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Integrated navigation using multiple Global Navigation Satellite Systems (GNSS) is
beneficial to increase the number of observable satellites, alleviate the effects of systematic
errors and improve the accuracy of positioning, navigation and timing (PNT). When
multiple constellations and multiple frequency measurements are employed, the functional
and stochastic models as well as the estimation principle for PNT may be different. Therefore,
the commonly used definition of “dilution of precision (DOP)” based on the least squares
(LS) estimation and unified functional and stochastic models will be not applicable anymore.
In this paper, three types of generalised DOPs are defined. The first type of generalised
DOP is based on the error influence function (IF) of pseudo-ranges that reflects the geometry
strength of the measurements, error magnitude and the estimation risk criteria. When
the least squares estimation is used, the first type of generalised DOP is identical to the
one commonly used. In order to define the first type of generalised DOP, an IF of signal–
in-space (SIS) errors on the parameter estimates of PNT is derived. The second type of
generalised DOP is defined based on the functional model with additional systematic
parameters induced by the compatibility and interoperability problems among different
GNSS systems. The third type of generalised DOP is defined based on Bayesian estimation
in which the a priori information of the model parameters is taken into account. This is
suitable for evaluating the precision of kinematic positioning or navigation. Different types
of generalised DOPs are suitable for different PNT scenarios and an example for the
calculation of these DOPs for multi-GNSS systems including GPS, GLONASS, Compass
and Galileo is given. New observation equations of Compass and GLONASS that
may contain additional parameters for interoperability are specifically investigated. It shows
that if the interoperability of multi-GNSS is not fulfilled, the increased number of satellites
will not significantly reduce the generalised DOP value. Furthermore, the outlying
measurements will not change the original DOP, but will change the first type of generalised
DOP which includes a robust error IF. A priori information of the model parameters will also
reduce the DOP.
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1. INTRODUCTION. The term DOP has been well designed and widely used
(Parkinson 1996) and the DOP value is often used as a major index to gauge the con-
tribution of satellites. Various types of DOPs were defined such as the geometric
(GDOP), positional (PDOP), horizontal (HDOP), vertical (VDOP) and time (TDOP)
(Langley 1999). Relationships among the vertical error of navigation, VDOP and the
pseudo-range error in GPS were discussed by Leva (1994) and a closed-form
expression for DOP was given by Doong (2009). A particular type of DOP called an
ambiguity DOP (ADOP) was designed by Teunissen (1997) and its corresponding
properties were also discussed. The ADOP in a closed-form expression for a hierarchy
of multi-frequency single-baseline GNSS models was given (Odijk and Teunissen
2008).
The commonly used DOP in PNT relies mainly on the geometry of measurements.

It is useful when the least squares estimation and only sole satellite constellations are
used for the solution. The observation geometric strength represented by the DOP is
usually determined by the design matrix of the model parameters such as the
parameters of position and time offset (Teunissen and Kleusberg 1999, p 449–451).
Generally, the stronger the observation geometry, the less the DOP value and the
more precise the PNT solutions. When additional observations/satellites are used in
the solution, the increase of the number of observations can always reduce the GDOP
value (Yarlagadda et al. 2000), regardless of whether the geometric structure is
enhanced by the additional observations/satellites. The precision of positioning can
then be improved.
The Chinese Compass/BeiDou and European Galileo systems have experienced

quick developments in recent years and nine Compass satellites have been successfully
launched (as of July 2011). Additional phase and code measurements from these
new multi-GNSS signals have become available and will contribute to the improve-
ment of the phase bias estimation or ambiguity resolutions (Feng 2008; Feng and Li
2008; Feng and Rizos 2009). In addition, Different combinations of measurements
may also cause changes in the DOP values, for example, non-differential measure-
ments and differential measurements may have different DOP values (Park and Kim
2000).
Some problems exist when the commonly used DOP definition is applied to

measure the possible precision of PNT solutions. These include:

1. It is well known that when multiple frequencies and multiple constellations of
GNSS are used in PNT, the number of measurements is increased, which is an
advantage. Some additional parameters however may also need to be introduced
for the interoperability of the different systems. The DOP values calculated using
a fixed functional model may not be applicable anymore;

2. Usually, multiple GNSS constellations may increase the noise floor and may
introduce additional outliers in the measurements. DOP computation based on
the whole design matrix may not be suitable because the outlying measurements
could significantly impact the precision which cannot be reflected by usual DOP;

3. If different stochastic models are used for different satellite constellations, the
DOP value from the equal-weight-based approach is not suitable anymore.
Instead the weighted least squares estimation (Sairo et al. 2003) or the iterative
weighted total least-squares adjustment (Shen and Li 2010) may be applied;
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4. When a priori information of the model parameters is employed in the parameter
estimation, the DOP calculated based on the design matrix of measurement
equations does not work;

5. Especially when non-least squares estimation, such as robust estimation is used
(Hampel et al. 1986; Yang 1991), the DOP based on least squares principle does
not work either;

6. DOP is defined as the square-root of the trace of the normal matrix which neither
reflects the correlations among the parameters or the ill-posed problems, nor
reflects the systematic error influences. In real time GNSS positioning, the carrier
phase ambiguity resolution is often ill-posed or the geometry is nearly collinear
as in the case of poor satellite geometry, which may result in unreliable or
unsuccessful ambiguity resolution and hence unreliable positioning if no care is
taken to mitigate this situation (Li et al. 2010). In this case, the regularisation or
ridge regression method (Xu et al. 2006; Xu 2009) is recommended. In addition,
calculating GDOP using the ridge regression method was also proposed for
improving the accuracy and performance of positioning (Kelly 1990).

To sum up, the DOP values should reflect not only the geometrical strength, but
also the other important information related to the PNT. In fact, the precision of a
GNSS PNT solution relies on the following four main factors; the magnitude of
errors, the geometric strength of measurements, the number of model parameters and
the principle used for the parameter estimation. In order to reasonably evaluate and
analyse the error influence or DOP of satellite positioning, a suitable DOP statistics
that takes into account the above four factors needs to be constructed.
The influence function (IF) defined in statistics (Hampel et al. 1986; Yang 1991,

1997, 2002) is another important criterion in the quality assessment of measurements
and the parameter estimates. Both DOP and IF can be used as the criteria for
evaluating an observations’ contribution to the parameter estimates, thus they should
be intrinsically related. To establish the relationship between the DOP and IF, a new
generalised DOP (G-DOP) based on different backgrounds such as the principles of a
robust estimation and the Bayesian estimation need to be developed. If the robust
principle is employed, the first type of G-DOP, expressed as G-DOPI in this paper, is
proposed. If additional parameters for the interoperability of different navigation
systems are considered in the functional model, then the second type of G-DOP,
expressed as G-DOPII, is defined. If a priori weights on the model parameters are
considered, the third G-DOP expressed as G-DOPIII is recommended. It is obvious
that more information can be included in the calculation of G-DOP values if some
particular analysis or computation is needed.
All the aforementioned three types of generalised DOPs are defined by the square

root of the variance covariance matrix (VCM) of the estimated parameters, which is
the same as that of the ones that have been used. The only differences are in the forms
of expression, which are related to the estimation principle, the parameter
characteristic as well as whether the a priori information is used.

2. INFLUENCE FUNCTION OF SIGNAL-IN-SPACE ERROR.
The influence of the signal-in-space error (SISE) can be expressed by an IF. The IF is
related to the geometric structure of observations, which in turn is related to the DOP
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value. Assuming that the pseudo-range measurement of the receiver to the satellite is
Li, the measurement equation is (Langley 1999);

Li = ρi + c(dtu − dti) + dIi + dTi + ei (1)
where ρi is the geometric range between the antenna phase centres of both receiver and
satellite, dtu and dti denote the clock offsets of the receiver and satellite respectively, dIi
and dTi are the ionospheric and tropospheric delays respectively, ei is the sum of the
measurement noise and un-modelled observation errors such as multipath effects and
c denotes the speed of light in vacuum. Equation (1) can be written in the following
error equation form:

V = AX̂− L (2)
where V denotes the residual vector, A is the design matrix, X̂ denotes the unknown
parameter vector which is generally the vector of corrections to the model parameters’
approximate values and L denotes the observed-minus-computed observations.
Assume that the contaminated distribution function of Li is Gi, which is composed

of two terms (Hampel et al. 1986):

Gi = (1− ε)Fi + εδli (3)
where δli is the contaminated symmetric distribution and ε is the contaminated ratio
with 04 ε<1 and Fi is the normal distribution function of Li.
Assuming that the measurements are independent, a general risk function based on

the maximum likelihood principle (M-estimation) can be expressed as:∫
ρ(Li; X̂)dF (Li) = min (4)

where ρ(·) is a convex function, which is continuous and differentiable with the scalar
derivative as ψ(Li; X̂) = ρ′(Li; X̂), X̂ is the estimated parameter vector. The solution to
the risk function (4) must meet the following requirements:∫

ψ(Li; X̂)dF (Li) = 0 (5)

Based on the estimation principle (4) and the estimation equation (5), an IF is defined
by Hampel (Hampel et al. 1986, Yang 1991):

IF(Li; X̂,Fi) = lim
ε�0

X̂[(1− ε)Fi + εδli] − X̂(Fi)
ε

(6)

where X̂[(1− ε)Fi + εδli] and X̂(Fi) are the estimated vectors based on the
contaminated and normal distributions respectively.
Considering the error equation (2) and the M-estimation equation (5), we have:∫

aTi piψ(Li; X̂)dFi = 0 (7)

where ai is the i
th row vector of A, pi is the weight of Li and Fi represents the marginal

distribution of Li.
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Substituting (7) into (6), we obtain the following derivative with respect to ε
(at ε=0):∫

piψ(aiX̂− Li)aid(−Fi + δli) +
∑n
i=1

∫
piψ′(aiX̂− Li)aiaTi dG(Li) ∂X̂

∂ε
|ε=0 = 0 (8)

where ∂X̂
∂ε = IF. Given the following equations (Hampel et al. 1986; Yang 1991, 1997):∫

piψ(aiX̂− Li)aid(−Fi) = 0 (9)
∫
piψ(aiX̂− Li)aid(δli) = piψ(aiX̂− Li)ai (10)

∑n
i=1

∫
piψ′(aiX̂− Li)aTi aidG(Li) =

∑n
i=1

piEψ′(aiX̂− Li)aTi ai (11)

where E denotes expectation, we obtain:

IF(Li; X̂,F ) = −M−1aTi piψ(aiX̂− Li) = −M−1aTi piψ(ei) (12)
By substituting equations (9)–(11) into Equation (8), with:

M = ATZA (13)
and Z the diagonal matrix with elements:

Zii = piEψ′(ei) (14)
The IF can also be expressed in the equivalent weight matrix P̄ which has the diagonal
elements of p̄i = pi

ψ(ei)
ei

(Yang 1991, 1997):

IF(Li; X̂,F ) = −(ATP̄A)−1aTi p̄iei

In the least squares estimation, ρ(ei)=ei
2, ψ(ei)=ρ′(ei)=2ei, ψ′(ei)=2 and

Zii = pi (15)
Hence;

M = ATPA (16)
Then the IF becomes;

