and identically distributed (i.i.d.) sequence
of positive random variables with distribution F, where F is assumed to have
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mean 1 if the mean is finite. Finally, for some constant γ > 0, set

pi = γ Win
−(1+α)/2 ∧ 1. (1)

Now, construct a bipartite graph B(n, m, F) with vertex sets V and A by
adding edges to the elements of A for each vertex i ∈ V independently with
probability pi.

2. The random intersection graph G(n, m, F) is obtained as earlier by drawing an
edge between two distinct vertices i, j ∈ V if and only if they have a common
adjacent vertex a ∈ A in B(n, m, F).

In the social network setting, the weights can be interpreted as a measure of the
social activity of the individuals. Indeed, vertices with large weights are more likely
to join many groups and thereby acquire many social contacts. There are several other
examples of real networks for which the success of a vertex (measured by its degree)
depends on some specific feature of the vertex; see, for example, Palla et al. [17] for
an example in the context of protein interaction networks. Furthermore, an advantage
of the model is that it has an explicit and straightforward construction that, as we will
see, makes it possible to exactly characterize the degree distribution and the clustering
in the resulting graph.

1.2. Results

Our results concern the degree distribution and the clustering in the graph G(n, m, F) as
n → ∞. More precisely, we will take the parameters α, β, and γ and the weight distri-
bution F to be fixed (independent of n) and then analyze the degree of a given vertex and
the clustering in the graph as n → ∞. It turns out that the behavior of these quantities
will be different in the three regimes α < 1, α = 1, and α > 1, respectively. The inter-
esting case is α = 1, in the sense that this is when both the degree distribution and the
clustering can be controlled.The casesα < 1 andα > 1 are included for completeness.

As for the degree, we begin by observing that if F has finite mean, then the
asymptotic mean degree of vertex i, conditional on Wi, is given by βγ 2Wi for all
values of α.

Proposition 1.1: Let Di be the degree of vertex i ∈ V in a random intersection graph
G(n, m, F) with m = �βnα� and pi as in (1). If F has finite mean, then, for all values
of α > 0, we have that E[Di|Wi] → βγ 2Wi as n → ∞.

Proof: We prove the claim for vertex i = 1. Define

W ′
j = Wj · 1{Wj≤n1/4} and W ′′

j = Wj · 1{Wj>n1/4}

and let D′ and D′′ denote the degree of vertex 1 when {Wj}j 
=1 are replaced by {W ′
j }

and {W ′′
j }, respectively; that is, D′ is the number of neighbors of 1 with weight smaller

than or equal to n1/4 and D′′ is the number of neighbors with weight larger than n1/4.
Write p′

j and p′′
j for the analog of (1) based on the truncated weights.
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Now, conditional on the weights, the probability that there is an edge between 1
and j is 1 − (1 − p1pj)

m. To see that E[D′′] → 0 as n → ∞, we observe that

1 − (1 − pip
′′
j )

m ≤ mp1p′′
j = βγ W1n(α−1)/2p′′

j .

Summing the expectation of the right-hand side over j 
= 1, keeping W1 fixed, gives
(recall the truncation at 1 in (1))

E[D′′] ≤ βγ n(1+α)/2E[p′′
k ] ≤ βγ

(
γ E[W ′′

k ] + n(1+α)/2P
(
γ Wk ≥ n(1+α)/2

))
,

where both terms on the right-hand side converge to 0 as n → ∞ since F has finite
mean. As for D′, we have

1 − (1 − p1p′
j)

m = βγ 2W1W ′
j n

−1 + O(W2
1 (W ′

j )
2n−2).

The sum over j 
= 1 of the expectation of the first term equals βγ 2W1E[W ′
k], where

E[W ′
k] → E[Wk] = 1 (since F has finite mean) and the sum of the expectation of the

second term converges to zero (since (W ′
j )

2 ≤ n1/2). Since D0 = D′ + D′′, this proves
the proposition. �

The following theorem, which is a generalization of Theorem 2 in Stark [19],
gives a full characterization of the degree distribution for different values of α.

