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This study explores the formation of circular thin-film hydraulic jumps caused by the
normal impact of a jet on an infinite planar surface. For more than a century, it has
been believed that all hydraulic jumps are created due to gravity. However, we show
that these thin-film hydraulic jumps result from energy loss due to surface tension
and viscous forces alone. We show that, at the jump, surface tension and viscous
forces balance the momentum in the liquid film and gravity plays no significant role.
Experiments show no dependence on the orientation of the surface and a scaling
relation balancing viscous forces and surface tension collapses the experimental data.
A theoretical analysis shows that the downstream transport of surface energy is the
previously neglected critical ingredient in these flows, and that capillary waves play
the role of gravity waves in a traditional jump in demarcating the transition from the
supercritical to subcritical flow associated with these jumps.

Key words: capillary waves, interfacial flows (free surface), thin films

1. Introduction

It is a common experience to observe that when a jet of water falls vertically from
a tap on to the base of a domestic sink, the water spreads radially outwards in a
thin film until it reaches a radius where the film thickness increases abruptly. This
abrupt change in depth is the circular hydraulic jump shown in figure 1(a). Beyond the
jump, the thicker downstream liquid film then spreads until it reaches the edge of the
sink. Up to this point, the hydraulic jump radius remains approximately at the same
location (see supplementary movie 1 available at https://doi.org/10.1017/jfm.2018.558).
Once the liquid reaches the edge of the sink, the boundary condition for the liquid
film changes, the downstream liquid film thickness increases and the initial steady
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FIGURE 1. Hydraulic jumps caused by a water jet impinging normally on surfaces with
different orientations. In these three cases the jets are identical, produced from the same
nozzle at the same flow rate, Q= 1 L min−1, and the radius of the jump is observed to be
independent of the orientation of the surface. (a) Horizontal surface; jet impinging from
above, (b) vertical surface; jet impinging horizontally, (c) horizontal surface; jet impinging
from below.

hydraulic jump radius moves inwards. In the present study, we are interested in the
steady hydraulic jump before the liquid reaches the edge of the plate.

The hydraulic jump has been studied for over four hundred years. An early account
was presented by Leonardo de Vinci in the 16th century (Hager 2013). The Italian
mathematician Bidone (1819) published experimental results on the topic and Rayleigh
(1914) subsequently provided the first theoretical explanation for the planar hydraulic
jump based on inviscid theory.

Figures 1(b) and 1(c) show that the same abrupt change in film thickness occurs
on a vertical plane impacted by a horizontal jet and a horizontal plane impacted from
below by an upwards directed jet, respectively. Further, as can be seen in figure 1,
for a given jet diameter and flow rate, the radius of the initial jump is the same in
all cases, irrespective of the orientation of the surface. Thus we conclude that gravity
plays no role in the initial formation of the jump.

To the best of our knowledge all existing explanations for thin-film hydraulic jumps
on the scales we are considering in this paper invoke gravity as a significant force in
its formation. The purpose of this paper is to show that this view is incorrect and that
the appropriate force balance in these jumps critically involves surface tension and
that gravity is unimportant. To achieve this aim we review the previous theories and
experiments in § 2. We describe our experiments in § 3, and then carry out a scaling
analysis in § 4, and show that this collapses our experimental data. We further develop
a detailed theory for the flow in § 5 and explain the role of surface tension in the
force balance, and compare the theoretical predictions with the experimental data for
different surface orientations and fluid properties in § 6. Our conclusions are given
in § 7.

2. Previous studies

We are concerned here with the initiation of the jump shown by the schematic
in figure 2(a), so we consider the impact of a jet normally on an infinite plane.
In practice, all experiments involve a plane of finite dimensions and eventually the
liquid drains from the edges of the surface. Consequently, we restrict ourselves to
considerations of the flow before it reaches the edge of the surface, and ignore
the changes that occur once the downstream boundary condition changes (see
supplementary movie 2).
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FIGURE 2. (a) Schematic of the liquid film and hydraulic jump created by an impinging
jet. (b) Control volume of the film element on which the energy balance is applied.