IFLS(Li; X̂,F ) = −(ATPA)−1aTi piei (17)
where IFLS represents the influence function under the LS estimation.
According to the IF expressed in Equation (12), the effects of the SISE on the model

parameters mainly depend on ψ. Usually, ψ is a descending function which decreases
with the increase of the error, or, it is a re-descending function which decreases to zero
when the error is larger than the given threshold value. In other words, the influence of
SISE on the model parameters decreases with the increase of the magnitude of the
SISE. On the other hand, the influence of SISE ei is related to the observation
geometric structure: the stronger the geometric structure, the smaller the value ofM−1

and the less the effects of the SISE.
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3. THE FIRST TYPE OF G-DOP: CONSIDERING A ROBUST
RISK FUNCTION. Usually, the DOP is defined based on the cofactor matrix
of the parameter estimates. If the principle of maximum likelihood estimation is
applied, the integrated IF of the SISE of the measurements L1, L2,. . .Ln can be
expressed as:

IF
m×1

(L; X̂) =
IF (L1,L2, · · ·Ln, X̂1)
IF (L1,L2, · · ·Ln, X̂2)

..

.

IF (L1,L2, · · ·Ln, X̂m)





 = −M−1ATP ψ(e)[ ] (18)

where [ψ(e)] is the vector composed of the elements of ψ(ei). The posterior covariance
matrix of the model parameters is then defined as (Yang 1997):

ΣX̂ = E(IF · IFT) (19)
Based on Equation (12), the approximate estimate of ΣX̂ can be expressed as (Yang
1997):

ΣX̂ = M−1σ̂20 (20)

ΣX̂ can also be written as the following expression if the equivalent weight matrix P̄
is used:

ΣX̂ = (ATP̄A)−1σ̂20 (21)
with the elements of the equivalent weight matrix calculated by the residual as:

p̄i = pi
ψ(vi)
vi

(22)

where vi denotes the residuals of Li.
If Huber’s ψ function (Huber 1981) is applied to Equation (22) then:

p̄i =
pi v′i

∣∣ ∣∣ = vi
σvi

∣∣∣∣
∣∣∣∣4 c

pi
cσvi
vi| | v′i

∣∣ ∣∣ . c


 (23)

σ̂20 = VTP̄V
n−m−m0

(24)

where m0 denotes the number of p̄i that have zero value.
In the LS estimation; E([ψ(e)][ψ(e)]T)=E(eeT)=Σe=P−1σ0

2 and M=ATPA, thus:

ΣX̂ = (ATPA)−1σ̂20LS (25)
where σ̂20LS is the LS estimate of variance scale.
Similar to the usual GDOP definition, we define:

G-DOPI = [tr(M−1)]12 (26)
as the first type of G-DOP.
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If the equivalent weight matrix is used, Equation (26) can be also simplified as:

G-DOPI = [tr(ATP̄A)−1]12 (27)

From the analysis of the G-DOPI expression, it is found that:

(1) The first type of G-DOP, as the commonly defined/used GDOP, reflects the
observation geometric configuration. The stronger the observation geometry,
the smaller the G-DOPI value.

(2) The combined effects of measurement errors and the risk function are reflected
inM−1. If there exist outliers, the derivative of ψ, ψ′(ei) will be reduced whereas
M−1 will be increased. It means that when outliers exist in some observations,
the contribution of those observations will be removed so that they will not
affect the precision of the parameter estimates. This is more reasonable because
when |ei| increases, ψ(ei) decreases and the corresponding p̄i of Li will also
decrease. In this case, G-DOPI should be increased. The usual DOP in the LS
estimation will not help us to estimate the actual and reasonable variation of the
precision, when there exist outliers which do not make any contribution to the
model parameter estimates.

(3) Both DOP and IF are related to the inverse of the normal matrixM−1. Another
expression of G-DOP can be easily obtained from (26);

G-DOPI = tr[E(IF · IFT]{ }1
2/σ0 (28)

where σ0 is the standard deviation.
It should be noted that the IF is the integrated influence vector that contains the

effects of the errors e1, e2,. . ., en. Furthermore, Equation (28) can be expressed in the
form of IF components:

G-DOPI =
∑m
j=1

E[IF2(L, X̂i)]
{ }1

2/
σ0 (29)

where IF (L, X̂i) is a scalar quantity and it can be expressed as:

IF (L, X̂i) = M−1
j1 ,M

−1
j2 , · · · ,M−1

jm

[ ]
∑n
i=1

ai1piψ(ei)
∑n
i=1

ai2piψ(ei)

..