Theorem 1.1: Consider the degree Di of vertex i ∈ V in a random intersection graph
G(n, m, F) with m = �βnα� and pi as in (1) and assume that F has finite mean.

(a) If α < 1, then Di converges in distribution to a point mass at 0 as n → ∞.

(b) If α = 1, then Di converges in distribution to a sum of a Poisson(βγ Wi) dis-
tributed number of Poisson(γ ) variables, where all variables are independent.

(c) If α > 1, then Di is asymptotically Poisson(βγ 2Wi) distributed.

To understand Theorem 1.1, note that the expected number of groups that indi-
vidual i belongs to is roughly βγ Win(α−1)/2. If α < 1 and Wi has finite mean, this
converges to zero in probability, so that the degree distribution converges to a point
mass at zero, as stated in part (a) (the group size, however, goes to infinity, explaining
why the expected degree is still positive in the limit). For α = 1, the number of groups
that individual i is a member of is Poisson(βγ Wi) distributed as n → ∞, and the
number of other individuals in each of these groups is approximately Poisson(γ ) dis-
tributed, which explains part (b). Finally, for α > 1, individual i belongs to infinitely
many groups as n → ∞. This means that the edges indicators will be asymptotically
independent, giving rise to the Poisson distribution specified in part (c).

Moving on to the clustering, write Eij for the event that individuals i, j ∈ V have
a common group in the bipartite graph B(n, m, F); that is, Eij is equivalent to the event
that there is an edge between vertices i and j in G(n, m, F). Let P̄n be the probability
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measure of B(n, m, F) conditional on the weights {W1, . . . , Wn}. For distinct vertices
i, j, k ∈ V , define

c̄(n)

i,j,k = P̄n
(
Eij|Eik , Ejk

)
; (2)

that is, c̄(n)

i,j,k is the edge probability between i and j in G(n, m, F), given that they are
both connected to k, conditional on the weights. To quantify the asymptotic clustering
in the graph, we will use

c(G) := lim
n→∞ E

[
c̄(n)

i,j,k

]
,

where the expectation is taken over the weights; that is, c(G) is the limiting probability
that three given vertices constitute a triangle conditional on that two of the three
possible edges between them exist (the vertices are indistinguishable, so indeed c(G)

does not depend on the particular choice of i, j, and k). This should be closely related
to the limiting quotient of the number of triangles and the number of triples with at
least two edges present, which is one of the empirical measures of clustering that
occur in the literature; see, for example, Newman [14]. Establishing this connection
rigorously however requires additional arguments.

The asymptotic behavior of c̄(n)

i,j,k is specified in the following theorem. By bounded
convergence, it follows that c(G) is obtained as the mean of the in-probability-limits.

Theorem 1.2: Let {i, j, k} be three distinct vertices in a random intersection graph
G(n, m, F) with m = �βnα� and pi as in (1). If F has finite mean, then we have the
following:

(a) c̄(n)

i,j,k → 1 in probability for α < 1;

(b) c̄(n)

i,j,k → (1 + βγ Wk)
−1 in probability for α = 1;

(c) c̄(n)

i,j,k → 0 in probability for α > 1.

To understand Theorem 1.2, assume that i and k share a group and that j and k
share a group. The probability that i and j also have a common group then depends
on the number of groups to which the common neighbor k belongs. Indeed, the fewer
groups k belongs to, the more likely it is that i and j in fact share the same group with k.
Recall that the expected number of groups that k belongs to is roughly βγ Wkn(α−1)/2.
If α > 1, this goes to zero as n → ∞. Since it is then very unlikely that k belongs
to more than one group when n is large, two given edges {i, k} and {j, k} are most
likely generated by the same group, meaning that i and j are connected as well. On the
other hand, if α > 1, the number of groups that k belongs to is asymptotically infinite.
Hence, that i and j each belong to one of these groups does not automatically make it
likely that they actually belong to the same group. If α = 1, individual k belongs to
βγ Wk groups on average, explaining the expression in part (b) of the theorem.