Watson (1964) developed a similarity solution for radial flow in a thin liquid
film, which we describe further below. He also proposed the first description
of a thin-film circular hydraulic jump incorporating viscous friction in the film,
ignoring the tangential stress due to surface tension, and balanced the momentum
and hydrostatic pressure across the jump. Watson’s solution, which involves gravity,
requires experimental measurement of the film thickness at the jump location to
predict the jump radius, and overpredicts the radius for smaller jumps by as much
as 50 %. Bush & Aristoff (2003) added surface tension to Watson’s theory but stated
that its influence was small, as they argued its effect was confined to the hoop stress
associated with the increase in circumference of the jump. They recognised that
addition of a surfactant substantially (20 %) increased the jump radius but they did
not pursue this aspect further, owing to the complications involved with surfactants.
Mathur et al. (2007) presented results for hydraulic jumps in liquid metals where the
jump radii are in range of micrometres. They recognised that jumps on this scale are
created due to surface tension but are associated with very high curvature and small
jump radii. However, they remarked that gravity is the key to all jumps on the scale
of the kitchen sink hydraulic jump.

Earlier analysis by Kurihara (1946) and Tani (1949) used thin-film boundary
layer equations including gravity to model circular hydraulic jumps. This analysis
was critiqued by Bohr, Dimon & Putkaradze (1993), who solved the axisymmetric
shallow water equations, which again, naturally, include gravity. Bohr et al. (1993)
found that the outer solution of the equations became singular at a finite radius.
Consequently, they solved the equations inwards from the edge of the plate or the
boundary from where liquid drains due to gravity, and connected the inner and the
outer solutions for radial flow through a shock. This analysis gave a scaling relation
for the jump radius R ∼ Q5/8ν−3/8g−1/8, where Q, ν and g are the jet volume flux,
the kinematic viscosity of the fluid and the acceleration due to gravity, respectively.
They argued that the jump could be understood qualitatively in terms of the interplay
between gravity, viscosity and the momentum of the liquid. A similar axisymmetric
shallow water model was also proposed by Kasimov (2008). Again this study did not
consider the initial formation of the jump, but connected the thin film with a deeper
flow established as a result of a downstream boundary condition at the edge of the
domain.

Two studies considered the case where gravity is unimportant. Godwin (1993)
assumed the jet diameter was an important parameter and showed that the jump
radius, when independent of gravity, scales as R ∼ Q1/3d2/3ν−1/3, where d is the jet
diameter. We argue that, since R� d, the jet diameter is not a relevant parameter.
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Avedisian & Zhao (2000) studied the circular hydraulic jump at low gravity in a drop
tower. In these experiments, a horizontal plate was submerged in a pool of liquid
to impose a constant downstream liquid thickness condition and was impacted by a
liquid jet to create a hydraulic jump. They found that, at normal gravity, the jump
radius decreased when the depth of the downstream liquid film increased. However,
at low gravity, the downstream liquid film height had no effect, and the jump radius
increased compared to its value under normal gravity. Capillary waves were also
observed, and they concluded that at low gravity the jumps were dominated by
viscosity and surface tension.

Hansen et al. (1997) studied surface waves in circular hydraulic jumps. They
reported that the hydraulic jump radius scales as R ∝ Q0.77 for water, and R ∝ Q0.72

for less viscous oils. They concluded that, on a flat plate without any reflectors, the
waves are gravity–capillary waves. Further, in the limit of zero surface tension, Rojas,
Argentina & Tirapegui (2013) reported that R∼ Q3/4ν−1/4H−1/2g−1/4, where H is the
height of the film downstream of the hydraulic jump.