.

∑n
i=1

aimpiψ(ei)







=
∑m
k=1

M−1
jk ·

∑n
i=1

aikpiψ(ei)

(30)
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In the LS estimation:

G-DOP = (QX11 +QX22 + · · ·QXmm)
1
2 =

∑m
j=1

σ2xj

( )1
2/

σ0 (31)

Equation (31) is the same as that of the usual DOP.
It should be pointed out that if the outliers are detected and identified by the DIA

method (Teunissen 1990), the G-DOPI is nearly equivalent to the commonly used
DOP.

4. THE SECOND TYPE OF G-DOP: CONSIDERING ADDITIONAL
MODEL PARAMETERS. The issues of compatibility and interoperability
need to be addressed when multi-GNSS constellations are used. One feasible approach
is to add extra model parameters to the functional model for compensating the
systematic offsets/errors such as the coordinate system offset, the systematic time
offsets and the satellite orbit errors etc. In this case, the observation equation matrix
becomes:

Li = aiX+ biSj + Δi (32)

where Δi is the random error vector, Sj denotes the systematic error vector that
only includes the additional model parameters, ai is the ith row of the design matrix
and bi is the coefficient vector of the additional model parameters. For a single
navigation system, Sj may be the receiver time offset parameter dt (Milbert 2008,
2009) and Sj can be merged into the parameter vector X. If each satellite system
has its own systematic parameters Sj, then they can be estimated under the support
of multi-GNSS. At least the effects of Sj can be compensated by estimating their
values.
Equation (32) can be written in the form of the following error equation:

VJ = AJX̂+ BJ ŜJ − LJ (33)

where the subscript “J” (J=1, 2, . . ., N), represents different satellite systems, such as
GPS, GLONASS, COMPASS etc. The parameter estimates and the IF from a robust
estimator could be;

X̂
Ŝ

[ ]
= ATP̄A ATP̄B

BTP̄A BTP̄B

[ ]−1
ATP̄L
BTP̄L

[ ]
(34)

IF (ΔJ, X̂)
IF (ΔJ, Ŝ)
[ ]

= ATP̄A ATP̄B
BTP̄A BTP̄B

[ ]−1
AT

J P̄JΔJ

BT
J P̄JΔJ

[ ]
(35)

From the estimator (34), it is easy to obtain the effects of the systematic error vector
SJ on the common model parameter vector X̂ by:

IF(S, X̂;F1 · · ·FN) =
∑N
J=1

M−1
J

( )−1∑N
J=1

AT
J P̄JBJSJ (36)
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Similarly, the IF of the random errors Δ1,. . ., ΔN on the model parameters can be
expressed as:

IF(Δ, X̂;F1 · · ·FN ) =
∑N
J=1

M−1
J

( )−1∑N
J=1

AT
J P̄JΔJ (37)

In multi-GNSS, the influence of the systematic error of a single constellation on the
estimates of PNT can be analysed using the total influence function (TIF) by:

TIF(L, X̂;F1 · · ·FN ) =
∑N
J=1

M−1
J

( )−1∑N
J=1

(AT
J P̄JBJSJ + AT

J P̄JΔJ) (38)

Since the additional model parameters will degrade the precision, so the DOP
values will be enlarged. The second type of G-DOP (G-DOPII) that takes into account
the additional model parameters can be defined as:

G-DOPII = tr ATP̄A ATP̄B
BTP̄A BTP̄B

[ ]−1
{ }1

2

(39)

Using the matrix equivalent equation (Koch 1987), the G-DOPII can be obtained
as:

G-DOPII={tr[N−1
X +N−1

X NXS(NS−NSXN−1
X NXS)−1NSXN−1

X +(NS−NSXN−1
X NXS)−1]}12

(40)
where NX = ATP̄A, NS = BTP̄B and NXS = ATP̄B = NT

SX.
From the analysis of the G-DOPII and TIF, the following findings can be

obtained:

1. Generally, multi-GNSS will improve the G-DOP, especially when multi-GNSS
meet the requirements of compatibility and interoperability, no additional
parameters need to be introduced to the functional model for compensating the
systematic error effects. The G-DOPII can then be changed into:

G-DOPR = tr
∑N
J=1

AT
J P̄JAJ

[ ]−1






1
2

(41)

where G-DOPR denotes the GDOP based on a robust estimation. It is obvious
that the more satellites available, the smaller the G-DOPR value.