From Theorem 1.2 it follows that to get a nontrivial tunable clustering, we should
choose α = 1. Indeed, then we have c(G) = E[(1 + βγ Wk)

−1], and for a given weight
distribution F (with finite mean), c(G) can be varied between zero and 1 by adjusting
the parameters β and γ . Furthermore, when α = 1, the degree distribution for a given
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vertex is asymptotically compound Poisson with the weight of the vertex as one of
the parameters—see Theorem 1.1(b)—and it is not hard to see that if F is a power law
with exponent τ , then the degree distribution will be as well. Since the mean of F is
set to 1, the expected asymptotic degree is βγ 2 by Proposition 1.1. Taken together,
this means that when α = 1, we can obtain a graph with a given value of the clustering
and a power-law degree distribution with prescribed exponent and prescribed mean
by first choosing F to be a power law with the desired exponent and then tuning the
parameters β and γ to get the correct values of the clustering and the expected degree.

The rest of the article is organized as follows. In Sections 2 and 3, Theorem 1.1
and Theorem 1.2 are proved, respectively. The clustering is analyzed for the important
example of a power-law weight distribution in Section 4. Finally, Section 5 provides
an outline of possible future work.

2. THE DEGREE DISTRIBUTION

We begin by proving Theorem 1.1.

Proof of Theorem 1.1: We prove the theorem for vertex i = 1. Write D1 = D and
denote by N the number of groups to which individual 1 belongs. Conditional on W1,
the variable N is binomially distributed with parameters m and p1 and, thus,

P̄n(N = 0) = (1 − p1)
m ≥ 1 − mp1 ≥ 1 − βγ 2W (α−1)/2

1 .

For α < 1, the expectation of the last term converges to zero as n → ∞, and it follows
from bounded convergence that P(N = 0) = E[P̄n(N = 0)] → 1.This proves part (a),
since clearly D = 0 if individual 1 is not a member of any group.

To prove parts (b) and (c), first recall the definition of the weights {W ′
i } and

{W ′′
i }—truncated from above and below, respectively, at n1/4—and the corresponding

degree variables D′ and D′′ from the proof of Proposition 1.1. We have already showed
(in proving Proposition 1.1) that E[D′′] → 0, which implies that D′′ converges to
zero in probability (indeed, P(D′′ > 0) ≤ E[D′′]). Hence, it suffices to show that the
generating function of D′ converges to the generating function of the claimed limiting
distribution. To this end, we condition on the weight W1, which is thus assumed to be
fixed in what follows, and let X ′

i (i = 2, . . . , n) denote the number of common groups
of individual 1 and individual i when the truncated weights W ′

i are used for i 
= 1. Since
two individuals are connected if and only if they have at least one group in common, we
can write D′ = ∑n

i=2 1{X ′
i ≥1}. Furthermore, conditional on N and {W ′

i }i≥2, the random
variables X ′

i , i = 2, . . . , n, are independent and binomially distributed with parameters

N and p′
i = γ W ′

i n
−(1+α)/2. Hence, with ¯̄Pn denoting the probability measure of the

bipartite graph B(n, m, F) conditional on both {W ′
i }i≥2 and N , the generating function

of D′ can be written as

E[tD′ ] = E

[
n∏

i=2

E
[
t1{X ′

i ≥1}∣∣{W ′
i }, N

]]
= E

[
n∏

i=2

(
1 + (t − 1) ¯̄Pn(X

′
i ≥ 1)

)]
,
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where t ∈ [0, 1]. Using the Taylor expansion log(1 + x) = x + O(x2) and the fact that

¯̄Pn(X
′
i ≥ 1) = 1 − (1 − p′

i)
N = Np′

i + O(N2(p′
i)

2),

we get that

n∏
i=2

(
1 + (t − 1) ¯̄Pn(X

′
i ≥ 1)

)
= e(t−1)N

∑
p′

i+O
(

N2 ∑
(p′

i)
2
)
. (3)

Defining

Rn :=
n∏

i=2

(
1 + (t − 1) ¯̄Pn(X

′
i ≥ 1)

)
− e(t−1)N

∑
p′

i ,

we, therefore, have that

Rn = e(t−1)N
∑

pi

(
eO(N2 ∑

(p′
i)

2) − 1
)

.