In the experiments described below we observed that, under the same flow
conditions, normal impingement of a liquid jet gives a circular hydraulic jump
with the same initial radius irrespective of the orientation of the surface (figure 1).
On a vertical plate, where the spreading liquid film and gravity are coplanar, an
approximately circular hydraulic jump is still formed (figure 1b). The thicker liquid
film beyond the hydraulic jump then drains downwards due to gravity and above
the point of impingement the location of the jump remains constant in time. Our
experiments on a surface inclined at 45◦ also produced circular jumps. A similar
lack of dependence of the radius on both vertical and inclined surfaces has also
been observed by Wilson et al. (2012), Wang, Davidson & Wilson (2015), Bhagat &
Wilson (2016). Similarly, when a jet impinges onto a horizontal surface from below,
an abrupt increase in film thickness is also observed (figure 1c). Under the influence
of gravity, the thicker liquid film falls as droplets or as a continuous film forming a
water bell (Jameson et al. 2010). In our experiments we changed the surface tension
of the liquid by preparing homogeneous water–alcohol solutions and a surfactant.
Supplementary movie 3 shows the change in a kitchen-sink-scale hydraulic jump
by changing the surface tension γ when Q and ν are kept constant. The existing
treatments are unable to explain this behaviour, as they hold that surface tension only
becomes significant for much smaller jump radii.

3. Experiments

Circular hydraulic jumps were produced by impinging a liquid jet normally onto
a planar surface. Both a vertical jet impinging on a horizontal plate from above
and below, and normal impingement on a vertical plate and a plate inclined at
45◦ to the horizontal were studied. For most experiments the jet nozzle diameter
was 2 mm and the jet flow rate Q varied from 0.49–2 L min−1. For low flow
rates (Q< 1.3 L min−1), liquid was supplied from a constant-head apparatus to glass
Pasteur pipettes. For higher Q a centrifugal pump and a brass nozzle were used (Wang
et al. 2015). Target plates were PerspexTM, glass or Teflonr sheets. The horizontal
plate was a 0.25 m diameter circular disk; horizontal and inclined planes consisted
of a 1× 0.4 m2 rectangular plate. It was found that the jump radius was independent
of the plate material and we will not consider this factor further. Nozzle diameters
of 1 and 3 mm were also used, and no significant difference in the jump radius was
observed when measured from the edge of the resulting jet.
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Liquid label Reference T (◦C) γ (N m−1) ν (m2 s−1) ρ (kg m−3)
×103

×106

Water 20 72 1.002 1000
WP95/5 Vazquez, Alvarez & Navaza (1995) 20 42.5 1.274 989
WP80/20 Vazquez et al. (1995) 20 26 2.30 968
WG30/70 Jameson et al. (2010) 19 67 20.7 1160
WG10/90 Jameson et al. (2010) 28 65 99.3 1240
SDBS Sun et al. (2014) 20 38 1.00 1000

TABLE 1. Properties of the liquids used.

The viscosity and surface tension were varied by using mixtures of water with
1-propanol (5 and 20 w/w %, labelled as WP95/5 and WP80/20, respectively) and
with glycerol (70 and 90 w/w %, labelled as WG30/70 and WG10/90, respectively).
We also used a 3 mmol L−1 solution of sodium dodecyl benzene sulphonate (SDBS).
The surface tension was varied by an approximate factor of three and the kinematic
viscosity by a factor of nearly 100. The fluid properties are listed in table 1.

A Photron Fastcam SA3 was used to acquire images of the liquid film and
the hydraulic jump at up to 2000 f.p.s. These were subsequently processed using
MATLAB and ImageJ to obtain the jump radius R as a function of the jet and fluid
properties. In total over 150 experiments were conducted. Error bars were determined
by the standard deviation of repeated experiments.

4. Scaling analysis

We consider the axisymmetric flow shown schematically in figure 2. The jump
is characterised by its radius R and depth h, along with the radial velocity u
of the film. Based on our observations we assume that gravity is unimportant
and hence the flow depends on the jet flow rate Q, the jet diameter d, the film
thickness h and the fluid properties (i.e. the density ρ, viscosity ν and the surface
tension γ ). Since observations (e.g. figure 1) show that the jump radius R� d and
we observed no dependence on d, we will ignore the jet diameter. We then have six
parameters; R, h, ρ, ν, γ and Q (or equivalently u) and three dimensions, giving three
dimensionless parameters: the Reynolds number Re, the dimensionless film thickness,
α, and the Weber number, We, given by

Re=
uh
ν
, α =

h
R
, We=

ρu2h
γ

. (4.1a−c)