2. If the requirement of interoperability is not met, additional parameters for
individual constellations need to be added to compensate for their systematic
errors in the integrated navigation or positioning solutions. The G-DOP
becomes larger and the level of improvement will be reduced. From Equation
(39), we can obtain:

{tr[N−1
X +N−1

X NXS(NS −NSXN−1
X NXS)−1NSXN−1

X + (NS −NSXN−1
X NXS)−1]}12

5 [tr(N−1
X )]12
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which means that G-DOPII5GDOP. Therefore, the compatibility and
interoperability of multi-GNSS is important for improving the precision of
multi-GNSS positioning.

3. If SJ (J=1,. . ., N) have different signs, meaning that they have random charac-
teristics, then

∑N
J=1(AT

J P̄JBJ)SJ will have the nature of cumulative decay. As an

extreme case: when N approaches infinity,
∑N

J=1(AT
J P̄JBJ )SJ will be close to

zero. This means that when multi-GNSS is available the systematic errors among
different systems in the integrated positioning may be cancelled out or
compensated.

4. A large SJ will result in a descending ψ(eJ) since eJ includes both ΔJ and
SJ. Therefore the G-DOPII reflects the impacts of the systematic errors as well.

It should be mentioned that if no additional parameters are to be estimated in the
data processing, the G-DOPII will be equal to the commonly used GDOP.

5. THE THIRD TYPE OF G-DOP: CONSIDERING THE A PRIORI
WEIGHTS OF SOME PARAMETERS. Different types of systematic
errors and offsets in multi-GNSS may exist and in many cases these errors are treated
in different ways, depending on their characteristics. For example, some of the
systematic errors are treated as constants, e.g. the coordinate system errors are usually
expressed as; ΔX0= [Δx0 Δy0 Δz0]

T. Some other errors are time-varying, which may
be modelled by a polynomial function or an autoregressive process. For example, the
linear polynomial function Δt=dt0+ (t− t0)dt1 is commonly used for systematic time
errors. These systematic errors, or the values (or even their approximate values) of the
additional model parameters at the first observation epoch, expressed as Δx0, Δy0, Δz0,
Δt0 and Δt1, are normally unknown. After the first epoch’s data processing, a set of
approximate values along with the variance-covariance matrix of the parameter
estimates can be obtained. The variance-covariance matrix is usually called an a priori
weight matrix (for the next epoch’s data processing). Thus, the DOP value should
reflect the a priori information of the additional model parameters.
If ΔX0 and Δt are merged into the additional model parameter vector S, with

a priori estimates of S̄ and ΣS̄, then the error equation can be expressed as:

VJ = AJX̂+ BJ Ŝ− LJ (42)
where Ŝ denotes the estimated S vector.
To conveniently express the estimator under the Bayesian rule (Koch 1990),

the weight matrix PS̄ = Σ−1
S̄

for parameter S̄ is used. The Bayesian estimator of
model parameters including the additional parameters can be then expressed as:

X̂
Ŝ

[ ]
= ATPA ATPB

BTPA BTPB+ PS̄

[ ]−1
ATP̄L

BTP̄L+ PS̄S̄

[ ]
(43)

Therefore, the third type of G-DOP (G-DOPIII) which takes into account the a priori
information of some model parameters is defined as:

G-DOPIII = tr
ATPA ATPB
BTPA BTPB+ PS̄

[ ]−1
{ }1

2

(44)
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In positioning and navigation with multi-GNSS, the G-DOPIII will be improved even
in the case where additional systematic parameters need to be introduced for
addressing the interoperability problem of different systems if the a priori information
is used in the estimation process.
It should be pointed out that G-DOPIII is not new and that it depends on the data

processing procedure. If the a priori information is employed in the data processing the
G-DOPIII is valid. In the case where there is no a priori information available, the
usual DOP is still used. G-DOPIII should be used if some estimated information can be
obtained during the data processing.