Since the product in (3) is the conditional expectation of tD′
with t ∈ [0, 1], it takes

values between zero and 1, and since e(t−1)N
∑

pi ∈ (0, 1], it follows that Rn ∈ [−1, 1].
Furthermore, recalling that W ′

i ≤ n1/4, we have for α ≥ 1 that

N2
n∑

i=2

(p′
i)

2 = N2γ 2n−(1+α)

n∑
i=2

(W ′
i )

2 ≤ N2γ 2n−1/2,

implying that Rn → 0 in probability and thus, by bounded convergence, E[Rn] → 0.
Hence, we are done if we show the following:

(i) E
[
e(t−1)N

∑
pi
] → eβγ W1(eγ (t−1)−1) if α = 1,

(ii) E
[
e(t−1)N

∑
pi
] → eβγ 2W1(t−1) if α > 1,

where the limits are recognized as the generating functions for the desired compound
Poisson and Poisson distribution in parts (b) and (c) of the theorem, respectively.
To this end, note that the expectation with respect to N of e(t−1)N

∑
p′

i is given by
the generating function for N evaluated at the point e(t−1)

∑
p′

i . Since N is binomially
distributed with parameters m and p1, we have that

E
[
e(t−1)N

∑
p′

i

]
= E

[(
1 + p1

(
e(t−1)

∑
p′

i − 1
))m]

. (4)

For α = 1, we have m = �βn� and p′
i = γ W ′

i n
−1. Recalling that E[W ′

i ] → E[Wi] = 1,
it follows that

∑
p′

i → γ almost surely. Hence,(
1 + p1

(
e(t−1)

∑
p′

i − 1
))�βn� → eβγ W1(eγ (t−1)−1) a.s. as n → ∞,

and it follows from bounded convergence that the expectation converges to the same
limit, proving part (i).

https://doi.org/10.1017/S0269964809990064 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990064


“S0269964809990064jra” — 2009/8/3 — 18:30 — page 669 — #9

�

�

�

�

RANDOM INTERSECTION GRAPHS 669

For α > 1, define p̃′
i = n(α−1)/2p′

i. With m = �βnα� and p1 = γ W1n−(1+α)/2 ∧ 1,
we get, after some rewriting, that

(
1 + p1

(
e(t−1)

∑
p′

i − 1
))m =

(
1 + γ W1(t − 1)

∑
p̃′

i

nα

e(t−1)n(1−α)/2 ∑
p̃′

i − 1

(t − 1)n(1−α)/2
∑

p̃′
i

)�βnα�
.

By the law of large numbers,
∑

p̃′
i → γ almost surely, and since (ex − 1)/x → 1 as

x → 0, it follows that the right-hand side above converges to eβγ 2W1(t−1) almost surely
as n → ∞. By (4) and bounded convergence, this proves part (ii). �

3. CLUSTERING

In this section, we prove Theorem 1.2. First, recall that Eij denotes the event that
the individuals i, j ∈ V share at least one group. It will be convenient to extend this
notation. To this end, for i, j, k ∈ V , denote by Eijk the event that there is at least one
group to which all three individuals i, j, and k belong, and write Eij,ik,jk for the event
that there are at least three distinct groups to which i and j, i and k, and j and k,
respectively, belong. Similarly, the event that there are two distinct groups to which
individuals i and k, and j and k, respectively belong is denoted by Eik,jk . The proof of
Theorem 1.2 relies on the following lemma.

Lemma 3.1: Consider a random intersection graph G(n, m, F) with m = �βnα� and
pi defined as in (1). For any three distinct vertices i, j, k ∈ V , we have the following:

(a) P̄n(Eijk) = βγ 3WiWjWk

n(3+α)/2 + O
(

W2
i W2

j W2
k

n3+α

)
;

(b) P̄n(Eij,ik,jk) = β3γ 6W2
i W2

j W2
k

n3 + O
(

W3
i W3

j W3
k

n4

)
;

(c) P̄n(Eik,jk) = β2γ 4WiWjW2
k

n2 + O
(

W2
i W2

j W3
k

n3

)
;

(d) P̄n(EijkEik,jk) = O
(

W2
i W2

j W2
k

n(5+α)/2

)
.