We assume that the radial flow is balanced by viscous drag u/R ∼ ν/h2 which
implies αRe=O(1). Then, if we further assume that surface tension is important and
that, at the jump We∼ 1, and use the fact that continuity implies Q∼ uhR, we find
R/R0 = const., where the characteristic length R0 is given by

R0 =
Q3/4ρ1/4

ν1/4γ 1/4
. (4.2)

We plot the measurements of the dimensionless jump radius R/R0 against the jet
flow rate Q in figure 3. The data from experiments covering the full range of Q,
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SDBS
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FIGURE 3. Dimensionless jump radius plotted against the flow rate for all our experiments
with different liquids and surface orientation.

surface material and orientation and fluid properties (table 1) all collapse on to the
line R/R0= 0.289± 0.015. This collapse of the data, consistent with (4.2), implies that
the dominant balance in the formation of thin-film jumps is associated with surface
tension and viscous drag, and that gravity is irrelevant. In § 5, we will develop a more
quantitative estimate of the jump radius.

5. Theory

We consider a cylindrical coordinates r and z, the radial and jet-axial coordinates,
respectively, u and w, the associated velocity components (figure 2), and assume
circular symmetry about the jet axis. In order to analyse the jump we use the ansatz
developed by Watson (1964) for the velocity within the thin film. We write the radial
velocity as u= us f (η), η≡ z/h(r) (06 η6 1), where η is the dimensionless thickness
of the film and us is the velocity at the free surface. Using continuity we define the
flux-average velocity ū≡C1us by∫ h

0
ur dz= usrh

∫ 1

0
f (η) dη=C1usrh≡ ūrh=

Q
2π
= const., (5.1)

where C1 =
∫ 1

0 f (η) dη = 0.6137 is a shape factor determined from the similarity
solution.

We now balance the flux of mechanical energy across an annular control volume
shown in figure 2(b), from r to r + 1r and from 0 to h (where we have cancelled
out the common factor 2π),

(ρū2ūrh)
2

∣∣∣∣∣
r

−
(ρū2ūrh)

2

∣∣∣∣∣
r+1r

− (γ ūr)|r + (γ ūr)|r+1r

+ pūrh|r − pūrh|r+1r +
ρgūrh2

2

∣∣∣∣
r

−
ρgūrh2

2

∣∣∣∣
r+1r

− rτwū1r= 0, (5.2)
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where τw= ρν(us/h)f ′(0) is the wall shear stress and, from the velocity profile ansatz,
we have f ′(0)= 1.402.

In these jump conditions, the first term is the flux of kinetic energy which is
balanced by pressure, gravity and viscous work, given by the third, fourth and fifth
terms, respectively. These are standard and the new term is the second term γ ūr,
which represents the flux of surface energy that has been neglected in previous studies.
This term results from the increase of surface area across the control volume as a
result of the increase in the circumference from r to r+1r.

Dividing (5.2) by 1r, taking the limit 1r→ 0 and using the fact that ūrh= const.
(see (5.1)) yields

1
2

d(ρū2)ūrh
dr

−
d(γ ūr)

dr
=−ūrh

dp
dr
−

1
2
ρgūrh

dh
dr
− τwrū. (5.3)

From the boundary layer velocity profile ansatz we write ū2=
∫ 1

0 u2 dη≡C2u2
s , where

C2 ≡
∫ 1

0 f 2(η) dη= 0.4755 is a second shape factor. Then (5.3) implies

C2ρu2
s hr

dus

dr
− γ r

dus

dr
− γ us =−usrh

dp
dr
−

1
2
ρgusrh

dh
dr
− τwrus. (5.4)

Note that the shape factor C1 cancels out in this equation, and so plays no role. Again
using (5.1), we write usr(dh/dr)=−h(d(usr)/dr) in (5.4), to obtain(

C2ρu2
s h− γ −

1
2
ρgrh2

)
r

dus

dr
=−usrh

dp
dr
+ γ us +

1
2
ρgush2

− τwrus. (5.5)

Finally, rearranging (5.5) we find that the gradient of the radial velocity satisfies

dus

dr
=

−usrh
dp
dr
+ γ us +

1
2
ρgush2

− τwrus(
1−

1
We
−

1
Fr2

)
(C2ρu2

s hr)
. (5.6)