6. SIMULATED EXAMPLES. A simulation was carried out in this
research. The time period of the simulation is 24 hours starting from 0000 hours
March 28, 2010, in GPS time. The sampling interval is 300 s. The mask elevation angle
is 5 degrees. For GPS and GLONASS satellites, their orbit parameters are obtained
from broadcast ephemerides. In the time period, 30 GPS and 21 GLONASS satellites
were involved. Circular orbits for Galileo and Compass were used. 27 Galileo satellites
and 27 Compass MEO satellites distributed evenly in three orbital planes were
simulated respectively. The simulated Keplerian orbit parameters for these satellites
are listed in Table 1.
In Table 1, a denotes the major semi-axis, i is the inclination angle, e is the orbit

eccentricity, ω is the argument of perigee and M0 is the mean anomaly.
The five Compass GEO satellites are located at 58·75°E, 80°E, 110·5°E, 140°E and

160°E respectively. The inclinations of the three IGSO (Inclined Geo-Synchronous
Orbit) satellites are all 55° and their right ascension of the ascending nodes areΩ=0°,
120° and 240° respectively. The cross node is at 118°E.
At the simulated station (34·8°N, 113·7°E, 110·4 m), the number of satellites in view

is shown in Figure 1.
The flowing three scenarios are used for the simulation:

Case 1: 5%, 10% and 20% outliers were simulated in the pseudo-range
measurements. The GDOPs in the two cases: with and without the outliers were
compared, as shown in Table 2.

Case 2: In the integrated positioning system of the four GNSS constellations, some
additional parameters are added for compensating the systematic errors. Three

Table 1. Orbital Parameters of Compass and Galileo Satellites.

Compass Galileo

a 27878·1 km 29601·297 km
i 55° 56°
e 0 0
ω 0° 0°
Ω 0°, 120°, 240° 60°, 180°, 300°
M0 At the starting time of the 1st satellite in

each orbit, the mean anomaly are M0=0°,
15° and 30° respectively, others plus 45°
for each satellite. In addition, the mean
anomalies for the standby satellites in the
three orbits are 10°, 55° and 105° respectively.

At the starting time of the 1st satellite in
each orbit, the mean anomaly are
M0=0°, 15° and 30° respectively, others
plus 40° for each satellite.
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parameters for systematic time errors and six parameters for systematic time and
coordinate errors are used. The G-DOP values with and without additional
parameters were calculated and compared in Figure 2 and Table 3.

Case 3: The a priori information of the additional parameters for the compensation
of time and coordinate errors and offsets were used in the positioning solution.
The third type G-DOP was calculated and compared with the cases of with and
without the additional parameters but not using the a priori information. The
results are shown in Figure 3 and Table 4 respectively.

In addition, the following five schemes were designed for cases 2 and 3:

Scheme 1: Only four parameters were considered in the positioning model: three for
position and one for receiver clock. This means that the systematic errors of both
time and coordinate systems were not included in the parameter vector.

Scheme 2: Seven parameters were considered in the positioning model in which
three additional parameters for coordinate systematic errors were included in
addition to the three position and one receiver clock parameters.

Scheme 3: Ten model parameters were included: three position and one receiver
clock parameters, three parameters for coordinate systematic errors and three
parameters for time systematic errors.

Figure 1. Numbers of visible satellites from the four GNSS and the sum of all the visible satellites.

Table 2. The first type of G-DOP values with different proportion of outliers.