Proof: As for part (a), the probability that three given individuals i, j, and k do
not share any group at all is (1 − pipjpk)

m. Using the definitions of m and the edge
probabilities {pi}, it follows that

P̄n(Eijk) = 1 − (1 − pipjpk)
m = βγ 3WiWjWk

n(3+α)/2
+ O

(
W2

i W2
j W2

k

n3+α

)
.

To prove part (b), note that the probability that there is exactly one group to which
both i and j belong is mpipj(1 − pipj)

m−1 = mpipj + O(m2p2
i p2

j ). Given that i and j
share one group, the probability that i and k share exactly one of the other m − 1
groups is (m − 1)pipk(1 − pipk)

m−2 = mpipk + O(m2p2
i p2

k). Finally, the conditional
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probability that there is a third group to which both j and k belong given that the
pairs i, j and i, k share one group each is 1 − (1 − pjpk)

m−2 = mpjpk + O(m2p2
j p2

k).
Combining these estimates and noting that scenarios in which i and j or i and k share
more than one group have negligible probability in comparison, we get that

P̄n(Eij,ik,jk) = m3p2
i p2

j p2
k + O

(
m4p2

i p2
j p2

k(pipj + pipk + pjpk)
)

= β3γ 6W2
i W2

j W2
k

n3
+ O

(
W3

i W3
j W3

k

n4

)
.

Part (c) is derived analogously.
As for part (d), note that the event EijkEik,jk occurs when there is at least one

group that is shared by all three vertices i, j, and k and a second group shared by
either i and k or j and k. Denote by r the probability that individual k and at least
one of the individuals i and j belong to a fixed group. Then r = pk(pi + pj − pipj),
and conditional on that there is exactly one group to which all three individuals i, j,
and k belong (the probability of this is mpipjpk(1 − pipjpk)

m−1 = O(mpipjpk)), the
probability that there is at least one other group that is shared either by i and k or by
j and k is 1 − (1 − r)m−1 = O(mr). It follows that

P̄n(EijkEik,jk) = O(m2pipjpkr) = O

(
W2

i W2
j W2

k

n(5+α)/2

)
.

�

Using Lemma 3.1, it is not hard to prove Theorem 1.2.

Proof of Theorem 1.2: Recall definition (2) of c̄(n)

i,j,k and note that

P̄n(Eij|EikEjk) = P̄n(Eijk ∪ Eij,ik,jk)

P̄n(Eijk ∪ Eik,jk)
.

As for part (a), applying the estimates of Lemma 3.1 and merging the error terms
yields

P̄n(Eij|EikEjk) ≥ P̄n(Eijk)

P̄n(Eijk) + P̄n(Eik,jk)

= 1 + O(WiWjWkn−(3+α)/2)

1 + Wk[βγ n(α−1)/2 + O(WiWjWkn−(3−α)/2)] . (5)

By Markov’s inequality and the fact that Wi, Wj, and Wk are independent and have
finite mean, it follows that WiWjWkn−(3−α)/2 goes to zero in probability when α < 1.
Similarly, WiWjWkn−(3+α)/2 → 0 in probability. Hence, the quotient in (5) converges
to 1 in probability for α < 1, as claimed.
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To prove part (b), note that for α = 1, the lower bound (5) for c̄(n)

i,j,k converges in
probability to (1 + βγ Wk)

−1. To obtain an upper bound, we apply Lemma 3.1 with
α = 1 to get

P̄n(Eij|EikEjk) ≤ P̄n(Eijk) + P̄n(Eij,ik,jk)

P̄n(Eijk) + P̄n(Eik,jk) − P̄n(EijkEik,jk)
(6)

= 1 + O(WiWjWkn−1)

1 + Wk[βγ + O(WiWjWkn−1)] .

Here, WiWjWkn−1 converges to zero in probability by Markov’s inequality, and part
(b) follows.

As for part (c), combining the bound in (6) with the estimates in Lemma 3.1 yields

P̄n(Eij|EikEjk) ≤ n(1−α)/2 + O(WiWjWkn−1)

n(1−α)/2 + Wk[βγ + O(WiWjWkn−1)] .