Here, we define the Weber number and Froude number as, respectively,

We≡
C2ρu2

s h
γ

, Fr≡

√
2C2u2

s

gh
. (5.7a,b)

It is clear that (5.6) is singular when

We−1
+ Fr−2

= 1, (5.8)

and that the hydraulic jump occurs where this condition is satisfied.
In order to obtain quantitative results, (5.6) was solved for us using the similarity

velocity profile and the initial condition obtained from Watson (1964). The boundary
layer first occupies the full depth of the film at rb, given by rb/d= 0.1833Re1/3

j , where
the jet Reynolds number Rej= 4Q/πνd. At this location, which for the present values
of Rej ∼ 104, rb� R, us is set equal to the mean jet velocity, and (5.6) provides its
subsequent radial values. The solution of (5.6) is not sensitive to the initial condition
obtained using Watson’s similarity profile, as other boundary layer velocity profiles
yield similar values of rb. We then calculate R as the location where We−1

+Fr−2
= 1,

and (5.6) becomes singular. This condition provides a more precise estimate and a
physical basis for the scaling argument (4.2), and also includes the effect of gravity.
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60 Theoretical prediction for water
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FIGURE 4. Jump radius plotted against jet flow rate for the four surface orientations. In
each case the liquid was pure water. The theoretical prediction (line) is obtained ignoring
gravity by setting g= 0 in (5.6).

6. Results

6.1. Effect of surface orientations
We showed in figure 1 that for normal jet impingement the orientation of the surface
does not affect the radius of the jump. In figure 1(b), for a vertical wall, the jump
is very close to circular, which is further evidence that gravity plays no significant
role. A direct comparison between the four cases of a horizontal plane impinged
from above and below, a vertical plane and a surface inclined at 45◦ is shown in
figure 4. The theoretical curve, obtained ignoring gravity by setting g = 0 in (5.6),
agrees closely with the data from the vertical, inclined and horizontal plate from
above. The observed radius is slightly larger for the horizontal plate impinged from
below. This is presumably because the ultimate transition to dripping flow or a water
bell is affected by gravity and occurs after the film initially thickens.

6.2. Effect of fluid properties: surface tension and viscosity
Figure 5(a) compares experimental measurements with theoretical predictions of R
for pure water, WP95/5 and the aqueous SDBS solution for a jet impinging on a
horizontal plate from above. SDBS and pure water have similar viscosities but differ in
their surface tensions, while WP95/5 and SDBS have different viscosities but similar
surface tensions. Lowering the surface tension (SDBS cf. water) increases R while
increasing the viscosity (WP95/5 cf. SDBS) reduces R. The corresponding theoretical
curves obtained from (5.6), again with g = 0, shown in figure 5(a), capture these
variations with liquid properties and agree with the experimental measurements.

Figure 5(b) compares data reported by Jameson et al. (2010) for liquid jets of 70
and 90 w/w % glycerol/water solutions, WG30/70 and WG10/90, at 19 ◦C and 28 ◦C,
respectively, impinging on the underside of a horizontal surface consisting of either
glass or Teflonr. For a given flow rate, the measured departure radius Rb is smaller for
the more viscous solution: the surface tensions are comparable. Our theoretical curves
obtained by setting g = 0 in (5.6) slightly underpredict the radius, but they capture
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FIGURE 5. (a) Effect of surface tension. Initial jump radius for normal impingement on a
horizontal plate from above, for water, water–propanol (WP95/5) and SDBS. Curves are
the predictions obtained from solutions of (5.6). The predictions lie within the uncertainty
in the experimental measurements. (b) Effect of kinematic viscosity. Measured water bell
departure radius, from Jameson et al. (2010), alongside predictions (curves), obtained
by solving (5.6) with g = 0. The liquids were water–glycerol mixtures WG30/70 and
WG10/90.

the effect of the viscosity changes. In their theoretical description of the water bell
departure radius, Button et al. (2010) expected that Rb would depend on the surface
wettability or the contact angle between the surface and the liquid. As can be seen in
figure 5(b) there is only a very small difference between the glass (hydrophilic) and
Teflonr (hydrophobic) surfaces. Although they observed a change in the local contact
angle at the rim of the radial flow, the water bell formation radius was at the same
location, as predicted by our theory.