Proportion of Outliers 5% 10% 20%

Number of visible satellites 42 42 42
Number of Outliers 2 4 8
GDOP 0·827 0·827 0·827
The first type of G-DOP 0·836 0·843 0·866

S14 YUANXI YANG AND OTHERS VOL. 64

https://doi.org/10.1017/S0373463311000415 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463311000415


Scheme 4: Similar to scheme 2 but an a priori variance-covariance matrix of the
systematic error parameters is used.

Scheme 5: Similar to scheme 3 but an a priori variance-covariance matrix of the six
systematic parameters is considered.

From the analysis of the above results, it is concluded that:

. From Table 2, it is found that the first type of G-DOP increases with the increase
of the number of outliers. This type of G-DOP reflects the outlier impact on the
observation geometry based on the robust estimation. It is reasonable that when
there are outliers in the measurements the geometry strength should be weakened.

. From Figure 2 and Table 3, it is found that when interoperability problems exist
among the GNSS, systematic error parameters should be included in the
positioning model. This will result in an increase in the value of the second type of
G-DOP. The second type of G-DOP increases with the increase in the number of
the systematic error parameters. It is reasonable that when the number of model
parameters increases the strength of the corresponding observation geometry will
be weakened.

. From Figure 3, it is found that if the a priori information of the systematic error
parameters is continuously used in the estimation process, the value of the third

Figure 2. The second type of G-DOP changes with observation epochs.

Table 3. Average G-DOP of 24 hours of schemes 1, 2 and 3.

Scheme Scheme 1 Scheme 2 Scheme 3

Mean G-DOP 0·82 1·21 3·67

(Note that when the number of visible GLONASS satellites is less than four, the corresponding G-DOP is
not included in the calculation of the average values).
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type of G-DOP will be getting smaller and smaller with the increase in the
number of observation epochs. Therefore, the a priori information of the sys-
tematic error parameters can strengthen the observation structure and weaken the
adverse effects of the interoperability parameters on the integrated positioning of
multi-GNSS and this can be reflected by the third type of G-DOP. From Table 4,
it is concluded that the fewer the number of systematic parameters, the quicker
the convergence of the third type of G-DOP.

7. CONCLUSIONS AND REMARKS. The observation geometry
strength is related not only to the design matrix of the observation equation but also
to the health of observations, i.e. related to the precision and reliability of the
measurements. The first type of G-DOP can reflect the contributions of the outlying
measurements to the DOP based on the robust estimation principle. The outlying
measurements will not change the original DOP, however it does change the first type
of G-DOP.
The observation geometry strength is also related to the number of model

parameters. The higher the number of the model parameters to be estimated, the
weaker the observation strength. The second type of G-DOP can reflect the effects of
the additional systematic error parameters on the positioning precision. It shows that

Table 4. Average G-DOP for periods of 10-epochs for schemes 1, 4 and 5.

Epoch period 1–10 11–20 21–30 31–40 41–50 51–60 61–70 71–80 81–90 91–100

Scheme 1 0·77 0·78 0·77 0·79 0·81 0·81 0·85 0·81 0·85 0·83
Scheme 4 0·90 0·81 0·79 0·81 0·82 0·82 0·86 0·81 0·85 0·83
Scheme 5 1·55 0·99 0·90 0·88 0·88 0·88 0·90 0·85 0·88 0·86

Figure 3. The third type of G-DOP changes with observation epochs.
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if the interoperability of multi GNSS is not fulfilled, the increased number of satellites
will not significantly reduce the DOP value because additional model parameters
should be introduced and estimated, which weakens the contribution of the increased
number of measurements.
If the a priori information of the model parameters is used in the positioning

process, the precision of the position will benefit from both a priori information of the
parameters and new measurements. The third type of G-DOP can reflect both the
contribution of the a priori information of model parameters and new measurements
to the DOP. From this point of view, if the systematic errors change smoothly with
time or position, the a priori estimates of the systematic parameters and their
corresponding variance-covariance matrix should be taken into account in the actual
GNSS positioning to reduce the DOP values.
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