Since WiWjWkn−1 → 0 in probability, this bound converges to zero in probability for
α > 1, as desired. �

4. CLUSTERING FOR A POWER-LAW WEIGHT DISTRIBUTION

When α = 1, the clustering is given by c(G) = E[(1 + βγ Wk)
−1]. Here, we investi-

gate this expression in more detail for the important case that F is a power law. More
precisely, we take F to be a Pareto distribution with density

f (x) = (λ − 2)λ−1

(λ − 1)λ−2
x−λ for x ≥ λ − 2

λ − 1
.

When λ > 2, this distribution has mean 1, as desired. The asymptotic clustering c(G)

is given by the integral

(λ − 2)λ−1

(λ − 1)λ−2

∫ ∞

(λ−2)/(λ−1)

(1 + βγ x)−1x−λ dx.

Defining u := (λ − 2)/(x · (λ − 1)), we obtain

c(G) = 1

βγ

(λ − 1)2

(λ − 2)

∫ 1

0
uλ−1

(
1 + u

βγ

(
λ − 1

λ − 2

))−1

du

=:
1

βγλ

(λ − 1)2

(λ − 2)
2F1

(
1, λ; 1 + λ; − 1

βγ

(
λ − 1

λ − 2

))
,
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where 2F1 is the hypergeometric function. For βγ ≥ (λ − 1)/(λ − 2), a series
expansion of the integrand yields

c(G) = 1

βγ

(λ − 1)2

(λ − 2)

∞∑
k=0

(
− 1

βγ

(
λ − 1

λ − 2

))k 1

k + λ

=:
1

βγ

(λ − 1)2

(λ − 2)
�

(
− 1

βγ

(
λ − 1

λ − 2

)
, 1, λ

)
,

where � is the Lerch transcedent. Furthermore, when λ is an integer, we get

c(G) = (λ−2)λ−1

(λ−1)λ−2

[
(−βγ )λ−1 ln

(
1+ λ − 1

βγ (λ − 2)

)
+

λ−1∑
�=1

(−βγ )λ−1−�

�

(
λ−1

λ−2

)�
]

.

Figures 1a and 1b show how the clustering depends on λ and βγ , respectively.
For any c ∈ (0, 1) and a given tail exponent λ, we can find a value of βγ such that the
clustering is equal to c. Combining this with a condition on βγ 2, induced by fixing
the mean degree in the graph, the parameters β and γ can be specified.

FIGURE 1. Clustering for a power-law distribution. (a) The clustering as a func-
tion of λ for different values of βγ : βγ = 1 (—), βγ = 5 (– – –), βγ = 10 (– · –);
(b) the clustering as a function of βγ for different values of λ : λ = 2.1 (—), λ = 2.5
(– – –), λ = 4 (– · –).
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5. FUTURE WORK

Apart from the degree distribution and the clustering, an important feature of real
networks is that there is typically significant correlation for the degrees of neighboring
nodes; that is, either high- (low-) degree vertices tend to be connected to other vertices
with high- (low-) degree (positive correlation), or high- (low-) degree vertices tend to
be connected to high- (low-) degree vertices (negative correlation). A next step is thus
to quantify the degree correlations in the current model. The fact that individuals share
groups should indeed induce positive degree correlation, which agrees with empirical
observations from social networks; see Newman [14] and Newman and Park [15].

Additionally, other features of the model are worth investigating. For instance,
many real networks are “small worlds,” meaning roughly that the distances between
vertices remain small also in very large networks. It would be interesting to study
the relation between the distances between vertices, the degree distribution, and the
clustering in the current model.

Finally, dynamic processes behave differently on clustered networks as compared
to more treelike networks. Most work to date has focused on the latter class. In Britton,
Deijfen, Lagerås, and Lindholm [2] however, epidemics on random intersection graphs
without random weights are studied and it is investigated how the epidemic spread is
affected by the clustering in the graph. It would be interesting to extend this work to
incorporate weights on the vertices, allowing one to tune also the (tail of the) degree
distribution and study its impact on the epidemic process.
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