6.3. Return to scaling
We can now use the solution to determine the constant in the scaling relation (4.2).
Using (5.1), (5.7) and the expression for the wall stress we find that

R
R0
=

(
1

f ′(0)(2π)3

C2

C2
1

)1/4

= 0.277, (6.1)

which is close to the experimental best fit to the data 0.289± 0.015 quoted in § 4.2.
Thus, as expected, the theory allows us to quantify our scaling relation.

7. Conclusions

This paper provides a resolution to the question: what determines the radius of
a circular hydraulic jump in a thin liquid film on an infinite plane? We derived a
scaling relationship (4.2) that collapses our data and shows that the jump location is
determined by the viscosity and the surface tension of the liquid. Using a similarity
solution due to Watson (1964), with the addition of surface tension, we made
quantitative predictions of the jump radius R that are in excellent agreement with our
measurements for different surface orientations and fluid properties.

We found that the hydraulic jump, or the supercritical to subcritical transition,
occurs when We−1

+ Fr−2
= 1. From (5.6) we infer that the transport of surface
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energy becomes dominant for the expanding films at larger radii. The left-hand side
of (5.5) indicates that the liquid momentum must overcome the hydrostatic pressure
and surface tension. The jump is formed where the hydrostatic pressure term ρgh2r
and surface force γ r are greater than or equal to the momentum. This behaviour was
previously attributed to the hydrostatic force alone, which is a special case of the
general solution.

Previous analyses have incorporated surface tension, but only through the hoop
stress, which, we agree, is small on the scale of these jumps and is effectively
incorporated in the pressure term in (5.2). It is the loss of energy associated with the
radial transport of surface energy that implies that the flow can no longer provide the
kinetic energy to maintain the thin film. At this point the flow decelerates rapidly, the
depth of the flow increases and the hydraulic jump occurs. This is equivalent to the
surface tension force associated with curvature of a film of thickness h, and hence
this thickness is the relevant length scale in the Weber number used to obtain the
scaling relation (4.2). Comparing our scaling relation (4.2), R ∼ ρ1/4Q3/4ν−1/4γ −1/4,
with the result obtained by Rojas et al. (2013) in the limit of zero surface tension,
R ∼ Q3/4ν−1/4H−1/2g−1/4, implies that the depth of liquid downstream of the jump
scales with the capillary length scale H ∼ (γ /gρ)1/2.

It is also worth noting that the dependence of R on Q and ν our scaling relation
(Q3/4ν−1/4) is very similar to that obtained by Bohr et al. (1993) quoted in § 2, namely,
Q5/8ν−3/8. Consequently, these and other authors were able to fit their data to the
latter scaling, which involves gravity and not surface tension, since these latter two
parameters were not changed between experiments. Similarly, Hansen et al. (1997)
found empirically that the jump radius for water, R ∝ Q0.77 which is close to our
scaling relationship, R∝ Q3/4. However, they concluded that it is consistent with the
scaling relation obtained by Bohr et al. (1993), which predicts R∝Q5/8.

The critical Weber number based on the film thickness at the jump implies that
the flow speed is

√
γ /ρh, which is the speed of capillary waves with wavenumbers

comparable to the inverse of the film thickness. Consequently, capillary waves play a
similar role in this situation to gravity waves in the traditional hydraulic jump.

It should again be emphasised that we are only concerned with the location of the
jump on an infinite plane. For vertical jet impingement on a horizontal surface from
above, the liquid film eventually reaches and flows off the edge of the surface. At that
point there will be another boundary condition resulting from this flow off the edge
which will result in information travelling upstream through the subcritical region to
the initial jump location. This will effectively flood that control and, in general, the
jump will move inwards from its initial location, reducing R.

Finally, it is worth considering what constitutes a thin film in this context. As shown
in § 4.2, balancing the deceleration with the viscous drag implies that the film aspect
ratio α∼Re−1. For the values of Re∼ 1000 in our experiments h∼R · 10−3

∼ 100 µm.
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